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The underdetermined inversion problem

Supposcyougoml}ummwhwmefood.Youdeddcwbuymupplenﬂmbumn.uﬂﬂw
valdorasksyouomﬁm(orudmerﬂnlocalcumyis).MMmeyourwifemyou:“]w
much does an apple cont?". Your correct answer should probably be:

a+bm=i,

whichwllldrivemoutnu:ewimllmaﬁ!.lnumcmltwon’thclpywmmmmﬁzml.whm
the line b=1-v delineates all possible solutions; .

51

’ ’ >
N -4

Figure I: all solutions of a-+b=1 lie on a straight line

It seems Jike lMpidmplghtkmaﬂyiﬂnsm:mybudccthicormphysicd
inversion problems. Forlmume.ywmeuumﬂ:ewo—waymvelﬁmeofueimlcmﬂmjou-nyit
is 830 milliseconds (figure 2). Convinced that this particular refiection s strong enough 0 signal the -
presence of & lucrative gas ficld, the oil company manager asks you 10: "how deep is the gas field?".
Your correct answer should probably be:

0.830

Var

where (you gucssed it), v,, is the average seismie velocity over depth z. This answer, 100, might
throw the questioner into a fit.

Thesimillrilybetwemmelwemplukﬂmmmemmmemlswaﬂablemuymmmabout
two unknowns: @ and b, or z and v,,. The problem is underdetermined, like most, if not all realistic
geophysical problems. We seem 10 be at a loss. Or are we?

Inthecaseofllnlpplc.wecmcr.mlnlybeabltmomspeclﬁcdunjusluyﬁmawﬂ.memple.
we know that cost is gencrally a positive quantity, 3o we may staie that a >0 and b>0, Thus, Instead



The minimum norm solution

Eventhoughwehavemducedmcdinwmionalityofmemodelspue.asoluﬁoninm:fomofa

subspacesuchnsshowninﬁgumfiisnotpmuical-ll'onlybecausemremliaicinvmcprobhms

‘r have more than 2 dimensions. Some tomographic problems may have a dimension of order 105 We
would often like 10 present a prefemed model (or point estimate). We obiain a prefemed model. by
specifying a crilerion that distinguishes the "good" models from the others. This always involves some

v ' degrec of subjectivity, and we shall in generai be obliged 1o state our subjective preference clearty,

ay

Asmexamplc.wemigmmmuwewouldpufermcpﬁoeofmapplcmbcuc.bnaspossibleto
that of a banana. Mﬂalu'etl,wemwdnwalimforequalpﬂmad:

£ s

Figure 2 "

3

My o Aa
N Figure 4: the preferred solution not only has a +b=1 but also a=b (other choices are possible 35 well,
depending on our a priori preferences).
e mwyyieldumimuﬁma-b-%.uncnmphulmubimumymuﬁmm
Figure 3a Figure 3b Noie that the line a=b is also the solution with misimum nomn a¥b2, Ofien our unknowss are
mmmm.mmmummmnwmmrmmmm
) mmwmmmmmhm.mummmmum
ofﬁguml.whveamﬁmhedmof:ﬂmlm(ﬁgumm: Such nonlinear constraints are very mxmmwwmmmmmmmmmmmmummu
hclpfultomﬂathcsdndoaspan.lnﬁmz.menlmmwumdimmﬂmﬂ(aﬁne). in mmmm“mmw‘mmm 8 hand and the & priosi information
mcmﬂnwmkumnﬂnkmempﬁm.uﬂtnﬁmmmmehumﬁcmm available, '
ofﬂnEmhmmtﬁcﬁdd.ﬂanumxydﬂwﬂeﬂmaqudnﬂcMmﬂ:clmgﬁofmc .
Vm“mmm-meﬂnvawmwua%’sE(s{eeﬁzum%)- : mmecmofthcsdmkmﬂeaimltwmmmﬁnkmmhﬂmizeuhnnhdumwum
um.mmmmuwmwmmhm“mmevmuuupwhmm veuw(z.v..).ﬂwebomwmmhvedlffexmphyﬁcddmmBmpcﬂupnwchnemu
solution if ELb5 Bxku{l%ﬂ.l%)humﬂemindemhmﬂyofﬂnln&mmcofmchbmmdsm mm_mm'mmmmmum“mmmu‘nww
MMWmMﬂMhmMWMJM{Im)hMY borizon at depth zgto, , where o, ismmmwnmmmmm.mmuy.wmtm
easicr 1o understand for stariers in the subject. velodtymbemarvoh;,. Wemmmﬂnwouemﬂmnbymmdudngums,sm..
wilh =5 'O, fvg:
¥ou may wish 10 know ai this stage what &1 this has w do with seismic wmography. The answer is 0%07 0,=3, vy
umuwﬁmpkapphmmplehnbhhﬂmwmomnmomnhmmmuﬁcpmmm. ‘ 2 ~0.830s,, =0
but at & much smaller scalc of 2 or 3 unknows and data. We could use & tomographic analogon, using The solution space is thercfore the line 2=0.830s,, . We stay closest to our a prioni model if a2, and
mMMMkmwwrmwﬂu-Wmmehmw $=50. but this i§ not necessarily a solution. What deviation of z from zq s w0 be considered equally
mande, for cxample. The appic problem just scems a bit more real at small dimensions, - bad as s deviation of s from 507 A logical answer is (0 weigh the deviations by their standard

deviations:
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2
[! !o] + [.I‘ 0
o, g,
Our preferred model is thercfore given by that model on 1=0.830s,, for which this expression is a

minimum. If we use scaled parameters 1'=2/0, and 3'xs/0,, we can easily find this solution by
pmjection, as in figure 5.
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Figure 5. the preferred solution i3 found by projection, which s orthogonal if we use scaled
panameters.

However.thisi:notgmmllyhowwesolvemdnaymofequaum.mthccmorﬂt apple
pmhlem.wecancasilyleelnwmMﬂwnﬂxﬁmnmmmntmionlfweviewﬂnoquaﬁonasm
inner product of the vector (1,1) with the vector (a,b):

(L) p)=1

Figured:alinurequlﬂonilmlrmrpmductbetmlhevectorofcoeﬂicieﬂsmdlhcvmrof
unknowns.

Forallvmn(a.b)ofaglvmlmgduﬂzunﬂdngpndmtismuimimd if (a b y/(1,1). Conversely,
th:veclor(a.b)wimﬂlesmaﬂmlenmhforwhlchﬂnekunrpmduahuﬂmvﬂue 1 is a vecior
parallel to (1,1), or with a=b, from which it follows that gad =14,
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How does this work with more complicated problems? Supposc we have m linear equations, with
n>m unknowns, In matrix notation:

Ax=d

where x is the model, and d the datum vector. The matrix A has m rows, which we designate
A8y ' - My, The matrix multiplicstion is essentially & series of inner products like in the apple
problem. For example, the thind datum satisfies: 83 -x=dy.

Now.mﬂogomwdnmdimmmme.lﬂmnmposeumumfemdmsuuonxisoneum
can be constructed from veciors parallel 10 the rows of A, and no other componenss, Thus, we write
uﬂ:puﬂadarsolutionlonlﬁmrmbhnﬂonwlaﬁwzlﬂ.---.w.a,,:

xmATw
AATw=4d

which is a mxm system of linear equations. We may show that this xg Is the minimum norm solution,
For, suppose the 1, (0 &, are independent, they span a m -dimensional Subspace of the a -dimensional
model space. We can supplement this with 2 —m ¢xira basis veciors b; that are mutually orthonormal
mdnlsoonhogaulmeverymeofthebuuvecmu,-. The most general expression for a solution is
given by:

Ky =X+ Z\';b}
i

where the v, cmuke:zﬂmva!mudﬂnmaﬁenlngﬂtﬂtmd.dmdnomwtyofﬂn
vectors &; and b; implics Ab;=0. The nom of x,; is:

1%t 12 = | 5|2 + T2
Since the w; mdclemmbyulelimrsym.umlsmﬂym:o.ltﬂx., is minimized for all
¥;=0 30 that it equals xo. In case some of the a; are dependent, 3o that AAT is a singular matrix with
determinant €, we can adapt the proof {we just need more than s —m vectors b; 10 span the compiete
model space).

Averyimpommlppucaumofﬂuahovepﬁmlpleofamkﬁmummnnaolurionlsgivenbyan
iterative mluﬁonmdmiquuedinmdicalmnmgﬂny-mdbdeﬂyappﬁedlnsﬁmic tomography
2 well although there are now better algorithms available. it is pow known as the Algebmaic
Reconsiruction Technique (ART), but actually a re-invention of an algorithm proposed by the Polish
mathematician Kaczmarz in 1937, In scismic tomography, we face the problem that # and m are very
large: ofien we iry 1o interpretc m=10° data in terms of » model, given by slownesses % in n=10" or
more cells - note that in this case m>>n nﬂmlhmmq.mmemc:edepumnciesmonglhe
matrix rows generally results in a solution space of dimension k<n, w0 that, again, the solution is noi
uniqucmdweseardlfoumirﬂmummmloluﬁmlnARTwcdoﬂﬁsnfnlImﬁmwemmeﬁm
damm.d,.bychoosingaﬁmmmx‘"pmudmnwﬁrstmw.givenbyveuorelunmm,.

,}m,.ﬂ
&
X
That leaves a residual rill=d-Ax("), where of course r=0. We now wish 10 add a correction to x®,
such that the new vector x® reduces the second clement of the residual vecior 16 0, Again, we find the
minimmnmmmwﬁmbydmdngﬂnoonecdmpamﬂelwdnmwofAMbﬂmwm



dalum we are fiting. A litle algebra resulis in:

Ayrfh
xP=xf0y Ayrf?

x
Repeating this many times;

_
I L

[

wim-qm;.smmmmumwnuammmaumof&mm
ommmeminknumnmmlnhmthummummrmemmmummofh
equations are inconsistent),

are nonzeso is very much less than a inevuymw.Wecanmwnddemuedhkspacebynoﬂngnm
every Ay, but & series of pairs J A, for nonzero A, only.

ART is simple, bmitiuhoexnundyllowhmm;ing. us apply it lo the problem. You
mmewmwmmmmmmCmyﬂ eple

160 DIM A{20,20) ,R{20),%X(20),D(20), ROW(20)

20 INPUT “how many data®™;N: INPUT "how many unknowns™;N

30 FOR I=1 TO M: PRINT "input row",I: FOR J~1 TO N: INPUT A{I,J): NEXT J:
NEXT X

40 PRINT “input data”: FOR I=1 TO M: INPUT D{I): NEXT I

50 FOR I=) TO M: ROW{I)=0!: FOR J=1 TO N: ROW(I)=ROW(I)+A{X,J} “2: NEXT J:
NEXT I

60 FOR I=1 TO N: X(I)=0!: NEXT T ‘

70 DNORM=01: FOR I»1 TO M: DNORM=DNORMAD{I) “2: NEXT I .

80 EPS=1E-08*DNORM

85 PRINT “iter reaidual x{1l}*

90 FOR Q=1 TO 1000

100 GOSUB 160: GOSUB 200

110 IF G>10 AND Q MOD 10 <> 0 GOTO 120

115 PRINT USING "#4###%;Q;: PRINT » =,

116 PRINT USING * 4. H48°° """ SOR (RNORM) , X (1)

120 IF RNORM < EPS THEN GOTO 140

130 WEXT O

140 PRINT “aclution®: FOR I=l TO M: PRINT I,X(I): NEXT I

150 sToP

160 REM compute residual vector

170 FOR I=1 TO M: R(I)=D{I}: FOR J=1 70 N: R(I)=R{I}=-A(I,J)*X(J): NEXT
JiNEXT I

180 RNORM=0: FOR I=1 TO M; RNGRM=RNORM+R (I} “2: MEXT I

-6-

190 RETURN

200 REM compute updated x

210 I=(Q+1) MOD M + 1

220 RR=R(I)/ROW({I)

230 FOR J=1 TO N: X(J)=X{J)+A(I,T) *RR: NEXT J
240 RETURN

RMngmismdwodsindpmuun.wpimmediudyohninmcpmﬁemdsduﬂdmsbsh. Soletus
now buy one apple and two bananas. the price is 1.40 Piaster, 30 we now have the double system;

a+b=l wmd g+2b=14

meinsthelinleBASletnmm.weuemdwuinﬁmmagammﬂ-b-%.uexpwed
simeitouﬂyueusﬂnﬁmequaﬂoninmpone. In the second sicp, the result is g:20.48, &=0.46, in
agmmwimﬂnnoondequuhnmddmadydocermthemadudonc-o.s.b-o.t But in the
third step we actually do worse again: a=0.51, b=0.49, Such behaviour is characieristic for
m.mlomwmmmmmma-oﬂl.b-o.ﬁ&andwcm 100 sicps 1o get w0 within
107° of the true salution.

Inconsistencies

It is interesting 10 see whuhappanwlhcART:ﬂudonwhmmmmmdepammhuﬂwdm
are inconsisteny. chmﬂc,uuvmmmmwcmiﬂubylomamwbmammﬁr
10 Piaster, but for 9.9;

a+b=l and 103 +105 =99

A limle wmu.m;qn&mmwnulcm.mmmm: whenever 7, is
madeO.aab-ij.bmwhmr;-Olheloludonha-t-o.ws.smmewhnoaummh
oscillatory behaviour, ART does not converge. lmﬂemunobvhwdﬂlemmmnmpmbhmhnm
muymmuwmmmmmummuonmmmm

b4

el

a
Figure 7: two inconsistent equations becayse of daia errors. Fiqure 3
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independent. Of course, we shall have no problems if there are no round-offs in the data. For example,
if the truc prices are a=0.4 and =06, and the vendor asks 1 Piaster for one of each, and 9.4 for a bag
with 10a + 95, we indeed find 2=0.4, b=0.6 cither by hand or with the BASIC program. Instead of
figure 7, the lincs are not parallel (figure 8), and there is & solution. But the solution point will shift
drastically if there is a small emor in the datum vector d =(1.9.4). For example, suppose the vendor
rounds off and asks 9.5 Piaster for the bag - an error of merely 1% in d,, Computing (a.b) we find:
a=b=0.5, an error of 20% in the solution.

Before taking a second look at such problems of numerical Instability, let us first see how we should
handle incompatible, or overdelermined equations. Consider a more gencral sysiem of equations
Ax=x, such as:

11 x 3

23 xa| = 2

25 10,

A graphical representation (figure 9) immediately shows us that there is no exact solution to this,
Evuypairoflhwscmsmhadiffuuupom.

Figure 9: 3 incompatible equations

ﬂmei:uwncrwayloviewthis.'l‘hcmemchlt:nmdx;of:uemllywcigmswithwhichme
colnmnveaon(l.zz)u\d(l.-‘.ij)lrelddedmlhepmductAx.me figure 9 it is clear that there is
msuofwcigimmupmdmmevecmr(lz.w).lgluldmmmcwlumm of Abyasetof n
vectors a'a?, - - g” (0ot to be mixed up with the row vectors denoted by low indices such as a, ).
Vectors a'=(1,2,2) ad #%(1,~3,5) span & two dimensional planc in three dimensional space (figure
IO).TMsplmeilhlownlsﬂnmg;oonrR(A)-ltinhesetoflllvectonAy. The fit to the
equuiomlsgivmbylheveclorrad—Ax.Simermubeo,dubestwecmdoislomakeitslmgm
assm:uaspossible.hmswmmnrinperpendladarmAyfourbimryy. In temms of an inner
product: .

(rAy)=(d-Ax.Ay) =0
using the fact that (8, Ab)<(A” a,b):
(ATd-ATAx,y)=0
Since this has to be true for arbitrary y, the other vector must be identical to 0, which implies:

=21}
"

/E/ﬂ)’/ -

;’"
- ft
L ?

Figure 10: the dawm vector d does not lic in the range of A.

ATAx=ATd

This is an #xn system of equations, whic.hhluguunmeedemaoluﬁonﬁlubmhsiduminmc
range of AT . The solution is known as the least squares solution w the problem,

There may be a problem if ATA is a singular matrix, because some of the columng at are dependent.
Inlhatcasewemsimplyltntltasbefom.mdlcloulheminimummrmsdnﬁmmswim
however, not free us from the problem of numerical Instabilitics, caused by columns that ane nearly
parallel.

Numerical instabilities: regularization
We have seen earlier how a l%enorludcmﬂdlmdtouZO%emlnx.Anevenmomdmmmple

= RN RN

which has the exact solution x,=x,=1. Now Suppose we make a very minor emor in the data, so thar
the right hand side vector is (3.3) instead of (3,3.0002). Solving again, we find x,=3, x,=0, quite a
difference! Obviously, although the equations are technically independent, they are 30 ncarly the same
that smafl rrors may have a large influence.

If such a minor emor blows x; up by a factor of 3, how much do we suffer from major errors? Delay
times in scismic tomography are of the order of 1-2 seconds for teleseismic P waves, bul genenally
suffer from errors larger than 0.5 seconds. So, what if our data vector is (3.3.5) instcad of (3,3.0002)?
The solution is now x;=-9997, x2=50001 Qur intuition is usually able to spot such solutions as
unreascnable. This intuition then can be used (o *regularize’ the problem.

Usuauy.wellelblelofomulnemimersepmblemlnafomthsaﬂowsfornﬂasa'relsmnblc'
solution, and in which solutions with large norm |x| arc suspect. We might add this information to
our sysiem of equations. mtlctllmx,mdxgmndbemﬂlucxpmssedbytwonewlimu
equations;
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exy=0 , exg=0

ltmaymmﬂmwemwhaveasohuionpo.butﬂmismm.simewchavcalsometwooriginal
equmiom.wmchmdcﬁniwlymsolvedbymcmuvenor.lnt‘am,byaddingﬂmtwonew
constrainis, we cnd up with an inconsisient system again. € serves 10 weight the two parts{ihe original
panammedanlpiagpm)ofﬂnsyacmofmﬁauwim:upeawmhm. The full system
becomes:

r

1 1 3
2 20004 [x1] (3.0002
e 0 [xa™| o
e 0
And the least squares sysiem is:
2+ 40002 |[x1] [6.0002
4.0002 8.0004+¢? (23] = |12.0007

in which we assumed 3 figure computing sccuracy. If €? becoaies very large, we see that the diagonal
dominaies, 50 that both xy and x3—3/epsilon?. In that case the damping compleiely determines the
solution. As we relax e, the solution gets closer 1 the original, but on the oiher hand the adat errors
get more influence.

Nowﬂmfo:memdowemrpeuhecmﬂmion.mlflhedmmwillnncm.Damping

ummmmmmmmmumnummmm For example, if we wish to
mltﬁmiuﬂndlﬂ’mbemnm:;.wemnddmmn-x,-o.

Selsmic tomography

Hcmmadymﬂﬂmmmymwwdgoﬁﬂmummm.mw.pmjwdm-

mmmmkmmmuchmnpimy.mmmuommdmpedpmperﬁesif
ﬁrlmnﬁmmswmedmmﬂy.ﬁ:wemmﬂyfomdwdommmrﬁmis
limiwd.Fonmygoodimnducﬂoninmmemmeﬂcumnymoﬁmﬁveﬂpﬁdms.mvmdcr
Sluis and van der Vors: (1987).
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