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NONLINEAR INVERSION OF SEISMIC WAVEFORMS
Guust Nolet

Lecture notes, Trieste 1990

Abstract

Only about 5% of the Earth's surface has a dense enough coverage with seismic stations
and a high enough level of seismicity to make delay-time tomography of the Upper Mantle
possible.Onmeonehand,wemayn'ytoimprovethissimatimbyincmsing the number
of seismic sensors, especially in underdeveloped countries and in oceanic areas. But for
the near futre, we must try 1o image the Upper Mantle structures using more of the
information contained in seismograms that are already available,

Waveforms and wave arrival times of the fundamental and higher mode surface waves are
semiﬁvemUppaManﬂeshwvebckymmmdmbeusedmﬁmgedﬁsmm.
For high frequency waves (> 10 mHz) fully nonlinear inversion is much more powerful
than repeated lincarized inversion. With present-day availability of broad-band seismic
records the station separation is the limiting factor for the resolution. Contrary to delay-
time tomography, an acceptable depth resolution is also obtained in regions of weak or
absent seismicity,



Introduction

Everyone of us would liké 1o take a look deep inside the Earth - except perhaps Edgar
Allen Poe, who wrote a sonnet on Science and accuses it to rob us of our romantic
illusions; y ‘

Science! True daughter of old time thou art
Who alterest all things with thy peering eyes
Why preyest thou thus upon the poet’s Reart
Vulture, whose wings are dull realities?

Probably also except captain John Cleves Symmes, who proposed 10 the American
Congress as late as 1825 to send an expedition to the hollow interior of the Earth by way of
& supposed hole near the North Pole. The idea of & hollow Earth remained very much alive
until the end of the last century and inspired Jules Vemne, who usually cannot be accused of
ignoring valid scientific facts, to write his ‘Voyage au centre de la Terre’ (figure 1).

Je e'imaginais voyager d travers un dizmant (p. 184).

Figure I: Jules Verne imagined the Earth as hollow and habitable.

Since the turn of this century, seismology has given us a reasonably good idea of the
average structure of our planet. Unfortunately, the romantic pictures that illustrated Jules
Veme’s story were almost immediately replaced by graphs of seismic velocity versus
depth. Interesting for the few who are happy enough to stick to the facts, but one cannot
help to sympathize with Edgar Allan Poe. The scientific mind had gained over the romantic
instinct.

With hindsight we may now suspect that both the romantic and the somewhat puristic
scientist were wrong. The romantic because he drew pictures where no factual evidence
was available. The scientist because he used Ockham’s razor to strip the pictares of
anything that was not warranted by the data available. And since the data were insufficient
to reveal three-dimensional structure, seismologists reduced the Earth to a one-dimensional
model. This is, in my opinion, one of the main reasons that seismology has been out of
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touch with geology for a long time.

Fairly recently, however, we have witnessed a change of scene. Suddenly seismologists
were producing three-dimensional pictures, like the one in figure 2. Because such images
are like a slice, cut through the Earth, the procedure to obtain them is often called ‘seismic
tomography’, a term borrowed from the medical practice. Figure 2 was obtained by
measuring 500,550 arrival times of P-waves (as published in the bulletins of the
International Seismalogical Centre) and inverting these for the velocity structure of the
Earth using a lincarized relationship (Nolet, 1987) for the delay times 57;:

SRR o - bt

or

cofr)?

‘where 8c=c—c s the perturbation of the seismic velocity ¢ with respect to a starting model
€o. 5; is the ray trajectory of ray i, and T}® is the calculated travel time for the starting
model. If we choose the starting mode! symmetric, this makes our cakculation very much
more efficient. Note that we have used Fermat's principle to substitute the ray path §,%s
calculawdformestarﬁngmodelforuw(unhown)mypalhhﬁwmm we only
makeaxoondordcrminealculaﬁnglheﬁnwdelay.

The general procedure losolvesystemslike(l)ismmmuizememodel&(r)in
some way and 10 use an iterative matrix solver. For details we refer to Nolet (1987a). There
are many problems wimmisapproach.F‘nstofall.declayﬁmesmoﬂenhiglﬂy
erroncous. Secondly, the coverage with seismic ray paths is usually insufficient to

7= [ 20, %)
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determine ¢ (r) with a high resolution. Consequently, we need many (redundant) data to
allow the errors to average out, and we need a robust and stable solver for the matrix
system (1). It turns out that we can obtain a useful resolution only in those areas where we
have both a high density of seismic stations and a high, preferably also deep, seismicity.
Only very few areas on Earth qualify for such high-resolution tomography. An optimistic
estimate is that at most 5% of the Upper Mante can be studied using delay time
tomography. Not even the very highly active subduction 2ones qualify easily: there are
generally no seismic stations on the oceanic side of the zone, whereas the stations on the
other side are often concentrated on island arcs - and the resulting unbalanced distribution
of rays is very difficult w handle.

One very atiractive possibility is o use hydrophones attached to freely floating
sonobuoys for the recording of P-waves in oceanic areas. Both the communication with the
buoys and the determination of their location can be done using polar-orbiting satellites.
Satellite transmission has alrcady been used with land based data collection platforms
(Poupinet, 1987), but measurements in the ocean Pose some very serious noise problems.
These are directly associated with the wave motion at the water surface, which is 2-3
meters in amplitude under moderate conditions (wind 5 Beaufort), and with the natural
pressure gradient in the waier: a vertical motion of a hydrophone of only 1 mm causes a
pressure fluctuation of 10 Pa, roughly what we would expect for a P-wave of a magnitude 6
eévent at teleseismic distances. Although there is a reasonable hope that the technical
problems can be overcome and that a useful signal-to-noise ratio can be obtained (Nolet,
1988), this is obviously a long term goal. :

What, then, are the possibilities for seismic tomography using presendly available data?
Obvicusly, a seismogram contains much more information than the arrival time of the first
wavelet, and we should wish o include the whole seismic time series in the data set, and
use this in an imaging technique. There are two obstacles o such an approach, The first is
the enormity of the numerical problem. The second is that it is ofien difficult or impossible
to develop a manageable approximation to the solution of the wave equation, especially one
that is adequate enough to mode! the response of complicated media.

This Jecture shall deal in depth with the first prodlem. I do not claim o have solved the
second problem. But reasonable approximations to the exact theory of wave propagation
are available for a number of possible situations:

® We may use the WKBJ approximation (Chapman, 1978) to compute simple body wave
synthetic seismograms,

¢ We may use a greal-circle approximation {Woodhouse, 1974; Jordan, 1978) to compute
low-frequency surface wave arrivals. We may even include the focussing (Woodhouse
and Wong, 1986; Snieder, 1988) due 10 lateral heterogeneity. Low-frequency S waves
can be computed accurately if many modes are summed.

e We may use the Bom approximation to compute scattered surface waves in g
heterogencous Earth (Snieder and Nolet, 1987),

In this lecture we shall restrict ourseives o the computation of low frequency surface
waves using the great-circle approximation. We summarize the formalism in Appendix A,
Using this method, we shall investigate how to find an Earth model that predicts waveforms
with an aceptable fit 1o the observed signals. Especially, we shall show how to interprets a
large number of waveform observations in terms of a 2D or 3D model of Upper Mantle
heterogeneity. The key 1o an efficient inversion is the introduction of a very specific
parametrization of the Earth - we shall intially describe the Eanh in terms of velocity
averages along wavepaths. We shall show how we can obtain uncorrellated estimates for
such averages and their variance. A second step then translates these averages in terms of a
2D or 3D model of the S-velocity in the Earth.
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Path-integral representation of the Earth model

We shall assume that the surface waves follow narrowly defined paths along the surface
with the energy spread out in the depth direction. In developing the theory we shall assume
these paths to be of infinitesimally small width, although in principle the paths can have a
finite width. The essential point of our approach here is that there is a well defined region
that influences a particular seismic time series, and that the influence of the the remaining
Earth upon this particular datum can be ignored. In the interest of clarity, we shall assume
the Earth model to be adequately represented by one velocity only - 8(r) - which is not a
bad approximation for the inversion of surface waves and their predecessors in the
scismogram like §,SS,SSS, etc. Extension of the theory to models of more than one
Physical parameter is straightforward (Nolet, 1989),

In a laterally homogeneous Earth, we may write the seismic wave as a sum of higher modes
of surface waves. Denoting the the mode number by n, the complex excitation coefficient
of a mode by A,%(w), and the wavenumber at circle frequency w by £%(w), we then write
for 2 component of the seismic spectrum §;(w) in a particular station at epicentral distance
4A,;, wheze j numbers different time series or data: '

Sjo(m) = i A:f ((I))CXP [ikuo(m)dl‘]
a=l)

The expression for A,Y is given in Appendix A, As is well known, deviations from lateral
heterogeneity will perturb the phase factor. Neglecting effects of second order, such as
backscauering, and variations in the excitation factor A)(0), we may then model the
seismogram using a phase integral (or WKBJ) approximation as:

&

5/(@)= 3 A%(wexpli [k, 080 48y w1a A @
Al - :

where @ and ¢ are the colatitude and longitude of the surface ray path. The wavenumber

k,(8,9;) is now the local wavenumber, i.e. it represents the dispersion of this mode in a
hypothetical laterally homogeneous Earth with the properties found in the heterogeneous
Earth along the radius vector pointing into the direction of {0,0). '

In the following we shall omit the A-dependence in the notation of the path given by 6 and
¢, and use the symbol F; with the integral sign to indicate integration along the surface
wave path P;. We define the average wavenumber perturbation along P; by:

&, (@9 = -L ]t @40)-£ 9 @)1an ®)
AJ- ,

where £9(w) is the dispersion for a background model B(r)?? that gives an adequate
representation of the average properties along the path P ;. If the true Earth does not deviate

the background modei leads to a very accurale prediction of the average wavenumber
~ perturbation. Defining the average velocity perturbation along P ; as: :

BB~ - | 5001814 @
: iR, )
we have the following linearized relationship;
' e o[ W
&, (@9 = { [ aﬁu,f:"))] B¢y ar (5)

. where the Frechet derivatives of £, with respect 1o B are given in Appendix A. We now
have the following relationship between the wavenumber perturbation and the seismic
signal that serves as datum j:
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51@)= T AS(@en i)+ HTana, ®
asl

Nolet et al. (1986) and Nolet (1987) used a discrete parametrization of B(r) in (5) to0
compute the wavenumber perturbation. They used nonlinear optimization to fit the
Fourier-transformed predictions (6) to observed time series. This scheme typically leads to
O(10%) parameters in a 2D inversion, which is feasible but tediovs, and would lead 10
O (10*) parameters, or even more, in 3 three-dimensional inversion, which is impossible to
handle even with the fastest computers.

Expressions (5) and (6) show that the seismic signal along one path is a function of a far
more restricted set of parameters. To sec this even more clearly, let us develop the
averaged velocity perturbation along P ; into a set of M basis functions A, (r): .

—_ M
9= T ¥r9%r) )]
(1]
M can be very small, since the basis 4,9 spans the velocity field only in the vertical
coordinate, and is valid only along P;. With (7) we obtain for (5):
— N %k UNw)|
7 ) L )
8k, (W)= 3 ¥ £ [ 3300, | e ®)

im}
Note that we atlow not only for different background models BYXr) for different paths, but
also for different parameterizations. The first option increases the precision of the
linearization involved in (5), since it allows us to choose different models for paths
crossing oceans, shields or tectonic regions with often widely different dispersion
characteristics. The second option allows us o adapt the depth functions 1o the expected
resolution of the data along various paths in order 10 increase the efficiency of the
mversion.

Partitioned inversion: the nonlinear step

With (8), we have arrived at the suarting point of a partitioned inversion scheme. In this
section we show how we can estimate the parameters y¥? for each path separately, and how
we may defer the estimation of the mulli-dimensional model B(r) 1o a second, linear
inversion step.

Let us first investigate how we can determine the parameters Y, for one or more seismic
time series observed along path P;. Since we deal with one path only, we shall temporarily
omit the superscript j.

F ()= fRs ¢t )-Ra()PPds +4 C;ly - ©

where the Bayesian term with the (properly weighted) a priori covariance matrix C,is
optional. As we shall show later, the inclusion of such a term is not neaded to stabilize the
inversion. The operator R allows for a time-dependent weighting as well as filtering of the
data, which is often needed to prevent that encrgetic arrivals (such as the fundamental
mode) completely dominate the propertics of F, In practice we have varied the weighting
of different parts of the seismogram until the behaviour of the objective function F agreed
with our subjective notion of a ‘good fit".

In order to minimize F we shall use esiablished methods of nonlinear optimization (Nolet
et al. 1986, Nolet 1987). An example is given in figure 3. The method differs from other
approaches in that no attempt is made to find local gradients of F analytically, but that
these are calculated numerically using a realistic step size, and that a fully nonlinear search
is conducted in parameter space along optimal directions. The method is very flexible and
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allows for complicated filtering through R. The search procedure makes it very robust, and
the method converges even when phase mismatches are large or when waveforms differ
substantially. Finally, we avoid any problems with the fundamenta] non-differentiability of
seismograms that was first recognized by Shaw and Orcutt (1985),

For the derivatives of F with respect to the model parameters, we find:
T
gP)=V F= 2JRVs(: DRs(¢.9) - RA()]dr +Cy

For the Hessian matrix, the matrix of second derviatives 2 F 13y, 0Y; we find:
T
Ot = Ve(o) = [R5 RV 00 + RV 1R (0. R )+
0

In general, the presence of filters R complicate the computation of H using such analytical
expressions, and we shall prefer 1o use finite difference methods for the computation of g
and H. However, this severely restricts the maximum number N of parameters that we can
use, since we do need 2NV evaluations of F o compute g (for sufficient aCCuracy we must
take the difference of two points on either side of the central point p), and even KNWN+1)
to find H.

The method ofstéepest descent defines the search direction d as a vector in parameter
space anti-parallel to the local gradient of the objective function:
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Figure 4: Isolines for two different configurations for the minimum of F in the case of a two-
dimensional ¥, and the steepest descent direction d,

d' =-g(¥)

where { is the iteration number, Steepest descent methods have an intuitive appeal (a blind
man walking in the mountains would use a steepest descent path to find his way 1o the
beach) but their convergence is slow . The reason is that the vector d rarely points inio the
direction of the minimum. This is shown in figure 4a for a two-parameter model and
ellipsoidal isolines for the objective function. The result is that the steepest descent method
follows an indirect, zig-zag path towards the minimum. Only if the isolines are circular
(figure 4b) does d point in the direction of the minimum. In multidimensional optimization,
figure 4a corresponds (o the case that the eigenvalues of H(y) are widely different, whereas
they ere equal in the ‘circular’ case of figure 4b. We may therefore expect that descent
methods converge faster when H(Y) has one, or only a few, groups of closely spaced
eigenvalues (see Gill et al., 1981, page 147). Knowing H(Y) or its estimate, this could be
accomplished by preconditioning, i.e, by a scaling of the parameters Y;. In the more
common case that H(y) is unknown, we have no better option than to scale the parameters
intuitively to roughly equal magnitude, ¢.g. as a percentage of the estimated model value,

Another strategy to speed up the convergence is W use conjugate directions for
subsequent iterations, i.e.:

S TH(Yu ) =0 if (%) (10)
Eigenvectors of H(y,;,) are orthogonal, and therefore conjugate, but there are other -
nonorthogonal - sets of conjugate vectors that are easier to calculate, Conjugate vectors
have the nice property that, for & quadratic objective function, a model change along the
direction given by one of these vectors does not impair the function decrease which has
been obtained along other directions. This is casily seen by expanding the parameter
correction Ay and using the Taylor series for 5 around the minumum Jocation ¥,;..
Suppose we start from y,:
Y0 = Yein + AY

where we may expand:

Ay=Tud

Using a second order Taylor expansion around p A
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F 00y = F Qaiat89) = F (i) + BT i1t 4T H(Ymi )t
ij

Because of (9), the complicated sum with cross terms over differen; direction vectors
reduces to a simple sum:

F o+ 8Y) = F (Yuia) + BT 1 47 H( i)’ (10)

We now minimize in subsequent directions d', slowly reducing Ay, and we see that each
new direction subtracts a positive amount from the objective function which is determined
by that direction only.

Conjugate directions may be found by a simple recursive scheme (Fletcher and Recves,
1964; Gill et al., 1981):

di+1=_zzix+a‘_di ' an
where
i+l (2
Pi="igr » Po=0

and g denotes the gradient of F for the i-th iteration model Y.

Convergence is fast and stable if search directions are determined with the method of
conjugate gradients. In the following we shall apply this method to converge quickly to a
minimum of F . Since the number of parameters is now quite small (M =10), it is possible to
calculate second derivatives of F using finite differences, and thus the Hessian matrix H
after we have found the optimum Y.

Once we have found Yop» We have obtained M linear constraints for the Earth mode]
3f(r), and hence for B(r) since we know the background model, through the expansion (7).
If every v; were uniquely determined, we could assemble many such constaints for
different paths, and finally solve the accumulated system of linear equations for various
values of r. Unfortunately, there is no guarantee that the equations for vy, are independent,
andinowcxpeﬁencemeyareonenhighlydependemlfwewmwmatmemas
independent linear coastraints on the Earth model B(r), we would not only be overly

system of independent data with estimated variances, To this end we diagonalize H:
H = SAST 12)
and we define a new datum
n=87y (13)

Since H is symmetric, ¥=S7. We may now express our uncertainty in the solution by
allowing the value of F 10 deviate by an amount € from its minimum valye and define a
confidence region Ay=y~ Yope through:

YAY HAay<e ‘ (14)
This implies for the transformed parameters that %An AAD <&, or

lan; |1 < -\h‘- 13

mdwecanwritetbecxpansion(?)intmnsofﬂ\enewpamncms:
—— MM N
Br)=T Y Smik(r)= _}:‘;ﬂjsj(f) (16)
J.

i=] j=l
with transformed basis functions
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M
&)= S,h;(r) an
i=]
Equation (16) really represents an infinite system of equations constraining B(r), since r
can be arbitrarily specified in 0<r<a. Obviously only a finite subset of these equations is
independent. We introduce the dual basis &;(r) to reduce (16) 1o a finite number of
independent equations with known variances in the r.hs. The dual basis satisfies an
orthogonality condition with the original set of basis functions &i(ry

{ §i(rgir)dr =5, (18)

50 that multiplication of (16) with subsequent members of the dual basis and integration
over depth finally yields a usable set of linear constraints for the heterogeneous Earth
model B(6,¢.r):

2] [ BOA)-B9014 ¢ drar =n, 2an, a9
J OF,

We have restored the path-dependent notation to emphasise that the resulting system of
lincar equations is in fact independent of the background model since the latter is a known
qQuantity in (19), and to show that different paths may easily use different background
models. In general, equation (19) will be employed in a linear inversion for a mulg-
dimensional model. This is the second stage of the partitioned inversion method. Note that
the applicability of the partitioning does not depend on the particular algorithrn used to
generate synthetic scismograms. For example, instead of (5) we might use the WKBJ
method of Chapman (1978) to compute body-wave synthetics, or we might include
scattered waves.

The linear inversion step

Repeating the nonlinear inversion as described in the previous section for many different
paths, we obtain a large number of constraints (19) for the Earth model B(r), which we
rewrite as:

[o/@pnde =1 [0 wansn o, o) o)
]
with
Gi'(r) = g:(r) 8(s; (8)-0) 8(¢; (4)-¢)

where 6,(A) and ¢;(A) designate the surface ray for path i as a function of raypath length
coordinate A, In general this system of equations will be underdetermined so that we shall
wish to impose a minimum norm condition on the solution. For this it will be useful to
define the velocity deviation 53(r) with respect to some standard Earth model, say BY(r),
50 that (20) reduces to

I YBIEr = ';TI [1B9¢)-BOr)1g; (r)ard A +m; £ am,
i 0P,

We scale this equation by dividing by A, andxewriwmescaledandshifneddammasq,-
and the scaled kernel as G, (r) 10 otwain:

‘[G.-(r)aﬁ(m’wq,-tl @1

The fact that the integral kernels have a 5-function behaviour makes a straightforward
application of the inverse method of Backus and Gilbert (1970) impossible. In order 1o
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Table 1a: Epicentral data

Event Date Ty Epicentre v Region
1 Dec 22,1983 4:11:29.2 1L866N 13.529W 0°  NW Africa
2 Jan 14,1987  11:03:48.7 42.565N 142.8SE +3°  Hokkaido

Table 1b: Source parameters

Eveat Depth(km) strike dip slip MyNm) =(s)
1 11 305  24° .88° 33x10® 53
2 89 262 83 86° 17x10° 92

remedy this, we may either assume that the kemels have a finite width conforming to their
Fresnel radius, or we may stick to my theory, but impose an a priori smoothness on the
model. Since we have, in this paper, assumed that ray theory is valid (eq. 2), the more
consistent approach is the adoption of & priori smoothness and we expand the model as;

N -
)= T G(r) (22)

with

Gi(r) = B (8,0)*G; (r)
where * denotes the convolution over the (6.9) coordinaes. A convenient choice for the
convolving function is B (0,$)=1 if the arc-length between (0,0) and (6,9) is less than some
specified value, and 0 otherwise. @ is now found by solving:

Aa=q @3}
where

Al'j = !G‘ (r)G-, (l')d3r

Note that A is not symmetric in this case. The system (23) is in general underdetermined,

and one must use singular value decomposition, with a cut-off criterion at low values for
the singular values of A to keep a stable solution.

Resolution analysis

Once we have a model and a salisfactory estimate of e, we may compute the formal
resolution of the model using the Backus-Gilbert method. Following Backus and Gilber
(1970), we estimate a linear local average of the model] as

N
<8B(ro)> = ‘)_:o a;(ro)g; =£A(ro,r)5!3(l')d3f 3)

where it is understood that the integration should be over a vertical surface in the 2-D case.
It follows from (23) that the averaging kemel is a linear combination of the data kernels:

N
A(ror) = ¥ a;(ro)G;(r) (24)
inl
and the variance of the average is given by
' N
o(r)*= o, (ro)? @3
im]

The factors a;(rg) must be found by minimizing the spatial region where A(rpr) is
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significantly different from 0, while at the same time keeping the center of gravity of this
kernel close to ry and the volume integral close 1o its zero-bias value of 1. Although Backus
and Gilbert propose adding the condition of zero bias in the 1-D case, it is our experience
that this may lead 10 strong numerical instabilities for large size problems in 2-D or 3-D.
But a second type of crilerion proposed by Backus and Gilbert works very well. We find
the factors a;(rg) by minimizing

J(ry) = ! [A (ror)~8(rg—r)Pd’ + wo(r)? (26)

for various values of the trade-off parameter w. Such computations can be done very
efficiently if singular value decomposition is applied 1o the resulting sysiem of linear
equations (Gilbert, 1972).

We note that this resolution analysis depends on the validity of the second-order expansion
of F(v). It does not work correctly in the case of secondary minima with acceptable data
misfit. Backus (1989) developed a comprehensive theory to estimate resolution, even in the
case of nonlinear problems. The present analysis is not unlike that of Backus in that we
avoid Bayesian assumptions and estimate the resolution from a confidence region in data
space. However, since the emphasis in this paper is on computational efficiency, we have
refrained from introducing hard constraints on i¥l as well as on modelling errors.

SN

Figure 5: Locations of events (circles) and NARS stations (triangles)

Illustration

To illustrate the theory and test its assumptions, we have applied it to data from the NARS
array (Dost et al., 1984; Nolet et al,, 1985) in western Europe. With a station spacing of
Toughly 200 km, and digital, broad-band recording, the seismic data from this array form an
ideal source of information on lateral heterogeneity in the upper mantle. Since the
configuration of the array is approximately linear, we have searched the data set for events
located on the array great-circle, and we aim for a 2D model of the upper mantle S-velocity

directly under the array. At this moment, this is about as far as we can go with available '

data. We expect, however, that the density of similar seismic stations in and sround
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western Europe will soon be large enough to attempt a full, 3D inversion,

The two events used are listed in Table 1, and plotted in figure 5. Both events are located
within 3° of the NARS great circle. We used the HYRD source mechanisms as listed in the
PDE monthly bulletins,

As a background model for the inversion, we chose a modified PREM model
(Dziewonski and Anderson, 1981). We increased the thickness of the crust in this model to
30 km, lowered Q in the crust and imposed a uniform S-velocity of 4.47 km/s and Q of 143
between the Moho and 220 km. We call this modal PREMC. The modifications are such
that PREMC gives a good fit 1o the fundamental mode signal for event 1, as can be seen in
figure 2. The synthetics were calculated by summing up to 20 modes at 50 frequency points
below 60mHz.

seek to resolve a 2D-model B(r) that represents & cut through the Earth along the NARS
great circle. We ignore the possible effects of anisotropy and multipathing because we do
not expect (o be able to really resolve these with the data now available,

The two selected events form a very severe test of the method and its assumptions. There
is a strong overlap of raypaths for each event separately, and for both events under the
amray itself, and we expect that effects of multipathing will show up as inconsistencies
between the linear constraints (19). Rays from both events, but especially from event 2,
have travelled a considerable distance outside the array whereas we are mostly interested in
the detailed structure under the array itself. The sub-array structure has therefore a smaller
influence on the waveshape then the average structures under northern Eurasia and western
Africa, respectively, and we definitely need the resolving kemels (24) to decide how
reliable the outcome of the inversion is.

The individual fits that were obtained using the nonlinear inversion are shown in figure 4a
and 4b. At this stage, we also modified the @ model once more to make it optimal for the
new weighting. The fits to event 1 (figure 4a) are very satisfactory. The synthetic LR, §
and S§ are in phase with the observations at all stations, with the exception of the SS-S

needed in the average sub-Moho velocity for event 2, a probable influence of the larger
crustal thickness along the path over Eurasia. Also, the jump at 220 km was decreased bya
velocity change below 220 of about -3% along this path. All other perturbations in path
averages for event 2 were below 1.5%. With a few exceptions, parameter changes for
event 1 were smaller than 2%. These valpes by themselves say very litde, since we did not
use any damping in the inversion but relied instead on the linear inversion to find us a
compatible model with acceptably small velocity variations,

The confidence level ¢ in (14) was essentially determined for each event by generating
synthetics for slight deviations Ay away from Tope» and deciding subjectively which e draws
the line between *acceptable’ and ‘unacceptable’ misfits.

Ideally, these 14 seismograms, modelled with 9 parameters each, could provide 126
constraints on the 2D S-velocity structure beneath the NARS array. In reality, many An,

eigenvalues of the H&cﬁan.acmmquenoeortheonﬁssionofanay&anminme
objective function. We excluded ill-constrained 7; from the outset from (19). This gave us
a total of 56 constraints. The singular values A; of A decrease rapidly, such that Ay is less
then 1% of A, and there were only 48 eigenvalues larger than 10°A,. This is the
numerical confirmation of our earlier statement that the application constitites a severe tost
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of the method, since the very low effeclive rank of A makes it impossible to fit
inconsistencies in the data with plausible 2D models of the S-velocity, Such inconsistencies
may arise because not all paths follow exactly the great circle and may actually sample
different pans of the Earth outside the aray (‘out-of-plane propagation®). Horizontal
refraction of waves may lead to similar effects,

We adopted a model constructed from the first 15 eigenvectors as our "preferred’
solution. This model is named WEPL3 and shown in figures 6a and 6b. When
recalculating the fit for the WEPL3 (figure 7a and 7b), it is obvious that the fit has not
suffered very much from damping. The misfit of the SS wave in station ne07 has remained,

in a local minimum. Rather, we suspect that muitipathing and/or scattering from the nearby
edge of the LVL (figure 6) is to blame. For event 2, only the fit to the S, wave in nel6 has
suffered. Note that stations ne07 and nel6 are the two stations that deviate most from the

stated with full certainty without additional observational evidence. We note, however,
that efforts to increase the maximum frequency beyond 50 mHz were generally
unsuccesful; occasionally, 50 mHz proved even a bit 100 much for the shallow S energy,
and it is likely that scattered energy is to blame for the failure to find adequate snthetics at
high frequencies.

From the resolution calculations we infer that the horizontal resolution is of the order of
1000 km in the south, 400-700 km in the north where l.hesta:ionmmoredcnselyspaced.
The vertical resolution is about 100 km at 80 kam depth and 100-150 km at deeper levels,
Below 400 km we cannot obtain much beiter standard deviations in the velocities than
about 0.1 km/s, with 700 km resolution horizontally.

Discussion

Through the partitioning of the nonlinear inverse problem, we have brought the inversion
of large datasets with waveforms within reach of the power of present computing
technology. Essentially this is caused by a considerable reduction in the number of
evaluations of F (Y) that is needed: for ev. scismogram we have only O (10) parameters,
for the whole Earth we would have O(10°) or more parameters, and even for regional
problems this number easily exceeds 10°.

An additional adantage of the partitioning is that we are able to treat one event or region at
a time. We simply save up our constraints. If, at a later stage, mare data become available,

we simply add these to the linear inversion step. Also, we may combine constraints from -

waveform inversion with other linear constraints. Ultimately, seismology n the 1990's will
progress by the accumulation of large data banks with linear constraints on Earth structure!

The use of waveforms in imaging allows us 1o study regions with no or weak seismicity
that are crossed by surface wave paths. If we have many crossing paths, we may even
obtain a reasonabie resolution in regions of poor station coverage such as the oceans. This
is a consequence of a theorem due to Radon (see, Chapman, 1987). However, the
horizontal resolution is ultimately determined by the number of seismic stations, These
stations must be broad-band 1 allow for a reliabie recording of low frequencies, and digital
to allow for processing of large data sets. The progress of seismology in the 1990's for
unraveling the deep Earth structure is therefore very much dependent on cooperative
observational projects such as POSEIDON in Japan, ORFEUS is Europe, and the IRIS and
GSN initiatives in the US. :
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Appendix A

A seismogram can be approximated by summing a finite number of modes at each

frequency component. Snieder and Nolet (1987) model the spectrum of a far field seismic

wave as:

U, (r)+i ) (0)V, ()]

u, {0)Vsin®

for Rayleigh waves, and for Love waves:

16A, (O)W, (r)
u, (w)Vsin

where 2, (w) is the wavenumber and u#, () is the group velocity, both scaled with the

Earth’s radius a: . 4, (0)=ak, () and u, (0)}=(3A,/0w)~". We note that A, (w) is related to

the angular order ! of the wave by A, (W)=VI(/+1), The amplitude of the surface wave is
linearly related to the components M; of the moment tensor:

[ 3
Ap 1. (0)= QA 200%3 BRE M, (A3)

ku]

Se@ire=-13 Apa (@) ™S00 (A1)

S.Girw)= 1% ALy (e \2)

with the convention; M:=M” .MFM,.,Mr"‘M,*,M4=M“,M5=M”,MFM“. and:
‘BIR =a’U‘ c-i'ﬂd



-20.

B3 =3, [3,V,+1, (U, -V, )cosl, ™4

BS =0, [3,V,+, (U, ~V,)]sing, ™ (A%)

B{ = %r, QU -A2V, ) e~ - Wikl IV, cos2y, e~

BS =Yr, QU,-A2V, ) e~ 4 Y 2 V,cos2(, e~t™*

B == A2V, sind{, e~

Bi =D

BY =~h [0, W,—r, "W, Jsin{, '™

B =3, 13, W, -1, 'W, Joos{, e'™* (AS)

BS =~V W, sin2f, e~ ' S

Bf =-Bf

BS =AW, cos2l, e~™
Where [, denotes the source-to-station azimuth, measured counterclockwise from South,
In (A1)-(A4) we assumed a Fourier convention s(w)=[s(1)e%* g r, denotes the source
location, and the normalization used is

2 &
m’{pw}nfv}]r’dr =1, m’l[px,fw.zﬂdr =1 (A6)
InmcfollowingweshalluséaShuﬂundnotaﬁon,andnseformoftheoomponemsof
the displacement spectrum (the j-th datum):

S; (@) = XS, (0) = TA, (w)e Wiy @ (A7)

L] a

To accomodate slight variations in phase velocity along the wave path, we replace the
simple expressions for Xa; and a,; by integrals along the surface ray path, This
approximation, which is widely applied but may not be valid for strong gradients in

velocity or for certain wavelengths (see section 1) is esseatially a phase integral, or WKB)
approximation;

Lo (00) = J [k, () + Bk, (€0,8,0))ds (AB)

and, changing the temporal Qaulity factor Q7 in (ALA2) 10 the spatial factor
0* =07k, u, /o we find:

o,;(w) = % ! [k, () + Bk, (@.8.0)L0 () + 50 (0,0.8))ds (A9)

where S; denotes the surface ray path, 8k, (0,8.6) and 80, (0.8.4) are the local
perturbations in wavenumber and quality factor of the mode, respectively, as a function of
colatitude € and longitde ¢,

To a very good approximation, &k, (0,6.4) and 80.1(w.0.9) are linearly related to the
docal perturbations in the starting model:

w2, f5] o [2] o)

a,
B Jp, =01 200

EAjE——
ap
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ok
H - O%* - 24R) 4 Do+ DYt
ap ap .

where, for Love and Rayleigh waves, respectively:
pi=0

L._ 0 _1 2 2
D7 == g U0, W = W)+ A3-0)W; (A1D)

D}= ~5€'—[r’(a, Ua)+2r3,U, QU,-AV,) + QU AV, )

D ==y Q.U + QUAN, P+ 123, VarUa=Va )+ NMAZ-2)V2) (A12)
R @ 2 a2

D = g2+

and where V, denotes group velocity (9, (©0)/de)!
Assuming zero bulk loss, the spatial quality factor 2.7(w) of the mode is linearly
related 1o the intrinsic Q7' (r) of the Earth:

r ok,
07 @)= s {B(r)[gﬁ-] Q') (A13)
- ap

so that

* ok,
80,7 (.0, )=Tlm)! [TB'J (B3 (r .6.0)+ 8B(r .00  (r))r%dr  (A14)
L) op

The term with 88 dissappears when we have a perfecily elastic starting model. If we define
80;" rather than 80, as our model, inversion for 97 (cw) is linear in O a @)

The linear expressions (A8) and (A9) enable us to calculate y,,;(cw) and a,;(w) in & very
efficient manner. We only need to solve the eigenvalue problem for the k, () once, and
store the partial derivatives with respect to mode] perturbations. Thus, if we are willing to
ignore perturbations in the amplitudes A, due 10 perturbations in the elastic structure, it is a
very simple matter to calculate the spectrum of the synthetic signal.



