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Summary

From the latest developments of algorithms for the computation of
eigenvalues and eigenfunctions of Love ( SH ) and Rayleigh ( P-SV ) waves
for flat anelastic layered media, it is possible to construct, with highly
satisfactory efficiency and accuracy, complete broad-band synthetic
seismograms, Therefore, computer programs based on the addition of modes
are quite versatile and can be used to model, in a realistic way, seismological
and seismic signals, also for laterally heterogeneous media.

1. INTRODUCTION

In spite of the very considerable efforts made by seismologists and
theoreticians, it is still missing a satisfactory theory which describes
accuralely wave propagation in three-dimensional models of the Earth. If the
extremely time consuming numerical procedures, based on finite differences
or finite element methods, are excluded, all the existing analytical methods
involve significant approximations. The modal summation method (1,2) is
practically free from approximation in the one dimensional case and can be
efficiently extended, introducing approximations of variable and to some
extent quantifiable size, to two- and three-dimensional cases (3). The method
allows to construct very realistic signals, also in the relatively simple ope-
dimensional case, and can be very easily applied for a quantitative and
realistic earthquake hazard assessement.

2. WAVES IN MULTILAYERLED MEDIA
The medium is assumed to consist of homogeneous layers, separated
by first-order discentinuities. 1If a medium is continuously inhomogencous, it



is replaced by a number of homogeneous layers; in smooth gradient zones it
is usually sufficient to choose roughly half the dominant wavelength as layer
thickness, whereas in transition zones with larger velocity gradients the
layer thickness should be reduced further. The advantage of the
homogeneous-layer approximation is that inside each layer the equation of
motion takes a relatively simple form and can be solved exacly. Iis
disadvantage is that boundary conditions have to be fulfilled at many
interfaces. Analytical methods for inhomogeneous layers - in contrast lo
numerical, ¢.g. finite-difference methods - are not yet developed to a point
where they really can compete with the methods for homogeneous layers. At
present, within the frame of ICTP-ICE-IGG activities, it is under development
a large project for the formulation of the theory and related computer code
for the construction of complete synthetic seismograms for three-
dimensional anclastic media, based on modal summation.

The equation of motion for a homogencous, isotropic elastic medium is

puy =(A+2p) grad div u - rot rot u (1}

where u is the displacement vector, uy its time second order derivative, p is
the density and A and p are the Lamé parameters. Body forces due to gravity
and secismic sources are not included in equation (1): it is assumed that
gravity has no other effect than to determine, via self compression, the
constant values of p, A and p, and sources of seismic waves arc inciuded
" through their known contribution to u (4). In order 1o simplify the discussion
as far as possible, we shall consider solutions of the elastic equations of
motion in the form of plane waves rather than attempt to treat the more
complex case of waves diverging from a point-source. This does not involve
loss of generality in the computation of the dispersion function since the
point-source solution may be devcioped by integration of plane-wave
solutions (4), with a preassigned precision depending upon source-receiver
distance (5).

' Let us consider plane waves of angular frequency o and horizontal
phase velocity ¢ propagated in a semi-infinite medium made up of n parallel,
homogencous, isolropic layers. The x axis is taken parallel to the layers with
the positive sense in the direction of propagation. The positive z axis is taken
as dirccted into the medium. The various layers and interfaces are numbered
away from the free surface, as shown in Figure 1. We treat first waves of
Rayleigh type (P-SV motion), by which wc mean that there is no

displacement in the y direction and that the amplitude diminishes
exponentially in the positive z direction in the semi-infinite layer. The case of
waves of Love type (SH motion) is treated in section 4.

3. P-SV WAVES

For the m-th layer let pp= density, dg= thickness, Apym and g =pmﬂm2=
Lamé elastic constants, o= velocity of propagation of dilatational waves,
fm=velocity of propagation of rotational waves, k=w/c=horizontal wave
number, 1,.,:2([3.1./::)2, um =displacement component in the x direction,
w m =displacement component in the 2z direction, ogp=normal stress,
tm=langential stress.

For m<n 1, =[(c/am)?-11"2if c>am and 1, =-i{1-(c/am)?]'’?, if c<om;
furthermore rp,, =[(c/Pm)?-11'72, if c>Pm and 1p,=-i[1-(c/Bm)*)*? if c<Py. Finally,
if m=n, rqy=-i[1-(c/am)?]/? and rp,=-i[1-(c/Bm)?]'/2.

Then periodic solutions of the clastic equation of motion for the m-th
layer may be found by combining dilataticnal wave solutions,

Am=(um/ox)+(dwn/oz)=
expli(pt-kx)][A mexp(-ikrg, z)+A " mexp(ikry, z)] (2)

with rotational wave solutions

8m=(1/2)[(3um/9z)-(dWm/Ox)]=
expli(pt-kx)] (8’ mexp(-ikrp,,z)+8 " mexp(ikrp, z) 3)

where A'm, 8"m, 8’y and 8"y are constants.

With the sign conventions defined above, the term in A'p represents a
plane wave whose direction of propagation makes an angle cot''ry,, with the
+z direction when rq, is real, and a wave propagated in the +x direction with
amplitude diminishing exponentially in the +z direction when rq, is
imaginary. Similarly, the term in A"y represents a plane wave making the
same angle with the -z direction when 1o, is real and a wave propagated in
the +x direction with amplitude increasing exponentially in the +z direction
when r1q,, is imaginary. The same applies to the terms in 8’y and 8" with B
substituted for rq,, (see Figures 2a, 2b, 2c, 2d).

Droping the term cxpli(wi-kx)} the displacements and the pertinent
siress  components corrcsponding to the dilatation and rotation, given by
equations (2) and (3), can be written:
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m=-(&m/@)}(dAn/3x)-2(Pm/®)2(38m/3z) 4)
m=-(0m/0)(38m02)+ 2(Pm /@) (38m/3x) (5)
n=pm {0 2mAm+2B2m [(am/©) H32Am/0x2)+ 2(Bm/@)*(d?8m/x3z) ]} (6)

n=2pmPB’m {-(0m/w) (22 Am /Ax32)+(Pm/0) [(3%6mOx1)-(@%Bmz2)])  (7)

he boundary conditions at an interface between two layers require that
ese four quantities should be continuous. Continuity of the displacements is
isured if the corresponding velocity components Gy and Wp arc made
mtinuous and, since ¢ is the same in all layers, we may itake the
mensionless quantities up,/c and W gmfc to be continuous. Substituting the
ipressions (2) and (3) in equations (4) o (7) and expressing the exponential
nctions of ikrz in trigonometric form, we find

Im=Amcospy-iBpsinpm+rp, Cmcosqpy -itpy Dmsingm (8)
W m:-iramAmsinpm+rumBmcospm+iCmsinqm-Dmcosqm (9)
0=Pm(Ym-1)Amcospm-ipm(¥m-1 IBmSinpm+pmYmrpnCmcosqm-
iPm'meBmDmSinCIm {10)
.1=ipm1’mfamAmSiﬂpm'DmmeamBmCOSPm'iPm(’Ym"1 JCmsingm+
Pm{Tm-1)Dmcosqm (11
here

m='ﬂzm(ﬂ'm+5"m)- Bm='0'-2m(A'm'A"m)v Cm='2|32m(8'm'5"m)- Dm='zﬂzm(5'm+8"m).
n:krnm[z-z(‘“'”], qmzkrpm[z~z(’“'“], Z™-1) s the depth of the upper interface
" the m-th layer and A, A"m, 8'm. 8"m are the constants defined in (6)
pearing in the depth-dependent part of the dilatational and rotational wave
lutions:

‘mexp(-ikrg, 2)+A " mexp(ikra,,z) (12)
mexp(~ikrgmz)-r&“mexp(ikrgmz) (13)

1. EVALUATION OF EIGENVALUES AND EIGENFUNCTIONS
For a continental model, the vanishing of the two components of stress
the free surface yields:

tr1i-DA1-p1y1rg,C1=0 (14)
Yire1Ba-p1(y1-1)A =0 (15)

Thus the submatrix A defined in (7,8) can be written in the form
-pi(vi-1) 0 -pim 0

AO= (16)
0 pITI 0 -p1(ri-1)

At the m-th interface, the continuity of displacement and stress yields

AmcosPn-iBgnsinPy, +rmemcost-irmemsian=Am+|+erHCm+ 1. (17)
“ifgAmSinPy +1y, BmcosPn +iCpsinQm-DnmcosQn= Ty B+1-Dm+1i (18)
Pm(Ym-1)AmcosPm-ipm(Ym-1)BmsinPm+pm¥mrp,,CmcosQm-ipm¥m iy DmsinQm
=pm+1{¥m+1 'I)Am+l+Pm+1‘)‘m+lfﬂmﬂCmH- (19)
iPmle'umAmSiﬂPm'PmYmTumBmCOSPm'ipm(‘Ym' DCmsinQm+pm{(Ym-1)DmcosQm
=pm+1¥m+1Tam 1 Bm+ 1+ P+ 1(¥m+1-1)Dm+ (20)

where Pm=krg_ dm , Qm=krp dmn and dy is the layer thickness. Thus the
interface submatrices defined in (6) have the form

cosPp, -isinPm frg c0osQm -irf , 8inQm
Alm), -irge , S0P cosPpy isinQm/ep,, -cosQm
P (fm-1)¢0sPm  -ipm{tm-1)sinPm/ira,, Pm¥mC0sQm P Ym B, $i0Qm
iPmYmia,,$inPm “PmYmcosPpy pm(tm-DSinQem/tp,  Pmm-1)c0sQm

-1 1] -1 0

0 -1 0 1 21
Pm+1{¥m+1-1) 0 Pm+1Tm+1 -0

Y Pm+1¥m+1 0 Pm+1(Ym+1-1)

and, noting that, when imposing surface waves conditions, in the half space
A"n=8"2=0, Ap=B,=-a,A’y and Co=Dn=-2Bnw’n, the submairix representing
the (n-1}th interface has the form

-1 TP,
Ta, H
Aln-1= cive =pnlta-1) PnTnTB, (22)
PoYnla, Pn(¥n-1)
5



where the first four columns are the same as those of AU™) with m=n-1. For
each layer, AW (i=1,n) submatrices represent the denominators of Cramer's
system solutions when the boundary conditions are applied. In more
compact notation it can be written

a0
| o)

(23)

| awn]

| Ao

where the non zero clements only are pictured. A condition for surface
wiaves to exist is Ap=0, which defines the dispersion function for Rayleigh
waves:

Fp(0,c)=A5 =0, @24)

The discrete solutions (w,c) of the equation (24) describe, in each of the
layers, body waves or surface waves depending upon the real or imaginary
nature of ro, and rp,. More precisely real values of rq,, and rg, correspond
to P- and S-waves while imaginary values of ro, and rp, correspond to
surface waves. Therefore the modal summation method allows to solve in an
exact and complete way the full wave equation in a preassigned (w,c)
interval. In other words it is possible to describe all the rays propagating
with phase velocity less than a preassigned maximum value. It is easy to
prove that using the modal representation (he upper limit for the phase
velocity is represented by the S-wave velocity value assigned to the half
space used to terminate the structure at depth.

Once the ecigenvalue problem is solved it is possible to determine
eigenfunctions, i.c. displacements and stresses,

The algorithmic details of ecigenfunction evaluation by Knopoff's
method are rather involved (9) and here details will be given only for SH-
waves (see¢ section 4.1). The problem consist in the determination of the

constants Ap,Bm,Cm.Dn for the layers above the homogeneous half-space
and the constants Ay and Dy for the deepest structural unit. The starting
point is therefore the lincar, homogeneous system of 4n-2 equations in 4n-2
unknowns

IA@) Ay
rn[Bl
| A i C1
Dy
Az
fa;B2
18,C2

=~ =]

Ap
lA(“'z) | Tap.iBn-1
B5.1Ca-1
Da-1
An 0
ICORIES 0

where the submatrices AG) (i=1,n) are given by equations {16), (21} and (22).
Once the dispersion or ecigenvalue problem is solved we arc ready to
determine the layer constants. This is done by deleting the last equation of
the system and transposing the terms containing Dp to the right-hand side of
the equations, thus forming a vector of inhomogencous terms. If we
arbitralily set Dp to unity, this will force all rq Bm and Dpy, to be real, and all
Am and rp, Cy to be imaginary. At this stage Cramer's rulc can be applied to
obtain Ap. The remaining layer constants can be determined by iteration. For
more details about the computations of cigenfunctions see (9).

4, SH WAVES
With the same notations and geometry of section 3 we may write, for
the m-th layer, the following expressions for the displacement and the stress

Um=Wm=Um=Tm=0 (26)
vim=exp i(wt-kx)[v' mexp(-ikg, 2)+v" mexplikp,2)} 27
Vm=pm{dvm/z)=ikpmrp exp i(wt-kx)[v" mexplikp,,z)-v'mexp(-ikp 2z)] (28)

Dy (25)
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Neglecting, here too, the term exp i(wt-kx), at the m-th interface the continuity
of displacement and stress yields

Vmfc=(Vm-1/c)cosQm+ium_1{mmrp,, ) 'sinQm (29)
Um=i{ V m-1/C)Mm P, 5inQm+um-1c0sQm (30)

4.1. EVALUATION OF EIGENVALUES AND EIGENFUNCTIONS
From eqations (29) and (30) the layer matrix can be defined:

[ isin Qm

cos Qm -

- Hm T g
Iy = " (31)

i, rﬁ » sin Q, cos Q.

For the multimode surface-wave eigenvalue computations, using notation of (8), the
dispersion function can be written as the modified product for layer-matrices :

FL(m,c)=bn-bn_1-bn_2- ..... bl 31

where n ia the number of layers, including the lower halfspace. In equation (31) b,

is given by:
by, =(s,-1) if the halfspace is solid
bp=(0,-1) if the halfspace is liquid (32
by=(1,0) if the halfspace is rigid

where

4
1

S=—p,- [1 —(-ifn—)z] (33)

by (0<m<n) is given by:

cos G
bm=
Em rB . Si"Qm
m
cosh Q,
by =
By ra- -sinh
( 1 p-t{m
b_ = Hm * ¢
L 0 1

sinQ

“’m— rB
m ite) Be, (34)
oosOm
sinh Q:n
TS o
LS if c( By, (35)
Qm cosh Q:n
ifc=pB (36)

where we have introduced the real part of imaginary quantities

o if o(p,, (a7

The modified matrix product of by, and bp-1 is defined as follows:

(Bm) - (Py_4)
I K

[P Oy =

j+1
k ‘(»1)' -(bm)_l- (®r_) if (j+K) is odd
| &

if (j+ k) is even

(38)

“



The mathematical solution of the surface wave propagation allows two
types of waves in the seolid halfspace, exponentially increasing and
decreasing with depth. To avoid infinite values of the solution, the coefficient
of exponentially increasing wave in the halfspace must vanish (surface
waves condition). If the halfspace is supposed to be liquid, the deepest

interface is at the analogy of the mantle-core boundary. In analogy with the
case of P-SV waves, imaginary values of rp, correspond to surface waves,

while real values of rp,, correspond to S-waves. More preciscly real values of
TRy correspond to S-waves while imaginary values of rp, correspond to
surface waves. Therefore also for SH-waves, the modal summation method
allows to solve in an exact and complete way the full wave equation in a
preassigned (w,c) interval. In other words it is possible to describe all the
rays propagating with phase velocity less than a preassigned maximum
value. It is easy to prove that using the modal representation the upper limit
for the phase velocity is represented by the S-wave velocity value assigned
1o the half space used to terminate the structure at depth.

With the geometry shown in Figure 1, the computation of the
eigenfun_ctions at the layer interfaces can be performed as follows (10):

: ]
sin
v cost - v
m ku“‘r m—l
= B. 1. ifc)
1Ic 5m (39)
'm ’m -1
h—k-u.m T B--sin Qn cos Q. ]
_ : . -
. siosh Qp,
Ym cosh Q. _—_—__k'“m'ra Vo o1
= " ifc(By (40)
um k . . * * um_]
| M T B_-smh Qn cosh Q, ]
d
m
Ym L ol I I
= . ifc=Pp, (41)
Ym ] 1| -1

where v, is the displacement and v,;, the stress at the interface m. Notice that :

Vo= iwyv (42)
For the last interface, supposing a solid terminating halfspace, we shall use:
v _p i Q" a

¥ -cos Q + - if c)p N
n-2 n -1 kn—l rﬁ... I n

1

. *
Yn2 s Qn -1

v = ) Y if c(
n—1 Va2 cos Q at — if c(p 4
" n ke e " a3y
dn-—l .
vn-—2+un 2 Hn__] if c=E’n—l

These computations are performed using the initial values (vg ,ug )=(1,0} at the free
surface.

5. COMPUTATION OF GROUP VELOCITIES
Following (8) the group velocity, u, is obtained from

u= (44)
1{w/c)(dcfow)

where standard implicit function theory is applied o the dispersion function
F to obtain

dc/da=-(3Ffdw) /(3F/3c),, (45)

Equation (45) is obviously valid both when F indicates Love as well as
Rayleigh dispersion function. Details about the analytic computation of (45)
arc given for Love waves in appendix A,

6. ENERGY INTEGRAL
Along with eigenvalues and eigenfunctions, the integrals:

B
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I = J:pany’ @4y} @k 46)

ot Rayleigh waves, and

2
b= oj"(” ok (47

or Love waves, where y;=w(z)/w(0) and iyz=u(z)/w(0), are required in
wlitimode synthesis of theoretical scismograms:;. For a sequence of
omogencous solid layers, these integrals can be writicn as

1= c? (ra,B; - D,)? X Itm) with m=1, 2,...... n.
‘he integrals Iy, are given by equations (51) and (53) of (9).
For SH-waves we have:

2 n

[vi) . 2 ](m) for the (S-1L)casc
Y m=]
1.5 . (48)
) [vi)z[[z l(m)]u(s_s)} for the (S-S) case
0 m=1
with:
z . 2
l(m)=l'[ m'(v_t(:g)dz
(49)

The integrals Il can be computed analytically, both for
layleigh and Love waves (9, 2). For details about the analytic computation of
48) see Appendix B.

I. MODE FOLLOWER AND STRUCTURE MINIMIZATION

Since all the problems connecied with the loss of precision at high
frequencies have been solved (9) the summation of higher modes of surface
waves allows the generation of complete sirong motion synthetics even at
high frequencies. The key point in the use of rmultimode summation, both for
Love and Rayleigh modes, is an efficient computation of the phase velocity
for the different modes at sufficiently small frequency intervals Af with
sufficient precision. To be efficient it is not advisable to determine at each
frequency and for each mode the zeros of the dispersion function using the
standard root-bracketing and root-refining procedure (8). This must be used
only when strictly necessary, as for instance at the beginning of each mode.
For all other points i of each mode, the phase velocity can be estimated by
cubic extrapolation, using the values of the phase slowness s=1/c and df/ds
already dctermined at frequencies fj.2 and fi.1. However, the precision that
can be reached in this way is not satisfactory, thus the phase velocity value
must be refined. This can be done by an iterative cubic fit in the Fc plane.

Once the problem of an efficient determination of phase velocities is
overcome, Iwo other main problems must be solved at each frequency: (a) to
correctly follow a mode and (b) to determine the minimum number of layers
to be used, The problem of correctly following a mode arises in the high-
frequency domain (f>0.1Hz), where several higher modes are very close to
cach other. The determination of the minimum number of layers to be used -
structure minimization - is critical in order to reach a high precision in phase
velocity determination spending the minimum possible computer time. In
order to ensure high efficiency in the computation of synthetic seismograms,
it is necessary to compute the phase velocity, phase atienuation, group
velocity, ellipticity, energy integral and eigenfunctions and their maximum
depth of penctration at constant frequency intervals, To reach a maximum
frequency of 10 Hz, a satisfactory step is 0.05 Hz. To determine the total
number of modes present in the frequency interval considered, we fix c=cy a
value close to Bn, where P is the S-wave velocity in the half-space, and we
increment f to find its values corresponding to zeros of the dispersion
function F(f,cy) (8). Obviously, starting from f=0, the first zero in F(f.c;)
corresponds to the fundamental mode, the second to the first higher mode,
and so on. The values of f for which F(fc;) = 0 are used as starting
frequencies (the lowest frequencies) for the computation of the different
modes. Once the starting frequency for each mode is defined, it is possible to
compute, beginning from the fundamental mode, all dispersion relations,
This is accomplished by keeping f fixed and varying c, the proccdure being



applied at all of the equally spaced frequency points of the chosen frequency
interval.
More details about the mode follower and the complete description of
" the procedure for siructure minimization are given in (11).

8. ATTENUATION DUE TO ANELASTICITY
The treatment of anelasticity requires, for causality reasons, the

introduction of body wave dispersion (BWD) (12). In a medium with constant
Q, the P- and S-wavc phase-velocily can be expressed:

A (o
Ay =— &) o8 (50)
I+ Al(mo) A {ey In ("aT)
B
B ) = 9 1)

[i1]
i+28 @) B,(®,) In (F°)

The layer index m is omitted in equations (50) and (51). Aj(wg) and Az(w)
are the P-wave velocity and the P-wave phase attenuation, while By(wg) and
B2(wy) are the S-wave velocity and the S-wave phase attenuation at the
reference angular frequency @, (sec also 11). The quantities A] and Ag and
B} and By are related 1o the complex body-wave velocity o and p (8):

G At A, 52)
1
%:é—-i-Bz (53)

In the computation we have chosen the reference angular frequency wg=2=n

radians. In anclastic media the surface wave phase velocity ¢ must be
expressed as a complex quantity:

O =

1 \
c=tT, 1 G (54)

C1 is the attenuated phasc velocity and C3 is the phase attenuation, which is
necessary for the computation of seismograms. Cy can be estimated by using

b

the variational technique (13, 14). The phase attenuation Ca is given by (1, 2,

11). For Rayleigh waves:

C, =(261,k) / Im(1,)

where k is the wave number in the perfecily elastic case and:

{[(“2“) (7L+2u)}y

y,y. - "—l-—y,y, dz
(A +2p)

,qﬁ(l"’zu)l: z(y,+2klyzy,)+k[ _——g——:]y.‘;]

(h+2p)
+8u o 61[(;” 2p)(y ¥, +k1y,)]}dz
and y,=a(z)/w(0) and iyq=1(z)/w(0),

b I T | .
su=p(B; - B, 5)+2ioB, B,
—_ 2 2 -1 .
S\ = ;{(af —ai -az) - Z(Bl -B, P )]+ ip2(ao, - 28,8.)
(A +2u)= p(ot,2 —a: —Ez) +i2p0 0,
In these expressions « and P are the compressional and shear-

wave velocities in the perfectly clastic case.
For Love waves (2,11):

-

C,= 2 Lol (56)

All these integrals can be calculated analytically, since simple
analytic expressions are known for the cigenfunctions. The details of the
computations of equation (56) are given in Appendix B.

The most important effect of the attenuation is the modification
of the wave velocilies and the decay of amplitude in the final computations
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of seismograms. As the variational technique is only an approximated
method, the C» values can be in error by as much as 20 per cent in
comparison with the exact method. This error arise mainly from the use of
the e¢lastic and therefore real ecigenfunctions to compute the phase
attenuation.

Recently (15) showed the limits of the variational technique in
the locked mode approximation, which can be obtained by limiting the model
with a rigid or liquid halfspace. He showed, that an error in amplitudes up to
100 per cent can occur, when dealing with low Q-values. The error increases
when the Q-values undergo large variations with depth. Introducing a solid
halfspace in the model and using the structure minimization procedure
prevents this kind of error.

9. RESPONSE TO BURRIED SOURCES

To include the seismic source in the computations, the formulation due
to (16) is used. A detailed description of ithe fault model of an earthquake
used in the following computations is given in (5). Accordingly, in the
reference system of Figure I, for the double couple point source, the

asymptotic expression of the Fourier time transform of the j-th Love(U, )- or

Rayleigh(U:, U:)-mode displacement at the free surface at a distance 1

from the source can be written as:

[ 3 1 -ik 1 ~ar
_ o T T c T
U =R@ ¢ e * k x,@n A S-—:c 57)
i il ;_ _*Rr - arC

X LY
U =R@) ¢ *-|nje * -k,-s.-xn(e,h)-Al-:[z?-e " (58)

v L. -1
U =e?e, U, (59)

where R(w) is the Fourier transform of the equivalent point-force time
function, n is the unit vector perpendicular to the fault and has units of
length, ® =arg R(w) is the initial phase and e,=-u*(0)/w(0) is the cllipticity.
The factors Ap A are given by:

_ ]
A= e T, (60)
L
and
A = 1 (61)
B 2.¢cu I

where ¢ and u are the phase and group velocities for Love and Rayleigh
waves respectively.

The effect of anelasticity is expressed by the term:

-wiC

e 2 (623



where C2, which indicates the phase attenuation either for Love or Rayleigh
waves, can be determined as shown in section 8.
x(8,h) is the azimuthal dependence given by:

(8. h)=d  +i1-(d, sin 6+d, cos 6) +d, sin 26 +d, cos 20
R R K

R

for P-SV waves, and by

%,(0.h) =i (d, sin 0+d, cos 0) +d, sin 20+d, cos 28
L

for SH waves.
d, =3 -B(h) - sin A sin 28
d --C(h) sin X -cos 28
e.iz ==Ch) - cos & cos 3

d, =A() - cos A-sin &

R
d.:«‘;-A(h) sin A sin 28
d, ) - cos A-cos &
d, =-Gh)} - sin 1. cos 25
d, =1- V(h) sin A sin 25
d, (h) - cos A-sin &

8 is the angle between the strike of the fault and the epicenter-station
direction, X is the rake angle, § is the dip angle and b is the source depth. The
source geometry and the coordinate system associated with the free surface
is given in Figure 3. A(h), B(h), C(b), G(h) and V(h) depend on the values of
the cigenfunctions at the hypocenter:

A = - TR

-|a. B'(h) u thy 2 a*(h)
B = (3 Yol ¥y T ayaith) Wel ©
-1
=Ty W,/ ¢
=1 v(h) 1 uh)
o u(h) [h) k-ph)y Vo
[
0 0

The asymptotic expressions (57), (58) and (59) allow the computation
of synthetic seismograms with at least 3 significant figures as long as kr>10
(5) and is equivalent to the expression in terms of the seismic moment [e.g.
see equations (7.148), (7.149) and (7.150) in (14)].The seismogram related to
a given mode is obtained by the inverse Fourier transform of (57), (58) and
(59).

The extension of these results to the available formalism for sources
with finite dimensions and durations is quite straightforward; the necessary
details can be found in (11).

10. TWO DIMENSIONAL MODELS

The expressions (57), (58) and (59), describing the displacement due to
surface-wave modes, have been generalized to the case of two stratified
quarterspaces in welded contact (17), (3). For example the radial component
of displacement spectrum can be written:

- (K'.' +IC )
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It is assumed that the source and the rcceiver are situated far from the
sharp vertical discontinuity in comparison to the biggest wavelength of
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interest. Equation (63) represents the radial displacement carried by the n-
th Rayleigh mode generated by a point source at M(r, 1) of a medium j, then
transmitted through the boundary between j and j and recorded at point
M'(r', 1') on the surface of medium j as mode n'. As it is evident from Figure
4, r and r are respectively the distances of source and receiver from the
vertical interface, 1 and I' are the paths travelled by incident and generated
waves, ¢ and ¢' are the angles of incidence and refraction. In eq.(63) the
primed quantities refer to the medium where the receiver is placed while
the unprimed quantities refer to the medium containing the source. R(w) is
the Fourier transform of the time function relative to the source, c and c' are
the phase velocitics, u and u' the group velocities, I and ¥ are energy
integrals &' is the Rayleigh mode cllipticity of the receiver's medium, xg(0.h)
is the radiation pattern ecvaluated for the medium containing the source,
J=(cos ¢ cos ¢'fc)[(rc/cosde)+(r'c'/cos3p)] describes the geometrical spreading
of the surface wave energy. The effect of anclasticity is expressed by
e-0(1C2+1'C'3) where C3 and C'y are the phase attenuations in the two media
(for more details see (1))

The coupling coefficients Tjj(w, ¢, 4°, n, n"), necessary to describe
reflection and transmission phenomena at the boundary, will be discussed in
the next section.

10.1, COUPLING COEFFICIENTS

The problem of reflection and transmission of surfacc waves through
lateral discontinuities ecxisting inside the earth can not be solved in an
analytical way. Several methods based on different approximations have
been proposed to define and estimate surface waves reflection and
transmission coefficients. Here only the transmission probiem will be
discussed, but the same procedure can be adopted to describe the reflection
problem.

The approximations suggested by (18) were chosen to cvaluate a set of
coupling coefficicnts that gives a picture of how the energy carried by the
normal modes, characteristic of the medium with the source, and transmitted
through the discontinuity, is redistributed among the normal modes, of the
medium with the receiver.

The starting point is the stress-displacement system of the incoming
surface wave mode. Decomposing the incident wave into the P-component
and the SV-component, we turn to a solvable problem of reflection and
transmission of P-SV waves. Referring to Figure 5, the problem will be

solved for every single section on the vertical interface as if it would be
infinite, using well known formulae based on Snell's law and continuity
conditions of displacement and traction at the boundary. Since the sections
are in reality limited, in this way we neglect the effects arising at the corners
between the horizontal interfaces and the vertical one. We can think the
corner effects as giving rise to a system of diffracted waves. These arise
because it is impossible to satisfy exactly the continuity conditions also on
the horizontal interfaces. With this approximation a reflected and a
transmitted stress-displacement system can be determined. They contain a
P-component and an SV-component but their combination does not give a
Rayleigh wave any longer because the continuity conditions at the horizontal
boundaries are not matched. The medium with the receiver is characterized
by a set of normal modes comresponding to solutions of the wave cquation
verifying the continuity conditions on the horizontal interfaces. Qur aim is to
determine how each of these modes is excited by the modes contained in the
incident wave, or in other words, how the transmitted system redistributes
among the normal modes existing in medium with the receiver. To obtain
this, the transmitted system is projected on the system of normal modes
characteristic of the medium with the receiver using an appropriate
definition of scalar product.

A stress-displacement vector for an incident wave identified by the
subscript 1 can be defined

Ap = (U, VI, Wb Pxxs Pryls Pxzl) (64)

where p;j is the j-th component of the stress acting across the planc normal
to the i-th axis. The p;; (with j = x, y, z) stress components are considered
because for the geometry of the problem only stresses acting on the vertical
plane x=0 are involved, Defining similarly a stress-displacement vector
relative to the normal modes system of the medium with the receiver, the
projection of vector Aj on the vector Ay is performed via a scalar product,
suggested by Herrera's orthogonality relation (19):

1 - o - — - _
(AI'AII)=§Tﬁulpuu +¥ P WP —p“lu“—p“[vn—pmwu]dz (65)
.

the bar denotes complex conjugate. Indicating the transmitted system by the
vector



At = (uT, VT, W, PuxT PayT» PxzT) (66)

the quantity:

()
i = 1 1 (67
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provides the amplitude of mode n' of Ay due to mode n of A, contained in
the transmitted vector Ag. If the amplitude of a wave generated by an
incident wave of unit ampiitude is preferred:

R A A
rr=7‘r‘“( ! )§=((A‘II:’)’A:;"')> (68)

(m') , (w')
(A

n *%n

I‘jj- is the coupling coefficient appearing in equation (63).

The approximations used to obtain Tjj are:

a) the Rayleigh modes for the two media are evaluated assuming cach
medium as a halfspace instead of a quarterspace; this is a reasonable
assumption a few wavelengths from the interface;

b) a system of diffracted waves arising at the corners of the sections is
neglected; this is a good approximation for a small contrast in the elastic
parameters characterizing the two quarterspaces (18).

The crucial approximation is containcd in this last point. Although it is
not casy to estimale quantitatively the accuracy of it, a criterion is given by
a reversibility theorem that is demonstrated in section 10.3.

10.2. THE COUPLING INTEGRAL

To calculate <AT,Ay;> and <A, A >, once the explicit expressions for the
various displacement and stress components are assigned, the integration
indicated in equation (65) must be performed over the semiaxis z>0. At this
stage we limit our analysis to the 2-dimensional case of the x-z plane, to the
Raylcigh modes and to normal incidence, These three assumptions are

strictly connected because for non-normal incidence as for the 3-dimensional
case there is transmission of P and SV into SH energy, so conversion between
Rayleigh and Love modes must bc taken into account. The development of
the pertinent algorithms and related codes is presently in progress at ICTP-
ICE-IGG. The integral (65) simplifies in the following way:

1 [ - - . _
(AfAu)=ﬁj“'rpnn VP TPl P W M2 {(69)
[ ]

Bearing in mind that the z-dependence is different in various layers, the
intcgral {(69) may be evaluated as a sum of integrals over each section. As it
can be scen from Figure 5:

j‘dz - Ef'” ldz + L;d:

where Hg is the depth of the s-th section.

These intcgrals can be computed both numerically and analytically. In
the numerical integration the eigenfunctions are sampled with a constant
step (for frequencies up to 1 Hz the step used is 250 m) down to the
halfspace, where displacements and stresses tend to zero, and of course the
integration along z cannot be performed to infinity but to some arbitrary
large depth. To treat frequencies higher than 1 Hz one has 10 reduce the
cigenfunctions sampling step to follow correctly the aumber of oscillations
per cycle. Therefore increasing frequency causes the numerical integration to
become more and more time consuming along with the limited precision
introduced by the approximated integration in the halfspace. These problems
of compulation time and precision can be overcome by the analytic
integration.

Developing the cross-products between stresses and displacements in
equation (69), separatcly for the transmitited P and SV waves, it can be seen
that the integrals we end up with are of an c¢lementary type, involving
sinusoidal and hyperbolic functions. The difficulty consists in handling
correctly the different situations cxisting in cach section, according to the
values of the phase velocities ¢ compared 10 « and B in the two media,

Let's refer again to the structure displayed in Figure 5, where the
superscripts 1, 2 refer respectively to medium 1 and medium 2. On the ileft
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side the functions for stresses and displacements are denoted by f(z) and the

various paramecters with aff), ,B?:) while on the right side g(z),af)’, B((:: are
used.
For Hg<z<Hg,1, f(z)=f;(z-Hg), ay=o®
For H_j<z<H, gn=gj.1(z-Hs.1),  ol)=a
The integrals involved will be of the type:

H

+1

Ju|= ﬁjz[gj(z-[[:—l) fi(z_Hn)] (70)

The behaviour of the functions f and g, depending on the values of the phase
velocity ¢ with respect to o™, p%, o', g™, can be either oscillatory or
exponential (see also sections 3 and 4).

The general expression (70) can be simplified if in the starting model
some fictitious interfaces are introduced so that the layering in the two

structures is the same (sce Figure 6). In the new m-th layer the elastic
parameters maintain the same value, while the layer constants (e.g. Ap, Bm,
Cm, D for Rayleigh waves) and the arguments of f and g change according
to the new valuc of Hy, (Figure 6). This occurs because a new interface,
though artificial, imposes the introduction of new continuity conditions, In
this way any structurc can be rearranged to a new one where the layers are
lined up. For this last case, as it can be easily verified, the integrals required
are simpler, and have the form:

H 1
I = I!z [gn (z-H ) f (z-H_ )] = Fz[f,,u)s..(z)l (1)
n-

where hpy = Hpyy - Hy. The integral depends only on the thickness of the
section, not on its depth, ’

The case in which one or both the final sections are a halfspace is
characterized by an exponential decay of stresses and displacements at
increasing z. In the situation of halfspace a, > By > c and consequently Ag=Bg,
Cs=Dg=1, the integrals to be evaluated have the form

H h

f dz [c"m["""']s,(z - H,_.)]= fs az[e e o)

]:jz[c"’“)(""s-l) c"‘l)(" "s)] - :i:.iz[e_ ™ e"a )('""s]]

-]
where hg = Hg - Hg.y. The situation is represented in Figure 7 where, for

medium 1 (1=1,2), ¥(D=k(D £* (1) for P-waves and {D=k(1) r‘ﬁ(l) for SV waves.

A complete list of the various integrals is given in Appendix B of (3).

10.3 NORMALIZATION PROPERTIES AND REVERSIBILITY THECREM

The general scheme to study the dynamics of continuous media is
provided by the Lagrangian formulation. In this frame, using variational
techniques and Hamilton's principle, it is possible to give a physical mcaning
1o the integral appeating in equation (65). In the case of Rayleigh waves
propagating in the x-direction the displacement assumes the expression

u(x, nt) = ¢ " u(2);05iw(z)] O<z<ee (74)

Looking at the normalization integral of equation (3):

J =

=2 JI0a @Bk D +iw B ol 2)

. —t

“Pulkmdu,—ip k2w (2]dz (75)

it can be demonstrated that

Jor o =G Va (76)
where y is proportional to the energy transmitted per unit time across an

infinite stripe of unit width in the y-z plane. Thus it is convenient to
normalize the surface waves system in such a way that, for each mode n, the
energy crossing per unit time an infinite stripe in the y-z plane is equal to 1.
This can be obtained passing from

u W o
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Furthermore, since the main part of the surface displacement can be
represented as a superposilion of modes

ll(x, Z,l) = D-C- i(.l_ kml)[u m(z) ;O;IW m(z)] (78)

the normalization implies that the energy transmitted per unit time across
the stripe is given by

ua:Z:Ia_i’

For a layered structure with a vertical interface along the z-axis (fig.1},
with our approximations, the displacement on the left of the interface
(medium 1) is given by the superposition of N modes

N " .
u(x, z1) = Ze““"[a_e‘*""+b_e*"l](u_; O;iw ) x<0 (7%)
mal

Similarly in the right side medium (medium 2) the displacement

-
. u{x, Z,t) = Ze' I"l:a,“_.e_"

= ibyae " Jru0is) x>0 (80)
el :
is given by the superposition of N' modes. The quantities aj, i=1,2...N+N' are
the complex amplitudes of the incoming normal modes; the quantities bj,
=L2..N+N' are the complex amplitudes of the outgoing, reflected or
transmitted, normat modes. The linearity of equations of motion establishes

a lincar relation between the two sets of amplitudes. Indicating with
a.=(al,....aN +N.). b=(b,,...by,n) the two veclors of N+N' components there is a

matrix § such that

b=Sa (81)
The eciements of the scaltering matrix § correspond to the reflection and
transmission coefficients of the problem studied. From equation (76) it

follows that the energy incident per unit time on the discontinuity surface is
given by:

(UB)_ =D lanl'=ad (82)

The outcoming energy, transmitted or reflected into the different modes, is

(UE) =Y |b,|"=b-B (83)

Since the total energy leaving the vertical boundary is equal to the incident
one, § is a unitary matrix, i.c.

ss' =1 $3 =5 (84)

iy i

When the scattering into body waves is neglected, as we do here, S is not
any more a unit matrix and the relevance of the approximation can be
estimated by the difference between 8 and the unit matrix,

Anather property of the S matrix follows from the fact that the
equations of motion are invariant for complex conjugation and time
inversion. This means that if w(x,z,t) is a solution, also %X % —1) s a solution.
The lincar relation given by equation (81) changes to:

a=8h=S8a (85)

so that

§8=1 S.‘.Si=5* ‘ (86)

The matrix S is then symmetric, Sij = Sji, Sjj being the amplitude
trangmission or reflection coefficient from the mode j into the mode i
(bi=Sijaj). According to the mode normalization given in equation (77), the

encrgy crossing per unit time a given surface is equal to 1. Consequently, SI,A|i
corresponds to the energy transmitted (or reflected) from mode j to mode i;

from this it follows the reversibility property expressed by the relation

2 ]
S4=5, 87)
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An example of the exchanges of energy between two modes of two
fferent media in welded contact is given in Figure 8, and shows, for the
ructural models under consideration (see Figure 9), the degree of validity
" assumption (b) of section 10.1. In this Figure, like in the following ones,
¢ first two characters of each acronym refer to the incident mode, the last
io to the outgoing one. For example, the coupling between the second
gher mode of structure C (incident mode) and the fundamental mode of
ructure P (outgoing mode) would be indicated as C2PF. Two further
tamples, shown in Figure 10a and Figure 10b, allow to appreciate how the
coming energy related to one mode redisiributes within the outgoing
odes. When the incident fundamental mode is considered (Fiugure 10a),
most all of the energy is transmitted into the outgoing fundamental one
'FPF). Looking at the sum of the oulgoing energies (thin solid line), it can be
en that in the whole frequency range it is enough to consider just three
ugoing modes to transmit across the boundary morc than 90% of the
coming cnergy. This is no longer true when the first higher mode is
cident (Figure 10b).

[. EXAMPLES OF COMPUTATION

|.1 FREQUENCY DOMAIN

The layered velocity model in Figure 11 and Table 1 is used as an
tample. It represents an average structure of the Friuli seismic area in the
suthern pre-Alps, close to the May 6, 1976, Friuli earthquake.

I.1.1. Phase velocities

The Rayleigh wave dispersion curves for the first 154 modes are
iown in Figure 12a. The modes are well separated for phase velocities less
an about 3.35 km/s, which corresponds to the S-wave velocity in the
pper part of the upper crustal low-velocity channel. For higher phase
slocities, the dispersion curves are closely packed together. Ther first
irves correspond to waves that sample only the first few kilometers of the
-ust, while the latter ones correspond to waves that sample the entire
ructure. Essentially three "quasi-osculation™ types can be recognized (sec
igure 12b), The first corresponds to horizontal “quasi-osculations™ around a
onstant phase velocity (e.g. 4.25 and 3.50 km/s) and are rclated to the
ructural layering, The second is the standard sequence of channel and

crustal waves (20) due o the presence of a2 low velocity layer. The presence
of two low-velocity layers is clearly recognizable in the range of phase
velocities between 3.35-3.45 km/s and 3.75-3.85 km/s. The third is made
up of very steep “"quasi-osculations” and corresponds to a family of waves
mainly sampling the wavc guide formed by the sedimentary layers.

The dispersion curves for the first 153 Love modes are shown in
Figure 13a. For S-wave velocities less than 3.35 km/s the modes are well
separated. This velocity corresponds to the S-wave velocity in the upper
part of the crustal low-velocity zone (LVZ). Modes situated in the part of the
spectrum below this phase velocity value sample therefore the part of the
crust above the uppermost LVZ. In the part of the spectrum with higher
phase velocities the dispersion curves are packed (ogether. An enlarged
portion of this part is presented in Figure 13b. Since two LVZ arc present in
the structural model, areas are scen where the higher Love wave modes
decompose into families of low-velocity channel waves and families of
waves propagating in the upper crust. A member of the family of upper-
crustal waves can be identified at a frequency of about 4 Hz in the phase
velocity range 3.35-3.45 km/s. Another type of apparent continuity of the
phase velocities for adjacent modes can be related to the structural layering
(for example at a phase velocity of about 4.25 km/s). Such parts of the
spectrum represent refracted waves at strong elastic impedance contrasts.
They are characterized by phase velocities which tend to become constant
with increasing frequency.

11.1.2.Group velocilies .

The group velocities for Rayleigh waves are shown in Figure
l4a,b,c. The diagram has been divided into three parts due to the complexity
of the pattern. Although it is difficult to follow an individual mode, it is
relatively easy to follow the behavior of channel and crustal waves as well
as that of the sedimentary waves. The stationary phases with group velocity
between 0.3 and 1.6 km/s, visible for frequencies greater than about 3 Hz,
correspond (0 waves essentially propagating in the low-velocity sediments.
For group velocities around 2.4-2.8 km/s, stationary phases are visible at
frequencies greater than 5 Hz; these phases can be associated with waves
propagating near the bottom of the sediments. The stationary phases,
formed by the combination of several higher modes visible in the group
velocity interval of 3.0-3.3 km/s, starting from frequencies on the order of 3
Hz, can be considered the high frequency cquivalent of Li and Lg phases (21,



22, 23, 24). For frequencies larger than 1 Hz, two flat envelopes
corresponding to the two-channel velocilies can be easily seen at about 3.75
and 3.35 km/s. Ncar 3 Hz an envelope of group velocities as low as 1.6 km/s
is clearly seen. This corresponds to the waves sampling the sedimentary
layers wave guide.

The group velocity spectrum for Love waves is presented in
Figure 15a,b. It has been divided into two paris due to the complexity of the
pattern. Modes with group velocities less than about 2.8 kmfs comrespond 1o
waves propagating in the low-velocity sediments. In the part of the
spectrum, where group velocities are in the intervai 2.8-3.2 km/s, several
higher modes form stationary phases. They correspond to families of waves
propagating in the upper crust and are characterized by the same type of
mode-10-mode continuation as in the phase velocity curves. They can be
interpreted as the high-frequency equivalent of Lg phases (21, 22, 23, 24),
which are propagating in the upper part of the continental crust. The flat
portions of group velocity curves formed by a large number of higher modes
at about 3.35 km/s and 3.75 km/s correspond to waves propagating in the
upper and lower channel.

11.1.3.Energy integral

The energy inmtcgral can serve as an estimate of the contribution
of the different modes to the surface displacement. In general, neglecting the
influence of the source depth on the excitation of different modes, small
values of the energy intcgral I} correspond to large surface displacements.
For Rayleigh (Figurc 16) waves it is interesting to observe that for
frequencics smaller than 3 Hz the fundamental mode dominates, while
around 3 Hz several higher modes are characterized by small values of 1.
These modes mainly sample the sediments. In the frequency range between
3-6 Hz, the first higher mode is dominant, while for larger frequencies the
fundamental mode again dominates the surface displacement. A common
feature to all figures are the very narrow peaks around 3 Hz associated with
the presence of sediments. If the source is located near the sedimentary
layers, one may expect significant surface motion mainly in the herizontal
component even if 1) is quite large. In these portions of the spectrum, the
cigenfuntions are characterized by large lobes concentrated in the
sedimentary layers, and the ellipticity (see section 11.1.4) becomes very

large. Also, the fundamental mode is not dominant, i.e., it does not have the
smallest Iy, over the entire spectrum due o the sedimentary layers,

For Love waves, on the contrary, in the whole frequency range,
the fundamental mode has the lowest values of I} (Figure 17). For a shallow
source, the fundamental mode generally dominates the surface
displacement. The mode-to-mode continuations in the lower part of the
energy integral curves correspond to the high frequency equivalent to Lg
waves. The low values of the cnergy integral indicates that this waves can
give rise to significant amplitudes at the surface. Most of the energy of
channel waves is concentrated in the channel. Therefore, the energy integral
of these families takes higher values then that for upper-crustal waves. For
&2 given member of this family the maximum displacement in the low-
velocity zone becomes larger relative to the displacement at the free surface,
with increasing frequency. Therefore, the cnergy integral of this member is
characierized by increasing values with increasing frequency. This can be
seen in the general pattern of the upper part of Figure 17.

11.1.4. Ellipticity
Another important quantity describing Rayleigh-mode particle
motion is the ellipticity e,=-u*(0)/w(0), i.c., the ratio between the herizontal

and vertical components of motion at the free surface. It is very important
to observe that €, has abrupt discontinuities, More precisely, at some

frequencies €, <t e g5 3 consequence of the fact that w(0) passes through
zero. This is not an obvious property, and it strongly depends upon the
clastic properties of the layers closest to the free surface. For frequencies not
exceeding 1 Hz and for Earth models without sedimentary layers, these
discontinuities are present only once in a given mode and only for modes
with large-order number (1). However, when there are sediments at the top
of the model, several discontinuities are also present in each of the first
higher modes (Figure 18). Thus, due to the presence of sediments, the
particle motion of several modes is essentially horizontal over a quite wide
frequency range,

11.1.5. Quality factor Qy
The phase attenuation €2 is related to the quality factor Qy by
the relation

IQy=2C1 C3
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where Cp is the anelastic phase velocity (25, 26). For Rayleigh waves the
quality factor is presented in Figure 19, while for Love waves in Figure 20.
It is practically impossible to follow individual modes in their entirety, yet it
is relatively easy 1o see the effect of the layering in Qg and Qp- For instance,
the fundamcntal mode shows a large peak around 0.5 Hz and this
corresponds (o wave propagation in the crust outside the low-velocity layers
where  Qp=400. For frequencies larger than 3 Hz, several modes are
characterized by very low values and this indicates wave propagation in the
upper sedimetary layers where Qp does not exceed 100. The trapping in the
low-velocity layers, characterized by Qp=100 and Qg=50, is clearly visible for
several ncarby modes that have almost constant Qx close to 50, 65, and 100.
The value 65 represents the weighted avcrage by layer thickness of the
values 50 and 100, both present in the upper crustal low velocity zone. Qp is
very low in the sedimentary layers. Modes mainly propagating in these
layers arc therefore characterized by low Qy values (e.g. sec Figure 20a for
Love medes). This is the case for the first few modes, especially for the
fundamental and first higher mode. The effect of layering of Qg can be
observed for several nearby modes that have almost constant Q,, for
cxample Qy close to 65. The resulting Q, values are close to the values Qp of
the structural model for those Love wave modes, whose eigenfunction
mainly sample the corresponding part of the structure.

11.1.6 Two dimensional case

To compare our results with the ones obtained by other authors, the
coupling coefficients have been computed for two lithospheric models
(Figure 9), whosc elastic properties were proposed by (27) and used by (17).
The coupling coefficients obtained by (17), applying thc method proposed by
(28) to the fundamental modes of the two structures are shown as heavy
lines in Figure 21, while thin lines represent the resulis obtained by (3). As
one can see, in the common frequency range the agreement is very good. For
cach direction of propagation two thin lines are drawn: the upper one has
been computed by simply projecting the stress-displacement system of the
first medium on the normal mode system of the second one, without taking
into account the local effects introduced by the vertical boundary. This
represents a possible simplification of the method and of course has the
advantage of requiring less computation time. In this example, the results do
not differ very much, and it seems that the coupling beiween the modes is
highly dependent on the difference between the eigenfunctions of the two

systems, and that the refraction at the vertical boundary plays just a
sccondary role. This may be no longer truec for models where the contrast
between the elastic parameters of the two structures is very strong, and for
different angles of incidence.

11.2. TIME DOMAIN
11.2.1. One-dimensional case

The first example corresponds to the November 4, 1976 Brawley,
California earthquake. The structural model and source parameters have
becn proposed by (29). The structure is given in Table 2. Since (30)
computed synthetic seismograms for this event with the mode-summation
technique limited to the perfecily elastic case, their result provides a useful
test, even if limited to the perfectly clastic case, for our programs. Thercfore,
the source parameters used in the synthesis are the same as those given by
(30).

A strike-slip point source is placed on a vertical plane at 6.9 km
depth. The rupture velocity time-function is a symmetrical triangle with a
base of 1.5 seconds. The rupture velocity time-function is given by (i/m)-R(m)},
where R{w) is the Fourier transform of the cquivalent point-force time-
function. At a distance of 33 km from the source, the displacement consists
almost entirely of the fundamental mode and the first higher modes (Figure
22), The transverse component of the recorded displacements at the station
IVC, 33 km from the source is given in the same figure. The upper frequency
limit is 1 Hz. It can be seen that there is generally a very good agreement
between the two synthetic signals. There is only a slight difference in the
value of the peak amplitudes and in the coda, due to the effect of attenuation
included in our codes. Similar examples for radial and vertical component of
motion are given by (11).

In the sccond example we present synthetic seismograms for the
structural model FRIULTA shown in Table 1. The upper frequency limit is 10
Hz. The source parameters correspond to the Friuti, May 6, 1976 carthquake
in the point source approximation, with the source parameters taken from
(31). The receivers are chosen in the direction of the dominant lobe of the
radiation pattern of SH-waves (north-east direction, with a strike-receiver
angle of 235°), resulting from the sclected source parameters. Synthetic
ground displacements, velocities and accelerations are presented in the
lower part of Figure 23. The signals are fillered with a Gaussian filler (the
first filtered frequency is at 9 Hz and the reduction of the amplitude by



factor 1/100 at the cutoff frequency of 10 Hz ). This filter prevents ringing
due to the cutoff frequency. A decompasition of the displacement into
different sets of modes is presented in the upper part of the figure. It shows
that the higher modes are essential in defining the shapc of the waveform,
especially in the body wave part of the synthetic seismograms. In Figure 24a
transverse component synthetics due to a source with a finite rise time are
presented. The rupture velocity time-function is a symmetrical triangle with
a basc of 0.5 scconds. The signals are filtered with the already described
Gaussian filter. As expected, the energy is shifted to lower frequencies, as
the duration of the source is increased. The strong phases at about 35 s, for
the signal at 100 km distance from the source (lowest trace), can be
identified as the Lg pbhases. In Figure 24b an cxample of the radial
component is given.

11.2,2, Two dimensional case

Synthetic displacements have been computed putting an instantaneous
poinl-source, corresponding to a double-couple, in one medium and a
receiver in the other one, according to the scheme of Figure 25. Both the
source and the receiver are 50 km away from the vertical boundary, and the
parameters defining the source are as follows: depth 10 km, strike-recciver
angle 60°, dip 90°, rake 0°. For each modcl the fundamental and the first
two higher modes have been considered, and the contribution of each
incident mode to all of the outgoing modes have been computed. The
coupling coefficients for both propagation directions are represcnted in
Figure 26, whilc the scismograms - vertical (V) and radial (R) components -
arc shown in Figure 27. In ecach frame, from top to bottom, the
displacements due 10 the nine possible combinations between the three
modes of each model and their sum arc plotted. Each seismogram is
normalized to the peak value of the sum, and this allows to fully appreciate
the relevance of the energy exchanges between modes of different order
number. The synthetic seismograms of Figure 27, when compared with the
scismograms computed for the two models scparately (Figure 28), clearly
show the effects of the latcral discontinuity.

The application of the reversibility theorem gives the possibility of
cvaluating the reliability of the results, even when very complicated models,
with high contrasts in the elastic parameters, are in welded contact.
Although no comparison with experimental seismograms has been tried yet,
the results obtained in the present work encourage us to extend the

frequency limits and to take into accouat the contact of more than two
structures.

The analytical integration proved to be accurate and extremely time-
saving (up to 80% faster than the numerical integration, when the
cigenfunctions sample the model to the maximum depth).
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; lix A: Derivatives of i} ices for 1 .
(4 lositi

*hree capes have to be distinguished: c>By,, c<Bp, and c=B,,.
"o avoid too heavy notations, layer indexes m and n are dropped. The S-wave
elocity is denoted by 8. Introducing body wave dispersion, we have:

B,(wy)

p= w
1+2.8(0) B o) |n(—m‘l)

31(wo) and Bolwg) are the phase velocity and the phase attenuation at the reference
mgular frequency wg. The rigidity is p=pB82, p is the density and d is the thickness.
Jerivatives with respect to ¢ are denoted using a dot symbol ('}, while those with
espect to © are denoted with a prime symbel ().

f the halfspace is solid, we use the quantity a (Schwab and Knopoff, 1972):

1/2

w5}

ve use here the following notations :

-7

The layer matrix is :
cosQ

]
w-r-sinQ

We have:

Q-f° - sinQ

b =—
1 C'(Cz—ﬂz)

b =i_[_c-sin()+ Q-ﬂz-coso]
12740 Bz_r—, c—r-(cz—Bz)

6 =u.{c.sin Q+O'Bz’f'ms Q]
B o (-6

2B {w)-c
o __alr__— 20
b11“ d[c x-p-r }InQ

sin
[T

cosQ

2. Be(mo) (

v df[«-Zle(mo)'c):os

12  prlc n-Ber

¢t 1.
Q-E.B T pw LZ—BZ.rz ]SIHQ

n-Ber

, 2-B_{w)-C 2-B {0} P r 2
b21=p-r-d[—é-—z—°—)coso+ 2 (2. }sinO

second case ; c<
we use here the following notations :

0]

d _
Q=w-r1- c—k.r -d

subsequently:

-

with r=i-r

with Q=i- Q"



sin Q=i -sinh Q
cos Q=i-coshQ’

The layer matrix is :

cosh Q" sinh Q

bor

—p* sinh @ cosh Q°

b

We have:

Q. [f- sinh Q°
1 C'(Cz—ﬂz)

_t [e-smng", Q"5 cosh @’
2 M Ba’r‘3 c.r"(cz_BZ)

b, =n- {c- sinhQ" _ Qp e coshO']
2 g r ¢ (-p%)

, 2.-B (w) ¢
b“=d(% +—2—°——}inho‘

xpr
, a (r z'Bz(mu)'c}m . 2By (
b12=|’l'|'.k_€+ x=-p-r Sho—ﬁ'ﬂ""P'mL2+Bz.r-2
2B
b21=—p-r‘ d[: }:O hQ'
2-B(w) - 'f‘
- 2 :-‘:l B 2+ ]34
hitd . c=8

Here, r=Q=0. Calculations at the limit ¢ -—> B are required.
The layer matrix becomes:

b =
i

N
4]

We have;

b o—- m2~dz

" c?

b =_m-d.[1+m2-d2
12 p-c2 3. ¢2
. 2 w -d

b ¢ 2

21 ¢
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; fix I C o of the i | tics 1, and C;

The notation S-L denctes the transition from the aolid to the liquid or rigid
halfgpace, while the classical solid halfspace will be denoted S-5. The dot symbol ()
is used here for the derivatives with respect to the time. Let us firat define the
integrals J1., J2, and J3 .
With

A=k g (27 2p.)

m
we get:

m

1 2
Jn= J cos” q_ dz

m-1
zm
2 .
= _[ sinfq_dz
m- 1
Zm
J":n= _[ sinqmcosqmdz
z:m—1

We shall also use J4y,, J5m, Jm and J7, which are defined below.
We have to distinguish three cases ; c>By,, c<Bpy and e=B8p,.

For c>fm :

J‘ N -d_m N c: sm(20m)

m- 2 4.0 -T
Bﬂ'l

2 d c-sin(2Q )

J""=Tm 4-m-rﬂ
m
3 _csin® Qy
m 2.w-fr B
(oS Oy Jp
h 2-m-r2Brn B

L; [l

5 6
L= L Sm=1
m
For g<fyin ©
J1_9__“1 ¢ - sinh(2Q} )
L R
Ben
J"’_gﬂ\_ ¢ - sinh{2Q)
m- 2 40 -r
ﬂm
? ic - sinh’ Qy,
m 2.0)."'
am
. 2 3
J4=c-smh Clw‘:_dﬂ
2 'd
2-w-r ]
Fm m
5 2 2 6 2
o= SN MO
m Dm m m pf‘l‘l
For e=fp
1 ) 2
Imn=9n v Ip=0 ' J
2
4 od 5
=T 0 dm0
B.1. Epergy Integral

The energy integral is:

3



For a layered medium, the energy integral can be written:

¢ \? zn: for the (S - L)
-1 - or -] - case
[vo) m=1 (m
= B1)
1 .2 n
(;;) .[{mzﬂ '{m)]“s—S)J for the (S - S) case
with:
Im . 2
l(m)'_" I pm'(-ci))dz (82)
*m-1
T (Y
*(s-sfzf o (762) a2 ®3)
n-1

2
y -J 2v y J
(m) m m-1 ~m kz.u?n kp,m
[ _pn-v":l_i-k
-5y 2-r
Ba

where vn is the displacement in the m'th layer and ¥z, is the stress in the m'th
layer.

B.2. Phase attenuation

The coefficient C, is given by:

a0 y2
z 2
Iu-a1-32-[ - 2+v]c|z
c =0 Bk

.=

c]: uovzdz

Ca2 can also be written:

'
Co="3
c- |
with:
. 2 2 - viz)¥
'=—fu-8,-8, (¢)ez=k*-v2- [u 8, B, (T]dz
0 1} 1]
- ¥
P=fu-8-8, La
0 13
oa L2 2 - .(2)2
3 LA 2 vz
T Wantt o (2
0 0

To compute ! and I3 we can use the same scheme as for IZ, assuming simple
substitution in multiplicative coefficients:

for 11 we ghall use (um By, B2, k2 vo?) instead of jm and
for I3 we shall use (juy k2 vo?) instead of pp.

Let us now consider 12 for the S-L case. We obtain:

~ kn B B w2 r
I2-[k2- n21 b B, -B. L ]— S T T .
me m 1m me 2
The quantity Ly, is given by:
2 6
A 2-v - -J
) 5 yzmml (m) m-1 yzm—1 m
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TABLE 1. Structure FRIULTA proposed by (11).

Thickness Density P-wave velocity S-wave veloctiy Qg
{km] [g/lem?] (km/s} {km/s]
0.04 2.00 1.50 0.60 20
0.06 2.30 3.50 1.80 30
0.20 2.40 4.50 2.50 100
0.70 2.40 5.00 2.90 200
2.00 2.60 6.00 330 400
i.50 2.60 6.20 3.45 400
4.50 2.60 6.00 31.35 100

10.00 2.60 5.50 3.30 50
3.50 2.60 6.00 3.50 400
2.50 2.75 6.50 3.75 400
2.50 2,80 7.00 3.85 400
7.50 2.80 6.50 3.75 100
4.00 2.85 7.00 3.85 200
3.00 3.20 7.50 4.25 400
1.50 3.40 8.00 4.50 400
$.00 3.45 8.20 4.65 400

L,

Table 2. Imperial Valley structure proposed by (29)

Layer Thickness Density S-velocity
(km] [g em-3]  [km 51
1 0.95 1.80 0.88
2 1.15 2.35 1.50
3 3.80 2.60 2.40
halfspace o 2.80 3.70
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FIGURE CAPTIONS

Figure 1. Layered model and reference system.

Figure 2. With the sign conventions defined in Figure 1, the term in A’ of
Equation (2) represents a plane wave whose direction of propagation makes
an angle col"rnm with the +z direction when rg,, is real, and a wave
propagated in the +x direction with amplitude diminishing exponentially in
the +z direction when rg,, is imaginary. Similarly, the term in A™”m Equation
(2) represents a plane wave making the same angle with the -z direction
when rq, is real and a wave propagated in the +x direction with amplitude
increasing exponentially in the +z direction when rq,, is imaginary. The same
applies to the terms in &'y, and 8"m Equation (3) with 13, substituted for rq,
(sec Figures 2a, 2b, 2c, 2d).

Figure 3. Source geometry and coordinate system associated with the free
surface. © is the angle between the strike of the fault and thc e¢picenter-
station direction, 5 is the dip, A is the rake and h is the source depth.

Figure 4 Geometrical scheme, in the horizontal plane, of the source-receiver
system. The source, located in M, and the receiver, located in M', have the

distances r and r' from the vertical boundary. The ray paths, 1 and I', depend
on the angles of incidence ¢ and ¢', defined through Snell's law.

Figure 5. Schematic recpresentation of the structural model used in the
computation of the synthetic seismograms in the 2-D case. Two welded

layered quarterspaces, composed of n and r layers respectively, are
separated by a sharp vertical discontinuity. In the model shown, Hg

(s=0,1,...) rcpresents the depth of the s-th layer, a,, P, o, p%,,
fi(z) and gj(z) are respectively the P- and S-waves velocities and the
cigenfunctions, stresses and displacements, for the two models,

Figurc 6. Model with lined up layerl. There is no difference in the elastic
parameters above and below the dashed lines representing the fictitious
interfaces.

Figure 7. Depth-dependence of the cigenfunciions in the proximity of the
halfspace.

Figure 8. Energy exchange for both ways of propagation. The second higher
mode of model C and the first higher mode of model P are considered. The
two curves practically overlap. The reversibility theorem is satisfied for
frequencies lower than 0.5 Hz, while the difference visible at larger
frequencies, still acceptable, is due to the approximations described at the
end of section 10.1.

Figure 9. Elastic and anelastic parameters of the models Continental (C) and
Pamir (P).

Figure 10. Transmission of energy from model C to model P. a) Incoming
fundamental mode: almost all of the energy is transmitted into the outgoing
fundamental mode, while mode conversion plays just a secondary role. b)
Incoming first higher mode: mode conversion becomes relevant, and to
transmit all of the enmergy more than three outgoing modes must be taken
into account, In part b) the thin solid line indicates the sum of the first three
outgoing modes, while the heavy solid line is obtained by adding also the
contribution of C1P3, C1P4 and CIPS.

Figure 11. Structural model FRIUL7A, after (11).

Figure 12. (a) Rayleigh-wave dispersion curves for the structural model
FRIUL7A. The mode numbering is the following: O for the fundamental mode,
1 for the first higher mode, 2 for the second higher mode, and so on up to
154, (b) enlarged portion (modes 6-154) of part (a) showing the eifect of
low-velocity waveguides

Figure 13. (a) Love-wave dispersion curves for the structural model
FRIUL7A. The mode numbering is the following: 0 for the fundamental mode,
1 for the first higher mode, 2 for the second higher mode, and so on up o
153.

Figure 14. Rayleigh-wave group velocities for the structure FRIULTA. The
spectrum is divided into two parts: a} Rayleigh modes 0-30, b) Rayleigh
modes 31-90, c) 91-154.



Figure 15. Love-wave group velocities for the structure FRIULTA, for
themodes 0-30.

Figure 16. Rayleigh-wave energy integral I; for the structure FRIUL7A. The
spectrum is divided into two paris: a) Rayleigh modes 0-30 b) Rayleigh
modes 31-154.

Figure 17. Love-wave encrgy integral I for the structure FRIUL7A, for the
modes 0-30.

Figure 18. Ellipticity of Rayleigh modes.(0-154). The clearly visible
discontinuities (e.g., at about 3 Hz) are due to the crossing of w, through
Zero.

Figure 19. Rayleigh-wave quality factor @, for the structure FRIUL7A. The
spectrum is divided into two parts: a) Rayleigh modes 0-30 b) Rayleigh
modes 31-154,

Figure 20. Lovec-wave quality factor Q, for the structure FRIULTA, for the
modes 0-30.

Figure 21. Coupling coefficients, for both propagation directions (CFPF and
PECF), for the fundamental mode of the continental (C) and Pamir (P) models,
. Heavy lines indicate the results obtained by (17), while the values obtained
by (3), following two diffcrent approximations, are represenied by thin lines.
For cach direction of propagation, the upper curve is for the approximation
where reflections and transmissions are not considered at the vertical
boundary, while the lower curve is computed taking reflections and
{ransmissions into account,.

Figure 22. Comparison between the observed ground displacement {top
trace), the synthetic signals (middle trace) computed by (30) and synthetics
computed by (2) (lowest trace) for the Brawley, 1976 carthquake as
recorded at station IVC. For the synthetic signals a vertical right-lateral
strike-slip point source with source duration of 1.5 s, placed on a vertical
planc at 6.9 km depth, is considered. All amplitudes are normalized to a
source with seismic moment of 1 dyn cm.

=

Figure 23. Displacement, velocity and acceleration (lower three traces),
computed for a receiver placed at 30 km distance from the source. The
displacement is decomposed in different sets of modes {upper three (races).
It shows the contribution of the higher modes to the signal waveform. A
point source with source at a depth 7 km is considered (angle strike-
receiver ¢=280° dip 5=30° and rake A=115°). The source rupture velocity
time-function is modelled by a unit step function. All amplitudes are
normalized to a source with seismic moment of 1 dyn cm. The peak
displacement is in units of cm, the peak velocity in units of cm s-! and the
peak acceleration in cm s-2.(after (3)).

Figure 24. a) Transversc component of acceleration-time series at different
distances from the source (15 km, 30 km, 50 km and 100 km). A point
source with source duration of 0.5 s and 7 km depth is considered (angle
sirike-receiver ¢=280° dip 6=30° and rake A=115°). Al| amplitudes are
normalized 10 a source with scismic moment of 1 dyn cm. The peak
acceleration is in units of cm s2 (after(3)); b) Radial component of
acceleration.for an instantancous point source (h=6 km, $=068°, 8=15° A=75°)
with seismic moment (M =1 dyn cm as a function of the epicentral distance
r; from top to bottom r=(a) 10, (b) 30, (c) 50, {d) 100 km. The maximum
zcro-to-peak amplitudes are normalized 10 one. In this and all subsequent
figures, thc number above ecach seismogram gives the peak acceleration
(here in uwnits of 10-22 c¢m/sec?), and on the horizontal axis the time is given
in seconds. The structure used is FRIUL7A.

Figure 25. Geomctrical scheme of the source-receiver system used to
computc the synthetic seismograms shown in fig.11. In this example, the

vertical discontinuity is perpendicular to the x-z plane containing the source
and the receiver ($=¢'=0°).

Figure 26. a) Coupling cocfficients used to compute the synthetic
seismograms shown in fig.27a and 27b; b) Coupling coefficients used to
compute the synthetic seismograms shown in Fig.27¢ and 27d.

Figure 27. Synthetic displacements obtained for a source-receiver distance of
100 km, according to the geometrical scheme of fig.9. Source in the C model
and recciver in the P model: a) vertical component, b) radial component.
Source in the P model and receciver in the C model: ¢) vertical component, d)
radial component. The instantancous point-source used corresponds to a
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Figure 28. Synthetic displacements computed for C and P models separately,
using the same source parameters of fig.27. C model: a) vertical component,
b) radial component. P model: ¢) vertical component, d) radial component.
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