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without the datum baing checked. Thus provision muet be made either a) Incr t8 to at heric fields are smooth and continuous.

P

ithin the analysls process or after a preliminary acan to check the
w Y P P ry ' All schemes we know of assume this, despite tha

data used for the analysia. exjistence of fronts.

1. .
3 Data available b) The value being analyaed (usually the first-guess arror)

1. Obmervations. These have been described in earlier lectures.
is most likely to have a certain scale. Thus a single

isolated cheervation will cause the analysis to be a

2, "First-qu ". Most analysis maethods use a prelimina astimat £
s ess ysls P ry s o feature of this most likely scale, and denses inaccurate

a 1 as th 1
the field being analyzed {(returned more or less unchanged as # analysis if cbaervations will be averaged over this scale in an ideal

there are no observations). Usually this is done by analysing deviatiénu from - . analysls scheme.
the first-guess rather than the total values. The fields available for use as
a firat-guess are c} The atmosphere is in hydrostatic balance.
&) climatology, i.e. the average of previous analyses for the same .
LT
ssason d) The atmosphere is in geostrophic or gradient wind balance.
b) persistence, i.e. the previous analysis e} The horizontal wind is non-divergent.
£ t, 1.e. a numerical prediction from the previous
c) forecaat, rical p p u f)} The atmosphere is in a state which satisfies
analysis. the balance equation.

These fields, if they are avallables, have to bs combined to give one first- g) The atmosphere is convectively stable.

quess field. The optimal combination is ascale-dependent, and the analysis

thod t 4 - d. - .
me needs to be tuned for the type of firat-guesa use ) h) The atmosphers is not super-saturated.

3. d 1 heri
Knowledge of the likely structure and ecale of atmospheric Note however that there are still some properties of tha

. ted licitly int i
motions. This information is often incorporated implicitly intc analysis atmosphere which it is possible to explain, and use in a

. i
schemes without being clearly stated or quantified Other knowledqe a subjective analysis, but which are difficult to uge in a

axpressed as relationships which the atmoaphere (approximately) obeys, &and
which are used as either weak or strong constraints on the analysis. The

following statements have all been used in analysis schemes.

nunerical scheme:

i)

Mid-latitude systems often have the characteristic

shape of a warm sector depression.



j} Certain regions are preferred for the development of

new, initially small scale, depressions.

k) Developing systems usually have a vertical phase

change (tilt).

1.4 Geostrophic adjustment

The atmospheric velocity field is generally close to a state of gecstrophic
balance and consequently, the total energy associated with non-geostrophic
motions must be relatively small. In the real atmoaphers, high frequency non-
geostrophic phenomena may be of local importance but on a global scale they
must be relatively insignificant comparsd to the sources that maintain the
quasi-balanced state. A glocbal build-up of anergy of locally excited high-
frequency waves is inhibited by mechanisms such as frictional dispipation,

vertical snergy flux, and nonlinear interaction.

A numerical foracast model with only a limited number of degress of freedom
cannot describe the gecstrophic adjustment outlined above. Therefore, the
high-fraquency waves of the initial atate cannot be dissipated locally by
small-scale phenomena. Tha initial conditions can by a proper initialisation
procedure be determined so that there is no noise in the f;:mecut. Although a
balanced atate can be found for the forecast model it is essential that the
analysis deplcts the Rossby modes as accurately as possible to avold rejection

of information by the initialisation.

In the following we will investigate how a simple model reacts to an imbalance
in the initia)l state and how its responge depends con the scale of motion. To
damp the non-geostrophic modes we dissipate the divergent wind and
consequently the stationary state of the model is in geostrophic balance. The
linearized adjustment theory applied to a two-dimensional sltuation

{Temperton, 1973) is described below.

Let us investigate the sisplified equations for a homogeneous incompressible
fluid. Let us suppose that the fields u, v, and h can be represented as a

sunm of two-dimensional Fourier components, 0.g.,

ulx,y,t) = E i uk,_{t) axp {i{kx + Ry)] (1.4.1)
Since we are studying a linearized system we can consider a partiocular pair of
wavenumbers. For convenience we will also drop the subscripts from the
Fourier coefficlenta. The transformed aystes thua becomes

3 ikgh '
22wty - ikg (1.4.2)

3y

ag = "fu - itgh (1.4.3)

dh
T -1Do(ku + 4v) (1.4.4)

where Dy is the mean geopotential height of the fres surfacs.

We will next separate the wind field into & nondivergent part (¥) and a
nonrotational part {(X}. This gives

we= = i(ty - kx}

v = ${k} + kx) (1.4.5)

Inserting Equation {1.4.5) into Equationa {(1.4.2}~(1.4.4) yieldg

¥
3t £x (1.4.6)
N . t - gh (1.4.7}

.
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n 2, g2

T Do(k + L4)x {1.4.8)
Equation (1.4.6) corresponds to the vorticity equation, and Equation (1.4.7)
corresponds to the divergence equation, and (1.4.8) to tha continuity

aquation.

As can be seen from the solutions to this aystem, it is not possible to
describs geostrophic adjustment since the solution for the divergence can be

expreased by the simple wave asquation, sasily obtalned from Equations (1.4.6)-

(1.4.8)
2
:—t§— +uwly =0 1.4.9)
where
w, p =t/ ¢ gno(kz + 10 (1.4.10)

and hence tha general solution to {1.4.9) 1ia

iut 1wyt
X = Am + Ba (1.4.11)

Hera the gravity waves are affected by the rotation of the earth and tharefore
are usually called inertia-gravity waves. Inertia-gravity waves are
dispersive, that is, the ghase speed expressed by w is a function of
wavelength. Thie is not the case with pure gravity waves which move with

the same speed independent of wavelength. The dispersive nature of ilnertia-
gravity waves provides another mechanism for locally dawping waves in the
atmosphere. However, in order to describe this procass we have to solve a

nonlinear problem.

In order to eimulate the effect of dispersion and interferance of gravity
wavas, we will introduce a viscous damping tarm acting on the divergent wind

only. This term will have the form xVZy. We thus obtain the new system

?

5% = - fy (1.4.12)

%‘ - £y - gh - k(x? + 12) g (1.4.13)
t

3h
gh 2 2
3¢ = Dp2? + x?ix (1.4.14)

We will now consider a stationary state of the modified Equations (1.4.12)-

] 3 3h
{1.4.14).Since then ¥ - 5& - 5; = 0, we must have the relations

3t
X =0
-]
n =Ly (1.4.15)
[} g s

where subacript s indicates the stationary case. Equatjon {1.4.15)} shows that
in the stationary case the geopotential and the wind fields are in geoatrophic
balance. It is found that an invariant quantity, analogous to the potentlial
vorticity, exists in both the original and modified form of the equaticns

2 = o (x2 + 22)p + £n, g% =0 (1.4.16)
If the system (Equations 1.4.12-1.4.14) is now sclved as an initial-value
problem with the initial fiaslds not in gecstrophic bhalance, the initial and
stationary values of § can be related by ﬁ' - 91 {subacript 1 indicates the

initial value).

2 2 - 2
Dotk + &)+ £n = (x2 » 12|¢1 + th (1.4.17)
Inserting the stationary values given in Equation (1.4.15) yields
(0 (k2 + 42) 4 £2 - 2 492
o ] + £4/q) *_ DO(k + L J*i + fhi
and finally
*s = aw1+ {1-a) ghlft (1.4.18}

where ghi/f is an expression for the geosatrophic balance with the initial

geopotential field and
gnosz + 12)
u-m (1.4.19)

@ can vary from 0 when the characteristic dimensions of the perturbations are
very large (k,f very small) and £ > 0 to 1 for a small scale psrturbation

{k,t very large} or when £ * 0.



If ¢ * 1 then WB ~ *1 and ha - (f/q)#i, i.e., the mass field adjusts to the
initial wind fiald, and if ¢ + 0 then Wa - ghilf and the wind field adjusts to

the initial mass field.

The physical significance of Eqn.(1.4.108) is made clearer if we transform it
back to Carteaian epace. MHoting that k = 2%/A Rand L= ZI/AY for the
wavelengths Axnnd ly in the x- and y~ directions respectively we can write
= 32s002 2
a Ac/(lc + 1‘,)
wherae lc- 2!Rc is called the critical wavelength. Rc is the Rossby radiuas of

deformation, Rc- (gDo)"zlf and

-1/2 n\.xl

Tr ey (1.4.20)
x 'y

is called the effective length scale. Now the conditions become the
following: if Axy < Ac {small-scale wavas), the mass field adjusts to the
wind field while if lxy » Ac {large-scale waves}, the wind field adjusts to

the masas field.

1t is important to observe that for an effective scale, Axy' to be greater
than the critical wavelength, Ac' we must have both A‘ > lc and AY 2 Ac.

In other words, no matter how great the wavelength is in one direction, if
the wavelength in the other direction is shorter than the critical wavelength,

the esystem will behave as if it were swall-gcale.

The implication of this analysis for the process of dynamical initlalization
is that forcing the wind field to adjust to the mase fleld is “unnatural® for
the "small scale® components involved. Consider the particular cases when

e t, ¥ =y, and ) =0, If in this special case the initial perturbations
] 1 8

were applied to the mass field only (vl =X, = 0}, the fluid would still be

i
completely at rest in the final state, #-. That is, there has bean no
assimilation of the mass fleld perturbation whatsoever and this perturbation
has been dissipated entirely in the form of gravity waves. HNaturally this

fact has great significance for the problem of data assimilation.

PrE 2
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2. LEAST SQUARES BEST FIT TECHNIQUES

A widely used procedure in geophysics is the method of least squares due to
Gauss. The basic principle is to fit a set of functions to observed data.
This technique hae been applied to analysis problems in a variety of verslons.
We group these, somewhat artifically, according to the type of functions used
to fit the observations. Examples of local and global applications with

extensions tc several variables are presented.

2.1 Method of least squares

In this method a linear combination of M functions Fk is fitted to a

(generally) irregular set of N cbservations Ag at positions xj. The
representativeness of each observation is given by a welght Il which ia

determined from the observation error and data denmity. The coefficients Ck

of the analyais fleld

M
i
Atx) mloc B0 (2.1.1
are solved by minimizing the sum of tha squared differences between analysis
and observations

N

1,2

g« J wa%-a) (2.1.2)
j b 3

with respect to Cy. This leads to a systam of M linear equatlons

%§—-orort- 1ieres M 12.1.3)
e

Substitution of (2.1.2) into {(2.1.3) gives
)E'{ g | E‘ 5
witFo(x,) C F {x,}} = w.h, F.{x.} (2.1.4)

i
PO R M T goy 39 3
for &=1,..., M.

1



If the functions are orthogonal with respect to the waeighting and data
distribution, (2.1.4) reduces to

N
SFx/ L E x) (2.1.5)

N
¢, = 1 v A 3

421 I

for £ = 1,....,M

2.2 Mathematical functions

Under this heading we collect least squares analysis methods that are based on
functions we consider non-metaorological. Functions which describe the
atmospheric structure or which are solutions to equations of the atmospheric

state are discussed in Section 2.3

2.2.1 Local fit by polynomials

Gilchrist and Cressman (1954) constructed a local least squares analysis

scheme in which the geopotentlal 1s expressed as a polynomial of 2nd degree.

i,y 20
o) = (L xtyd and (2.2.1)
! 143 < 2

The gridpolnt to be analysed is the origin of the coordinate system and

connequantiy the coefficient ¢y, is the analysed geopotential.

Wind observations can be included geostrophically in this ﬁethod.

The aix coefficients cj are solved by miniwmization of
R

1 obs an .2
Em= r I (zr - zr )
z r=1 2 ,
v § obs g azs‘“ obs _ g aza‘n
’ 3: .§1 {[U“ tray )+ (v- T r ax i (2.2.2)

in which Gz and Gw ars the estimated observation errors for height and wind

components respectivaly.
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In a polynomial type analysis of degree n, the geoatrophic wind variations are
of degree n-1. Conseguently, for n=2 the wind variations in the data domain
are assumed to be linear. Higher order versions of this technique easily
overfit the observations and produce large oacillations in data sparse

regions. The number of coefficients to ba determined is {n+1) {nt2}/2.

2.2.2 Global fit to periodic functions

s

Periodic functions are a natural choice for the representation of meteor-

clogical fields on a cyclic domain. The influence on the analysis of each
observation extends over the whole domain which might be the entire globa.

The noise in the observations is difficult to separate from the meteor- '
ological signal but it can be removed by a proper spactral truncation

of the functions. Moreover, a non-uni!or-.data distribution might excite

modes which are not pregent in the observations.

In some applications orthogonality of the basim functions is exploited to s

reduce the lsast squarss problem to form (2.1.5).

2.3 Metaorological functions

The least squares techniquas we discussed in the previous section did not
exploit any knowledge of the meteorclogical behaviour of the atmosphers.
Fanctions deascribing the long-term statistical variability of the atmosphare
as wall as solutions to the governing eguations have been used as basis

functiona.

2.3.1 Empirical orthogonal functions (EOF's)

The statistical structure of the atmosphers is conveniently expresssd by a
covariance matrix of observed or analysed departures from climatology at a
number of spatial positions. The covariance matrix can be sxpandsd inta its
eigenvalues and aigenvectors (EOF's) and the relative magnituds of a ’

particular eigenvalue gives the contribution of that mods to the total

13 'L



variance. The efigenvectors ralated to the gravest modes are chosen as basis
functions for the least sguares method. EOF's have been mainly used to define
the vertical atructure of the atmosphere. Several applications of EOF's can
be found in the Proceedings of the ECMWF Workhop on the use of empirical

orthogonal functions in metecrology (1977).

2.3.2 Normal mode expansion

Rl)l the analysis methods described so far suffer from lack of glochal balance
betwaen height and wind fielda. Solutions to various approximations of the
governing equations provide sets of functions with some balance properties.
5pherica1 harmonics (solutions of a linearized non-divergent vorticity
equation) and Hough functions (solutions to the “shallow water®™ equations) are
the most commonly used approximations to the atmospheric flow in global data

fitting.

In the following we will only consider the Hough function expansion. These
functions are solutions to the linearized primitive equations on a sphere for
4 bagic ptate at rest and with temperature as a function of height only.
Furthermore, the flow is assumed to be inviscid and incompressible and the

terrain flat. We assume solutions of the form (Kasahara, 1976}

A
o n
Y - [:E:] - I 13: p: (U} exp {is A - iot) (2.3.1)
n=s Cﬂ
n

in which s is the zonal wave number,
P:(u) ia the associated Legendre polynomial of the first kind of degree s and

order a, ¥ = sin ¢ and ¢ is the frequency.

In practice, the infinite seriea in (2.3.1) is limited to N terms.
Substitution of the finite series into the "shallow-water" equations leads to
an eigenvalue problem of 3N elgenvalues and elgenvectors. The frequency of a

mode is determined by its eigenvalue and the harizontal Btructure, i.e.

14

s
efficients A:, Bn and C:, by its eigenvector. The meridional part of a mode

L
and zonal wavenumber a 1is
An
a+N 8
o) = § ”:n P® {eind} {2.3.2)
n
nwa Ch

9: is called the Hough vector function.

The 3N modes include N low-fraguency Rosaby modes and 2N gravity modes.

Flattery (1971) expanded meteorological observations in terms of Hough

B
harmonics elexp(iisl). The Hough vector functiona ars Aetermined for an
equivalent depth of 10 km. The vertical structure of atmosphere is defined by

7 EOF'a. The u,v and z analyais can then be written as follows

. 24 24 7
[g] Bedepy = T T ] fa,  cos tar)

=) g=1 n=t

L]
+ b, sin (a1} B,(4).E (p) (2.3.2)
The expansion coefficients .lsn and blsn are solved by minimising
EXl + I +1I (2.3.4)
z u v
where
L= (£ - 22"} av (2.3.5)

The weighting € depends on which variable (height or wind) is being analysged.
A uniform data distribution 1.";;51.vea by forming average observations

in 3* x 6* boxes. In empty boxes a forecasted value is used, Consequently,
data voide influence the analywsis as strongly as data dense areas, which may
lead to serious aliasing problems. Alternativaly, each observation or
observation box may be amssigned a welght according to the accuracy of ite

metecrological value. In this case, the orthogonality of the baais functions

cannot be used and a ayatem of linear equations of form (2.1.4) must be

113



solved. In applications with variable observation weighting, the number of

modes is severely limited due to computational considarations.

In least squares techniques, the measurement noise is filtered out by spectral
truncation of the basis functions. Non-uniform data distribution and
inaccurate observations makes data expanslon in normal modes or other global

functionas feasible only for low wavenumbers.

16

3. EMPIRICAL CORRECTION METHODS

The local least squares mechods suffer from an inherent problen ralated to the
number of approximating functiona. An economical and atralghtforward method
was proposed by Bargthorsson and DdSs (1955) which overcame the overshooting
problems of polynomial fitting. The empirical correcticn method performs wall
in two dimensions for homogeneous observations. The principle of the method

is to modify a gquess field locally by obsexvations as follows:

A. Construct the first-quess field from a forecast and climatology

fe _fe el el
S Mt N

1" fc . el 3.1

The weighting factors & are defined by the accuracy of the contributing
fields

aff - ) ana afl -y . (3.2)
in which & is the std of the srror of the forecast or climatology. The symbol

A represents as before the mateorological valuse.

B, Calculate a weight for sach observation influencing the analysin

at gridpoint k.

The empirical part of the method is the specificatiocn of the influence
{weight) function. The weights depend on the distance to the analysis
polnt, data density and cbservation errors. Usually, the weights are

normalised by the sum of the weights and the accuracy of the first-

guess.
C. Calculate the correction to the first-guess
i p © P
A~ - f vy (Ai l1) {3.3)

17

g

L83



b. Steps B and C may be repeated with the analysis as the guess

field and a different (sharper) influence function (“successive

correction method®™). 7This technigue was proposed by Cressman {1959).

An exaxple of a successive correction analysis 18 shown in Fig. 3.1

Wind information accompanied by height data provides additlonal estimates of
the height at the gridpoint through extrapolation using the geostrophic or
gradient wind relation. The curvature of tha flow is taken from the quess

field.

18
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The radius of influence (N) of the stations in this
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Fifth scan. N = 1 grid unit = 300 km.

rig. 3.1

Scans 1 and 3: This figure shows an examuple
of the analysis of surface pressure using a
method of successive scans. Only scana 1
and 5 are shown. In esch successive scan
the areas influencing esch station was
decreased. Winds were introduced into the
analysis in the last three scans only., Note
the change in the refinemsnt in the analyeis
hetween scans 1 and 5 (From DBGa, 1068).
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4. TECHNIQUES TO EXTRACT AND COMBINE ANALYSIS FIELDS CONSISTENTLY

Diagnostic relations between meteorological parameters provide means to
extract new fields from analysed variables. Section 4.1 briefly describes the
use of the balance aquation to retrieve wind or height from the other field.
In section 4.2 we discues variational techniques to combine separately

analysed fields under given conatraints.

4.1 Use of a balance equation

In extratropical regions where the quality of the helght analyais is generally
high, the wind field can be determined from the geopotentisl by some form of

the balance equation:

V2 = £72y quaei-geostrophic relation

729 = V.(£VH) linear balance equation

Vg = 27 {%E ‘ %';Ll + V(%) balance equation

72¢ =nL + .V x v - vzwz/z) vorticity form of balance equation
in which

C-K.ng-vzﬂ and n=f + ¢ .

Local ncn-ellipticity of the height field occasionally creates convergence

problems.

In the tropics the climatological variability of the height field is of the
gada order as the ohservation srror. The geopotential can, however, be
derived with reasonabla accuracy by the balance squation from the
streanfunction field. This in turn can be solved through the

Poiason equation V2y = £ from the vorticity of the analysed wind.

21
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4.2 VYariational methods

Variational techniques can be applied to combine independently analysed fislds
whan a constraint between them is required. Already very simple applications
of variational calculus become mathematically cumbersome and consequently we
will only present the principles of the method. The idea {8 to find the
minimum changes to be made to the separately analysed fields in order to
satisfy the imposed constraint either fully (strong constraint) or

approximately {(weak constraint}.

Suppose that we have analyses of z, u, v, T and g (denoted by a super-

ascript a). The problems ars then the following:

A Strong constraint {Sasaki, 1958)

Minimize

I= L [e 8212 + a (8w)? + a  (4v)2
z u v
+a {am)2 4 Ag)?
LA a, } av (4.2.1)
in which &f are the changes to {2 and the 4's are measures of the accuracy

of the respective analyses. The constraint

r (:a + &z, ua + Bu,u0) =0

{4.2.2)
must be satisfied everywhere in the domain V.
B. Weak conatraint (Sasaki, 1970)
Minimize
- 2 2 2 .2,
I G {uz(az) + cu (du) +... + ur F I av {4.2.3)

The constraint ¥ is allowad to be nonzero and Lte effectiveness is tuned by

ap.

Finding the minimum of the functional I ie very time consuming even in the

cage vhera the 4'as are constant in the domain.

22

5. STATISTICAL METHODS
5.1 . Concepts and notations
a) Expected value. This is the average value of a large number of

realizations, all with the same constraints. This is dencted by trianqular

brackets < >.

b) True value. This is the actual valus after scales which we do not wish

to analyze have been removed. Wa denote this by a super-fix t. Observed and

predicted {first-guess) values are denoted by super-fixee © and P
respectively. We ghall assume that observations and first-guess ars unbiased,

i.e. that <a®> = <apP> = b,

c} Error. The error in a particular case is the deviation from the truth.
We denote this by a lower case a:- AP - At = aP, A9 - At = a0,

Note that since the truth is dafined as containing only those scales which we
wish to analyze, then an accurate observation of a emall scale, e.g. a gust of
wind, will be included in the error. The expacted'vaiue of the error variance

is denoted by E2 :-

EP2 = <ap2y
"2 = caod>
da) Covariancea. For two points 1 and 3} the prediction error covariance
P P [=] (=]
is <a1 aj>, the obeervation error covariance is <ai aj> and the observation-

prediction covarlance is <a: a?). The prediction error covariance function
defines the scales of the error we wish to analyze, since it is the Fourier

transform of the error power apectrum.

a) Correlations. The error correlation v is defined by the relationship

<ai Aj> - Ei ”11 Ej-



£) Homogeneity. A statistical property of a meteorological field that
depends on .two position vectors ls homogeneous if it is independent of

translation of the two positiona.

g) Isotropy. A statistical property is isotropic If it is independent of

rotation.

Homogeneity and isotropy together imply that the statistical property depends
on distance only. Since the expected errors (E} of matacrological fields

often vary spatially (e.g. aa a functicn of latitude) it 1a usually a better
approximation to assume that it is the correlation ¥ which is homogeneous and

isotropic. Typical expirical correlations are shown in ¥lg.5.1.

5.2 Optimal interpolation

This technique is usually cradited to Gandin (1963}. It is optimal in the
sense that the expected interpolation error variance i{s minimized if the

first—quess error and cbservation error covariances are accurately known.

Since this is rarely the case we prefer the name “"statistical incerpalation®.
Balow we derive the equations in a dimensionless form, normalized by the

expected rms first-gquesa errors !P .

It is assumed that the normalized analyzed deviation from the firat-guess can

be expressed as a linear combination of normalized observation deviationa:-

(5.2.1)

where subscript k denotes the point and variabla baing analyzed and subscripts
i = 1, N range over all points and variables of chservation.
“ki are the weights to be determined.

Writing

t o

-]
@, = (Ai - AL'/E:I.

= 0

of = .\1)/:‘: ) (5.2.2}

1 t

a = le - Ak)/B:

[ k-]
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o o
€y = Ey/E}
i i
€y = B /B
The interpolaticn equation becomes
N
i - - -] p
ae, = o +1§1wu taje, - o) (5.2.3}

Squaring this, and taking the ensemble average (dencted by < >) given

N
i2 L 2N -] P 4P
£ 1v2Lw, («rpuj_)Ei - <ap ab>)
=1
¥ o Q
P e® op
i, j§1 W (<u1 o>+ €fc a ey - ef<a o> {5.2.4)

-cupuu)u
k3
To eilmplify subsequent algebra we assume at this point that the correlations

of prediction and observation errors are zero, f.s.
o o
<u1a1;> - (c’;af -0 {5.2.5)

This assumption ia reasonable for the types of observation currently avail-
able; if necessary it could be relaxed. We also introduce a vector and matrix
notation:- !k is the column vector of weights wki' g iw the prediction error
correlation matrix

{c«‘: ui)),
0 is the scaled obaservation error correlation wmatrix

o,o0 o
(Ei<ai ujn:j) ; and M =P + g.
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B is the vactor of normalized increments

o _.p
Ay A
A
This gives
512.1-zw'rp + Wl H (5.2.6)
x HATEER

The "cptimal® weight vector im that which minimizes the estimated normallized

2
interpolation error variances s:. The ususl minimisation procedurs gives

- E" P ‘ (5.2.7)

" B

2 ’ .
The minimum value of e:l corresponding to these weights is given by

k
1? T
-1 - 5.2.8
€ 1 Loy A { )
The optimal interpolated increment B: is given by
i T
B " E R
(5.2.9)
T =1
-Ek B
Note that 5-15 is independent of the analysis point k. Lat us writa
-1
C=M B. Then
=" 2
Bi - t‘:'r {5.2.10}

~n



Thus the optimal analyzed field defined by different analysis points k is a

linear combinatlion of the prediction error correlation functions for each

observation point.

Since statistical interpclation can provide an estimate of the error in the
interpolated value, it is easy to devise cbjective observation checking
schemes by comparing each datum in turn with a value interpolated from

surrounding data.

The analysis and in particular the estimated analysis error depend strongly on
the optimality of the forecast and observation error statistics as discussed
by Seaman (1977) and Pranke and Gordon {1981).

5.3 5 le e 1la of OI
Before procesading to more elaborate examples of OI {Section 6}, we apply

the equations of Sect. 5.2 to the case of only one influencing observation.
The matrices and vectors reduce to very simple forms as follows

02 02
Moo=l e ]=[1re])

- <aP oF
where "ij <a1 uj>.
The inverse of M is 1/(1 + eYz) and the weight given to the observation is

LN ef?).

At the cbservation point the increment to the first-guess 1is

%

1 + €92 (5.3.1)
1
in which b1 is the observed normalised departure from the first-guess. For
simplicity it is assumad that the obgerved lna analysed variables are the
same, although this discussion applies to any variable combination for which

3 is defined.
k1
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The difference between observation and analysis is

ef? 322
(M ~w I = T b, = b
k1771 1+ €]° T zfz N 322 1

The ratio of the observation error variance to the total error variance

determines how large a fraction of the observed departure is analysed.

‘The analyeis at any other position 1a the product of the analysis at the

observation point and the forecast error corrslation i . bestween the

k1
observation position and the analysis position.

5.4 Prediction error statistices

The long term statistical behaviour of the atmosphere or the forecast model
enters through the terms <oi 0§>. In principle these can be functions of
several variables

<u§u§> = F (variable i, variable i, x,. ’j' Fye ¥yePye pj'ti' tj)

{5.4.1)

Obvicusly, F would in its complete form be a very complicated function and its
determination from cbservations almost impossible. PFurthermore, F must be
positive definite in its domain of use. Some simplifying assumptions are
usually made to put F in a mathematically mors tractable form. We start by
assuming that F is geparable and can ba written as & product of thres
positive-definite functions

FP=H (vart, varj. LI xj. ¥y yj) .V (vnri, vnrj, Pyr pj)
« T (v.ti' varj. ti' tj) (5.4.2)

Most analysis schemes select observations from & narrow time window around the

analysis tims. As A consequence the temporal correlation is usually ignored,

i.e. T2t for all time separations |t1 - tjl.
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Physical relationships between analysls variables lead to additional
simplifications of the correlation functions. Later in this section we will
impose geostrophic, hydrostatic and non-divergent constraints on the

correlations.

Depending on the particular analysis system the vertical correlation is
specified either as a discrete matrix (ECMWF: Lorenc, 1981} or by a continuous

function (NMC: Bergman, 1979).

The horirontal correlations have to be modelled by contimuous functions due to
non-uniform data distribution. 1In 5.4.1 we will derive expressions for all
combinations of height and wind correlations and then relate them
geostrophically. In section 5.4.2 we derive hydrostatically coupled vertical

correlations.

5.4.1 Horizontal forecast srror correlations

Throughout the derivation of the horizontal covariances we assume that the
variances are locally constant and that the correlation H can be written in
terms of an isotropic and homogeneous function N as follows
< = nnmnna- - - 4.
a, bj> Ea!b H(ALIY 0", x, tj. L yj) . (5.4.3)

in}

| depends on the separation distance r only.

13

Three separate groups of covariances can be distinguished:

2) u-u,u~-v, v-y

3 z~-u, z~v

The height error covariance is expressed by

30

<z, z.> = g2 [
z z

1%y 2{F14

(5.4.4)

Next, we aplit the wind in its rotational and divergent part and derive the

u = v covariance

3

a 3 3
a, vrw e P ) (o b, o+
i ayi i th i axj

3

3 XL )>
3
¥y 3

(5.4.5)

As an sxample of a covariance from the third group we take the z - v error

structure

3
g, v, > = <r.1(ax

-2 v+ L
axi b, 3

b]

+ 2— X,)>
3y1 i
<z, x,>
i
7y 3j
rrE &
zv zX 3¥j

LI

{(5.4.6)

Bafore specifying the function I we will assums that the wind error is

totally in the rotational part, 1.a. !x = D.

can ba written as follows

3t

The differantiation operator



CI T T S G 1 (5.4.7)
Bxi 3x1 r r Ir

- - - 2 - 2
in which r rij /( x, xj) +(yi yjl

With (5.4.7) and By=0 the u - v covariance (5.4.5} simplifies to

F | L] T ar
( x, - x.)
{ . | 3_ i }
r ir YW

- Bl 1 - . LN 5.4.
e 7 {uW - n*¢} (5.4.8)
Similarly, for the z - v covariance
(x1 -x,)
<zl vj) - - 823“ _-it II;* (5.4.9)

(5.4.4), (5.4.8) and (5.4.9) cover all combinations of helght and wind

correlationsa.

The necessary and sufficient conditions for gaostrophy hetwaen height and wind

arrors are

}) t = L] = £ ]
LI iy = sign () L

This means that the covariances <z1 zj:», ¢:z1 "j) and wi ¥ > may

3
contain large scale modes with no associated geostrophic wind.

2) The variances of z and ¥ must be gecstrophically

relatad. -
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The final step is to specify . Several candidate functions have been

considered and used:

F

- -ar? o -
o r' N . cos (ar)e bx » J lar) , [cos {ar) + f sin (arl]e r

The function must be twice differentiable (cf. 5.4.8) and its derivative

must possesas certain properties at the origin (Julian and Thidbaux, 1975).

In the ECMWF analysis scheme it is amssumed that the horizontal structure of

the forecast error can be represented by a Gaussian type function

kLS

r?
M(r} « axp (~0.5 5p)

b {5.4.10)

in which b is a tunable scaling parameter (appropriate values of b are

S0C¢ - 1000 km). Differentiation of (5.4.10) with respect to r gives

' - - ‘Ez n
{5.4.11)
e (5 2 3
b T bL

Bubstitution of (5.4.10) and (5.4.11) into (5.4.4) and {5.4.8) with extension
to all possible wind covariances gives

“1 xj> = g2 I{x)

4
E? ty, -y,)?
W u> = (1-—3+,1,q
b] b b
sz-—x yi-y

(ui vj) <vi “j> '—} > b

{5.4.12)

1y
EZ {x, - x )2

<v1vj>-;¥(1-—-"'—hz—1 b))

The variance of the wind field is

33
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{5.4.13)

Tt

2 2 2 (g2
Hp wjup =5 '%’3'57%72'?;

or E = ? Bz. The scale parameter b defines the ratlo betwesn the height and

v

the wind error.

The cross correlations (¢ - ¢ and z ~ v} can be used to relax the geastrophic

constraint in the following way

M. = c{é {5.4.14)
1]
where G is a function of latitude and 'G(Nl ¢ 1. G changes sign at the

equator.

The helght-wind correlations can now bm written as follows

B2 vy, -y
Ty ug - ]'?[ b “"“'—1b I . Gi4) (5.4.15)

E; x -
2 v - ﬁ[h ——-—1b M. Gte)
All 9 poasible height and wind correlations are shown in Pig. 5.2 for

b = 600 km and G(4¢) = 1.

5.4.2 Vertical forscast error correlations

In a thres—dimensional schems vertical correlation matrices {or contlnuous
functions) muat be specified for Z and ¥. Z-TandT=-"T0rV - VYp and
_\1’1, - !1' can be derived hydrostatically from Z - Z or ¥ - V. Multi-
plication of the vertical height error covariance matrix

vzz by a differentiation operator
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L_= . . (5.4.16)
-0 [+
ng 1 ns 1

=1 - -1
gives Vops In (5.4.16) a, =3 (lnpi lnpi+1l .

T
Poatmultiplication of VET by LTz - LET results in the temperature covariance

ix v .
matrix ot

The tharmal wind covariance matrix !& - !T can be calculated by an identical

procedure applied to the vertical wind covarlance matrix.
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€.  SPECTRAL RESPONSE OF AN OPTIMAL INTERPOLATION ANALYSIS

Introduction
In this Chaptaer we conslder at & simple level a number of related questions -
how does an OI analysis respond to data, how faithfully does it draw to it and
how do tha constraints of geostrophy and non-divergence affect the analysis.
We begin in Bect.6.1 with a spectral theory which is used throughout the
discussion. 1In Bect.6.2 we present some very simpla analytical axamples of
the analysis of three observations at the cbservation points, which show some
interesting aspects of the theory. Finally in Sect.6.3 we present some
nurerical results for slightly more general cases to verify soma of the

suggestions made in Section 6.2.

6.1 Spectral responas of the 0.1. analyasis

In this section we develop some theory that will be useful in discussing the

resclution of an O0.I. analysis.

As shown in Bgn.5.2,9

i

T u-1
b ~e 4lp (6.1)

where B; is the analysed {or interpclated) increment at point k (normalised).
B is the vector of normalised cbaservation deviations
g=-r+e
E is the prediction error correlation matrix defined by the
observation positions and variablas.
Q is the normalised observation error correlation matrix
P ls the vector of correlations between the observed variables

~k
at the cbservation positions and the analysed variable at position k.

In order te diacuss the resolution of the 0.I. analysis it 18 convenient tao

specialise the interpolation formula (6.1} to the case where Xk is an



cbaexvation point and Bi

" corresponds to an analysed variable at that point.

In other words we consider the problem of analysing the obaervationa at the
observation pointa. If it helps to fix ideas one can suppose the observations
to be equally spaced cbaervatione of a aingle variable, say height, although

what follows does not depend on such an assumption.

Given that B;'oo‘rrospondn to an analysed variable at an cbeervation poeition,
wa may write:

-yl (6.2)
where B is the vector of observations and gl is the vactor of analysad
deviations. The oparator

ET y! {6.3)
iz linear. We can say rather a lot about the response properties of the

,
analysis system by examining the elgenvalues and eigenvectors of the analysis
operator

R
To make the mathematics tractable we make the simplifying, and not very
strong, assumption, that

g = 9% (6.4)
i.e. that the observation errors ara random and uncorrelated with aqual

(normalised) standard deviation o.

Since . the prediction error correlation matrix, is symsetric, positive
definjite, we may write

£~ Mg (6.5)
where E is the matrix of orthogonal normalised sigenvectors and the matrix [A]
is diagonal and has the eigenvalues of P on the main diagonal. If there are N
chservations then, since P im a correlation matrix with diagonal elements 1, a

standard result gives us that
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N
tr{p} = N -31 A (6.6)

and Ai > 0 for all i
Bacause of our simplifying assumption on QO we may write
WmEtR =B+ o= EOwR)g
Thus the effect of adding the observational error matrix to B is to increase
all the eigenvalues by the value ﬂz. without altering the eigenvectora. It

follows that

gl - g/ 0s0g" (6.7)
and finally that

B ou! = gsideo)gt (6.8)
This is a very powerful result as can be shown if we write

=5t .2 -ge (6.9)
and substitute 6.8, 6.9 in 6.2

E gl- gl /A+0?]8 {6.10)
or

E,i- [A/i+o?)p (6.11)

The eigenvectors § will, in simple situations (equally spaced cbservations of
a single variable) have a natural ordering of scales associated with them.

The result (6.11) then gives a clear expression of ths resolving power of the
analysis. §, ﬂ_i represent expansion coefficlents of the data and the analysias
increments in terms of a cosplete orthogonal basis. For well resolved modes,
11 > 02, we have ﬂ:' Bk. In other words the analysis draws very closely to

the data in these components. FPor poorly resoclvad modss, 11 << dz, we have

i
k

analysis.

B, << Bk + 1a. these components of the data are heavily damped in the

Note that
k.1.
T < 1 for all i
Ai + o

39



so that the 0.I. operator damps every componant in the data. This is because

2
g
it is taking some information {in ratio = i:':f:;{ } from the first guess.

The spread of the eigenvaluesg li detarmines the response of the analysis.
This spread is governed by the position and type of variabla observed. Some

simple liwiting cases are of intarest.

Limit 1 Widely spaced ohservations

If all the observatlons are so far apart that they are quite independent,

then

E=~ 1
and

Ai -1, E=1
8o that

”: = ?I%T "
In other words the analysim increment at the observation points is ;:ﬁf the
observed deviation. This is the optimal combination of two independent
estimates of the true value, one provided by the first guess (with normalised
error variance 1) and the other provided by the chesrvation (with normalised
error variance ¢2). This interpretation is based on the simple result that if
we have two estimators of x, viz., X)r Xy with error variances alz and 022

then the optimal estimator of x is

- % &)
X= 0T v ol X YT TRT X
1 2 1 2

Limit 2 Closely spaced vbaervations

At the other extreme ws have the cass where all the obaervationa of the single

variable are so close together that all the entries of B are 1.

Such a matrix is clearly of rank 1, so that it has only a single non-zero

eigenvalue, A} = N with eiganvector (1,1...1}//N

40

i N
follows that B1 = wo? 8

and
Ip
i 1 i
By " el ( 5 -

1
Then the analyaed value is ;:EI?E times the mean value of the obaervations.
Physically this corresponds to the optimal combination of the first guess with

variance 1 and a single super-cbservation with error variance oZ/M. All other

structure in the data is ignored.

In order to explore our theoretical results, it is useful to conslder some
simple examplems, bearing in mind the two limiting cases we have just
discussed. It should also be borne in mind that if the observations ars exact

(Uz-o) then all the data are drawn for sxactly.

6.2 Some simple three polnt analysis problema

In this Sectioch wa conaider a few examples of asome vary sisple analysis
problems, involving the analysis of three observations, at the obsaervation
points. These examplas are very simple, but are instructive so that it is

worthwhile working through them in datail.

There are a few praliminaries which we need to refer to. We will ba using two
different functions for the <$4> structure function, the Gaussian and the
Gauss-Markovian function of second order. We shall assume the height stream-
function corralation is 1 and we shall assume that the reader has read and
understood Chapter 5 of these notes. FPor convenience we surmarise the

properties of the Gaussian and Gauss-Markovian in 1-dimension using § = Ax/b

Structure Punction Gavssian Gauss-Markovian
4$> o2 (e el
v g 11282 +fe olel
> ~(g2one~ 28 —(lE'-ila-'El
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one dimensional structure functions considered; the Gaussian on
the left, and the second order Gauss-ilarkovian on the left.
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Flotas of each of these functions are shown in Fig.6.%. We note that the
functions are qualitatively similar but differ, for example, in the depth of
the negative lobes of the <VV> correlation, which occur because of our

assumption of non-divergence.

EXAMPLE 1 Three heights

We consider the problem of analysing thres equally spaced collinear height
observations
L 4 \f)
Ay Ax+
The P nafrix may be written

. where p = <¢1¢2>

q= <14y = hyby>

We have chosen the numbering for the grid points in order to make comparisons

later when we replace the 43 observation by a vy observation.

The equation for tha sigenvalues A is
-0{1-02 - p2} - 29[ (12} - p} = &
For which the roots are
M=1+p/as+r
Ayet1-p
13 =1 +pf2 -1

where r = ({p/2)?) + 2q2)1/2

Bince we require that all the eigenvalues shall be non-negative then we must

have 13 > o, 1.e.
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£(E) = 1+ p - 2q2%
This is readily satisfied by both structurs functions as shown in Fig.6.2.
Hear the origin £({) for the Gaussian is smallar than that for the Gaues-

Markovian.

In order to study the eigenvalues ws follow the ususl procedurs of
selving for the eigenvalues, discarding one equation, spacifying the
corrgsponding variable (in ocur case ¢3) and then solving the remaining

equations.

The first two equations then bacoms
(1=2)4; + péy = ~q¢;
pé) + (1-0)4; » —qh;.

These can only be solved for non zero (L. FYEE

{(1-2)2 = p? = (1ep-d)(1-ped o,
Thus for Ay = 1~p we must require (q#3)=c. This then gives us that Plé;+4;)~0
or $; = =§;. Thus the second sigenvector is given by

Ay = 1-p, 3 = (1, 0, =1)

and clearly correspondas to a linsar trend in the data.

For the other two sigenvectors, we can solve the sigenvector aquations by

Cramer's rule and get

4o = el

Thus the eigenvectors are
Ay =1+p/2+y o = {1, l!:ﬁ&" 1)
Ay=1-p o = (1, o, ~1)
Ay= % +p/2-1¢ c;-(l."u:ﬁ&aﬂ-

H
Bince r = /l%) + 2q2 it follows that all three sigenvectors are orthogonal.

&x

b € 3 for the Gaussian (6.3a)

Fig.6.3 shows the plots of 1, Az, Ay for 0 €

47

and the Markovian (6.3b). Fig.6.4 shows the behaviour of the elements $3(0; ),

0303] for the Gaussian and the Gauss-Markovian.

The above expressions for the eigenvectors show that the characterisation of
e) a3 a mean value and @3 a8 A two grid wave is valid for all values of Ax/b

{this is not the cases in one of the later examples).

Secondly for 8x/b € 0.8, the Gaussian gives a better analysis ”‘z larger) for
the linear trend than does the Gauss-Markovian, while the Gaussian applies
heavier smoothing “3 smaller) to the two grid wave, than does the Gauss-
Markovian. For the mean value, both structure functions do about equally

wall.

This example is quite straightforward, and the only surprise perhaps is that

only one mods, the gravest, has A>1,

EXMPLE 2 Three Winds

Our second example is formally identical with our first, but the results are

very diffesrent.

We consider the problem of three equally spaced wind observations for the
component normal to the line of stations
Vi Vi vz
+Ay+ *Ay»

where p = <V;Vy>

1 p g
p 1 q q = <VVy> = VVyd
9 q 1
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The condition for positiveness of all the sigenvalues is again
£y =1+p~2¢2>0
L] L]
whers p = —g(2£), q = ~g{£) and g is tha stream-function structure function.
The values of f{£) for the Gaussian and the Gauss-Markovian are shown in
Pig.6.5. It is clear that the Gaussian gives valuea for f which are closer to
zero over most of the range, and so it will have cne aigenvalue smaller than

the corresponding Gauss-Markovian eigenvalue.

The roots are exactly as given before
My =1 +p/2+r
lz =1 ~-p

Ay = 1+ p/2-r  withr = [p/2)? + 2q2)1/2

and for q # o the eigenvectors are

)

ay = (1, o,=1}

o =1, - S—qu + 1) as before.
However the categorization of the eigenvectors depends on whather qin. (i.e.

dx/bi1).

Fig.6.6 shows the plots of A1/da,dg3 for 0 € Ax/b € 3. Ws have deliberataly
intreduced a discontinuity into this plot to indlcate that the slgenvector
corresponding to the mean-value of the observations has the sigenvalue

A-1+§+r,>1£orla—:~l~<1 and

a
1-1+§-r,<lfor'|—;'~>1

Similarly the eigenvector corresponding to the two-grid wave has eigenvalue

A-1+§-r.<‘lfor'l£§l<| and
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Gauss-Markovian.
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A=+ % +1,> 1 for 1551 > 1

b
Ax
In fact for i ¥3 = 1.73, the two grid wave has the largest sigenvalue.

This is a fairly general result and indicates that some care must be taken in

the wind analysis with O.I.

Fig.6.7 plota the valua of V3 in the two extreme aigenvectors. We have not
normalised the eigenvectors so that there is a singularity bscause of the term
inm 1/q. If we had normalised the vectors then nsar the singularity the

eigenvectors would be (£, =1, €),(c, +1, €} €+o.

When A% = 1 (1.e. at the singularity) the sigenvaluas and eigenvectors are

given by
11-1 .1-'0,0. 1}
A =1 +p oy = {+1, +1, 0)
Ay=1-p @1, -1, 0)

Physically, it is clear what is happening. Given the non-divergent wind-wind
structure functions, the snalysis expects to find that a northerly wind

at one point will be accompanied by s southerly wind at a distance, ¥3b to the
east or west. It will favour such observations in its analysis and will damp
observations which run counter to this expectation. In particular, a large-
scale slowly varying featurs in the cbservations will be significantly damped.

This probles is tha subject of current research work.

As sxpected the Gaussian shows a hesvier damping of the mode with smallest
{ses Pig.6.6) eigenvalue than the Gauss-Markov. Fhysically this corresponds
to the fact that the wind-wind correlations (both positive or negative) are

weaker with the Gauas-Markov than with the Gaussian.
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EXRMPLE 3 Two helgiiLs and a wind

In this problem we envisage a wind observation replacing the ceantral heiqh;
obsérvation in Example 1.
+) vy +2
+Ax+> +Ax+
The matrix in this case is

where p = <¢14,>

t p -q
p 1 q q = Vadp> = - <v3¢1> >0
-q 4q 1

p = 9(2£), g = u g{£) where g is the height-height
A
(and streamfunction-streamfunction) correlation, § = —f, and u is the

height-stream function correlation which we take to be 1.

u>0 in the northern hemigphere and u<0 in the southern hemisphera Secause of

the change of aign in the Coriolis parameter.

The minus signs in the matrix occur becauss of the assumed gecatrophy.

The determinantal squation is
-0 [(1-2)2-p?) - 2q2(1-k4p) = 0
The condition for positive definitensss is
£y (A_:)'1-p—2q2>0
The values of £ in thls case are plotted in Fig.6.8. The Gaussian has smaller
values of f; over the whole range and so it will hava one eigenvector smaller

and one larger than the Gauss-Markovian. The eigenvalues are given by
11 =1+p

.\2-1-p/2+!‘
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Ay = 1 - p/2er

r=VE)2 4 2¢?
These are plotted on Fig.6.9. We see that there are two modes which are
always well analysed while the third mode is significantly damped for

%

have to solve, for specified V; are

I € 1. To examine the eigenvectors we proceed as before. The egquations we

(1= 1) + péy = qV3
pé); + {1=A}¢, = -qVy
These have a solution for V3 non zero, provided
(122 - p2 # 0
For ll. the first eigenvector, A = 1+p so this condition is violated. It
follows that for this mode V3 = 0. and then
pl=#; + ¢3) = 0 which implies that the vector is of the form
) Y3 ¢
(1, o, N
This clearly corresponds to the mean height, and has no wind assoclated with
it. (This latter feature is not a general result, am tha "mean height®
eigenvector éenerally doas not have ildentical values at all grid polnts (cf
Example 1}. The second and third eigenvalues satisfy the condition
(1-x) - p2 #+ @ ‘
and for these we have the result 01 -.-02 -

qVy
1=A=p

Thus the eligenvectors have the form

* V3 2
M =~1+p o (1 0 )
Ap=1-p/2+r e (-1, +‘—+§&, 1
(r-p/2)
Ay = 1 - p/2-y o5 (-1, - E L r = /(312422
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pecints because of the intluence of the reported wind at the
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The eigenvectors e,;, e; have the same height gradient assoclated with them,
but opposite signs for the associated wind. Clearly one of them appiroximates
the geostrophic wind while the other wind must be quite ageastrophic.

In order to diacuss this point it is convenient to suppose that é% ig between
1 and 3 where q is not small but P is small. In other words the heightas ara

uncorrelated, but they are correlated with the wind.

Northern Hemisphere Southern Hemisphere
d, ~ 12 g & ~{~1, 72, 1 =1, =/2, 1)
Ay ~ 172 q ey ~{-1, =/2, 1) (=1, ¥2, 1}

If we suppose that 02 is to the east of ’l then clearly the wind in & is in
the geostrophic direction while in 63 it is in the anti-gecstrophic direction.
We note too that the magnitude of the wind in #; 18 not the game as the
geostrophic wind calculated from ¢, ¢, by a finite difference calculation,

SIS

i.m. = 1 when l%i) = 1

28,
Fig.6.10 shows that the corresponding value in the eigenfunction is of

order 1.5. The reason for the differance im truncation error in the finite
difference calculation. The 0.I. analysis has an underlying continuocus
structure, with geostrophy enforced by diffarentiation. In the present
example (cf Fig.6.11) the wind is almost zero at points 1 and 2. It
therefore follows that the continuous derivative of height at point 3 (and so

the geostrophic wind)} has to exceed the finite differance value.
This is a very important point to bear in mind when discussing constraints

(e.g. geostrophy, non-divergence) on an 0.I. analysis. Since the data are

always noisy, they will contain all possibls modes. The analysis will damp,

B0

but will not eliminate entirely, those components of the data which do not
satisfy the (continuocusly expressed) constraints. The evaluation of the
analysis on a grid will then produce fields in which the dominant eigenvectora
will satiafy the constraints for analytic differentiation. If the grid on
which the analyais is evaluated is tco coarse {#.9. grid size of order b) the
gridded analysis will not satiefy the constraints if these are calculated as
finite Qifferences on the grid. The present calculation for the geostrophic

wind is a clear example of this.

EXAMPLE 4 Two winde and cone height
Our fourth example has exactly the same mathematical form as the previous one
except that the structure functions change. In the notation of Example 3
Vi 4 2
+Ax+ +hx+

p=q(20), q=u gtk) £ = ax P =1

The condition for positivea definitenees is that

£ E) 1 -p-2¢230.
This is shown in Fig.6.12 for 0 € £ < 3. Fig.6.13, 6.14 show the results for
elgenvalues and eigenvectors. As we saw in the case of three winds the mean
wind eigenvector is significantly damped (A~0.6) when the spacing between the
winds is of order ¥3. When this happens the negative correlations between the
winds ara largest. The geostrophic eigenvalue is largest when the spacing
between the height and wind cbservations is of order 1. This gives the
largest correlation between these cbservations. - Very clesely spaced height
and wind observations are essentially treated as being independent. Again the
relatively weak wind-wind correlations implied by the Markovian result in the
mean wind elgenvector being close to its asymptotic value already when the

spacing between the wind obgervations is of order 1.

61



Z9

...................................................................................

EX S LINIT @ WINO» 1 HETGHT. GRUSS.CATVEN

B0 |

™0 |

6.0 |

50 |-

“Wo |

L0 L

0 L

o0 |

* 11 L1 3 1 1 4 11
0 a4 o6 28 | 1.20.81.61.8 2 2,22.42.62.8 %

....................................................................................
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IHPUT P HATLIX

.00 .61 .14 .01 .00 .00 .00 .00 .00
61 1.00 .61 .14 .01 .00 .00 .00 .00
<14 .61 1,00 .61 .14 .01 .00 .00 .00
01 .14 .61 1.00 .61 .14 .01 .00 .00
.00 .01 .14 L6t t.00 .61 .14 .01 .00
:00 .00 .01 .14 L6% 1.00 .61 .14 .0
00 .00 .00 .01 .14 .61 1.00 .61 .14
.00 .00 .00  ,00 .01 .14 .61 1.00 .61
.00 .00 .00 .00 .00 .01 .14 .61 1.00

C X -1 AN -

Table 6.1 The prediction error correlation matrix 2 for nine
equally spaced collinear observations of heigzht using a GCaussian
structure function with non~dimensional observation spacing 1.

EIGENVALUKS OQF P

«55E-01
«12B+00
«25E+00
+A4TE+0D
L T8E+00
«125+01
JATE+O
«215+01
« 24E+01

T~ J v o~

(el

Op LGPaAaCI®S 1.00

Tuble 6.2 The eigenvalues of the matrix in table 6.1
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EIGEEVALUES OF P

9 .06 .12 «25 47 .78 1,19 1,65 2.08 2.39

EIGENVECTORS OF P
1 2 3 4 5 6 17 8 9
11 222 =.33 -.41 =.45 -.45 ~.39 =-.29 16
-u25 =-.42 «45 « 32 06 -.21 =40 =.43 .27
36 .44 -.18 .22 44 .29 -J.11 -4 «36
-.44 -,28 «.25 ~.43 =-.02 - 41 «2T =225 «42
046 |00 -45 .00 '044 IUO 044 ‘-00 l44
-.44 «+28 =.25 43 -.02 -.41 .27 «25 .42
36 -.44 -.18 =.22 <44 =-.29 -1 - 41 « 36
“-25 -42 -45 -.32 006 -2‘ -040 -43 -27
-11 --22 --33 -41 -.45 -45 “039 029 l16

W E - s -

Table 6.3 The eigenvectors and corresponding eigenvalues of
the matrix in table 6.1



L9

INVERTED NATRIX ASSUHING HO UHCOR NOISM
1 2 3 4 5 6 7 8 9
1.98 =1.90 1.33 -.85 «52 =.31 18 -.09 .04
-1.90 3.80 -3.18 2.14 -1.34 81 .47 «2% =.09
1-33 -3-18 4-70 "3-74 2048 -1053 089 --47 018
~+85 2.14 -3.74 5.04 =-3.93 2.56 -1.53 «81 .31
+52 ~1.34 2.48 -3.93 5.13 -3.93 2.4 -1.34 «52
--31 « B1 -1.53 2-56 -3-93 5-04 -3074 2-14 '085
+18 -.47 -89 -1.53 2.48 =3.74 4.70 -3.,18 1.33
-.09 «25 =.47 81 -1.34 2.14 -3.18 3.80 -1.90
04 -.09 18 -3 +32 =485 1.33 -1.90 1.98

W= TSN -

Table 6.4 Inverse of the matrix in table 6.1

INVERTED HATRIX ALLOWINGC UNCOR NOISE
1 2 3 4 5 6 7 8 9
1.08 =-.62 «20 -.04 .00 .00 -.00 00 -.00
--62 1.43 --73 .23 "105 000 .00 --00 |00
20 .73 1.47 -.74 «23 =.04 + 00 .00 -.00
-.04 23 ~.T4 1.4T7 -.74 .23 =-.04 .00 .00
.00 -.0% +23 =.T4 .47 -.74 «23 -.05 .00
000 .00 -.04 -23 -.74 1-47 -074 -23 "'.04
-.00 «00 .00 =-.04 +23 =.T4 1,47 =-.73 « 20
.00 =.00 .0C .00 -.05 «23 =.aT3 1.43 -.62
-.00 00 -.00 « 00 .00 -.04 .20 -.62 1,08

ORI NI -

-

Table 6.5 Inverse of the matrix EP+Q where R is given in
table 6.1 and Q corresponds to equal amplitude “uncorrelated
errors with non-dimensional amplitude 0.5, variance 0.25.
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INPUT P XATRIX
1 1.00 .88
2 .88 .00
3 .61 .88
4 32 .61
5 .14 32
6 +04 .14
7 01 .04
8 .00 <01
9 « 00 .00

l61
.83
.00
.88
.61
32
14
.04
.01

-32
+ 61
.38
.00
.48
+ 61
¥4
.14
.04

-14
«32
u6‘
-1
.00
.88
-61
«32
« 14

.04
.14
32
.61
« 88
1.00
.88
.61
.32

.01
« 04
4
.32
.61
.38
000
‘88
.61

.00
.01
.04
.14
.32
.61
-88
.00
.88

«00
.00
lo‘
.04
14
32
-61
.88
1.00

Table 6.6 The prediction error correlation matrix 2 for nine
equally spaced collinear observations of height using a
structure function with non-dimensional observation spacing 0.5

EIGEHVALUES OF P

(Voo b n Be ARG LI RN RS B

=]
o o]

«26E-04
+45E-03
«43E-02
«27E-01
«13E+00
«47E+00
- 13E+01
« 2TE+01
«43E+01

SPACIHNG

.50

Gaussian

Table 6.7 The eigenvalues of the wmatrix in table 6.6
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EICENVALUES OF P

-.15 «33  -.47

9 .00 .00 .00
EIGENVECTORS OF P

1 2 3
1 .04 - 10 . 21
2 =+15 =.33 -.47
3 32 49 + 35
4 -.48 -.38 .14
5 «54 00 -.43
6 -.48 «38 .14
7 «32 -.49 «35
8
9

.04 "¢10

?able 6.8 The eigenvectors and corresponding eigenvalues of

the matrix in table 6.6

« 21

.03

+33
-.46
-.05
42
-.00
-.42
.05
46
-.33

.13

--44
.26
- 39

-.09

- 41

-.09
-39
.26

-.44

-47

.49
006
"035
-s 37
.00
« 317
¢35
-006
-.49

1.31

47
- 33
.03
-.28
"‘041
-‘28
03
«33
«47

2-75

=37
-.42
=37
“.22
-.00
22
37
«42
« 37

4.31

9
-.20
-.29
-.36
’040
-.42
--40
"036
-.29
-.20
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INVERTED NATRIX ASSUHMIHG WO UNCOR UOISE .
L 2 3 4 5 6 7 8
1 .87E+02 -.30E+03 .56E+03 ~,T72L5+03 .72E+0% -.5G6E+0% «345+03 <.14E+03 ,.32E+02
2 =.30E+03 L11E+04 -.22E+04 .295+04 -,30E+04 ,245+04 -,15FE+04 +62E+03 -,14E+03
3 +56E+03 -.22E+04 .445+04 -.62F+04 .66L4+04 -.54E+404 «34E+04 -,.15E+04 ,34E+03
4 -.T72E+03 .29E+04 -.62E+04 .Y15+04 -,10E+05 .85E+04 -,54E+04 «24E+04 -.56E+03
5 «T2E403 -.30E+04 .65E+04 -.10E+05 .11E+05 -.10E+05 .66E+04 -.30E+04 .T72E+03
6 ~.56L+03 .24E+04 -.54E+04 .8SE+04 -.10R+05 .91E+04 -.62E+04 «29E+04 -,T2E+03
T +34E+03 -.15E+04 .34E+04 -.545+04 .G6E+04 -.62E+04 .44E+04 -« 22E+04 .56E+03
8 -.14E+03 ,L62E+03 ~.15E+04 .24E+04 -.30E+04 .29E+04 -.225+04 +11E+04 -.30E+03
9 +32E+402 -.14F+03 .34E+03 -,56E+03 .72E+03 -,72E+03 ,56E+03 -.30E+03 .87E+02

Table 6.9 Inverse of the wmatrix in table 6.6

INVERTED MATRIX ALLOWING UNCOR NOISE
1 2 3 4 5 6 7 8 9

1 1-64 -1.17 "n14 -21 009 "-04 '-04 QOO 101
2 -1117 2.48 -1.07 "-29 -‘4 112 "'001 --04 000
3 -.14 -1.07 2-49 -1-09 -.30 -14 -12 -.01 "'004
4 21 =429 1,09 2.51 -1.08 -.30 <14 12 -,04
5 .09 «14 -.30 -1,08 2.52 -1.08 -.30 «14 .09
6 -.04 -12 014 -.30 "1-08 2.51 -1-09 --29 -21
7 --04 -301 -12 014 -'-30 -1-09 2-49 "1.07 -.‘4
B -00 -'-04 -.01 012 -14 --29 ‘1!07 2.48 -1-17
9 . 01 +00 -.04 -.04 .09 21 -.14 -1.17 1.64
Table 6.10 Inverse of the matrix P+Q where is given in

table 6.6 and Q corresponds to equal amplitude uncorrelated
errors with non-dimensional amplitude 0.5, variance 0.25.



Figure 6.1% The first four eigenvectors of the - -trix for
the problea of the analysis of height at nine c¢ollinear points
using the Gaussien as the structure function.
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Figure 6.16 Plot of the variestion with normalised

MmeM<wwwou separation of the eigenvalues of the same problem as
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In the last Section we saw some examples of how the type of variable to be
analysed, and the ratic of observation spacing to structure function width,
leads to considerable wariations in the resolution of the 0.I. system as
nsasured by the magnitude of the eigenvalus for particular eigenmodes. 1In thae
preasant section we shall verify soms of these results in siightly more complex
univariate cases. We alsc examine the internsl structure of the 0.1. matrix
whare wa £ind some suggestions that the procedure has an interpretation in

terms of smoothing/desmcothing oparators.

6.3.1 Univariate analysis with s Gaussian correlation. Numerical exampls
Lat us consider the case of esqually spaced observations where we model the

- 2
e

corrslation function by a Gaussian P

1)
This is what is used cperationally, if only height observations are available

and we only wish to do a height analysis.

This structurs function depends on the ratio of two paramsters Ax, the
cbssrvation spacing and b, the width ¢f the Gaussian. Tabla 6.1 shows the J
matrix in the cass of aine aqually spaced observations with Ax/b = 4. The
sigenvalues are shown in Table 6.2, the eigenvectors in Table €.3 the invarse

matrix {(p~') in Table 6.4 and (p+§)7) in Table 6.5 when 0 = o2 ], o2 = 0.25.

rig.:6.15 shows a plot of the four gravest sigenvectors of E- The gravest
sigenvector (the one corresponding to the largest eigenvalue)} has no seros.

In the limit W+= this component of the data would be relatsd to the mean value
of the data. In such a case the best analysed part of the data is the mean
valus. The sscond sigenvector has one serco and locks like a linear trend in
the data. The nipt;nlc of the analysis to such & fsature in the data is also
rather good. We ocontinue in this way to the highest sigenvector, which looks
1ike & two grid wave. If this component occurs in the data it will be heavily

damped.
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6.3.2 Effect of obsarvation spacing or width of structure function

In order to examine the effect of observation spacing (or squivalently, the
width of the structure function, since it is the ratic Ax/b which matters) we
present in Tables 6 to 10 the results corresponding to Tables 6.1 to 6.5
axcept that in this case the observation spacing is changsd sc that Mx/b =
0.5, rather than 1 as in the previocus case. The change has little impact on
the sigenvectors as they still have essentially the same structures. However
the effect on the sigenvalues is quite dramatic. The following calculaticns

are dona with 02. the observational error (norsalised] set at o2 = 0.25.

2 A
Table 6.11. The ratio J,52 for the cases -:- - 1.0, 0.5

Mode Ax/b=1.0 Ax/b=0.5
1 215 00001
2 +302 0018
3 5 017
4 +65 +10
5 +76 «34
6 +83 -85
7 87 -B4
8 89 .92
9 32 .95

Table 6.11 shows ths ratios i'i-az for the two situations. Whan we halve the
obssrvation spacing, or equivalsntly, double the width of the structure
function, we make radical changes to the ability of the analysis to draw for
grid acale structure in the data. Tabls 6.11 provides a measure of this
ability. Fig €.15 plots the valuss of the eigenvalues (for 0<Ax/b<3} for this
nine point problea. The eigenvectors do not changs character at’ any point.
If the data iz closely spaced then the "msan-value™ eigenvector dominates.
when Ax/b~1 then half the sigenvalues are larger than | and the other half

less than 1. Yor large separation all the sigenvalues asymptote to 1.
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A slightly different view of thess results can be had by considering the

analysis error calculation

=12

-1
x - 1= (M Ek) —Pl: of Equation 5.2.8.

It is an easy matter to show that this result can be generalised to provide
the analysis error covariancs matrix
B = B0 - 2l B
- B
'mi:- says that the analysis error in the well resclved scales is very small,
since 02<<A, whils the error in the Poorly resolved scales ie essentially the

Bame as the first guess error in thess scales, i.e. t.

There is a clear suggastion in these Tesults, which is verified in practice,

" that the O.I. analysis will have quits definits limitations as to resolution,
once the parameters of the problems, the firat guess error, observation error,
cbservation spacing and scales of the structure function have been fixed.
Btructures in the data on emall scales will be traated as ncise and smcothad.
On the other hand we note that if the observational arror is saro then the
analysis will drsw exactly for the data. This is, of courss what ons should

do for exact data.
In addition to its other advantages, the ability of the OI formalisa to give a
rigorous account of the analysis errer and the resolution is & conaiderable

help in the study of ways of improving the analysis.

6.3.3 A finite difference interpretation of the 0.I. results

Any given row of the matrices § in Table 6.1 could be thought of as & finite

differance cperator corresponding to an amplifying integral of the form

W
”"1'1 where the weights w, are given by the entries in the matyix B

Correspondingly the satrix (r-rg)" in Table 6.5 has a suggestive mtryucture;
it appears rather like a damped finits difference cperator =1, 2.5, ~1). We
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should note however that f" is rather far from having this simple structurs
(Table 6.4). When we allow for cbservational error the O.1. operator appears
to be the product of an avaraging operator £ and a de-smoothing ocpesrator

(21-9)'1. The eigenvalues of gT g‘l are ordered in the sama way as those of

2 '

The largest responss to an integrating operator is given by a slowly varying
(large scala, hearly constant) term while a rapidly oscillating term will give
& much smaller responsse. Thus on qualitative grounds wa should axpect that if
E has the form of an averaging operator then the 0.I. oparstor should give the
largest rasponss to the slowly varying data while it gives the smallest

¥eaponse to rapidly varying dsta. We shall see in what follows that the

.. converss im alsc trua. If E is of ‘the form of & darivative operator then the

i

0.I. matrix gives the largest responss to rapidly varying data and the

Snillest responss to slowly varying data.

6.3.4 NHumerical example: unjvariate wind analysis

We considar the problem of analysing 9 collinear wind obssrvations and suppose

that the ohserved wind is normal to the line of cbservation points.

The structure function that we will use is .
HE) = (1-62) g-1/2(ET) b
whers g is the Gaussian. Let us suppoas the observation spacing is such that
a—: = { = V3, 80 that a given obssrvation is in the negative lobe of its
nsighbours' structure functicn. The P matrix is shown in Table 6.12, ana
clearly locks like a (-1, 2.2, -1) finitas difference cperator, at least in the
cantre of ths range. The sigenvalues and sigenvectors are shown in Table
€.14. The largest eigenvalue clearly corresponds to the two grid wave while

the smallest sigenvalus corresponds to the "mean-valus” eigenvector. This is

Just what we found in our earlier thres-point examples.

EE
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INPUT P HATRIX

1.00 =-.45 -.03 -.00 -,00 -.00 =-.00 -.00 =-.00
"-45 1-00 -.45 -003 -.OO ‘000 --00 -.00 --00
-.03 =-.45 1.00 =-.45 -.0% -,00 =-,00 =.00 -.00
-.00 -.03 ~.45 1.00 -.45 -.03 -.00 -.00 =-.00
-.00 ~-.00 ~.03 =-.45 1.00 ~.4% =-,03 =-,00 -.00
-.00 -.00 =-.,00 -.03 -.45 1.0 =-.45 ~,03 -.00
«.00 -.00 =-.00 ~-.00 -.03 -.45 1,00 -.45 =-,03
-OOO --OO —-00 -.00 --00 "-03 ‘045 1-00 --45
-.00 -.00 -.00 -.00 -.00 =-.00 ~,.03 =-.45 1.00

DI SN -

Table 6.12 The prediction error correlation matrix 2 for
nine equally spaced <collinear observations of the normal
component of the wind wusing a Gaussian based non-divergent
satructure function with non-dimensional observation spacing 1.73

EIGENVALURBS OF P

+JI1E+00
«26E+00
48BE+00
«T65+00
L 10E+01
+138+01%
L 15L+01
L1 TE+01
JABE+01

O @1 N AN =

=]
=

SPACING .73

Table 6.13 The eigenvalues of the matrix in table 6.12
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EIGENVALUES OF P

9 11

EIGEHNVECTORS

1
14
.26
036
42
-44
42
«36
.26
-14

O oA sunN —-

26

OF P

-.27
- 43
-.42
-.26
-.00
.26
.42
473
«27

-48

-+37
“¢42
-.13
« 27
«45
27
=13
~-.42
- 3T

.76

-.43
s 25
«27
42
"000
-.42
-.27
«25
043

1.04

-.45
.02
.45

-.0%

-.45

-.01
.45
.02

-.45

1.31 1.53 1.70 1.80

42 -.,35 .25 «13
-.28 -43 +42 -.26
=e2% -.195 -.43 «36

-43 -026 v27_ ‘043

00 45 .00 «45
-.43 -026 ‘027 -.43

025 '-‘5 043 -36

«28 43 =.42 -.26
-.42 ~-.35 25 13

Table 6.14 The eigenvectors and corresponding eigenvalues of
the matrix in table 6.12
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INVERTED HATRIX ASSUMING NO UNCOR

1 2
1 1.46 «99
2 .99 2.14
3 .73 1.49
4 «53 1.09
5 .38 .78
6 27 .55
7 .18 .38
8 .11 23
9 .06 o1

Table 6.15 Inverse

3
.13
1.449
2.49
1.74
1.26
-89
.60
« 38
.18

4
«53
1.09
1.74
2.66
1.84
1.3%
.B9
«55
«27

NOISE
5 6
138 027
.78 «55
1.26 .89
1.84 1.31
2,71 1.84
1.84 2.66
1.26 1.74
.78 1.09
.38 «53

INVERTED AATRIX ALLOWING UNCOR NOISE

1
.95

.21
.10
+ 05
.02
.01
.01
«00

W=l O i N -

.42 1

2
+42
113
+51
+25
A2
- 06
+03
«01
. 01

b

» 21
«51
1.18
+573
.+ 26
«13
.06
03
I01

4
.10
.29
«53

1.19
.53
026
13
.06
.02

5
.05
.12
<26
.53

1.19
«53
.26
.12
.05

6
.02
.06
13
« 26
.53

1.19
«53
« 25
.10

T 8
.18 A1
«38 .23
«60 « 38
'89 -55
1.26 .18
1.74 1.09
2.49 1.49
1.49 2.14

.73 .99

of the matrix in table 6.12

K 8
.0 .01
.03 .01
. 06 .03
A3 .06
.26 .12
«53 «25

1.18 + 51
«51 1.13
21 42

9
.06
11
.18
27
.38
«53
.73
.99
+46

.00
00‘
.01
.02
«05
.10
« 21
+ 42
« 95

Table 6.16 Inverse of the matrix B+Q where [ is glven
to equal amplitude uncorrelated

table 6.12 and

3

corresponds

errors with non-dimensional aaxsplitude 0.5,

variance 0.25.

in



5-0

4.0}

23456 789 1.9 | 20 3.0

Figure 6.17 Flot of the variation with normalised
observation separation of the eigenvalues of the problem of
analysing the normal wind along & 1line of nine points using
Gaugsian-based non-divergent structure functions.
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Pig.5.17 shows the behaviour of the elgenvalues of this problea. The
sigenvalues are labellad by their order at vary small separation. The
discontinuities we saw in the sarlier, sinple, example are not evident but the
general behaviour is very similar. As the observation separation increases to
8x/b~1 the crdering of the eigenvalues changes radically so that by ths time
£=/3, the ordering at mmall separation is completely reversed, with tha two

grid wave having the largest sigenvalue.

'lb“ce-phr.- this Bection we examine brisfly the structure of the inverse
matrix g"l. We have already seen that the E matrix looks like a second order
finite Aifference operator, because we've chosen the separation of the
observations to be such that each observation lies at the ainimm of its
neighbours' negative lobes. Tha marrix E‘l is shown in Table 6.15 and it has
the character of an averaging operator. Table 6.16 contains the inverse
matrix !'1. which also has a similar character. It is intuitively clear then
that for separations >1 for which all the antries in P will be negative,
except for the main diagonal, the largest sigenvalues of E will correspond to

rapldly varying structure.

6.4 Discussion
The results prasented above contain very simpla examples, but they serve to

illustrate a number of jmportant points.

The basic result is Bq.6.11.

5: = By :\_AE‘_«T

k

which shows that some components of the data are returned andamped by the
apnalysis while others are severely damped. 1n a typical cperational
application, with say 100 data, then perhaps 10% of the eigenvectors will be
larger than 1, while 0% will have values of the order of .25 (LSanbarg 1983).
Tyrically the large eigenvaluea will correspond to the larger scales in the

data. Then we would expect to find about 108 of the modes in the data to be
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essentially undamped, about 50% of the modes to be significantly damped, sin:s
they are treated as noise, while the romaining 40% will be damped to some
dm-;roe, depending on the values of 11 and 6.
The distribution of the eigenvalues is vary sensitive to the variables which
were cobserved, and to the constraints placed on the analysis. We h;lvo seen in
our simple calculations soms sxamples which are of quite general validity.
Firstly we ses that the constraint of geoatrophy leads to a damping of any
anti-gecstrophic components of the data. Such components will alvays occur
bacause of instrumental error. It is isportant to understand the diffaerence
between geostrophy in the sense in which ve use it here, and the subtly
different way in which it is used by Lorenc (198t), Lorenc says that the OI
system produces strictly geostrophic increments if we impose a strictly
geostrophic constraint. This statement is true for the continuous functional
representation underlying the analysis. However, if we discretize this
continuous analysis on a set of obssrvation points then there will be
cosponents in the discretised analysis which are anti-geostrophic in terms of
finite differences on the cbsarvation grid. For this reason, too, it is
important for the efficacy of the constraints that the grid on which the
analysis is evaluated should have several grid-lengths per scale length of the

atructure function.

The discussion of the wind analysis led to a counter-intuitive rasult, namely
that if the data is too widely spaced, then the larger scales are badly under-
analysed. This result stemmed from the constraint of non-divergance. Tha
general significance of this result is still not fully understood. It may be
that it does summarise some unpleasant problems in the large-scale tropical
analyses. An extensive discussion of the constraints in an OI analysis may be

had in the monograph by baley (1983).

82



We make a few commants about the structurs functions themselves. It is clear
that all the propsrties of the O] matrix are determined by the structure
functions for prediction and observational error. If the analysis is to be
optimal then we have to determine these guantities with some cars. Roughly
speaking, the observations tell us about forecast arrors, and the structure
functions tell us how to spread out the information in the observations in an
optimal way. If the functions wa use are too broad comparad to what is
justified, then we fail to resolve real features in the data. A similar
effect will occur if the observational errors ars set too high relative to the
forecast errors, as can be seen from €.11. From the same arguments, if the
structure functions are too narrow, or the cbservaticnal errors ars set too
low then we will not do snough smocthing, and we will draw for cbservational

BITOX .

Tha effect of the constraints is very important for large scale analysis. If
we tresat the height data and the two cosponents of the wind data as
uncorrelated, then we will give aqual weight to the geostrophic and a-
geostrophic components, to the divargent and non-divergent components of the
data. Such an analysis, if used to start a forecast, will excite sxtensive
gravity wave activity which will rapidly disperse much of tha information we
have tried to convey to the model. The filtering propcrtu.a of the 0OI
analysis are very important as they allow one to control the dsgres of
geostrophy or non-divergence in the analysis increments as desired. For
example thers is some svidence that we ought to permit a small degrae of
divergence into the increments; the OI formalisa offers an elegant way of

doing just that.

Finally one must qualify everything above by saying that all the commants
apply to the analysis increments, and not the analysis, which is the sum of
the incraments and the first guess. The atmosphere does not satisfy simple

linssr laws such as non-divergence of the wind, or geostrophic balance. Non-
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linear laws such as gradient-wind laws are often much mors accuratse
descriptions of the atmosphers. However if ons has a very accurate first
guess, then the OI procedure needs only deal with small perturbations to a
non-linsarly balanced state. Thess perturbations can then be treated, with
good accuracy, as satisfying linear laws. Thus the accuracy of the first-
quass is an important prerequisite for the validity of the linear constraints

which are used in OI. Currently we are sapproaching the stage whers the first-

I

guess errors and the observation errors are of similar magnitude. This has
many interssting consequences, not least in the area of long term quality

control of the data itself.

g
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