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* The Model is @ meso—scale, quasi-hydrostatic, baroclinic
one incorporating boundary layer, cumulus

SMR/534-12. parameterizations  as well as varying topography.

* The model Is in sigma coordinates (o~ = P/Ps), as it is

easy in handling changes in topography (o= = 1 at the

ICTP/WMO WORKSHOP ON EX]‘RA—TROPICALANDTROP]CAL surface and o~ = 0 at the lop of the modal)
LIMITED AREA MODELLING ,
22 October - 3 November1990 * A Staggered Arakawa's C-grid, which conserves the integral

properties, Is used for horizontal discrefization.

+ The horizontal coordinates are the general curvilinear
"Application of an Economical Split-Explicit Time (with horizontal grid spacing user specified) with map
Integration Scheme to a Multl-Level LAM scale factors Hx and Hy (in spherical coordinates

Hx = a cosg and Hy = a).

» The governing equations are represenied in the flux form
(Psu, Psv elc.)

» The closed system of the model consisting of flve
prognosfic equations for u, v, T, q and Ps and two
diagnostic equations for o- and ¢

* The time integration scheme of the model is a split—
expliclt method, which allows to Increase the time slep
by effeclively separating various terms In the

U.C. MOHANTY prognostic equafions In to partly governing slow moving
Centre for ‘}}’%‘."SER,‘Z”“ Sclences Rossby modes as opposed to the faster gravily modes.
New Delhi, :
ndia

¢ The model incorporates a number of physical processes such
as Planetary boundary layer, dry and molst convectlive
adjustments, deep cumulus convection and large—scale
precipitation (radiation Is not considered).

Please note: These are preliminary notes intended for internal
distribution only.




MODEL EQUATIONS

The model equations are written In spherical coordinates
using a generalized expressions for curvilinear distances
and are expressed In pressure weighled flux form. They are

-

Momentum Equations :
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Thermodynamic Equation :
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Moisture Continuity Equation :
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Surface Pressure tendency Equation :

o

0P,
Y,

S

T

Hydrostatic Equation :
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Continuity Equation :

Where |

D -0] Ve(pgv) d o

1 d 9
D= v-(ps\') - h-;-Ty- [a—£(hy Ps u) + 'a—y (hx Ps v)]

and Hx and Hy are the mop factors. Other symbols have thelr
usual meaning.
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AN OVERVIEW OF THE MODEL

Domain

Indepsndent Variables
Prognostic Variables
Diagnostic Variables

Vertical Levels

Grid |

Finite Ditfersnce Schame

Time Integration

Hortzontal Diffusion

initializetion

Topography

Sea Surfoce Temperature
Physical Processes

Conveaction

Turbulent Process

15 S~45'N, 30°E~120'E : 49 x 33
(Flexible)

1]¢Io-lt

u v, T, q, Ps
. do—
¢ 1] 0- = di
Ten levels, non-uniform ( O~ = 0.1,
0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85,
0.925, 0.975)

Argkowo C-grid, Uniform In A ond
b(A>= Ad =1.875" )
Second order occuracy

Split-explich tims Integration
scheme; At = 900 Sec (15 mts)

Linsar Fourth order

Non-Linear normol meode
(Vertical mode scheme)

Enveiops Orography (10~ ) based on
US Navy 10° Orography

Climatologically prescribed (Monthly mean)

Dry conveclive adjustment, Desp

cumuius convection {Modified Kuo

scheme of Anthes, 1977) Large-

scale sirafified precipitation (with RH > 95%)

Stabllity dependent vertical
diffuslon of u, v, T and q within
surface layer (Monin-Obukhov
Similarity Approach)

Air-Sea sensible heat exchange and
evoporatlon frem Ocean.

%

Split—Explicit Time Integration

Governing equatlons of

otmospheric motions

the

Spii

in to two
Calegories

Rossby modas

» Non-Linear
¢ Slow moving

(Phase speed of
Fastest Rossby

Mode is about 20 m/s)
*Contain most of energy

Gravity modes

¢ Linear

(Pressure gradient and
divergence ferms)

* Fast moving (Phase speed -
of axternal gravity
mode Is about 300 m/s)

¢ Contain small fraction
of total energy

Based on these facts altempts have been made to carryout
time integration with different time steps, each solisfying
C.F.L. criteria of respective modes. Such type of schemes
are called split-explicit schemes. (Gadd, 1978; Madala 1981

and Mohanly et. al., 1990).

In this scheme, each Rossby and Gravity mode is treated

separalely on fime steps

AtR and Atg which are determined

from the respective phase speeds and C.F.L. criteria. In
this scheme, various terms. contribute additively Instead of
mulliplicalively as in ordinary time integration methods.




For teme znfcsin Hon | e Epretrind 3 fopprrk Fors are

MOMENTUM EQUATIONS
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Time Integration Scheme

This model uses an efflcient split—explicit time integration
scheme (Gadd, 1978; Madala, 1981 and Mohanly el. al., 1990)
which is nearly five times more economical than an explicit
scheme. The scheme is designed fo take care of propagation
of gravily wave component with sullable small fime step to
satisfy C.F.L. criferia.

Basic concept of the scheme lies in the evaluation of the
terms representing slow moving meteorclogical waves (Rossby
mode) with large time step and high frequency gravily wave
with sufficiently small fime step. Thus, implementation of
varying fime steps to different modes is the basis of the
split explicit time Integrafion scheme using the present

work,

lts implementation In the model is made efflcient by
integrating all the modes by the same fime step (large time
step) and introducing suilable corrections to fake into
account the devialions  caused due to infegrafion of fast
moving gravity waves af large time sleps (instead of af
small ime steps) so as fo arrive ot the same resulls which
would have been obtained by the explicit integration af
small time slep.

t4v;

M= 0 pp ! 2 3 . 5 6 7 8
= i 1 i { t }

t— At t t +4t
- r ¥y >

b2 4
For example integration of the zonal component of the

momentum equation from t— At fo 1+ At time level leads to

1 -
Psu(t+ at) = Psu (1- At) + 24¢ P L 2At Au

Where the operator (~) is defined as Ox
= 1 t+ At
g = 2 A% £ dt
- 4b

Here, we define C.F.L. time step limits Atg ond AtR for
the external gravily mode and fasi moving Rossby mode
respectively and choose o fime step At such thal

Atg <At <Aatp

® Here, the R.H.S. terms (Au) of the u-prognostic equation
vary slowly over the time scales of the Rossby mode and
therefore computed at time infervals At instead of Afg.
Thus, R.H.S. terms are evaluated attime 1.

PsU(t+Aat) - Pst (- At) + 2At':"x— -91: At Au ()

X

® The ferms on the L.H.S. namely the pressure gradient and
divergence ferms (in case of thermodynamic and surface
pressure tendency equations) vary over the fime step
determined by all the modes (including fast moving
external gravity modes).

Therefore, In split explicit method, Hime inferval 241t is
sub—divided In fo m sub-intervals of length 24 T (% 241g).




¢ With In these sub-intervals (Yime slep AY ), time
Integration is carrledout expllclily keeping R.H.S.

terms unchanged
= — Zﬁ where

m =At /AT and ﬁ = ﬁ(t— Ai+2mA’l’)

® Therefore, resulls of the future siate variables obtained
by using split-explicit techniques ditfer from the results
obtained by explicit time integration technique by a
deviation  term (correction to the resuit of explicit
method) as shown below.

Thus, here

i

3 -
pu (t+dt) + 28t 32“5; (¢ - ¢(¢t)]

+ 28t A,(ce), or

-pu(c—At)-ZAt I_J% ¢(t)

p.u (t+it) + 28t -i'r (@ - #(t))

= pgu °* (t+be)

Where the subscript "ex" denotes values computed using
time integration about 2At . Note that the explicit fime
Integratlon of the momenium equation leads to

*u (t+d¢t)

- [} P ]
£ pu (e-be) - zhc a__@

W) = p ©
Py (t+be) Py

+ 28t A,(t)

F £
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and the split-explicit time integration over the same range
leads to

pY (t+at)

_ exp ' 1 ]
= pu (t+at) -~ 2at Hx P [6 - ¢(t)]

Thus, split-expiicit time integration is found to be
equivalent to expliclt time integration at larger fime step

(281) and 241" 1 3__ (& - o (1)) which Ts known as

hx X

correction ferm. It arises due to Integration of gravity
modes at large time steps which Is to be computed for small
time step.

Similarly, for the other prognostic equations we have

pv (c¥hc) + 28¢ —:;;— (& ~ o))

- bsv (t+bt)

p,T (t+8c) + 28t M, (D-D(t))

= psTeiﬂ(uA t)

* pq (t+de) = p q"¥(+dr)

p, (cedr) + 28t N, (B-D(c))

x = psex (c+dc)
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Implementation of the Split—explicit scheme in LAM

The implementation of the split—explicit ime integration
scheme Is a limited area model is corriedout in four steps

¢ Linearization of the model equations and the compulation
of the verfical modes.

o Determination of time steps corresponding to different
phase speeds (based on CFL criteria).

¢ Estimation of correction terms In <igen space.

* Transformation from eigen space fo grid space (for
Integration at large fime step).

First two steps are dependent only on struclure of the model
(no. of vertical levels} and basic stale of the atmosphere.
Therefore, these are computed only from these equations, it
Is seen that the fulure state of the variables Ps4, Ps¥,
PsT, Psq and Ps by split—explicit method can be obtained by
applying correction terms of
. | 3 -
28 IO-N:)]. 20t E"é— [¢~9(t)],

20¢ :jztn-o(t)l, 0 and 20c N [D—-D(c)l

ch 3x

respectively fo the results oblained by the explicil
technique. Thus, In order to use splil~expliclt integration
scheme, we have to evaluate ¢ and D once in the
beginning before the first fime step of the model
integration.

Linearization of model equations and
computation of vertical modes

The momentum equations for PsY and PsY can be combined to
give a prognosiic equation for the divergence ( oD 9D y as
follows : ot

? 2 3
31 DtV o= ~ Oy

Similarly, thermodynamic, surface pressure tendency
and the hydrostalic equations can be combined to gel a

prognostic equation for pseudogeopotential ( cb)us follows
ot

_g_t_?wsg = MAT

~

Whera & = Ps (&-s) + (RT - ) Ps

T, .*
and  My= MM+ N, (RT -4 )

Here  R.H.S. contains nen-inear  terms
representing the Rossby modes and on L.H.S., the pressure
gradient and divergence terms (linear terms) give rise o
gravity modes.

In principle, these two prognostic equations_for D
and ® can be used to obtain the values of D and ® and the
correclion terms. However, there is a practical difficulty
In implementing split-explicit method using these equations
in the grid point space. Because different gravilty modes of
the model will satisfy different C.F.L. criteria and magnitude of

FL



small fime step AT will differ and thus values of  ond ¢
will be different lo corresponding different gravily modes.

In order to integrate these equotions for different
gravity modes separately, we have to transform grid point
variables into eigen space where the modes can be treated

separately.
Py 3D 3
For this purpose, the equations Y and 3t

are linearized and vertical modes which are the natural gravity
modes of the numerical model are determined. The number of
these natural modes is equal 1o numbers of verfical layers
in the model. The nalural gravity mode forms a complete
sel of eigen functions satisfying the boundary conditions
of a numerical model. Therefore, the variation of the
dependant variables can be explained as a linear
combination of the structure functions of these modes.

The above equations are linearized by seiting R.H.S.
equal to zero o get the natural modes of the system.

"'?—D"'Vz(‘b = 0
ot
3
-~ + MsD = 0
and’ 3 :

Here, the normal modes (vertical siruc‘iure of the linearized

equations) of the model are found by separation of the
horizontal and verfical dependences of the variables D and § -
We define the variable & (Pseudogeopotential} whose
derivative gives the horizontal pressure gradient In the
divergent equation of the motion and the fime change of this
variable Is related fo the horizontal divergence.

F4-3

This relaflonship allows separation of the vertical variation and

results in shallow water equations (S.W.E.) for the variation of
each vertical equations. These SWEs have o different mean

equivalent  depth (H, ) for each verfical ~mode (which
correspond to the speed of gravily waves Cg =\I gH 1 ).

Here, the divergence equation displays no vertical
coupling as there is no vertical derivalive in this

equation. However, the equation for li’ has vertical coupling
because of M3 matrix. at

The Mz matrix 'represenis thickness of the different
layers of the model and their mean temperature struciure
with non-zero diagonal elements.

Therefore, for determining the verlical modes, we may
directly separate psuedo—geopotential equation.

-~

2 L W3ED = 0
ot ~

Here, E represents the eigen veclor malrix of M3  wilh
each column represenfing an eigen vector.

Now, to get this equation, an uncoupled one, we can

write -

3
--3’+ng0 =0

ot

whiere gH is the separation constant

-1
gHy= E M E

l.e. M3E = EgHy




P74
Here, gH|is a diogonal mairix, and the diagonal
elements are eigen values of the Matrix M 3; Hy is
the equivalent depth and the corresponding eigen vectors E 1
E=(E|.Ez.. ....... EL)

is the verfical structure and L Is the vertical mode Index
(L=no. of verlicai modes=no. of layers of the model).

The eigen vaiues of the matrix M3 gives the phase
speeds (Cg) of the vertical modes of the model

Co, =[oHp, 1= 1,2 . L

Determination of the time step

It is seen from above that eigen values of M3 give
phase speeds of the verfical modes (natural modes of a
numerical model) and there are as many notural modes as
there are ilayers in the model.

As an example, for a ten ievel P.E. model in the
tropics, the ten eigen modes will have the following
equivalent depths and phase speeds for the given mean
femperature profile.

5

Model Sigma(o) T . C
level /4 v:lue( ' ek (inHr:xirs.) (r:;s)
1 0.1 197.8 9564.0 306.1
2 0.25 230.7° 606.2 771
3 0.35 247.9 122.5 34.6
4 0.45 260.6 32.2 17.8
5 0.55 270.1 12.4 11.0
6 0.65 277.4 5.4 7.3
7 0.75 283.9 2.5 4.9
8 0.85 290.6 1.0 3.2
9 0925  295.6 0.3 1.8
10 0.975  298.8 0.1 1.0

Similarly, for a five ayer model, the five eigen modes
will have characteristic phase velocities of approximately,

300, 70, 30, 15 and 5 m/s. In principle each mede corresponds

to a different time step At to satisfy CFL criteria ( CAt <Ax)

Since, the Rossby modes move at about 20 m/s, the

- natural modes with phase speed fall into the Rossby mode

category are treated with large time Interval 2 Af.

g
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Since, the pressure gradient and divergence terms in ~ Estimation of correction terms in gigen space
the model equations vary over the time sleps determined by ‘ |
all the modes, fime inferval 2AT  is sub—divided info m _ The correction ferms in the prognostic equations for
sub-intervals of length 2AY and in this case of 5 layer the dependent varlables PeY, PsY, PsT, Psq  and Ps in the
model, vaiues of m for the gravily modes are 8, 4, 2, for | mplementation of split-expliclt method of #ime Integration
the corresponding phase speed 300, 70 and 30 m/s are presented earller, Further, 1t is nofed thot estimation
respectively. | of the corrgction Jorms require the evaluation of only the

two terms & and D from the 1 dified
Within  these sub—intervals (time step of 2 AT ), the ® wo modified prognostic equations

time integration  Is carried out explicitly. Thus, . of Bd'-‘.- and )D' o '
m
1 n ot ot
B =— |F |
AT =1 As thees terms (b and D ) vary over the fime steps
where m = ar andg " = (- at+ 2mar) determined by all the natural modes, they oan not be.

evaluated In the grid point space.

Then, for obleining correction terms fer different
modes, we express the dependent variables as linear
combinatien of strueture functions (respective columns of
the eigen vector meirix E) of these modes.

u=Ef.aq -
v=E. b

i

T=€.c¢

D=E.4d

d=L .0
Where glements of the coefficlent vectors a, b, ¢, d, and e
are the amplitudes of elgen modes. Thus, muttiplying the
prognostic equations by £~ and using above relationships
between dependent varlables and the amplitude of the eigen
modes, we can oblain following spectral equation for the i!h
mode.




Pt i Ix e T (B AWy
a

1 9 -1
(p 1) + E—Wei = (E Av)l.

Now, the correction terms for the system of equafions
are :
I S-S Y wem, (4, -
21 28¢c hx-. 3“; [ei el(t)lp { 2 [di di(t)ln o

[ 24¢ __l. —
{ hy dy
The summation over | is carried out for those modes for

which split—explicit technique is used.,

- . T -
[el - ei(t)]’ al‘ld{ 28¢ Nz [di - di(t)]’

The above correction terms can be obtained from the
prognostic equations for &> and D (l.e. @ and d in eigen
space). The equalions for e and d in the eigen space are

2, 21
3di+v 1 (5uu+6y A'V)l

ot
~1
des + ENE 7D = (E7hM A )
| 3t 1H3 dg e
Here 1 represents the i mode. '
Bd de
The inlegration of equations for -ST- and B_i

from ( — &1) to (1+ At) time levels by split-explicit method lead

d; (cde) - d, (c-8c) + 20c (x’+éy?)e
= 20t [E'(5, At By 4]
e (t+de) - e, (c=8t) + 2°tl:d1

w2Be(E-IN.AL)

An explicit time integration of these equations will lead fo
e*(c+ot) = 4, (t-8c) + 280 [E” (6xA,

+ by A")il -26t(5x +5y Ye(t)
(c)
eiex(t'l-Al:) = e (t-8c) +. zbt(l-:’lula.r):
~28e)dq (c)

28t [E"(mu + SyAyd ) 0y

“X(e4be) - dy(t-ac)

+ 26t(5x2'+5y2)e( t)
and ’

26t [E-lﬂlATl(t) - eiex(t¥ht)-ei(t—bt)
+ Zﬁtlidi(t)

Infroducing explit Integration results Into the R.H.5.
of the split—explicit Integration relation ylelds :

dg (t+de)~dg(t-8c)+20t(6x2+8y2)

[eg-eq(t)] = d ®*(t+de)~dg(t-0c)
~and .
| eg(t+be)-eq(c-8)+ 28eXy [dy—dy(c)]

= es ¥ (tHit) - eg(t-bt):
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Here, the firsl step of the integratfion, the sub-

interval AT Euler ~ backward fime integration method Is

- used to march from time (-~ at) to ({ — A t+ AT). Then,
leap—frog scheme Is used to march each successive time slep
AT until time t+ At (over 2m , sub - intervais). In the
present example, m; = 8 for first (external gravity mode)

and m,= 4 end 2 respectively for second and third modes.

Thus, integration of last two equations for ¢ and e
will provide the correction terms for the i—th mode.

28t Sx[ey-e (t)]

28téy [ej~e (t))

20t M2{d;—d,(t)]

T -
r{34 NZ [di'di(t)]

The solution of the equations for different modes will
give nel correction as the sum over different modes (here
I =1, 2, 3). The fourth and fifthh modes !ravel
sufficiently slow enough to be incorporated into the large
Rossby time step 2 At and do not require any correction.

A5
Transformation to qrid point space '

The net correction terms computed above in the eigen
space for the differeni gravily modes are transformed back
to the grid space by mulliplying with the corresponding
column of the eigen vector matrix (E) as given below

L 1 3 -
1 Bp28tg= g leg-eq(e)],

1 2 -
i EIZM"@W [eg—es ()],

| E E, 28t MZ[Ej_ﬂdi(t)], 0 and

T -
L E28e N [dg~dy(0)],

Such correction terms computed above are applied o the
prognostic equations to get the future slale of the
variables PsY, PsY, PsT, Ps9 and Ps at a grid point by
split-explicit method.

It may be noted that computation of non—linear terms
(Au, Av, 51) and physics is carriedoul in usual grid point
space at large time step 2 Al
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explictt (X—X) and (0———’0) methods of fime integration
for (“)_[Ut]- (b) [%), {e) [T, ], () [ﬁa ]




IRErao? el

(f

r'wac?

1Tal ¥

Ps {m8)

’ ()

T & & & w g aw 1w o

== Tk {hOURS)

Tlmo-ﬂrll_u_durinﬁmo.qo day forscasts obtcined by split-
sxplicit (X—=—=X) and (0——-0) methods of time intsgration

tor (v} [KE], (1) [TE). () P, and (h) 6; with Initialised
Initiol data,

(d)

Stream line and iscloied analysis of 48 hours forscost wind
fisld from the initiol data of 22 May 79 (12 GMT)

(c) Spiit-explicit ( At = 900 sec)
(d) Corresponding verificafion yield.
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ﬁ-ﬂ—-m—— — ROOT MEAN SQUARE ERROR - 22 MAY 1979
Hours 24 hrs ‘ 48 hrs

Levels |voriobled E1 | E2| Ej £yl E2| .E3
: u 38 |37/38 5.4 | 5.2 |55

300 mb| v |45 | 4.2 | 4.4 70| 6.7 | 7.0
T |25 |23]24 3.3 3.0 | 3.4

u |22 {20f21 | 72| 68 |70
500 mb| v |28 | 29|28 | 24| 24 |23
T 111 ]10]1.0 | 15] 1.4 |14
u (34 13132 | 42| 41 {40
700 mbj v |25 [23]22 | 33| 3.0 |3.2
T |12 (1009 | 13| 12 |11
| u [28 |27(29 | 33| 31 |31
850 mbj v |23 [22(22 | 26| 26 |27
T |17 |15]16 | 1.9] 18 |18

(b)

Streom line ond isolafed analysis of 48 hours forecast wind
tield from the initial data of 22 May 79 (12 GMT) ‘
(0) Explicit Scheme ( At = 180 sec) £1: Explicit scheme with 180 sec time step.

(b) Spit-axpliclt (&% = 180 sec) E2: Split-Explicit Scheme with 180 sec time step.
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