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ABSTRACT

Recent developments in applying semi-Lagrangian methods to 2-d and 3-d aimospheric flows
in both Cancsian and spherical geometries are reviewed. The models described are generally
found o be one to two orders of magaitude more efficient than corresponding explicit leapfrog-
based models run at the same resolution. The efficiency gains are presently more spectacular
for 2-d models than 3-d ones, since they have been further developed, but considerable gains
have already been realised for 3-d models with the hope of more to come. Operational
applications to date include several 3-d weather forecast models and a 3-d emergency-response
model. The chatienge now is to develop O{At2)-accurate two-time-level 3-d models, and obtain
the further doubling of efficiency (demonstrated in 2-d) that accrues from using a fwo-time-
level rather than a three-time-level scheme.
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1. INTRODUCTION

Accurate and fimely forecasts of weather clements are of great importance to both the
economy and to public s"afety. Weather forecasters rely on guidance provided by Numerical
Weather Prediction (NWP), a computer-intensive chain of operations beginning with the
collection of data from around the world and culminating in the production of weather charts
and computer-worded messages. At the heart of the system are the numerical models used to
assimilate the data and to forecast future states of the atmosphere. The accuracy of the
forecasts depends among other things on model resolution. Increased resolution, given the
real-fime constraints, can only be achieved by judiciously combining the most efficient

numerical methods on the most powerful computers with the most approptiale programming

techniques.

A longstanding problem in the integration of NWP models is that the maximum
permissible timestep has been governed by considerations of stability rather than accuracy. For
the integration 1o be stable, the timestep has to be 5o small that the time tuncation exror is very
much smaller than the spatial truncation error, and it is therefore necessary to perform many
mare timesteps than would otherwise be the case. The choice of time integration scheme is
therefore of crucial importance when designing an efficient weather forecast model, and this is
also true when designing Environmental Emergency Response models. Early NWP models
used an explicit Jeapfrog scheme, whose timestep is limited by the propagation speed of
gravitational oscillations. By treating the linear terms responsible for these oscillations in an
implicit manner, it is possible © lengthen the timestep by about a factor of six, at little
additional cost and without degrading the accuracy of the solution [c.g. Kwizak and Robert
(1971), Robert et al (1972)}. Such a scherne is termed semi-implicis. Nevertheless, the
maximum stable timestep still remains much smaller than scems necessary from considerations

of accuracy alonc [Robert (1981 1R

Discretization schemes based on a semi-Lagrangian treatment of advection have elicited
considerable interest in the past decade for the efficient integration of weather-forecast models,
since they offer the promise of allowing larger timesicps (with no loss of accuracy) than
Eulerian-based advection schemes (whose timestep length is overly limited by considerations
of stability). To achicve this end it is essential to associate a semi-Lagrangian treatment of
advection with a sufficiently-siable treatment of the terms responsible for the propagation of
gravitational oscillations. By associating & semi-Lagrangian treatment of advection with a
semi-implicit wreatment of gravitational oscillations, Robert (1981,1982) demonstrated a further
increase of a factor of six in the maximum stable timestep, at some additional cost. This idea
was demonstrated in the context of a three-time-level shallow-water finite-difference model in
Cartesian geometry, and resulted in the time truncation erors finally being of the same order as
the spatial ones.

Since Robert’s seminal papers, the semi-Lagrangian methodology for advection-
dominated fluid flow problems has been extended in several important ways. The purpose of
this paper is to summarize the fundamentals of semi-Lagrangian advection (Section 2, w
describe its application 1o coupled sets of equations {Section 3), to review recent extensions of
the method (Section 4) not covered in the discussions of the previous sections, and to draw

some conclusions (Section 5).

2. SEMI-LAGRANGIAN ADVECTION

In an Exlerian advection scheme an observer waiches the world evolve around him at a
fixed geographical point. Such schemes work well on regular Cartesian meshes {facilitating
vectorisation and parallelisation of the resulting code), but often lead 10 overly-restrictive
timesteps due to considerations of computational stability. Ina Lagrangian advection scheme
an observer watches the world evolve around him as he travels with a fluid particle. Such

schemes can often use muoch larger timesteps than Eulerian ones, but have the disadvantage that



an initially regularly-spaced set of particles will generally evolve to a highly-irregularly-spaced
st at later times [Welander (1955)], and important features of the flow may consequently not
be well represented. The idea behind semi-Lagrangian advection schemes is 1o ry 10 get the
best of both worlds: the regular resolution of Eulerian schemes and the enhanced stability of
Lagrangian ones. This is achicved by using a different set of particles at each imestep, the sct
of particles being chosen such that they arrive exactly at the points of a regular Cariesian mesh
at the end of the timesiep. This idea graduaily evolved from the pioncering work of Figrtofy
(1952,1955), Wiin-Nielsena (1959), Krishnamurti (1962), Sawyer (1963), Leith (1965) and
Purnell (1976). Of the formulations inroduced prior 10 that of Purnell (1976), those of
Krishnamurti (1962) and Leith (1965) are perhaps the most similar 10 those used in present-day
semi-Lagrangian advection schemes: however as formulated they are only valid for Courant
numbers less than unity.

2 () Passive advection in 1-d
To present the basic idea behind the semi-Lagrangian method in its simplest context, we
apply it 1o the 1-d advection equation

:ta_F d_Lg..E.
ar v T de ax ' (1
where
dx -
&=, (2)

and U(x.t) is a given function. Eq.(1) states that the scalar F is constant along a fluid path (or
trajectory or characteristic), In Fig. 1, the exact trajectory in the (x-t) plane of the fluid particle
that arrives al meshpoint xg, at time ty+A1 is denoted by the solid curve AC, and an approximale
straight-line trajectory by the dashed line A'C. Let us assume that we know F(x,0) at all
meshpoints xyy, at times ty-At and tp, and that we wish to oblain values at the same meshpoints
at time ta+At. The essence of semi-Lagrangian advection is to approximately intcgrate (1)

along the approximated fluid majectory A'C. Thus

Fltmlg AL ~ Fitn~20m =0 _ o o)
2At

where (ty i3 the distance BD the particle travels in x in time A, when following the
approximated space-time trajectory A'C. Thus if we know O, then the value of F at the
wrival point xpy at ime tg+At is just its value at the upstream point xg-20tg at lime ty-At.
However we have not as yet determined an,: even if we had, we only know F at meshpoints,
and generally it still remains to evaluate F somewhere between meshpoints,

To determine Gy, note that U evaluated at the point B of Fig. 1 is just the inverse of
the slope of the straight line A'C, and this gives the following O(At2) approximation to (2)
{Robert (1981)]

O = AL U(X g0, 1) 4

Eq.(4) may be iteratively solved for the displacement &y, for example by
aff*V = At Ura-ofta) ()
with some initial guess for &u(®), provided U can be evaluaied between meshpoints. To

evaluate F and U between meshpoints, spatial interpolation is used. The semi-Lagrangian
algorithm for passive advection in 1-d in summary is thus:

(1}] Solve (5) iteratively for the displacements @, for all meshpoints xm, using some inidal
guess (usually its value at the previous timestep), and an interpolation formula.
(ii)  Evaluate F at upstream points xpn-204y, at time t-At using an interpolation formula,

(i)  Evaluaw F at arrival points xg at time to+At using (3).

We defer the discussion of interpolation details to Section 2(d), and first generalize the
above three-time-level algorithm to forced advection in several space dimensioas [Section

2(b)], and to mwe time levels [Section 2(c)].
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2 (b) Forced advection in multl-dimensions

Counsider the forced advection problem
%% + G(x.t) = R{x,1) , {6
where
daFr-%FT+V(x,;) VF, 7
% =V, (8)

x is the position vector (in 1-, 2- or 3-d), V is the gradient operator, and G and R are forcing

jerms. A semi-Lagrangian approximation to (6) and (8) is then:
E=F ,1G*+G]=R, (9)

a4 2
a=AY(E-on, (10}
where the superscripts "+, "0" and "-" respectively denote evaluation at the arrival point
(x,1+At), the midpoint of the trajectory (x-ot,t) and the departure point (x-2ct,t-At). Here, x is
pow an arbitrary point of a regular (1-, 2- or 3-d) mesh.

The above is a centered O(A12) approximation to (6) and (8), where G is evaluated as
the time average of its values at the endpoints of the trajectory, and R is evaluated at the

midpoint of the trajectory. The trajectorics are calculated by jteratively solving (10) for the

vector displacements @ in an analogous manner 1o the 1-d case for passive advection [eq.(5)).
If G is known (we assume that R is known since it involves evaluation at time t), then the

algorithm proceeds in an analogous manner 10 the 1-d passive advection one and is thus:

{ Solve {10) iteratively for the vecior displacements o for all meshpoints x, using some

initial guess (usually its value at the previous timestcp), and an interpolation formula.

6.

(ii) Evaluate F-AtG at upstream points X-2a at time 1-At using an interpolation formula.
Evaluate 2AtR at the midpoints x-0 of the trajectories at time t using an interpolation
formula.

(iii)  Evaluate F at arrival points x at time t+At using

F(x,1+A1) = (F-AtG)lg.20 .41 + 2A1R|(z.q11) - AtGlig pray)
= (F-AtG) + 2AR? - ArG*
If G is not known at time t+At (for instance if it involves another dependent variable in a set of

coupled equations), then this leads 10 a coupling to other equations {more on this in Section 3).

2(c) Two-time-level advection schemes (and a pollutant-iransport application)

Present semi-Lagrangian schemes are based on discretization over either two or three
time levels, and thus far we have restricted our attention to three-time-level schemes, The
principal advantage of two-time-level schemes over three-time-level ones is that they arc
potentially rwice as fast. This is because three-time-level schemes require timesteps half the
size of two-time-level ones for the same level of time trencation error [Temperton & Staniforth
(1987)]. It is however important to maintain second-order accuracy in time in order to reap the
full benefits of a two-time-level schetne (since enhanced stability with large timesteps is of no
benefit if it is achieved at the expense of diminished accuracy). Barly two-time-level schemes
for NWP models unforrunately suffered from this deficiency [¢.g- Bates & McDonald (1982),
Bates (1984), McDonald (1986)]. The crucial issue is how to cfficiently determine the
trajectories to at least second-order accuracy in time [Staniforth & Pudykiewicz (1985),

McDonald (19871

This problem arises in the context of self-advection of momentum. To sce this we
recxamine the algorithm of Section 2(a) for t-d advection. Provided U is known at tme tp,
independently of F at the same time, then it is possible 10 evaluate the trajectory, and then

leapfrog the value of F from time t,-At to ty+At, without knowing any value of F at time 1y,

)



Proceeding in this way, F(ta+3A1) is then obrained using values of F(ig+At) and U(ta+2At).
Thus we have two decoupled independent intcgrations, onc using values of F at even timesteps
and U at odd timesteps, the other using values of F at odd timesteps and U at even timestcps.
Either of these two independent solutions is sufficient, thus halving the computational cost, and
we obtain & two-time-level scheme (for the advected quantity F) by mercly relabelling time
levels to-At, tg and 1o+At respectively as ty, to+AV2 and ta+At (sce Fig. 2). Note that values of
U (assumed known) only appear at time level 1y+Ay2, and they arc solely used 10 estimate the
trajectories.

This is the essence of the 2-d advection-diffusion algorithm described and analyzed in
Pudykiewicz & Staniforth (1984). It led to the development of a three-dimensional pollutant
transport model [Pudykiewicz et al (1985)], where a family of chemical species are advected
and diffused in the atmosphere using winds and diffusivities: these arc either provided by a
NWP model {for real-time prediction) or from analyzed data (for post-event simulations). This
model is designed 1o provide real-time guidance in the event of an environmental accident and
bas been used to successfully simulatc the dispersion of nuclear debris from the Chernobyl
reactor accident [Pudykiewicz (1989)). It has evolved into Canada’s Environmental

Emergency Response Model [Pudykiewicz (1990)).

Returning to the problem of self-advection of momeatum, the above argument breaks
down in the special case where F = U in (1) or F = V in (6), i.c. when the transported quantity
U or V is advecied by itsclf, as is the case for the momentum equations of fluid-dynamic
problems in general, and NWP models in particular. This problem was addressed
simultancously ang independently by Temperton & Staniforth (1987) and McDonald & Bates
(1987), opening the way towards stable and accurate two-time-level schemes. The key idea
bexe is to time-extrapolaie the winds {with an O(At2)-accurat extrapolator] 1o Gme-level 1+Ay2
using the known winds at time levels t and t-At: these winds arc then used 1o obtain

sufficiently-accurate [((A12)) estimates of the trajectories, which in tum are used o advance the

dependent variables from time level t 1o t+At. Thus the two-time-level atgorithm to solve (6)-
(8), analogous to the three-time-level one given by (9)-(10), is (see Fig.2)

F=zF,lig*+G°]=R", (1)
A 2
where
@ = AL V' (x—o/2,t+A 1/2), (12)
VU (x1+AL2) = (B )V(R,t+AL - (h) Vx,1-AD) + O(Aa?) , (13)

the superscripts "+", "1/2" and "0" now respectively denote evaluvation at the arrival point
(x,+At1), the midpoint of the trajectory (x-o/2,1+A/2) and the departure point (x-a.t), and ais
still the distance the fluid particle is displaced in time At

In the above formulation the evaluation of R(1/2) involves extrapolated quantities and
therefore could potentially lead to instability. Temperton & Staniforth (1987) didn't find this to
be a problem when some weak nonlincar metric effects were evaluated in this way in a
shallow-water model integrated on a polar-stereographic projection, but it seems preferable to
evaluate all non-advective terms (i.e. G in the above) as time averages along the trajectory
whenever possible. [Subsequendy Coté (1988) showed how 10 avoid evaluating the above-
mentioned metric terms in terms of cxtrapolaied quantities.] However Higgins and Bates
(1990} report that evaluating the product term (of the geopotential perturbation and divergence)
in the continuity equation of a global shallow-water mode] using time-extrapolated quantities
[as in Bates et al (199(0)] leads to the growth of computational noise, and the necessity to
include divergence damping with 2 cocfficient of appreciable magnitude. They found that by
evaluating this product term using quantities at time t, rather than at time 1+A44/2, but sull
evaluating it at the trajectory midpoint x-04/2, it is possible to integrate without the need for
divergence damping. This mildly decenters the scheme and reduces the formal accuracy of this
term to O(At), but it is not a very large term in a shallow-water model. An altemative solution

is to discretize the continuity equation in logarithmic form as in COté & Staniforth (1990}, at the
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price of making the elliptic-boundary-value problem of the semi-implicitly-treated terms mildly
ponlinear: this has the advantage that it retains O(At2) accuracy because it is still a centered
approximation. A further posible alternative is discussed in Scction 4(d). Noie that when ail
pon-advective terms are evalvated implicitly as time averages along trajectorics, then
extrapolated quantitics arc used solely for the purpose of obtaining a sufficiently-accurate

estimate of the trajectorics.

Temperton & Staniforth (1987) examined several alternative ways of extrapolating
quantities for the purpose of estimating trajectories. They found that those methods which
keep a particle on its exact trajectory for solig-body rotation seem t give better results for the
more general problem than those that do not. In particular, they found it advantageous to use &
three-term extrapolator {using winds at times 1, t-At, and 1-2At to obtain an extrapolated wind at
t+At/2) instead of the two-term extrapolator (13). They also found that time extrapolating
winds afong the trajectory (their method 4) is less accurate than time extrapolating winds at

meshpoints as in (13).

2 (d) Interpolation

A priori any interpolation could be used 10 evaluate F and U (or V) between meshponts
in the above algorithm. In practice the choice of interpolation formula has an important impact
on the accuracy and cfficiency of the method. Various polynomial interpolations have been

wried including: linear; quadratic Lagrange; cubic Lagrange; cubic spline; and quintic Lagrange.

For step (i) of the algorithm, it is found [sce ¢.g. Purnell (1976), Batcs & McDonald
(1982), McDonald (1984), and Pudykiewicz & Staniforth (1984), for analysis] that cubic
interpolation is a good compromise between accuracy and computational cost, While quadratic
Lagrange interpolation is viable and was used in most of the carly studies [e.g. Krishnarnurti
(1962,1969), Leith (1965), Mathur (1970,1974), Bates & McDonald {1982)], cubic
interpolation has been widely adopted in recent studies [e.g. Robert et al {1985), McDonald

10.

(1986), Bates & McDonald (1987), Ritchie (1988), Chié & Siwaniforth (1988), Bates ct al
(1990)]. Cubic interpolation gives 4th-order spatial accuracy with very little damping (it is
very scale selective, affecting primarily the smallest scales), whereas lincar interpolation [see
McDonald (1984) for discussion] has unacceptably-large damping (it is also scale sclective, but
has a much less sharp respense). Cubic spline interpolation has the useful property that it
conserves mass [Bermejo (1990)]. Purser & Leslic (1988) recommend using at least dth-order
(i.e. cubic) interpolation, and have used quintic interpolation in their recent work [Leslie &
Purser (1950)), Improving the order of the interpolation increases the accuracy, but at
additional cost, and the law of diminishing returns ultimately applics.

For step (i), the order of the interpolation is much less important, Theoretically
McDonald (1987) has shown that onc should use an intcrpolation of order one less than for
step (ii), ¢.g. quadratic interpolation of U when using cubic interpolation of F. In practice
however, in the context of both passive advection and coupled systems of equations in scveral
spatial dimensions, it is found [Staniforth & Pudykiewicz (1985), Temperton & Staniforth
(1987), Bates et al (1990)] that it is sufficient 10 use linear interpolation for the computation of
the displacements,when using cubic interpolation for F, which is very economical. It is also
found that there is no advantage in using more than two itcrations for solving the displacement
equation [step ()). McDonald (1987) has shown theoretically that it is not necessary to usc the
same order of interpolation for cach iteration. For example, it is more economical and no less
accurate to perform the first iteration using lincar interpolation and the second using quadratic,

than to use quadratic interpolation for both.

Pudykiewicz et al (1985) have shown that a sufficient condition for convergence of the
iterative solution of step (i) is that At be smaller than the reciprocal of the maximum absolute
value of the wind shear in any cordinate direction. Thus At < [max (gl luylbvgllvyl )] -1 for
2-d flow, where u and v are the two wind components. They estimated for atmospheric values

that convergence is assured provided At is less than 3h, which is an order of magnitude larger
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than the maximum timestep permitted by Eulerian advection schemes in analogous

creumstances.

2 (e) Stability and accuracy (and connection with other advection methods)
Analyses of the stability properties of the semi-Lagrangian advection scheme [e.g.
Purnell (1976), Bates & McDonald (1982), McDonald (1984), Pudykiewicz & Staniforth
(1984), Richic (1986,1987)] show that the maximum timestcp isn't limited by the maximum
wind speed, as is the case for Eulerian advection schemes, and consequently it is possible to
stably integratc with Courant numbers (C = IUIAYAx) that far exceed unity, To illustrate this
point we reproduce (with permission) the results of Bermejo (1990) for the slotied cylinder test
of Zalesak (1979). In Fig. 3a we show the slotted cylinder at initia] time, and in Fig. 3b the
cormes ing result after six revolutions of solid-body rotation at uniform angular velocity
about the domain ceater. The experiment was conducted using a cubic-spline interpolator at &
Courant number of 4.2, which is considcrably larger than that of an Eulerian advection
scheme. This is recognized as being a challenging test, and the result is remarkably good. In
particular the results illustraie the scheme’s ability to handle sharp discontinuitics without
disastrous conscquences (even though it was not designed specifically to do so) and the
absence of noticeable dispersion problems (which are typically present for Eulerian advection

schemes).

This behaviour-in the presence of discontinuitics or near discontinuitics was also
observed in the study of Kvo and Williams {(1990) for a scale collapse problem. They
concluded that semi-Lagrangian schemes are to be preferred to Eulerian schemes for this kind
of problem since they have much smaller dispersion errors (which are localised around the
shock) and can be integrated with significantly longer timesteps. Ritchie (1985) argued that the
localisation of errors to the regions where the gradicnts are strongest when using semi-

Lagrangian advection is a desirable property that may be advantageousty exploited for the

12.

treatment of molsture transport in NWP_modc]s, since large local gradients frequently occur in
maisture ficlds (e.g. at fronts). Hoe reported that semi-Lagrangian advection led to better results
than Eulerian advection in the context of a 48h forecast.

In gencral it is found that semi-Lagrangian advection compares favorably with Eulerian
advection with respect to accuracy, but it has the added advantage thai this accuracy can be
achieved at less computational cost, since models can be integrated stably with timesteps that
far exceed the maximum-possible tmesicps of Eulerian schemes. The aforementioned stability
analyses show that scunl..agmngmn advection schemes have very good phase speeds with little
numerical dispersion, but contrary to some Eulerian schemes (e.g- leapfrog-based schemes)
there is some damping due 10 interpolation as discussed in Section 2(d). This damping is
fortunately very scale selective (at least when using high-order interpolators). McCalpin
(1988) has theoretically compared this damping with more raditional forms such as Laplacian
and biharmonic dissipation, and derived some criteria to ensure that the damping due 10 semi-
Lagrangian advection is less than that due to the more traditional forms. In practice Ritchie
(1588) and Coté & Staniforth (1988) have found that semi-Lagrangian integration schemes
have three times less damping than a typical Eulerian global mediuvm-range forecast model run
at typical resolution with a typical biharmonic dissipaton.

Semi-Lagrangian advection is intimately connected with several other advection
mcthods that have appeared in the literature over the years, including particle-in-cell [e.g.
Raviart (1985)] and characieristic Galerkin [e.g. Morton (1985), Karpic & Pelder (1990)]
methods. Indeed for uniform advection in 1-d, the simplest semi-Lagrangian advection scheme
(using lincar interpolation, and not recommended) is equivalent 1o both classical upwinding and
to the simplest characteristic Galerkin method: and semi-Lagrangian advection using cubic-
spline interpolation is equivalent to the higher-order characteristic Galerkin methods of Morton
{1985) and Karpic & Peltier (1990), and also to a particle-in-cell method described in
Eastwood (1987). Further, under more general conditions (including non-uniform advection

e
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in 2- and 3-d), Bermejo (1990) has shown that semi-Lagrangian advection using cubic-spline

interpolation can be viewed as being a particle-in-cell finitc-clement method.

Several well-known Eulerian methods can also be interpreted as being special cases of
semi-Lagrangian ones. Thus the Lax-Wendroff, Takacs (1985) 3rd-order, and Tremback ct al
{1987) schemes are respectively equivalent for 1-d uniform advection to semi-Lagrangian
schemes with quadratic-Lagrange, cubic-Lagrange and n-th-order-Lagrange interpolation.
Note however that these Eulerian methods are restricted to Courant numbers less than unity and

are consequently Jess general than their semi-Lagrangian counterparts.

Although the semi-Lagrangian method is equivalent for uniform 1-d advection to
several other methods, what distinguishes it from other methods s that it gencralizes differenty
{0 non-uniform advection in multi-dimensions. The principal difference is the usc of (10),
introduced in Robert (1981), for the trajectory calculations. Of particular importance is that the
approximation of the trajectory equation {8} is O(AR) accurafe, Tt is possible to usc a simpler,
and cheaper, O(At) accurate method 10 approximate the displacement cquation (8) [as in e.g.
Mathur (1970) and Bates & McDonald (1982)] but this can dramatically deteriorate the
accuracy of the scheme, as shown by Staniforth & Pudykiewicz (1985) and Temperton &
Staniforth (1987), and analysed by McDonald (1987). Conscquently most, if not all, recent

semi-Lagrangian scheroes use an O(At?) method for discretizing the trajectory equation.

3. APPLICATION TO COUPLED SETS OF EQUATIONS
To illustrate how semi-Lagrangian advection can be advantagously uvsed to solve

coupled sysiems of equations, we describe its application to the discretization of the shallow-

waler equations
d&111+¢;-rv=0. (14)
%—Y—+¢y+fU=0. (15)

14,

dind
THJ’ 1Vy=0, (16)

where U and V are the wind components, ¢ (=gz) is the geopotential height (i.e height
multiplied by g) of the free surface of the fluid abave a flat bottom, and { is the Coriolis
parameter.

These equations are often used in NWP to test new numerical methods, since they are a
2-d prototype of the 3-d equations that govem atmospheric motions (they can be derived from
them under certain simplifying assumptions). They share several important properties with
their progenitor, A linearization of the cquations reveals that there are two basic kinds of
associated motion, slow-moving Rossby modes (which most affect the large-scale weather
motions, and which move to leading order at the local wind speed) and small-amplitude fast-
moving gravitational oscillations (which are inadequately represented at initial time due to the
paucity of the observational network). From a numerical standpoint this has the important
implication that the timestep of an explicit Eulerian scheme (e.g. Icapfrog) is limited by the
speed of the fastest-moving gravity mode. Since for atmospheric motions this speed is six
times faster than those associated with the Rossby modes that govern the weather, this jeads to
timesteps that are six times shorter than those associated with an explicit treatment of advection.
A time-implicit treatment of the pressure-gradient term of the vector momentum cquation [2nd
terms of (14) and {15)] and horizontal divergence of the continuity equation [2nd and 3rd terms
of (16)), introduced in Kwizak and Robert (1971) and iermed the semi-implicit scheme, allows
stable integrations with no loss of accuracy vsing timesteps that are six tiracs longer than that of
the leapfrog scheme. The price to be paid for this increase in timestep length is the need to
solve an elliptic-boundary-value problem once per timestep: nevertheless this improves
efficiency by approximately a factor of five. Analysis shows that the maximum-possible

timestep length is then limited by the Eulerian treatment of advection.

Early applications of scmi-Lagrangian advection to coupled sets of cquations [e.g.

Krishnamurti (1962,1969), Leith (1965), Mathuar (1970,1974), Mahrer & Pielke (1978))
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didn't take advantage of the enhanced stability propertics of the method, since the models were
formulnted in such a way that they were not, in the terminology of Bates and McDonald
(1982), "multiply upstream” and 50 the Courant number (associated with the treatment of
advection) was always less than unity. Nevertheless these studies did demonstraie that semi-
Lagrangian advection is an acceptably-accurate method for advection, Robert (1981) reasoned
that since semi-Lagrangian advection is stable for Courant numbers significantly larger than
unity, it should be possible to associate a semi-Lagrangian treatment of vorticity advection with
a semi-implicit treatment of the terms responsible for gravitational oscillations, and thereby
obtain stable integrations with timesieps four to six times longer than that of a corresponding
semi-implicit model employing an Eulerian weatment of advection. Using such a strategy he
was sble 10 oblain a computationally-stable solution with 2 h timestep (approximately four
times longer than that of a corresponding semi-implicit Eulerian model), although there was
some evidence of a small noise problem at the westem inflow boundary. It was aiso noted that
there was an inconsistency in the formulation inasmuch as the advection terms in the
divergence and continuity equations were ot evaluated using the semi-Lagrangian technique,

and the question of accuracy (as opposed to stability) was deferred 1o a later study.

It sumed out [Robert (1982)] that the Robert (1981) integrations included a divergence
diffusion term and a time filter, and that when these were removed an instability was observed.
This was attributed to two factors: the explicit weatment of the Coriolis terms, and the
application of the semi-Lagrangian technique to only the vorticity equation. To remedy these
two deficiencies, Robent (1982) introduced 2 revised formulation using the primitive (instead of
the differentiated vorticity/divergence) form of the equations together with a semi-Lagrangian
weatment of all advected quantities and an implicit treatment of the Coriolis terms. This was
done in the context of a three-time-level scheme where the metric terms of the momentum
equation were treated explicidy at the midpoint of the trajectories [c.f. R in (9)] and all other

non-advective terms as time averages of values at the endpoints of the trajectories [c.f. G in
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(9)). A sability analysis was given to demonstrate that this scheme should be stable with
timesteps that exceed those of the gravitational, advective and inertial limits, and this was

verificd in sample integrations.

To illustrate the application of the semi-Lagrangian mcthod we discretize (14)-(16)
using the rwo-time-level semi-implicit semi-Lagrangian scheme of Temperton & Staniforth
{1987), which permits a further doubling of efficiency with respect to the Robent (1982)

algorithm at no extra cost. Thus

+ 0
- +
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+ 0
lf’"lﬂ +
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where (14)-(16) have been discretized using (11) with R sct 1o zero. Here advection tcrms are
treated as time-differences along the trajectories and ail other terms arc treated as time-averages
along the trajectorics, leading 1o an O(Ar2)-accurate scheme. Where traditional (three-time-
level) semi-implicit time discretizations have an explicit time-treatment of the Coriolis terms, the
above discretization employs & time-implicit treatment [as in Robert (1982)] in order 1o achieve
an O(A12)-accurate scheme: note that explicitly evaluating these terms at time t would not only
reduce the accuracy to O(At) but would also lead to instability. The trajectorics are computed
using the discretized equations (12)-(13) introduced by Temperton & Staniforth (1987) and
McDonald & Bates (1987).

For the 1-d shallow-water equations it can be shown that there are three characteristic
velocites in the coupled set, one being the local wind speed and associated with the slow
Rossby modes that govem weather motions, the other two being associated with the

propagation of gravitational oscillatons. Thus the coupling of & scmi-Lagrangian treatoent of
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advection with a scmi-implicit treatment of gruvitational oscillations corresponds 1o integrating
along the most important characteristic direction of the problem (i.e. that associated with the
local windspeed): this is somewhat similar in spirit 1o a suggestion given on p. 860 of Morton
(1985).

Eqs. (17)-(18) can be manipulated to give
U+=-A2t[a¢:+b¢;]+mm. (20)
V*=—A21[a¢;-—b¢;]+hlown. 1)
where a = [1+(fAy2)2]"! and b = (fAY2) a. Taking the divergence of (20)-(21) and climinating
this in (19) then leads 1o the elliptic-boundary-value problem

(m),+<a¢,),+cb¢,),—(b¢.),-4'f-}]
t

= known . 22)
(x.t+AL)

We now summarize the above as the following algorithm:

@) Extrapolate V using (13} and solve (12) iteratively for the displacements 0y for all
meshpoints Xm, using valucs at the previous timestep as initial guess , and an
interpotation formula, Note that it is only necessary (0 perform this computation once
per timestep, since the same trajectory is used for all three advected quantities.

(ii) Compute upstream (superscript 0) quantities in (17)-(19) by first computing
derivative terms (e.g. Uy) and then evaluating quantities upstream (these two
operations are nof commutative!). Here it is more efficient 1o coliect together all
terms to be cvalvated upstream in & given equation before interpolating (the
distributive law applies).

(1) Solve the elliptic-boundary-value problem (22) for ¢(x,t+A1).

(iv) Back substitute ${x,t+At) into (20}-(21) to obtain Ulx,t+AD and V(x,t+40).

The above clliptic-boundary-value problem is weakly non-lincar and is solved
iteratively using ¢ at the previous tmestep as a first guess. It is only marginally more
expensive 10 solve than the Helmholtz problem associated with traditional three-time-level
semi-implicit Eulerian discretizations, The multi-grid method is panicularly attractive for
solving such elliptic-boundary-valuc problems because of its relatively-low arithmetic operation
count. Such a solver is described in Barros et al (1990), and was successfully employed in the
global model of Bates et al (1990) using a discretization scheme very similar to that described
above.

For simplicity the above algorithm has been described for plane gecomewry. For
spherical geometry, metric terms appear in the momentum equations (14)-(15). These can be
trivially absorbed into the above formulation using the approach of Ritchie (1988) or Coté
(1988). .

Semi-Lagrangian advection has also been successfully coupled with the split-explicit
method [Bates & McDonald (1982)] and the aliernating-direction-implicit method [Bates
(1984), Bates & McDonald (1987)]. Both of these approaches have the virtue of being simpler
than the scmi-implicit semi-Lagrangian one (there is no cliiptic-boundary-value problem), but
unfortunately they do not perform as well. The split-explicit-based model is less cfficient
[Bates (1984)] than the aliernating-direction-implicit-based one, which in turn performs less
well [Bates & McDonald (1987)] than the semi-implicit semi-Lagrangian model of McDonald
{(1986). This latter scheme was adopted in the study of McDonald & Bates (1989), and it was
subsequently found [Bates et al (1990)] that its performance with large titesteps was not as
good as had been hoped. This was artributed {McDonald (1989), Bates et al (1990)] to a time-
splitting error introduced in the momentum equation asscciated with the Coriolis terms. To
date it appears that the best schemes arise from associating semi-Lagrangian advection with a

semi-implicit scheme, and that timesplitting is best avoided.
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4. FURTHER ADVANCES

When Robert (1981) proposed associating a semi-Lagrangian treatment of advection
with a semi-implicit treatment of gravitational oscillations, it was thought that this approach
was restricted 1o three-time-level schemes in Cantesian geometry using a finite-difference
discretization. This has happily proved not to be the case, and in this section we discuss some
important extensions of the approach. Although important, the extension to two-time-level
schemes has already been discussed in some detail, and will thercfose only be briefly discussed

in this section in the context of other exiensions.

4 (s) Finite-element discretizations and variable-resolution

Pudykicwicz & Staniforth (1984) coupled semi-Lagrangian advection with a uniform-
resolution finite-clement discretization of the diffusion terms in the solution of the 2-d
advection-diffusion equation, and this was extended to the 3-d case in Pudykiewicz et al
(1985). Staniforth & Temperion (1986) extended the methodology in the context of a coupled
system of equations {the shallow-water equations) in two ways. Firstly they showed that in
this context the semi-Lagrangian method can be coupled 1o a spatial discretization scherne other
than a finite-difference one, viz. & finite-element discretization, and sccondly that it can also be
applicd on a varigble-resolution Cartesian mesh. A set of comparative tests demonstrated that
with a six-times-longer timestcp it is as accurate as its analogous semi-implicit Eulerian version
{Staniforth & Mitchell (1978)] when run with its maximium-possible timestep {which in tum
uses a six-times-longer timestep than an Eulerian leapfrog scheme).

A further doubling of efficiency was then demonstrated in Temperton & Sianiforth
(1987) by replacing the three-time-level scheme of the Staniforth & Temperton (1986) model
with a two-time-level one, Both these models wse a differentiaed {vorticity-divergence) form
of the governing equations. This has the advaniage of casily allowing variable resolution, but

has the disadvantage of incurring additional interpolations and the necd to solve two Poisson
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problems, resulting in an approximately 20% overhead when compared 10 the ideal. This
overhead can be eliminated by the use of the pseudo-staggered scheme proposed in CH1€ et al
{1990) with no loss of accuracy.

4 (b) Non-interpolating schemes

The interpolation in a semi-Lagrangian scheme, as mentioned previously, leads 10 some
damping of the smallest scales. While this damping is very scale selective, it may be argued
that it would unacceptably degrade accuracy for very long simulations (¢.g. many decades in
the context of a climate model). To address this problem Ritchie (1986) proposed a non-
interpolating version of semi-Lagrangian advection. The basic idea here is to decompose the
trajectory vector into the sum of two vectors, one of which goes to the nearest meshpoint, the
other being the residual. Advection along the first rajeciory is done via a semi-Lagrangian
technique that displaces a field from one meshpoint to another (and therefore requires no
inrerpolation), while the advection along the second vector is done via an undamped three-time-
level Eulerian approach such that the residual Courant number is always less than one. Thus
the attractive stability properties of interpolating semi-Lagrangian advection are maintained but
without the consequent damping.The non-interpolating scheme is also more efficient than a
three-time level interpolating one, since there are only half the number of interpolations per
timesiep (i.c. there are ne longer any interpolations associated with the middle time level).
Ritchie (1986) demonstrated the non-interpolating scheme for a gridpoint shallow-water model
on a polar-stercographic projection, and found it to be more efficient and slightly more accurate

than an interpolating scheme run at the same resolution.

The non-interpolating methodology is not restricted to gridpoint discretizations and has
also been successfully applied 1o spectral discretizations [Ritchie (1988,1990)]. This offers the
possibility of rerrofitting a non-interpolating semi-Lagrangian scheme into existing spectral

models: there is however a minor technical complication inasmuch as present speciral models

s
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generally use the differentiated vorticity-divergence form of the equations whercas non-
interpolating(and interpolating for that matter) semi-Lagrangian spectral models employ the

primitive form, and this necessitates some changes o the spectral part of the formulation.

There are however a couple of disadvantages of the non-interpolating approach for
problems where the small damping of the interpolating scheme is acceptable: this is generally
the case for NWP applications, but probably not so for climate models (since they are gencrally
run at much lower resolution and the damping is consequently more severe). Firstly, the non-
interpolating method has the dispersive properties of its Eulerian component, which are not
generally as good as those of interpolating semi-Lagrangian advection schemes, Secondly,
being based on a three-time-level scheme it is potentially twice as expensive as a two-time-level

interpolating scheme.

The scheme proposed in Ranti¢ and Sindjié (1989) is advertised as being a non-
interpolating one, but this is not in fact the case. Two schemes are denved for uniform
advection in 1-d based on the Lax-Wendroff and Takacs (1985) schemes. A close examination
of these schemes reveals that the Lax-Wendroff-based scheme is identical to a semi-Lagrangian
one with quadratic Lagrange interpolation, whereas the Takacs-based scheme is identical to a
semi-Lagrangian one using cubic Lagrange interpolation. A simple and interesting idea,
somewhat buried in the detail of the Rantit and Sindjic {1989) paper, is to show how to make
a two-time-level Eulerian advection scheme stable for Courant numbers greater than one. The
idea however unforinately seems 1o be limited to the 1-d case, since it is predicated on the
assumption that a particle passes over a meshpoint at some time during Lhe time interval of the
timestep, which assumption does not hold for multiply-upstream particles in 2-d. It is of
course possible to split the 2-d advection problem into Iwo passes of the 1-d algorithm, but this
then has the disadvantage that it usvally introduces significant spliting errors for large

timesteps [see .g. Williamson & Rasch (19891,
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An alternative way of viewing the non-interpolating formalism of Ritchie (1986) is
presenicd in Smolarkiewicz and Rasch (1990). They showed that it is possible 10 convert any
advection algorithm into a semi-Lagrangian framework, thus permirting the use of much larger
timesteps with the scheme for little additional cost. This interesting realisation is of potenial
benefit for models whose maximum timestep is limited by an Eulerian treatment of advection,
To demonstrate this idea they successfully extended the stability limit of the Tremback et al
(1987) family of algorithms. In so doing they obtained a family of schemes which is
equivalent to using a time-split semi-Lagrangian scheme with Lagrange interpolation. They
also successfully extended the stability limit of a family of positive-definite monotone advection
algorithms. However afier comparing results with those of semi-Lagrangian algorithms, they
concluded that for problems where small undershoots and slight lack of conservation are

acceptable, this family of positive-definite monotone algorithms cannot corpete.

4 (¢) Shape-preserving and monotonic interpolation

Although most authors have adopted polynomial schemes for the interpolatory steps of
semi-Lagrangian schemes, other interpolators are also possible. Williamson & Rasch (1989)
and Rasch & Williamson (1990a) have examined several different possible interpolators,
designed to better preserve the shape of advected ficlds and to maintain monotinicity. They
performed experiments in both Cartesian and spherical geometry, and concluded that the
approach is viable.

Rasch & Williamson (1990b) pursued this work in the context of climate simulations
by using shape-preserving interpolation for moisture transport. They indicated a preference for
semi-Lagrangian advection, on the basis that although the global errors of semi-Lagrangian and
Eulerian advection are comparable, the semi-Lagrangian method can be made to have smaller
local ermors by using shape-preserving interpolation. However they caution the reader that the

two methods produce very different climatologies and that the numerical problems of meisture
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transport arc still far from being resolved. In particular they note that the problem of moisture
overshoot is just as important as that of undershoot, and that this issuc still remains to be
addressed. These problems are also of importance in NWP applications, but are probably less
severe due to the generally-higher resolution of NWP models.

The principal difficulty with the shape-preserving and monotonic spproaches appears o
be 10 decide how 1o precisely determine the required attributes of the interpolator, and how 10
tailor it 10 respect them, since there is no universal best choice.

4 () Spherical geometry

The convergence of the meridians at the poles of an Eulerian finite-difference model in
spherical geometry leads 10 unacceptably-small imesteps being required in order to maintain
computational stability. The usual approach to this problem is to somehow filter the dependent
variables in the viciniry of the poles. While this procedure does relax the stability constraint, it
unfortunately deteriorates accuracy [e.g. Purser (1988)). Ritchie (1987) demonsirated that it is
possible to passively advect a scalar over the polg using semi-Lagrangian advection with
timesieps far exceeding the limiting timestep of Eulerian advection schemes. This paved the
way to applications in global spherical geometry. The first such application was to couple
semi-Lagrangian advection with a speciral representation (. expansion in 1erms of spherical
harmonics) of the dependent variables to solve the shallow-water equations over the sphere
[Ritchie (1988)). A ncw problem arose here associated with the stable advection of a vecior
quantity (momentum). The solution proposed in Ritchic (1988) is to introduce a tangent plane
1o avoid a weak instability due to a mewic term. The diagnosis of this problem, which led to

the tangent plane algarithm, is described in Deshamais & Robert (1990).

An aliernative solution, proposed by Coté (1988), is 10 use a Lagrange multiplicr
method. In this approach the horizontal momentum equations of the shatlow-water equations

on the sphere are written in 3-d vector form using the undeicrmined Lagrange multiplier
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method These equations arc time discretized directly, and the Lagrange multiplier is then
determined from the discretized equations to ensure that motion is constrained to foliow the
surface of the sphere. This is in contrast with the usual approach where the Lagrange
multiplier is first determined from the confinuous equations, followed by a discretization of the
resulting equations. The procedure is applicable to any coordinate system and can also be
extended 1o multilevel models.

Both methods give good results which are almost indistinguishable in practice. More
recently Bates et al (1990) have described an approach based on the discrenization of the vector
form of the momentum equation. Although they state that their vector discretizauon is
somewhat different from the Lagrange multiplier method of COté (1988}, it can be shown that
the resulting algorithms are identical. It also wms out that the tangent-plane algorithm of
Ritchie (1988) is identical to the Lagrange-multiplier onc in the context of a two-time-level

scheme.

Riichie (1988) successfully integrated his shallow-water model with a timestep six-
times longer than that of the limiting timesiep of the comesponding Eulerian semi-implicit
spectral model (which in turn uses a six-times-longer imestep than that of an Eulerian leapfrog
model). Chié & Staniforth (1988) then further doubled the efficiency of the Ritchie (1988)
model, by replacing its three-time-level scheme by a two-time-level one analogous to that of

Temperton & Staniforth (1987) for Cartesian geometry.

The spectral method (i.c. expansion of the dependent variables in terms of spherical
harmonics) has been the method of choice during the past decade for the horizontal
discretization of global NWP models. However the spectral method ultimately becomes very
expensive at high-cnough resolution, due to the O(N3) cost of computing the Legendre
transforms, where N is the number of degrees of freedom around a latitude circle, Finite-

difference and finite-clement methods on the other hand have a potential O(N2) cost. This, and
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the success of the semi-Lagrangian method in addressing the pole problem, suggests that it
would be highly advantageous 10 use a semi-Lagrangian treatment of advection in a finite-

difference or finite-clement global model for medium-range forecasting.

A first tentative step in this direction was taken by McDonald and Bates (1989), who
introduced semi-Lagrangian advection into a two-time-level global semi-implicit shallow-water
mode] vsing the time discretization of McDonald (1986). Although their cheme was stable
with time steps that exceeded the limiting time step of an Eulerian treatment of advection, the
enhanced stability was unfortunately achieved at the expense of accuracy. The degradation of
accuracy is attributable 10 a time-splitting error introduced in the momentum equation associated
with the Coriolis terms. The solution to this problem is to avoid time-splitting altogether and
then the algorithm [Bates et al (1990)] is very similar to that employed in Richie (1988) and
Caté & Staniforth (1988), and results in significant improvements in accuracy for large
timesteps. Nevertheless, Batcs et al (1990) found it necessary to use divergence damping
(with what appears to be a rather large coefficient} in order to integrate 1o 5 days, suggesting

that there still remain some accuracy andfor stability problems.

CHté & Staniforth (1990) replaced the spectral discretization in the Cié & Staniforth
(1988) model by a pscudo-staggered finile-¢lement one [analogous to that described in CHE et
al (1990)], 1o obtain a two-time-level semi-implicit semi-Lagrangian global model of the
shallow-watcr primitive equations. Its performance at comparable resolution matched that of
their corresponding 1988 model based on a spectral discretization, and this performance was
achieved without recourse 1 any divergence damping, in contradistinction to the result reported

in Bates et al (1990).

By evaluating the product term (of the geopotential perturbation and divergence) in the

continuity equation using quantities at time t rather than at time t+A2, but stll evaluating it at

the trajectory midpoint, Higgins & Bates (1990) show that it is possible o imegrate the Bates et
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al (1990} mode] with no divergence damping, although this formally reduces the accuracy of
the treatrnent of this term to O¢At). This result swongly suggests that the source of weak
instability observed in the Bates ct al (1990) results (without divergence damping) is somehow
due to this term, but it still remains o explain why. We believe the explanation may be found
in a stability analysis given in COté and Staniforth (1988) for a somewhat similar time
discretization, which analysis is valid for the Bates et al (1990) formulation.

Cot and Staniforth (1988) showed that such a time discretization is only stable
provided ¢ > $max, Where ¢° is the reference geopotential of the semi-implicit scheme and
®max is the maximum-possible value of the geopotential. Thus where this condition is violated,
such a time discretization is likely to be unstable, and this is most likely to occur in the opics
where the geopotential is generally largest. We believe that the ¢* of the Bates ct al (1990)
integrations (without divergence damping) is probably an average value of the geopotential
(rather than its maximum value) and thus violates this stability criterion. An examination of the
divergence-damping-free result [given in Higgins & Bates (1990)] of the Bates et al (1990)
formulation reveals that the forecast is unstable in the tropics, but stable in the extra-tropics,
consistent with the above argument. We therefore speculate that the Bates et al (1990)
formulation could be stabilised by merely increasing the value of the reference geopotential,
and that this solution would be preferable 1o the one proposed by Higgins & Bates (1990) since
it is O(At?) {rather than O(A1)] accurate.

4 (e) 3-d NWP applications

Thus far we have mostly discussed the use of semi-Lagrangian advection for extending
the limiting timestep of 2-d applications for NWP. To be useful the method must also be
applicable in 3-d. A first step in this direction was taken in Bates & McDonald (1982), where a
semi-Lagrangian treatment of korizontal advection in a 3-d (baroclinic primitive equations}

model was coupled with a split-explicit time scheme in the Irish Meteorological Service's



27,

operational model of the time. This was the first scheme to demonstrate the enhanced stability
of semi-Lagrangian advection in a 3-d model, and the first 1o be used operationally. However
it is only O{Ar) accurate and although stable with long timesteps, the increase in timestep is

consequenty very much limited by accuracy considerations.

The 3-d model formulated in McDonald (1986) and improved in McDonald & Bates
(1987) [by modifying the trajectory calculations to make them O(A12) accurate, which improves
accuracy and allows longer timesteps) is four times morc efficient than the Bates & McDonald
(1982) mode! for the same accuracy and replaced it operationally. Nevertheless the resulting
scheme still has some O(At) truncation exroes and the timestep is therefore smaller than it would
be for an O{A12) scheme [scc discussion in the preceding sub-section of the McDonald (1986)
scheme in the context of a global model]. Bates & McDonaid (1987) have also coupled a semi-
Lagrangian weatment of horizontal advection in a 1-d model with the aliernating-direction
method, but found in comparative experiments that it doesn perform as well as the McDonald
& Baies (1987) scheme.

Robert ct al (1985) introduced a three-time-level 0{A)-accurate 3-d limited-arca
gridpoint model with a semi-Lagrangian treamment of horizonial advection, and were able 10
successfully integrate with longer timesteps than had hitherto beea possible; however the model
had no mountains and a very simple parameterization of physical processes. This scmi-
Lagrangian semi-implicit mode! docs however demonstrate the practical importance of
achieving a truly O(A12)-accurate schere. Although it employs a three-time-level scheme, it is
only marginally more costly per timestep than the nominally two-time-level scheme of
McDonald & Bates (1987) [which has several sub-steps] but can be integrated with longer
timesteps. In principle it should be possible io further double the efficiency of the Robert et al
{1985) algorithm by using 8 rwo-time-level scheme, While such an improvement has been
achicved in 2-d [¢.g COté & Stanifonh (1988), Bates et al (1990)] the exicnsion 1o 3-d

applications remains (o be demonstrated.
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A somewhat similar model to the Robert et al (1985) one, but with mountains included,
is described in Kaas (1987). It was reporied that when sirong winds blow over steep
mountains, instabilities may appear if the lincar part [V{$+RTgIn p;)] of the horizontal
pressure gradient term in sigma coordinates is evaluated as the average of values ar the
endpoints [(x,1+At1), (x-20,t-A1)] of the wajectory, but the nonlinear part [R(T-Tg) V Ln pg] is
evaluated at the midpoint (x-o,t). This behaviour was attributed 1o a lack of balance (in the
discrete approximation) between two large terms of opposite sign, due 1o their being evaluated
at different geographical points. The reported solution to this problem is to evaluate the non-
linear part as the average of its values at the geographical points associated with arrival (x) and
departure (x-2a), both values being taken at the intermediate time level ¢ This stratagem has

also recently been incorporated in the models of Robert et al (1985), Tanguay et al (1989) and
Ritchie (1990).

While this approach appreciably mitigases the problem, it is not at all clear that it
resolves it completely. Coiffier et al (1987) have studicd it in the context of a 2-d lincarized
baroclinic model, and show that the use of semi-Lagrangian advection with large timesteps
leads w an incorrect steady-state solution when the model is orographically forced. Their
analysis to explain this behaviour also applies 1o the formulation proposed by Kaas (1987). It
suggests that the seriousness of the problem is a function of timestep, windspeed and detail
(the larger the timesiep and windspeed, and the more detailed the orography, the worse is the
problem), and of whether the time scheme is a two- or three-time-ievel one (iwo-time.level
schemes are bener since the problem first occurs with imesteps twice as long as those of three-
time-level schemes). Although this problem has not prevented semi-Lagrangian models from
being integrated with larger timesteps than Eulerian ones while obtaining results of equivalens

accuracy, it does warrant further investigation.

The timesteps of the 3-d above-mentioned models are limited by the stability of an

explicit Eulerian treamment of verrical advection: or put another way, vertical resolution is

g

4
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limited when using a large timestep [see Ritchis {1990) for an example]. This is an important
limitation. An ever-increasing cmphasis in model development is being put on the
paramcterization of physical processes in general, and that of the moist turbulent planetary-
boundary-layer in particular, and results in ever-increasing demands on vertical resolution . To
remnove this limitation, Tanguay et al (1989) proposed a three-time-level model that uses semi-
Lagrangian advection in all three space dimensions: this finite-clement regional model uscs a
timestep which is three-times 'onger thar that of the corresponding Eulerian version [Staniforth
& Daley (1979)]. It is currently used by the Canadian Meteorological Center to operationally

produce weather forecasts 10 48 h twice daily.

Ritchie (1990) has recently introduced semi-Lagrangian advection into a three-time-
leve! 3-d global spectral model in two different ways. The first uses an interpolating semi-
Lagrangian scheme in all three dimensions, as in Tanguay et al (1989), whereas the second
uses an interpolating semi-Lagrangian scheme for horizontal (2-d) advection and a non-
interpolating scheme for vertical advection. These schemes are currently being introduced into
the European Centre for Medium-range Weather Forecasts' spectral model. He reports that the
lanter scheme is more accurate than the former for the experiments he conducted, due to the
former unduly smoothing ficlds in the vertical around the ropopause. The seriousness of this
smoothing is a function of the resolution employed and of the order of the interpolator. The
trend to higher vertical resolution should diminish the imponance of this source of crror in the
future. In the meantime it suggests that higher-order vertical {i.c. quintic instead of cubic)

interpolation is possibly warranted as proposed in Leslic & Purser (1990).

4 {f) Higher resolution and non-hydrostatic systems
As computers become ever more powerful, it becomes possible to run models at higher
and higher resolution. A time is approaching [Daley (1988)) when it will be possible to run

current hydrostatic baroclinic primitive-equation weather forecast models at resolutions for
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which the hydrostatic assumption can no longer be assumed to hold, thus motivating the
integration of non-hydrostatic systems of equations, Such systems admit 2coustic modes,
which travel much faster than either Rossby or gravity modes. Consequently if care is not
exercised, the limiting timestep will be even more restrictive than that associated with an

explicit primitive equations modeL

Since the acoustic modes carry very little energy, it is permissible to slow them down
by the use of a time-implicit ircatment of the terms responsible for their existence, by analogy
with the retarding of the gravity modes by the semi-implicit scheme. This is the approach taken
by Tanguay et al (1990), who generalize the semi-implicit semi-Lagrangian methodology for
the hydrostatic primitive equations 1o the non-hydrostatic case. They show that itis possible to
inicgrate the fully-compressible non-hydrostatic equations (which arc presumably more correct)
for linle additional cost, opening the way o highly-efficicnt non-hydrostatic models, Note that
this a proof-of-concept study, since the model employed has several important deficiencies
with respect to operational hydrostatic forecast models: it has no mountains, an extremely
simnple physical parameterization of physical processes, and very low vertical resolution
{particularly in the planetary boundary layer) such that the timestep is not unduly limited by the
Eulerian teatment of vertical advection (it is only the horizontal advection that is treated in a
scmi-Lagrangian manner). Nevertheless it represents a very important first step towards

highly-efficient non-hydrostatic forecast modes.

Increasing the resolution not only has important implications for the appropriaic choice
of goveming equations, but also for the relative order of the temporal and spatial truncation
errors. To date it has been found advantageous to couple semi-Lagrangian advection with a
semi-implicit ime scheme. This allows integration with larger timesteps than would otherwise
be possible, chosen such that the temporal and spatial truncation errors are of the same
magnide. We are thus presently in the position where the O(A12) temporal rencation errors

arc approximately equal in magnitude to the O(Ax4) spatial ones {assuming cubic interpolation
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in the scmi-Lagrangian discretization of advection). For sake of argument, assume that this At
is four times larger than the limiting timesiep of a corresponding semi-implicit model with an
O(Ax?)-accurate Eulerian advection scheme. We now ask the important question, what will be
the size of the timestep {chosen such that the temporal and spatial truncation errors arc of the
same magnitude) of the semi-implicit semi-Lagrangian model for successive doublings of the
spatial resolution, and how will this timestep compare to that of the corresponding scmi-

implicit Eulerian model?

For the first doubling of resolution, the spatial truncation errors wil be decreased by a
factor of 16 (=2%). To casure that the temporal truncation errors will be of the same magnitude
as the spatial ones it is thercfore necessary to reduce them also by a factor of 16 (=42), which
implies reducing At by a factor of 4. Comparing this timestep now with that of the
corresponding Eulerian model for the same doubling of resolution (where the timesiep is
halved to respect the CFL stability criterion), we see that it is only twice as large (whereas
befote the doubling of resolution it was four times larger) and the relative advantage of the

semi-Lagrangian timestep is thus halved.

Repeating the argument for a second doubling we see that the timestep of the semi-
Lagrangimn model now equals that of the Eulcrian one, and there is no longer any advantage of
timestep length for the semi-Lagrangian model. This is because the timestep of the semi-
Lagrangian model is limited by accuracy considerations (it cannot be any larger otherwise the
temporal truncation errors would dominate), and it so happens that the timestep of the Eulerian
model is now limited by both stability and- accuracy considerations. For any further increase
in resolution beyond this critical resolution, the timesieps of the two models will be identical
since they will be determined solely by accuracy considerations. So we conclude that for this
example there is no tirestep advantage for the semi-Lagrangian model at a quadrupling or more

of resolution.
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Since the semi-Lagrangian model is somewhat more expensive per timestep it is
therefore debatable as to whether it would be advantageous in the above example 10 use a scmi-
Lagrangian treatment of advection at such resolutions rather than an Eulerian one {although one
might argue that semi-Lagrangian advection might still be advantageous (particularly for
moisture transpont) since there are fewer dispersion problems). The important implication of
the above argument is that when the resolution of the Eulerian model is sufficiently high that
the timestep is governed by its O(A12) temporal truncation error (rather than by its CFL stability
criterion), it will become important to increase the order of the time discretization of the

comresponding semi-Lagrangian model. How this might be done is discussed in McDonald
(1987).

That said, there is perhaps a weakness in the above argument. We have assumed that
the dominant source of spatial truncation error is O{Ax%), and for a realistic NWP model this
means that we are implicitly assuming that the spatial truncation errors associated with the
physical parameterization also behave as O(Ax4). In reality it is highly unlikely that a doubling
of resolution reduces these errors by a factor of sixteen, and it is far more likely that they
behave as O(Ax2), in which case this would be the leading source of horizontal truncation error

and the efficiency advantage of the semi-Lagrangian model would be maintained for all

resolutions.

A further important consideration is that the remporal discretization associated with the
incorporation of physical processes in the models also be of higher order than the present O(Ar)
ones in order to benefit from the enhanced stability of semi-Lagrangian schemes. Present
physical pararneterizations appear to be rather sensitive to timestep length, and this problem

requires further work.
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5. CONCLUSIONS

During the past decade much progress has been achieved in vsing semi-Lagrangian
advection to improve the efficiency of numerical models of the atmosphere. In this paper we
have reviewed the semi-Lagrangian literarure for atrnospheric models, and drawn the following

conclusions:

1 The semi-Lagrangian methodology has been extended from finite-difference
applications in Cariesian geometry 1o finite-difference, finite-element and spectral
applications in both Cartesian and spherical goometry.

2) The extension 1o finite-difference and finite-¢lement discretizations for global
applications is particularly nowworthy, since such discretizations are asymptotically
much cheaper at high resolution than the present method of choice, the spectral method.

3) At the present state of development the cfficiency gains are more spectacular in 2-d than
in 3-d.

4) Two-time-level schemes are inherently twice as efficient as three-time-level schemes.
This has been clearly shown in 2-d, but the full benefits of two-time-level schemes in
3.d remain to be demonstrated.

5) Best results are obtained when coupling semi-Lagrangian advection to a semi-implicit
wreatment of gravitational oscillations, rather than to splitting methods such as split -
explicit and alternating-direction-implicit.

6) It is important to use the scrni-Lagrangian method for vertical as well as for horizontal
advection, in order to avoid unduly limiting vertical resolution.

7 Non-interpolating semi-Lagrangian schemes are attractive for climate applications, due
to their lack of damping, a particularly important property for low-resolution
simulations.

8 The semi-Lagrangian framework facilitates the incorporation of shape-preserving and

monotonic schermes for moisture advection.
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9 The semi-Lagrangian methodology is applicable not only to hydrostatic systems of
equations, but also to non-hydrostatic ones.

100  Further research on the incorporation of mountains in semi-Lagrangian models is
warranted.

11)  Research on higher-order time discretizations is desirable.

12)  Further research on the incorporation of physical parameterizations into models is

needed, to reduce sensitivity 1o timestep length.
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FIGURE LEGENDS

Fig. 1: Schematic for 3-time-level advection. Actual (solid curve) and apprpximau_:d (dashed
line) trajectories that amive at meshpoint xg at ime tn+AL. Here o, is the distance the
particle is displaced in x in time At

Fig. 2: Schematic for 2-ime-level advection. Actual (solid curve) and approximated (dashed
line) trajectorics that ammive at meshpoint xy at time ty+At. Here ouy is the distance the
particle is displaced in x in time At

Fig. 3: The 'slotied’ cylinder, (a)- at initial time, and (b)- after 6 revolutions.
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Fig. 1: Schematic for 3-time-level advection. Actual (solid curve) and approximated (dashed
line) trajectories that arrive at meshpoint xg at ime t+At. Here oy, is the distance the
particle is displaced in x in time AL
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Fig. 2: Schematic for 2-time-level advection, Actual (solid curve) and approximated (dashed
line) trajectories that arrive at meshpoint xp, at time 1 +AL Here o is the distance the
particle is displaced in x in time At
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Fig. 3: The ‘slotted’ cylinder, {a}- at initial time, and (b)- after 6 revolutions.
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