

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONAL SCIENTIFIC AND CULTURAL ORGANIZATION INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR/534-14

ICTP/WMO WORKSHOP ON EXTRA-TROPICAL AND TROPICAL LIMITED AREA MODELLING 22 October - 3 November 1990

"Lateral Boundary Conditions for Regional Models"

A. STANIFORTH
Service de L'Environnement Atmosphérique
Recherche en Prévision Numérique
Dorval, Quebec
Canada

LATERAL BOUNDARY CONDITIONS FOR REGIONAL MODELS

Andrew Staniforth

Recherche en prévision numérique Environment Canada

OUTLINE

- 1) Introduction
- 2) Well-posedness theory
- 3) Popular lbc formulations
- 4) Interactive approach
- 5) Results

GENERAL STRATEGY

(1) REGIONAL FORECASTS

- early analysis for timeliness
- high res over limited area
- · valid for limited time period

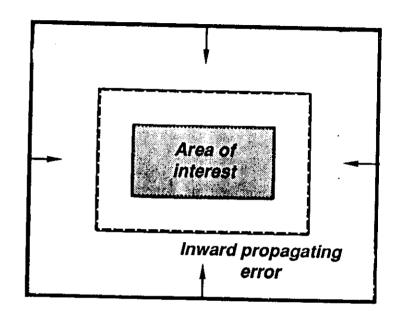
(2) HEMISPHERIC/GLOBAL FORECASTS

- later analysis with complete data
- lower resolution but larger domain
- valid for longer time periods

CANADIAN CONSTRAINTS

- (1) A regional model for Canada is almost hemispheric (for 48 h forecasts)
- (2) It is expensive (compared e.g. to European countries) because of size of country and adjacent waters

PROTECTING AN AREA OF INTEREST



- Area of interest
- Domain for 24 h forecast
- Domain for 72 h forecast

REGIONAL MODELS

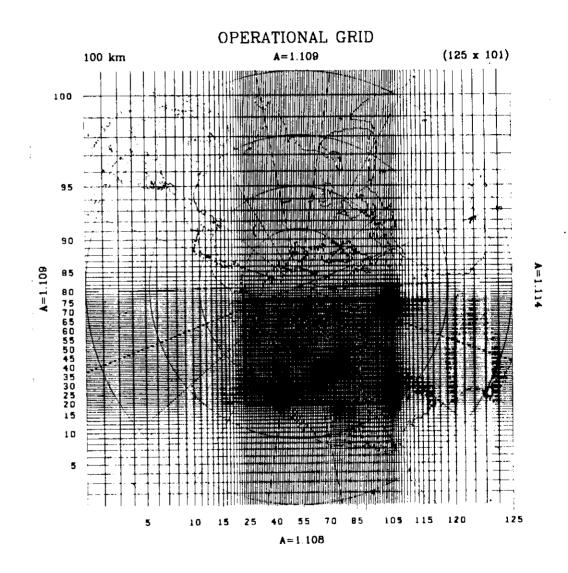
(1) Non-interactive

- needs driving model
- application of open b.c.'s difficult
- boundary-induced error must propagate at speed of Rossby modes, not external gravity modes

 (1:6 speed)

(2) Interactive

- high res / coarse res areas interact during forecast
- smoothly-varying res desirable to reduce problems at resolution interfaces



cospar4

WELL-POSEDNESS THEORY (FOR EXISTENCE & UNIQUENESS)

(Oliger & Sundstrom, SIAM J. Appl. Math., 1978)

Have to specify correct # and type of lbc's to get well-posed problem (whose sol'n over LA should match that of problem solved using periodic cond'ns over sphere)

Under-specification can typically lead to

- instability
- inconsistent approximations (i.e. sol'n of different set of pde's)
- problems of non-uniqueness

Over-specification can typically lead to

- discontinuous* solution (numerically manifested as noise)
- fastest signal speed of system (e.g. gravity-wave speed in baroclinic & hydrostatic primitive equations)
- * Note: For a hyperbolic system of equations, the solution at a point is entirely determined by its upstream history. In particular at outflow points. This solution can then contradict value specified at boundary, leading to a discontinuous solution..

INVISCID SETS

1) Euler equations of adiabatic gas dynamics

[Quasi-linear set of hyperbolic p.d.e.'s for (u,v,w,p,ρ)]

Rigid wall - 1 cond'n everywhere (V.n = 0)

Open domain

Subsonic regions ($|V| < \phi^{1/2}$):

inflow - 4 cond'ns

outflow - 1 cond'n

(but not obvious how to choose conditions)

Supersonic regions ($|V| > \phi^{1/2}$):

inflow - 5 cond'ns (specify u,v,w,p,ρ)

outflow - 0

2) Shallow-water equations

Special case of Euler equations, still quasi-linear hyperbolic set

Rigid wall - 1 cond'n everywhere (V.n = 0)

Open domain

Subsonic regions ($|V| < \phi^{1/2}$):

inflow - 2 cond'ns

outflow - 1 cond'n

(there is a family of possible cond'ns)

Supersonic regions ($|V| > \phi^{1/2}$):

inflow - 3 cond'ns (u,v,ϕ)

outflow - 0

3) Hydrostatic primitive equations

(Set is **no longer** hyperbolic)

<u>Rigid wall</u> - 1 cond'n everywhere (V.n = 0)

Open domain

"Local, pointwise boundary conditions cannot yield a well-posed problem for the open boundary problem for the hydrostatic primitive equ'ns"

VISCOUS SETS

1) Viscous Euler equations

(i.e. compressible Navies-Stokes equations)

Quasi-linear hyperbolic set ->incomplete parabolic set

Rigid wall - 4 cond'ns everywhere

(V.n=0 + family of 3 cond'ns)

(3 more than inviscid case)

Open domain

Have to avoid generating internal viscous boundary layers

=> formulation must reduce to well-posed set for inviscid case.

ICTP-lbc.6

ICTP-It

inflow - 5 cond'ns

(1 more than inviscid case)

outflow - 4 condins

(3 more than inviscid case)

2) Shallow-water equations

Rigid wall - 2 cond'ns everywhere

(e.g. V=0)

Open domain

inflow - 3 cond'ns

outflow - 2 cond'ns

3) Hydrostatic primitive equations

Rigid wall - 3 cond'ns everywhere

(e.g. V=0?)

Open domain Still ill-posed

SUMMARY OF THEORY

Following holds for both inviscid and viscous cases.

Rigid wall

Well-posed: Euler, shallow-water and hydrostatic

primitive equation sets.

Open domain

Well-posed: Euler and shallow-water sets.

Ill-posed: Hydrostatic primitive equation sets.

IMPLICATIONS OF WELL-POSEDNESS THEORY FOR NUMERICAL MODELS

- 1) Over-specification in non-dissipative systems
 - leads to noise propagation from boundary at <u>fastest</u> signal speed of system (gravity-wave speed for barotropic and hydrostatic primitive equations).
- 2) Over-specification in dissipative systems
 - also leads to noise propagation from boundary at fastest signal speed, but error is at least damped.
- 3) Introducing viscosity
 - raises *order* of equations and # of boundary conditions
 - usually introduces <u>fictitious</u> internal viscous boundary layers in the fluid. Have to ensure that this error only propagates inwards <u>slowly</u>.

- 4) Best can hope for is that boundary-induced error propagates at the slowest signal speed (usually the local wind speed).
- 5) If a given strategy for an *open* domain works well in a *shallow-water* model, <u>won't necessarily</u> work in a *hydrostatic primitive equations* one.
- 6) Any set of lbc's for an *open* domain should give a well-posed problem in the special case of a rigid wall.

ICTP-lbc.10

ESTIMATING THE SIZE OF NUMERICAL BUFFER ZONES

Assuming that boundary-induced error propagates at the <u>local wind speed</u>, rather than at the much faster speed of the fastest external gravity wave,

and assuming a maximum-possible wind speed of 75 m/s,

then boundary-induced error can propagate inwards no more than <u>6500 km/ 24 hours</u> from an upstream boundary.

This is **considerable**! But still much smaller than if the error propagates as an external gravity wave.

POPULAR LBC STRATEGIES

FOR NON-INTERACTIVE REGIONAL MODELS

Perkey-Kreitzberg (MWR 1976)

- 1) Specify time tendencies of prognostic variables in a boundary region of width $4\Delta x$ (from driving model).
- 2) Blend with time tendencies of LA model in boundary region.
- 3) Diffuse results in boundary region

Williamson-Browning (JAM 1974)

- 1) Specify prognostic variables at inflow only (from driving model).
- 2) Diffuse results in boundary region.

Davies (QJRMS 1976)

- Relax prognostic variables in a boundary region of 5Δx towards values specified by driving model [i.e. add terms like -K(U-u) to rhs].
- 2) Diffuse results in boundary region.

Robert-Yakimiw (AO 1986)

Variation of Davies' strategy, but variables flattened in a boundary region.

Note: the common ingredient of all approaches - liberal doses of <u>diffusion!</u>

LINEARIZED 1-D SHALLOW-WATER MODE (Robert & Yakimiw, A-O, 1986)

EQUATIONS

$$\frac{\partial u}{\partial t} + U \frac{\partial u}{\partial x} - fv + \frac{\partial \phi}{\partial x} = 0$$
$$\frac{\partial v}{\partial t} + U \frac{\partial v}{\partial x} + fu = 0$$

$$\frac{\partial \Phi}{\partial t} + U \frac{\partial \Phi}{\partial x} - fUv + \Phi_0 \frac{\partial u}{\partial x} = 0$$

INITIAL CONDITION

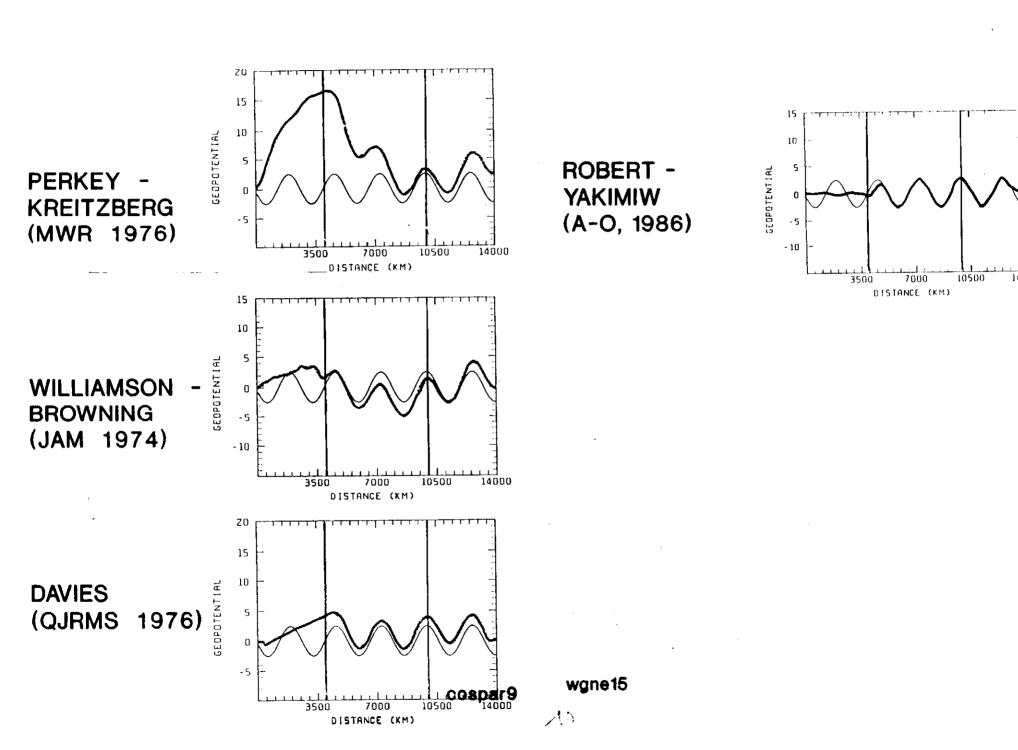
Slow mode solution such that

\$\Phi\$ = 2.5 \text{sin kx, wavelength} = 2667 \text{ km}\$

PARAMETERS

U = 46.3 m/s, ϕ_0 = 560 dam² s⁻² h = 100 km, f = f (45°), L = 14,000 km

FORECAST PERIOD - 24h



SHALLOW-WATER EXPERIMENTS (Yakimiw & Robert, AO, 1990)

Control integration

Driving model - T106 spectral

Forecast model - semi-implicit semi-Lagrangian gridpoint

- 127 km res over 235 x 235 quasihemispheric domain (~ 30,000 km x 30,000 km)

 $-\Delta t = 1h$

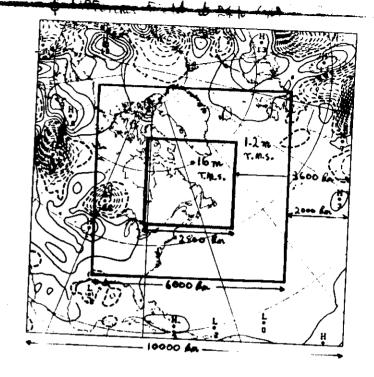
Regional integration

Driving model - T31 spectral

Forecast model - semi-implicit semi-Lagrangian gridpoint

 127 km res over 81 x 81 regional domain (~ 10,000 km x 10,000 km)

 $-\Delta t = 1h$



1OTE

These experiments use 500 mb data.

For <u>baroclinic</u> models, the maximum wind speed is approximately *twice* as large, and in the worst case the error can propagate inwards <u>twice</u> as fast.

Thus any buffer region should be twice as large as for a shallow-water model that uses 500 mb data.

OTHER PROBLEM AREAS

- 1) Too old a forecast from driving model (e.g. Gustafsson, Tellus, 1990).
- 2) Time and space interpolation of forecast of driving model.
- 3) Unrealistically low growth of perturbations in interior of domain (forecast overly-constrained by boundary constraints), contradicts predictability results over larger domains.

(Errico & Baumhefner, MWR, 1990)

THE INTERACTIVE APPROACH

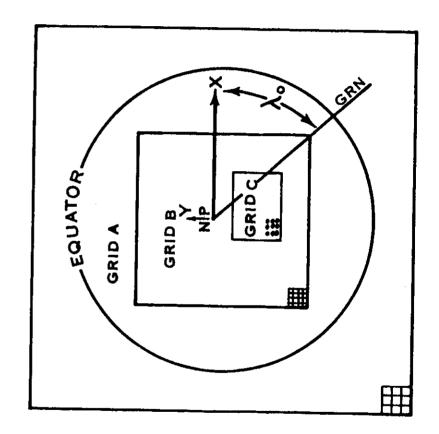
Here the *coarse-resolution forecast* of the outer domain *interacts* throughout the forecast period with the *fine-resolution* forecast of the area of interest.

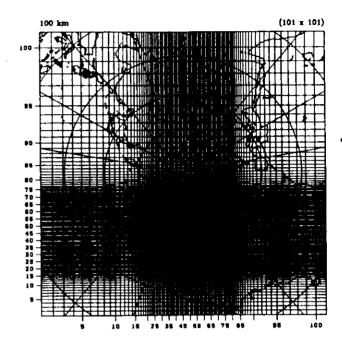
Can vary resolution

- abruptly
- discretely across a resolution interface (e.g. NGM)
- <u>smoothly</u> away from the high-resolution area of interest (e.g. FER model)

Straightforward to apply a <u>rigid wall condition</u> at boundary of outer domain:

- works well if boundary is in tropics
- gives well-posed problem.



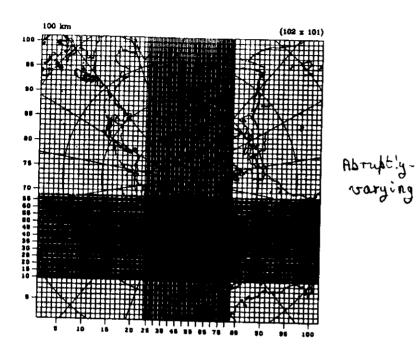


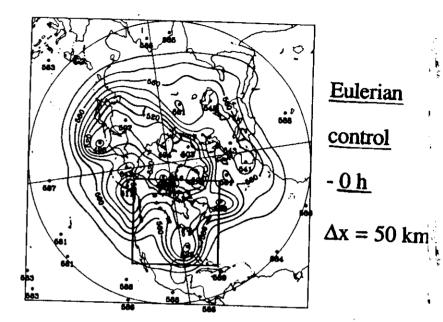
Smoothlywarying

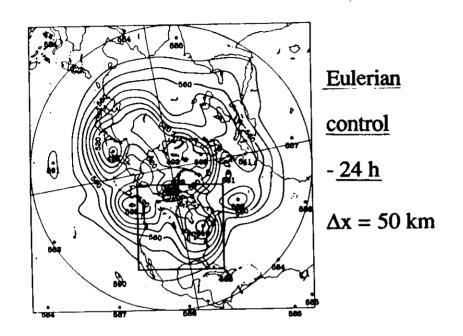
3 FINITE-ELEMENT SHALLOW-WATER REGIONAL MODELS

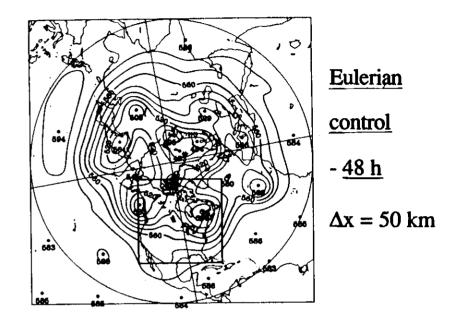
24

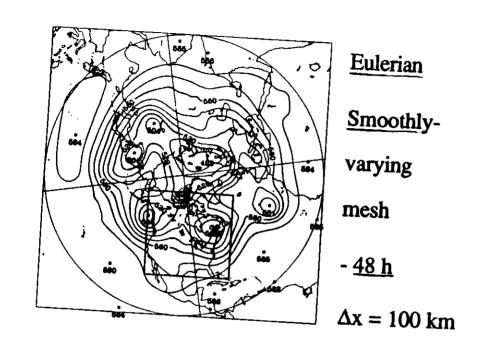
dt = 5 mins	dx = 50 km	401 x 401 mesh uniform-res	3-time-level	linear FE's	Staniforth & Mitchell (1978)	Eulerian control
dt = 10 mins	dx = 100 km	101 x 101 mesh variable-res (61 x 61 uniform)	3-time-level	linear FE's	Staniforth & Mitchell (1978)	Eulerian
dt = 60 mins	dx = 100 km	101 x 101 mesh variable-res (61 x 61 uniform)	2-time-level	pseudostaggering	Côté et al (1990)	Semi-Lagrangian

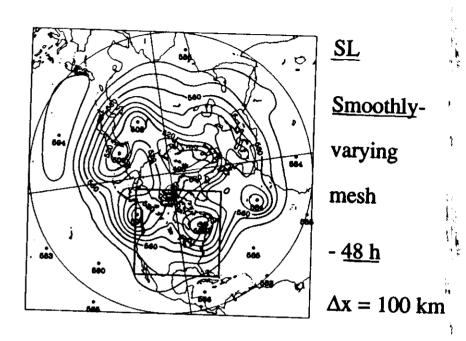




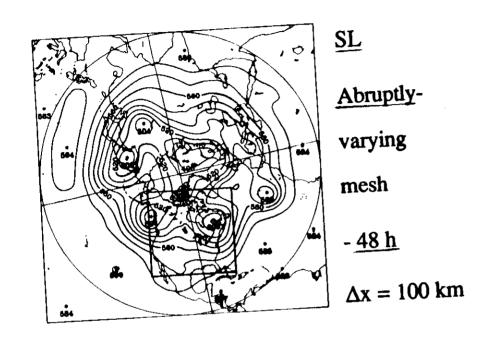


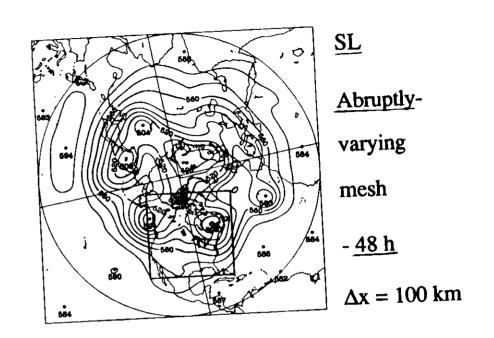






UPC 485, Switch

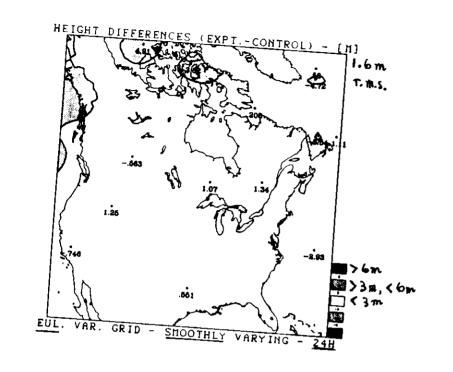


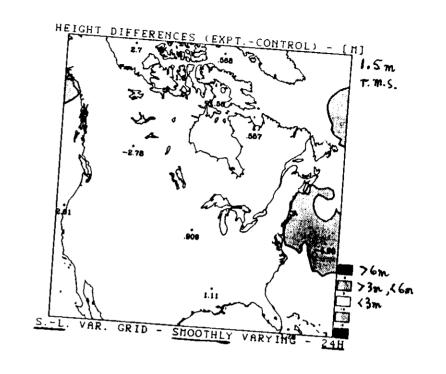


F

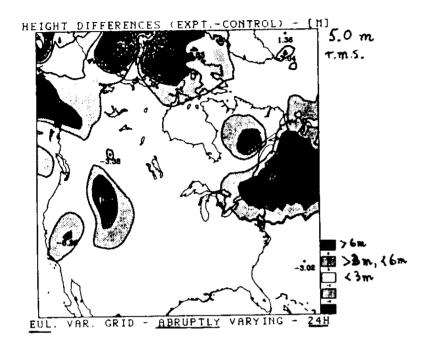
cas, 134, the

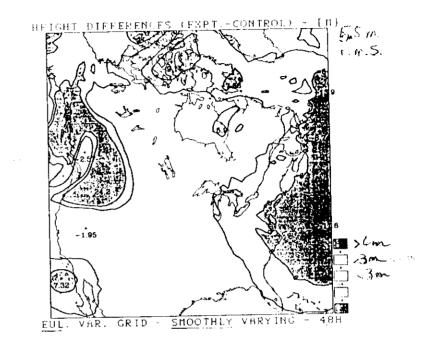
THE AN PER

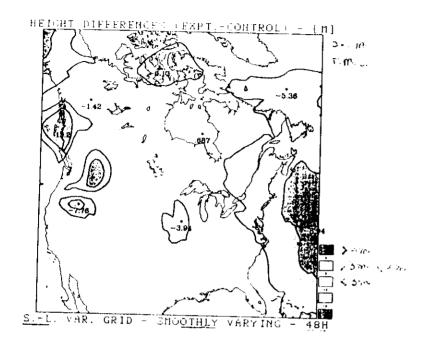


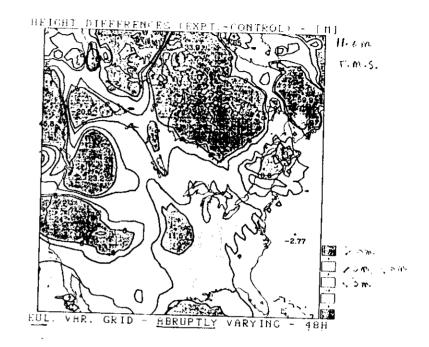


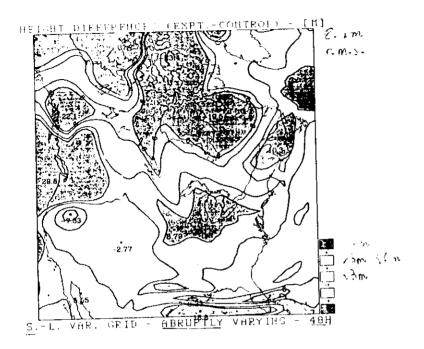
78 7











RMS HEIGHT DIFFERENCE (m)

REGION A								
		Eulerian	Semi-Lagrangian					
Smoothly varying grid	24H	1.6	1.5					
	48H	5.5	3.1					
Abruptkly varying grid	24H	5.0	4.0					
	48H	11.4	8.4					

REGION B						
		Eulerian	Semi-Lagrangian			
Smoothly varying grid	24H	0.6	0.9			
	48H	2.1	1.9			
Abruptilly varying grid	24H	2.4	2.6			
	4811	7.0	6.4			

<u>CONCLUSIONS</u> (mine, not necessarily yours!)

- 1) Applying *open* lateral boundary conditions to *hydrostatic primitive equation* models is fraught with **peril**.
- 2) It may be possible.
- 3) Difficulties of this approach are greatly underestimated by regional modelling community.
- 4) *Variable-res* hemispheric (& global) models an attractive *cost-effective alternative* for regional forecasting to 48 or 72 h.