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METHODS OF DATA ASSIMILATION

By P.Uncen, European Centre for Medium Range Weather Forecasts,
Shinfield Park, Reading, Berkshire RG2 9AX, England.

1. INTRODUCTION

1.1 Summary

These lectures are intended to give insight into the methods uses
in metecrclocical data analysis. The aims of the analvsic i1l ke
discussed and what tools are available to make the best possible
analysis. Different methods are reviewed although most of the in-depth
discussicn will be concerned with optimum interpelation since this is
the most widely used method. The problem making use cof the tine
dimension is also discussed and the adjcint method of assimilation is &
recent interesting development in this area. Several parts of these
note make use of & lecture note by Lonnberg and Hollingsworth (1684)

1.2 Aims

A numerical analysis of the state of the atmecsechere is needed fer
the following purposes:

1) Initielising a numerical forecast. In this case the besz
analysis is the one which gives the best numerical forecast. EHence tre
analysis scheme may need te be tuned for the particular forecast model
which it is used with ansd useé for.

2) Diagnostic studisg cf the atmosphrere, displays in the forms of
Plotted charts, archives and fcrecast verification. The best analvs:
in trhis context may be different from 1). Systema-ic biases need to b
avoiced fcor diagrostic anéd climatcleocical stucdies. When & forecas
model is used for the first guess this influences the anzlysis a 1o
and has to be born in ming.

3) Observation checking. For all practical schemes this is & very
important problem. Many of the observations with large errors may
rejected by the other guality conirol me-hods mentioned when ciscuss:
observations but the best final check is against ar analysis n
without the datum to be checked.
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1.3 Data available

1) Observations. These have been discussed in a previcus lecture
as well as in the lecture note abo>ut observations.

2) TFirs:- guess. Most analysis methods use a preliminary estimate
of the field being analysed which is changed during the analysis
procedure only at and around observationg. Usually this is done by
analysing departures from the first guess field rather than the total
values. The possible fields which can be used as first guess are:

a) climatology, i.e. the average analysis for the appropriate
5eason

T ) persistence, i.e. previous analysis
c) forecast, i.e. a numerical forecast from the previous analysis

Fer a particuler analysis one or a ccmbination of these fields may
be chosen depending on the appiication.

3} Knowledge of the l1ikely structures &nd scales of atmospheric
motion. Thnis information is often incorporated inplicitly into
analysis schemes without Dbeing clearly stated or gquantified. Suc!
knowiedge is often expressed as relaticnshipe which the acmesphere
obeys to certain approximations and these may be used as constraints on
the analysis. The follcwinc list of ceonditicns have Dbeen used  ino
analysis schemes:

a) Increments to atmeospheric fields are smooth a&nd continuous.
This is done in spite ¢f the existence cf fronts,

1) Thne value being anelyveced is known t¢ be o©f certain scales.
Thus a <cingle observaticn will influence the analysis on the mcs:t
likely scales ¢r scale &né  dense rvations will ke
averaged over these scales Zn & deal analysis scheme.

c} Trhe atmcsphere is in hydrostatic kalance.

d) The is in geostrophic or gradient wind balance.

e) Tre horizontal wind is non-divergent.

f) The atmosphere is in a state which satisfies the balance
eguation.

g} The atmosphere is convectively stable.

¢} The a:imosphere is Lot super-saturated.

There ars, nowever, cther well known features of the &tmosphers
wWris®  are muUch more diffircult to naxe use cof in an analysis schene end
therefore not vet used in any practical schemes:



1) Baroclinic developing systems have a certain tilt with height.

2) Warm sectors in baroclinic systems have a certain shape.



2. CONTINUOUS AND INTERMITTENT ASSIMILATION

GCile can make use of a previsus anpa.ysis oI a Jorendast Uti &
previous analysis to introduce a time dimension into the analysis.
This is really the meaning of data assimilaticn. Such a first guess
may give a good estimate of the current state of the atmosphere and
observatiorns are used te make small adjustmerts to the first guess
field. Ac the procedure is repeated for subsequent observaticn taimes
the analyses should improve more and more as more cata are influencirg
the sta-e cf the atmosphere through the "memory” of the first guesses.
Normaily the firsz guess is constructed by using a forecast model since
most of the time evolution during say & 6-hour period can be exp‘a;;e
by the mode-. in this conteXt there are basically two ifferen wey
of doing data assimilation. Many observations are made at so calle
synoptic times every 3 or 6 hours for {SYNOP) or mainly every 1Z hour
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for TEMP's and PILCT's. ther orservations are avaiable at irreguc

times like satellite and aircraft data. For both cases one shou

ideally introduce cbservations and analyse them at using the firs
guess at the appropriate time and continue the forecast from <=
updated state of +the atmosphere at each observation time. This g
called continucus assimilaticn.
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model to have a balance
repeatedly.

mhe intermittent methcd cf data asgimilaticon gathers
cbservations during a time period and treats them as being valid
the same time (except maybe some corrections of okserved values W&
pcesible) and analyses the atmosphere using &l! +these &
simulaneously. The relationshins petween wind and pressure/heigh
and between surface and upper air data can then be explicited.
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These me-hods are both often referred to as 4-dimensional analys:ic
but observations in the time dimension dc not enter the analysis in o
same way as those for the space dimensiorns. Their effect are cnly
carried forward by the forecast model in an indirect way and it wW2u:l
be more appropriate tc call it a 3 1/2-dimensional analysis.
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3. THE SUCCESSIVE CORRECTION METEQD

The succesive correction method was the first automated analysis
method as dJdeveloped by Berthersscon and Doos (1955) and is alsc often
referred to as Cressman z2nalysis after Cressman (1G-5).

The first guess is constructed from a forecast or a combination of
forecast, previous analysis and climatology depending of the perceived

accuracy ©f the different fields. Departures between observations,
Fod

A? » ané the first guess values, AL , are formed and the analysed

departure at a first oguess grid point, A; + 15 then a linear

compbination of all the observations.
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The weights Wgs; ©f the observations are determined by a function
of distance between observation and gridpoint, Chei - They are then
normalised by the sum o©f the weights for all cbservations arsd
optionally a weight for the first guess, c. Without tris weight the
firs: guess would not be used zt all.
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In practice & further correction is reccessary tc allow for unever
distribution of data.

The distance function falls close tc zerc at scme radius ané only
cbservaticns within the circle need to be ccnsicdzred for &ny cne
gridpecint. The process can be repeated with reduced such radie in
order to analyse finer scales in repeated scans.

The method has been gquite successive especially where enough data
are available t¢ define the atmosphere an3d is very chesr in compuiaz:icn
and easily programmed. It ig however very empirical in its rnature ars
Proper use of the known properties of the atmosphere cannct be made.



4. VARIATIONAL ANALYSIS USING THE ADJCINT METHOD

Variational techniques have Dbeen suggested for use in data
assimilation in various contexts over the last decades. In operaticnzl
syatems  such methods .ave mainrly beenl used as adjusi increncnts o:
different variables analysed separately. Renewed interest has emerced
since the recent developments extending the variational method in the
time dimension by using the adjeoint of a forecast model. The
desribtion of the method here follows Dimet and Talagrand (198€}.

The variational prehlen is to finé a state ¥Y(t) which minimizes
the functicnal

H Yw]= > < E!ctn*‘dct), Ve - ) > (1)

where < , > denotes the scalar product defined for the space we gzre
cecnsidering. The observations Y(t‘) are available at times
t,,tz,....tn ancé we seek the solution which minimizes J over the whcle
time periocd tyith- The time evolution ©f Y is desribed by a forecast
model H:

dJ- H(Y) 4.2

The values Y(tg) in (1) are thus computeé using (4.2). The minimum ¢
J will not in general be zero since the observations cannot be expecte
to be exactlv compatible with the state described by the {forecas
model.
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The ropler  formulated by (4.1) and (4.2) is uniguely defined Iy
by the state vector ¥{(t) for any t in the time interval considerecz.
Then it is sufficient to determine the minimum of J at one time Steg,
say the initial time and find an ¥(t;) which minmizes the cost function
J over the wncle time interval t;,-t,. The first crcéer variation of J
with respect to a variatien of ¥(tp) is

§3=2Z7< Yee-Jud, $Ye0 > C

The varlatlons (t ) are cbtzined by integrating the tangent lirear
sgquatiocn

dd¥ = A ) SY (4/9)
dt '
starting from some initial variation JY(t,). This egquatiorn is obtair

by linearizing the forecast model around the trajectory ¥(t) for ez
time step. The coefficients of A are made up of the values of the
derivatives of H with respezt to Y. The actual values of Y from the
full system integrated by {4.2) from a first guess state are thus used
at each time step for defining the derivatives, The eguatiorn (4.4)
descrikes the evolution along a tangent plane to the original model at
each time ster. The time evolution of (4.4) will not be the same as
irtecrating (4.2) witlh the initial condition ¥(t;)-d¥(fy) but is a g
aproximazion tc it provided the deparzue J¥(t;) is small.

coefficients in A are fixed and independent of the initial variatic
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S7(ty). S¥(t) at any time step is thus linearly dependent on the
initial condition and this linear operator is called the resolvent
R(ti.t1) between times t/ and ty.

SY() = R(ti,t;) &Yee) (49

Substituting inteo (4.3) gives
§3= 23 < Y- Yeeo, R (tit) SYCep>(4¢)

Now, the second term in (4.6} involves the resclvent of the
variation for all the time steps involved but we would like to know the
variation SY(t1) itself which minimizes J in (4.3). A powerful tocol
in linear algebra tec achieve this is to use the adjoint of the linear
operator R. The adjoint of a linear operator L is defineé by the
following equality using the scalar product for any twe vectors ¥ and 2
in the space considered.

—_— *
<X,Lz>=<[*X,z> (2.7)
Using this relationship and introducing R“ as the adjoint of R gives

§3= <22 R™(t0t) [¥(6) - Y0l , §Y(a) (4.9)

Thigs is acually a definition of the gradient of J. The scalar product
betweern the gradient and the variation of the independent variable {V)
gives the variation of the function (J). The gradient of J is thus

VJ = 2,_2.: R*(t‘,’) Cz) [3(&’)“9\(@ (Lf.?)

In order tc find R“ the adjoint tangent linear equation is
introduced here:

895~ A%t) &Y | (410

éYE is a different wvariation of ¥ and-A’ is the adjecint cof A. The
resolvent of (4.10) between times t and ¢ is calleé s{t,t’ ). For any
two solutions of the direzt and adjeint tangent linear esguaticns, (4.4)
and (4.10) respectively, their scalar product is constant with time
since

d - - < dX g ]
$<XW, Zw)> = <L, ZE@)r+< X9, 42>+
=L AMX@D,ZW> +<XW),~A92W)> = O (4.11)

This follows directly from the definition of the adjoint (4.7) and the
identity can be used to compare a solution of the direct tangent linear
equation (4.4) at time t; from the initial condition X(tg ) with the
soluticn of the adjoint eguation (4.10) with initial conditien 2{t;).
The scelar products between the two states at ty and at t[ must be the
same.,

<XCt), S(t,ec)Z(t)> = < R{&,Xitn, Z>H.12)



It then follows from the definition of adjoint that the desired R* in
(4.8) is actually the resclvent of the adjoint equaticn S.

S(t,t:) = R™(tist) (4.13)

anag

SI(tH)= R” (tuﬁ)gtjftc) Ciﬂﬂ

Having found the adjoint of R the term Rt(t;,t1)[Y(t£)-;2t[)I can
be computed by a backwards integration cf (4.10) from tj to tg. This
is done for each time step and observatlon and contributions for time
step t] from the departures Y(t;)- Y(t‘) resolved by R™ are accumulated.
The f:.na1 result is half the gradient of of J. This gradient is then
used in & gerent algorithm to find a lower value of J.

In practice the procedure starts by inegrating the forecast mocdel
from a first guess and storang the values of Y at each time stec.
These will be used for forming the coefficients in 2 . The adjoinc
resolvent c¢an then be computed and contributions from each observation
are accumulated. The decent algorithm finds a lower value of J but
this 4is usually not the minimum. The new values of Y(t ) are used for
another integration of the forecast model and new gepartures calculated
to compute & new estimate of the gradient. The iterative process
continues until & satisfactory minimum has been reached.

Fractical trials by Courtier and Talagrand (1987) has <hown tha:z

€ existinc decent algerithms work well for a lecw resclut:on
tarotreopic model. The resulting analysis is realistic Froviged ths
data coverage is good and the time interval long enough. Improvements
were noticed when & noise constraint was added to the cest function J.

thes
e

This method is very demanrding in terms of computer resources singe
guite a few iterations may bDe necessary in a full model. The main
concerns are the cost of repeated model integrations therselves,
storage of all the tradectory Y(t) and the coefficients foer & and the
cost and steorace needed for the decent algorithm. There are hLowever
many attractions which makes research in this area important for futur
cata assimilation systems I+ is the c¢nly tractable way ¢ really
including the time dlmenSLOn and using the observations according t
their sensitivity with respect to the 4initial state of the mode
Informaticn is spread Dboth forwards anéd backwards in time where
today's 3 1/2-éimensional schemes only can convey information forwar
in time.
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The wvariational approach has a lot of flexibility. The cosc
function can be split into mary independent terms for e.g. incdividual
observaticn types, model balance and other possible constraints. Also
the way that the observed data are realated tco the model variables can
be considered correctly when calculating the gradient. An importanc
exanmple of this is the usage cf satellite radiation data.



5. OPTIMUM INTERPOLATION

5.1 Introducticn

Optimum interpoclation is alsc sometimes called statistical
interpolation since the interpolation formula depends on the knowledge
on knowledge of the first and second order statistical moments of the
fields involved. It is only optimal in a linear sense if the
statistics is exact Dbut this is of course never the case. The
technigue is usually credited to Gandin (1963)

5.2 Statistical concepts

a) Expected wvalue. This is the average of a large number of
realisations of observaticns or pairs o©of observations denoted Dy
< >.

b} True value. This is the actual value of the atmospheric state
after the scales we do not wish to analyse have been removed. It is
thus a somewhat artificial concept but it should be thought ©of as the
best approximation of the real state that the assimilation system carn
pcssibly achieve with its current resolution. The true value is
denoted by the super-script t and cbservations have super-scripts ¢ ang
first guess predictions use p. It is assumed that observations anc
first guesses are unbiased.

c} Error. Departures from the true values for cbservations nc
first guess values. The variance of such errors is the expected value
of the sguares of such errors andé denoted by £t For prediction anc
observation errors they are:

EFf= < (A-A)%> = <o
B = < (A%-A>= <>

&) Covariances. For +two peints 31 ard j the prelicticrn errcr
covariance is <a_;’cu°> and the cobservation errecr covariance (&’ QJ'>. The
predicticn errcr - observation error covariance <5Q¢y% is assumed to Le
zero here.

e) Correlations are obtained by dividing the covariances by the
two square-roots of the involved variances (standard deviations)}. The
correlations are thus normalised; i.e. they are always in the rance
[1,-1]. They are used in most practical schemes instead of covariances
but they dc not necessarily have to be used.

f) Homogeneity. A statistical property of a meteorclogical field
is homogenecus if its dependence ©n the two positions is independent cI
a translation o©f those two positions, i.e. the propert is nly
dependent on the separation anc¢ directien but not of the positions of



the two points.

g) Isotropv. A statistical property {e.g. variance of covariance)
is isotropic if it is indepndent of direction.

5.3 Optinum incerpolation formulas

The analysis is formed through a linear combination of
observationa: departures from the first guess with some weights w; for
each observation 1.

AL-AL = Z w,; (AS-A) 5.3.1)

Subtracting the true values A from both sides anéd adding and
subtracting the true values at the cbhbservation point inside the sum
gives:

N s & _
Ai-/\:—‘l Al - A +ZWJ<Z (Ac-Ad - - Ac)) XY

The subscript i means that the values are at the observation positions
whereas the analysed or interpelated value Ak is generally not at an
observation point. Normally the analysis is regquired at the model's
gridpoints. It is covenient to norma“iie the departures Dby the
prediction errcr standard devi ation when we are dealings with homogencus
cases.

Aofh o AALL 2w ait - AAD)
EkP Ei =1 ELP

The normalireed values are
(A&-AE)/E,
af < (Ri-AD/EL B
e p i
wl = (AL =AD/EL ;&= E SED & BT

Agh=al v 2w (5~ o) (5.33)
i=!

The interpolation error on the left hand side of {5.3.3) 4is then
squared to give us an expression for the squared interpslation error.

k) (E )2 (d:)z'f' Zg Wkg(d-kpdo)fo-_dka PJ "
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This positive guantity should be minimized. However we can only hope
to do this in a statistical sense, i.e. over a large number of cases.
This 4is done by forming the expected values of all terms in (5.3.4).
The left hand side is then the normalized interpclation error.

. N o ;
Ee = |+ 2% Vi (<o ¢:°>'é£°~ <&tlal>) -
=

*Z[Wkd Zw,q(cx. ai>E e ~ <> €7 -
J-'

" — -o _? "9 | ,P'.P }
<afal>e" + < afufs)

(5.3.5)

Assuming that the predicticn errors are uncorrelated with the
bservation errors gives:
& = 1-2 2w <°§(05>1' Wk,{ Wk;@°"—d—>

il

J=

+<otfat> 960 ) (5.3.¢)
J J e

This error should be as small as pcssible and the weichis w can De
varied for each cbservaticon so that é. becomes smaller. The minimum
cf & with respect to each otservational weight is found Ly taking the
partial derivatives with resocect to each weight qk-and setting that to
zeroc. Trhis leads to N eguations, one for each¥observatzion. The cne
for ckservaticn j is:

N
O= -2 <ofeif» + 2 2: Wi (<o ol > +
i—

+<olia> ¢ )

ZW (<afal>+<af 2 >£7¢; ) <ot af

(6.3.7)

There is now & system ©of eguations of the form (5.3.7), one for

gach wvalie of . The unkncwn weights aopear in all ecuaticns a
be fcouné Ly e.c. Geussian elirinzticn. It should be rncted traz
5

au
left hand side of (5.2.7) invclve correlations Letwezen prediction



errors at observation points and observatiocn errors at the observaticn
points whereas the right hand side has the Fprediction err

correlations between observation pcints and analvsis p011ts
{cridpoints). The knowledge of these statistical cuantities is thus
recuired in corder to set up the system., In matrix form the coeffici
mat.oix o4 2 the less Land side for the weights is c¢=171.(13 ;;==1u T
prediction errror vector on the right hand side FE. ¥ only invoive

I‘D
&
1

~3
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observaticn points and can be split into its pred-ct CL. errcr par
and observation error part . On the right hand side, +the vector
involves Dboth observatien and grid points. 1In matrix form £.3.7) ¢
be written:

‘mﬂUUJt

33

i

J —

w;_m_:fk M= E£+9

The weights can alsc be found by inverting M:

w= M'P, (3.3.8

Using these values in (5.3.6) for the weights gives alsc & valug of
estimated interpolation error:

1 =2 WiPet Wi Mw (5.3 2)

yzain it must Dbe emphazised that these errors are the difference
bezween the aralvsed state and the best pessible state nat we cocull
ortain With the first guess medel. As the number ¢f cbservatichs
increzse to infinity this error goes to Zzero. It is not te say that ws
nave cde-errined the atmcsphere exactly, only that we have fitted ins
atmosphere on the resolved scales exactly in a least csguare sense i
all such cases are averagesd andé the statistics are the right statistics
for this sample.

it
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z sic preoperty cof O0.I. the effect of arnel -
cne chservation is considered. The M matrix has then & parcicularily
I

wnerellik ig & correlaticn function. The inverse cf ¥ &nd weight cCf
the ckservaticn are -

Q"I - ]/G -+ 80'2.) _j Vvk'-'-" /"k /(i + 802)

£ ig ¢Lven C¥
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where b is the normalised departure of the observation. At the
observation point the analysed value is

b
v &
I can be seen that the analysed wvealne s always smal.er than the
cbserved cne. How much dJdepends cn the ratio between perceives
observation errcor and predicticn error. The interpclaticn to other
points will again result in smaller values depending on the correlation
function (<1). '

In general 0.I. can be viewed as a twoc-step procedure. Firsz
analysis at observation points meaning filtering of the data. Then
interpolation to the gridpoints of the filtered data. These are incdeed
the two purpcses of 0.I1. as described by Gandin (15&3).



6. MULTI-VARIATE ANALYSIS

6.1 Introduction

The prediction errer cerrelations <a a> in P can be considered as
correlations between only the same variable at different points 1 ang
j. In +this case the analysis is called uni-variate since only one
variable is analysed using only one cobserved variable. When meore than
one observation variable is available and/or more than one analysis
variable is required the analysis has to be performed several times
with one variable at a time. This is the normal way of treating fields
which are independent of each other or are difficult to relate.
Examples of these are surface parameters like snowdepth, low-level win
and surface temperature. The ceocrrelatiens in P can also refer tc
cross-correlations Dbetween different variables at i and j if more than
one observed varijable is used when setting up the maitrices P and c.
Alsc the vector P contain such cross-correlations {petween observations
and grid-points) due to different observed variables but also due tc
the possibility of analysing several variables simultaneously. This is
called multi-variate analysis and is often done for upper-air
parameters 1like winé Ccomponents, geopotential heights at pressure
levels and pressures at geometric heihts. These are related to a good
degree cf aproximation through gecstroply and nen-divergence.

11 order for the 0.I. analysis to produce reasonable results, t
Cross— CCrrelations must satisiy the same rule as fcr the uni-variate
] [~

cerrelations, namely that the matrix is positive definite. This is &
furcamental property o©f any correlaticn matrix and thereicore care has
te be taken when setting up such a matrix. Usually one mode.s
correlations as well-known function cf distance and vertical
separation. These functiocns should be such that they alwavs produce
pcsitive definite correlaticon matrices and this can be ensured if they
have & postive spectrum. Exp(-O.sz/bl) is such a function which has

been widely used.

There are of course alsc more interesting constraints Cn tre
crosg-correlations. mhe idez behind the multi-variaze system ic th
we can make use of our Kknowledge c©f the physical ané stacietl
relaticnships between the different variables; otherwise it would maxe
no sense to try to analyse different variables gimultaneously.

™
Pt

(9]

The geostrophic relationship is the most important example ci such
relationships te be utilized. The v-gomponent and height
cross—covariance can be derived as follows.

99 2
F ax;
where g is the constant of gravity and f the Ceoriclis parameter

<Z,4>7 <2 493 = fisi <Z;z;>

The height-wind c~var1ance: can thus be derived from a model of cCn.Y

- 14 -



height-height covariances. Note that the reasoning here has been
confined to covariances and not correlations as used in the previously
derived C.I. egqQuations. Wher converting to correlatiors the
geostrophic relationship should be used again in corder to get the
censistent norma’lsatlon facters E for heights ané winds.

= {8} - JﬁL-a j)
<ViV)>=(3)s, axJaz 2j> 5 <L Zre T Sy

g-xj<zt-zj>: 2&;}‘ E gx ax<2 zJ>-[(’<b’s)
Lim <V; V. ()Z:z Ef = E, = Ez El

xg‘?X
Provided the observations are normalized in this way and correlatlons
are mcdelled geostrophically the resulting analysis incremerts will

satisfy the geostrophic relationship.

6.2 The full covariance model

A1l the auto-correlations and crosscorrelations together with the
normalistations regquired are best derived from a model of prediction
error covariances o¢f geopotential, streamfunction and velocity
potential (and the r cross-covariances)} folliowing Daley {198%).

<OG>= £y Vi Tas (1) (6.214)
QLJUW>:E,¢/ V(// 77}‘1"(") (  b)
SXX>= Ex Vi Thex(r) (¢
<@W>:ﬂE¢EW V(Wﬁww ( d)
SXY>= ¥ ExEy Vagy TTxp () ( e
<SXO>=n ExEp Vp TTxp(+) ( F

Here homogenity and isotropy have been assumed since there is ne
angular and spatial dependence in the functions 17. The geopectential
and streamfunction covarisnces usually have the same horizontal
structure 77(r0 in order to facilitate the geostrophic constraint for
the analysis via the geostrophic coupling constant,“in (6.2.14).
Another simplification is that the cross-covariances between velocity
potential and streamfunction as well as between velocity potentisal and
geopotential usually are set to zero since there is evidence that these
terms are very small (see e.g. Hollingsworth and Leanberg (1Sg86) ).
The preciction error covariance model has been assumed to be separable
in one herizontal part (f7) an¢ ancther vertical part described by the
varicus funticns V above,

e*E,,_z



The horizontal wind covariances can then be derived by

differentiating the streamfunction ané velocity potential covariances
using Helmhcltz's theorem :

v=vX+ kx V¥ (6.2.2)
or for the two heorizontal wind compcnents

U= 2X —i govE gy rof (6-23-9)

We can then derive correlations between wind components at positiens
and j assuming nc horizontal variation in the error variancecs

<u;x5->=<(-a_ +2.%) (3.%3, ) >
= > -
y & <Y + 2 M<?<L2J>

93*‘331< VJX g +§‘ g'x'

= -ty«a‘,a ’7w+txa by ﬁxﬂ

3X; 3y;
"B ($e%y ~ 53 ) e (625)
NG <(—a—3c 75 ("‘ ‘w'*‘&x’)ddl)}:
C%Jj ‘f"f/>+§_
- §5¢a&<9/2»’> - :;_59 % <%-)d5>:
= EW %-%yjﬂw + txax‘ax Thy -
“Ey/tx(ay ox; T % )TSV,E (6.2, e)
<Yv>= <d5<£ i+ §y'25) (gxy/ % ;EJ')>:

TSRS 33, <X X

¢ S 3y <X "':?&ﬁ 2>
= Ef y fs,ia Ty + E4 a‘yfawﬁfu *Erfx@—,g%
9‘:/ axJ) 477”)6 (62.7)



and if we assume that the crosscorrelations 17wro

VU= Eg 3 3 Sy, T * 5852 ST (628)
<V V> = E*"ax,_a mwtzé; 772,7 €2.92)

<V Vi> = h_E’Vay;aKjﬁw 'f'Ex ﬁi&%]ﬁk} (62 10)

and if we assume isotropy i.e.
1= 77(/',,J> J LJ V@ -x r(y;-w)z

then the partial derivatives can be transformed to radial derivatives
only

3 = o 2 o x 0 oy
Sx; OX[or” ;2 e 3_;_,”_}1/ é%,
P ( .
Ny = - X X’) ) = - K
5x; 7 53 wr ”’);‘%
a é. - Q —{x;~x7 .y
O T2 P P
22 [ar 7 S8 - ko 5
oYy ay = L [~ (%-9) R (Y~
L J aju( 7 o r%)%ﬁ %r -

= (-1 9{"1 Y -y )l N2
[ r+<—;§"—)]‘a% h (—ﬁ—‘ﬁ;’) .

232 . =y, -
Fusyj” 50 LR - g

]

or T
ut 5})(‘\‘ _XJ)J @["‘j)(%-x)gz'
r3 12 or?
2 3
%307 2. 0)3 - x|
<3j,3r

Q‘ x)(y"ﬁj) =X - 2.
J 2 - Q‘_ﬁir(gc_z&)gp_



inserting these expressions in EQ. &.2.8-10 gives:

<V v>= Eo [~ (1-0iz y))m (_y_‘_l) 32]%
+ EX - (1- & ))15_()( -XJ)aajﬂxy

re Jrz

<Vovi> = By [-(1- (X XL~ (g
J 7 J)Q]T?W

+ EZZ[ ( Cy g/} L
Vi by,

<l/- V> = ( )<J")f' i Y
Ui v, J)g *")[%;% a;,[@mr + 5]

From Eg. 6.2.11-13 it is werth noting & few things:
x <(yvy>» Ccar be found by retating <un> 83 degress.
x Along the ¥-axis <uu> jis:
=2/ 377, Z
~Eyp 2l ~ £y T (620)
or
» Along the y-axis <uu> is:

2 32 2
9’3,7\7;&5»"‘ 2‘,45—77 @,2./5)

= <uv> is zerc along both X- anéd y-axes.
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6.3 The effect of including divergent correlations

The total wind prediction error variance EvZ is divided into a
divergent vart (YY) and non-divergent part {(1-)).

-2 yd ~—
Z:i’ = AE?}% + Zi)fL
Eyt=v E/f
E;: SQ‘*V)EVZ

The effect on the wind correlations cof increasing the divergent
part of the wind forecast error can be seen in Figs. 1 and 2 {the same
horizontal scale is employed for both stream function and veloCity
potential). They display the vector and scalar correlations with a
single u-component situated at 40 N, 40 W. The correliations are
exactly as they would be in the ECMWF analysis system with full
spherical gecmetry is employed except that the constant large scale
term (see HL) 4is omitted for clarity. The v-v correlations are not
shown here; they can be found by just rotating the u-u correlations 20
degrees anti-clockwise {(apart from some <change in shape due to map
factors) and the v-u correlaticn is always the same as u-v as can be
deduced from Egs. (6.2.5) and (6.2.6). As W is introduced with a value
of 0.1 the mazor effect is t¢ recduce the cross-correlaticon u-v and the
necative 1lobes of the u-u correlation. The combined effect for the
vectors is a significantly reduced return flow as the top panels in
Tig. 1 show. WhernW=0.5 +he auto-correlation becomes circular (Fig. 2)
and the cross-correlation zerc since the 1longitudanal &and transverse
correlations now are equal ({(6.2.5) and(6.2.6)}). (This is of course
only true when the same horizontal structures T anéd G have been
employed). With this choice of the analysis would be uni-variate in
u and v and the definition of {6.2.3a-c) implies tha:t egual amoun:ts
of wvorticity and -divergence are assumed for the first guess error.
Lorenc (1S79) pointed out this consequence of analysing u and v
components separately. Finally, when using purely divergent structure
functiens with y =1 (Fig. 2 right) we see that the u-u ané u-v
correlations are of <the same shape as for the non-divergent case but
they are turned anti-clockwice 9C degrees.
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7. THE STATISTICAL STRUCTURE OF THE SHORT RANGE FORECAST ERRORS

7.1 In+trecduction

B vital component of the O.I. system 4is the choice of the
statistics used to model all the correlations necessary in the M ané P
matrices. This section describes how this has been done for prediction
errors (F) for the ECHWF system. The work has Deen done by
Hollingswerth and Lonnberg (1586) and the following description is a
summary of their results.

7.2 Isotrcpic covariances

In the previous section it was shown how the covariances for the
two horizontal! winé components can be derived. Also the expressions
for <uu>y and <vv> along the X and y axes were given there.

QUUZ+UU>y = = ('rl' 9—1)( W + Ly 77431*) Q’z

VU= <pu>y = —(rar -;—97_2;_)(5}0277}’}‘_5,‘?27?&9 @.2,2)

Now, i¥ & larce set ©f gtaticstics of Zepartures between the £-hciur
first guess forecast values &nd observed values is formed covariances
can be computed for all rpairs of stations. For each such pair the
coordinate system can be rotated so that the x-axis is along the line
joining the two stations and the y-axis ortnhogonal to this line. The
1ocal Wind comronents of the departures are then transformed to the new
system anc¢ the system (7.2.1-2) above <can be used to solve the
correlation functions for the rotaztional and divergent part of the wind
givern covariances of along the x andy directions for <uu>. EincCe
gifferential cperaters are invelved here a model function of distance
is reguired and the coefficients cr scale lengths in this functicn cz
pe determined for the two parts ¢f the wind field. The model usel nhere
for the stream function and velccity potential is a series of Bessel
functions

M (r)= nZAnJo(kn’/D)

In Fractice, to get a larger sanmple, the assumption o
homogeneiaty is is also used and covariances between different pairs of
stations with similar separation distances are groupeg together. Bins
of 100 km have been emplcyed here.

(]

[R L
[ad

he
b

1 |[‘|

The ¢oefiizient cf the el functicns can be fitted allcowin
iffernent truincazicns. Fig. 3 g the resulting fits to the sum ©I
uu> and <uu> in (7.2.1-2) for various number of terms in the series.
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It is seen that allowing for only few terms gives a wvery smeoth
function aad allowing for more gives more structure and implies a
higher resclution. An important peint is the separaticn of observation
errors and prediction errcrs. At zero separation the predictiocn errcr
correlations in (7.2.1-2) , a‘ter dividing by the variances, are egual
tz oulie {can Dbe Veoified Ly ¢.4. USiNLg the e<puaenii~. funTticon of
previous section). When extrapelating the curves in Fig. 3 to zero .s
clear that the interception with the y-axis is far from one. This
discrepancy is the perceived observation error. It is a random
horizontally uncorrelated error which is present in the covariance
calculations since the first guess departures contain both instrumental
errcrs and representativeness errors by the forecast mcdel.
Furthermore, it can be seen that increasing the number of terms in the
Bessel representation reduces this perceived observation errors Since
smaller scales are resclived. The choice of the number of terms shouid
however De consistent with the best fit at all separations consicdered
and this represents the actual resoluticn of the forecast model.

Vertical correlations can be computed by fitting correlaticns fcr
the wind shear between two levels

avs ("= ym

The wind shear error c¢an be divided into a prediction errcr and an
observation errcr part

AU = Ap+Ab
Then ferming the covariance gives
n ma= & Ap;tab;, &pitabi> =
AU, aUp>= < ApiTaos, 4fjrab/> =

= < Appap;> + <ab;4bi> g[d-

assuming that prediction and cobservation errors are uncorrelated.



7.3 Results

It has already been menticned that the truncation of the Bessel
series must be compatible with the resclution of the forecast mecdel.
T.e 5.&L1stiC? presented here is based on 2 TE2 spec.ral fc.oecaot model
and the maximum resolution fer that model corresponds nearly to 10
terms in (7.2.2). Going beyond that gives instability din the
calculation of curve fits. With this truncation the functions can be
fitted and the zero distance interception used to partion the error
into prediction and cobservation errors. This is repeated for all
levels and the perceived errors are shown in Fig. 4. t is seen that
two errors are similar in magnitude at lower levels and that the
prediction error then is somewhat larger at upper levels. The total
error has its maximum around the typical jet stream levels as can be
expected.

Fig. 5 and & show the prediction errer correlation for <uu2ye and
<uuryg in {6.2.14-15) (alsoc called 1longitudinal ané <cransverse
components). The latter shows a much sharper correlation with a
negative lobe at some distance. This is a result of the dominance of
the non-divergence in the datz &as cah be seen by comparing with Fig. 1
With no or little divergence in previocus section. The negative lobe in
Fig. 1 is due to the return flow imposed by the non-divergent
constraint. At some levels this negative part may however be damped by
& constant large scale prediction error which has to be serarated out
before drawing any conclusicns apout the amcunt of divergence present.
The partioning into rctationel and divergent error is shown in Fig. 7
andg tpe édivergent part is significantly smaller than the nen-divergen:t
at all levels. The ratic between divergent error and tcteél error  is
around 0.30-0.35 as Fig. 8 shows. In variance terms it means that
about 10 % o©of the total wind errrocr is explained by divergent
structures and this number can be used for parameterising them in a
covariance model.
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Fig. H The vertical variation of the perceived wind forecast errors {Total),
together with the corresponding profiles of the prediction (Pred) and

observation (Qbs) error.
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Fig. 5 The variation,at 200mb, of the <% ,2> or longitudinal correlation with
station separation: The squares show the empirically determined average value
for each 100km 'bin', together with the number of station pairs in that bin.
All the data out to 3000km was used in the least squares procedure to
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Fig. 7 The vertical profile of the rms synoptic-scale prediction error for
vector wind (U-synop), together with the rms non-divergent (U-psi) and rms
divergent (U-chi) contributions to the total. The sum of the variances of
the two contributions gives the variance of the synoptic-scale prediction
error.
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Fig. & The vertical profile of the Rossby number of the wind forecast
errors, defined as the ratio of the rms divergent wind error to the rms
prediction error, which includes both large-scale and synoptic-scale terms.



Finally the vertical correlations are derived and these are shown
in Fig. 9 and 10 for the rotational and divergent part of the wind
error respectively. For the rotational part, the correlations decay at
increased vertical separation but remain mainly positive close to zero.
The divergent error on the other hand has a negative part at some
separaticn and then returns Lo zerc. These curves have to be bcrn in
mind when parameterizing vertical correlations with some functional
expression.

The technigque described here can be repeated f{for the height
observations with the simplification of only dealing with a scalar
variable. This was done by Lonnberg and Hellingsworth {1S86). Fig. 11
shows the fit of the Bessel series to height departures. It is of
similar shape to Fig. 5 for the longitudinal part of the wind
correlations which can expected of the divergence is low and geostrophy
high. Cne differnce is though that the curve does not go to zerc at
large separation. This means that the constant term in the height
errors is larger for heights than for winds. This is also shown in
Fig. 12Zb at different levels. The partition into prediction and
perceived observation error is displayed in Fig. lZ2a. It can be seen
that the prediction error in a &-hour forecast is really guite small
{on average) and this is why it is such a powerful toocl in data
checking and monitoring as well as providing a very good first guess
field for an analysis.
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Fig.lf The correlation of 500mb height forecast errors as a function cf

station separation. The empirical data, averaged over 'bins' of 100km, is
shown by the squares. The figures indicate the number of station pairs in
each bin. The smooth curve (x)} is obtained by a least sguares fit to the
empirical data; the truncation is 8 terms in the synoptic-scale component
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Fig.%2a: Vertical profiles of the total, or perceived, forecast error of
height, together with the contributions to this error from the the prediction
error, and the observation error. The unit is metre.

12b: Vertical profiles of the prediction error (copied from 2a) and of the
contributions of the synoptic-scale and large-scale components to the
prediction error. The sum of the squares of the components gives the square
of the prediction error.
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8. THE ECMWF ANALYSIS SYSTEM

8.7 General properties

The ECMWF data assimilation system is an intermittent system. Rll
observations within a 6&-hour slot (-179,180 minutes) are grouped
together in one big file. Where possible pressure corrections are dcne
for SYNOP and SHIP data to correct for the time difference. AlSc some
increase of the perceived cobservation errors is made for off-time data.
Otherwise the data are used just as if they were 2all made at the
analysis time. The first guess is from a 6-hour forecast made with the
same forecast model as is used for the 10-day daily forecasts (see
Fig. 13). The analysis is succeeded by a normal-mode initialisation
and then another 6-hour forecast will produce the first guess for the
next analysis and so On.

The mass and wind upper air anzlysis is a 3-dimensional optimumn
interpolation {0.I.) analysis multivariate in heights, wind components
and satellite thicknesses. These are the input wvariables to the
analysis and the output variables are heights and winds on the model
coordinates.

Relevant input information is taken from all cbservation LYDpeEs.
From SYNOP's and SEIP's the pressures (or in some cases neights} are
used everywhere except in the case of excessive extrasolation done ac
the station or from the first guess due to large difference betwesen
mcésl  ard reazl orography. Winds are only used from SHIP and low level
tropical SYNOP's. Cver land there 15 a severe difficulty to use SYNOF
winds due to the inability of the model to produce realistic friction
effects on the first guees winds. Pressures and winds are used fronm
DRIBU'S. Aircraft winds (AIREP and ASDAR) are alsoc used. Temperature
informaticn from the these single-level observaticn types menticned sC
far is not usec.
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From upper air multi-level observations the nearest available data
tc a standard pressure levels are selected (1000~-850-700-
500-400-300-250-200-150-100-70-50-30-20 and 1C hPa). These are the
standard levels normally present in TEMP reports. Few however reach
the top 1level at 10 hFa {about 31 km). Winds and heights from TEMF's
are usecq. I a standard 1level height is missiag zz may be
reconstructed from temperatures. PILOT's report only winds and they
are also used at or near the standard Jlevels. Satellite winds,
SATOB's, are used from the GOES, METEOSAT and GMS satellites Dbut not
over land in the extra-tropics. Satellite thicknesses, SATEM/TOVS, are
used Dbut combined into 7 layers (1000-700, 700-500, 500~-390, 300-1CO0,
100-50, 50-30 and 30-10 hPa). They are only used above 100 hPa over
land. Additionally there are Australian bogus observations, PACES,
containing estimated pressures over the southern oceans and they are
used as well.

The 0.1. scheme relies, as mentioned earlier on various
statistical infcrmaticn. The perceived observation errors for the
cbservation types mentioned in Section 6 are shown in Table 1. It must
be stressed again that they apart from the instrumental and rounding
errors also contain the representativeness errors due to the
imcompatabilities between the resolution of the model and scales on

which the instrument samples. The perceived observation errcrs
determine the relative weight given to wvariocus observation types ng
the weignht given to the {first guess. The mean E-hour first cuess

errors {standard deviations) are seen a2t the bottom of Takble 2 for the

winter in the extra-tropics. It &lsc containe the verzicel firet guess
neight correlations betwesn standard levels usec as they would be used
ts correlate e.g. the levels in & complete TEMF. Correlations Tetwesn

a
windgs are the same in the extra-trcopics due to the éecsnrcphi:
constraint but both vary with season as well &s the first guess errcrs
dc. In the treopics the winé error correlations are significancly
sharper than for the heights. Alsc cbservaticn errors have vertical

orrelations for TEND winds and rheights as well ase for satellite
thicknesses. The latter &ls¢ have a horizontal cbservation error
correlation.

The horizontal firsit cuess error correlations are mocdelleld using
sums of Bessel functions with & component lengith scale of 500 km 4in the
ricthern hemisphere, 10CC &m in the tropics and 600 km in the gouthern
hemisphere extra-tropics (see Fig. 14).
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Fig. /4 Height and wind correlations, based on a bessel function model, as a
function of separation (km). The component length scale is 500 km.



8.3 Computational organisaticn

The first guess is transformed from the mecdel's spectral space and
interpolated vertically to all data levels present in a model grid box.
mhen an horizcatal bilinear intecpslation from the four  surroundiig
gridpionts is made. The thus constructed first guess value can ncw be
compared with the observed value but first a normalisation takes place.
The departure is divided by the estimated first guess error at tnhe
observation point. This is computed frem the O.I. analysis errors
from previous analysis cycle but inflated with time. All calculaticns
are from here cnwards done on normalized values. This makes it easier
to compare departures from different regions and especially from
different levels in the atmosphere.

L first cuess gualiity contrcl is made on the normalized departure.
If it exceeds a value

Z pl
°-AP)? 5 2 (ETHET)
/‘\_P > h (é'”g?’f

the datum is flagged as incorrect or probably incorrect. A &and R are
the observed and first guess values and E anéd E the obkservation and
first guess errors respectively. n has values of 4,6 or B empirically
depending on observation types. If the departure is slightly lower the
datum is considered to be possibly incorrect and if a number cf
subsegquent levels are flagged these levels and higher ones will be
rejected (not used) for TEMP's or the whole report may be rejected fcr
a SATEM/TOVS. An addéitional check is dene for the wind éirecticns. If
the wind speed exceeds 15 m/s the wind is rejected the direction
differs from the first guess by more than 110 or 140 degrees (depending
on level type).

Climatological and internal consistency checks have already been
done at a pre-processing stage. Time congistency checks are Cnhly
performed tC a certain extent for SEIP's. If & SEIP? with unigue call
sign has reperted at least 3 times during the last 48 heours and has
Leen flagged by the 0.I. check (see below) on a majority of occasicrs
it is blacklisted. A dynamical blackiist £file is kept and updatecd
operationally. Other <cbservation types can at present (128f) only be
manually blacklisted {exluded f{from anzglysis permanently ). Such
decisions are based on cperational day to day monitoring a&s well as on
monthly statistics.

The data processed so far are basically &all the d&ata from the
observations and not all are used. The desired variables znd levels
from the repcrts are selected according to criteria mentionec earlier
in Sezt. B.Z. Redundant ata are then removed and cnly the mes:
appropriate are kept. TEKP winds has precedence cver PILOT winds if
they are for the same level andé time. 1If there are more repcrts frem
the same station (SYNCP, SEIP and DRIBU) cnly the one closest to the
analysis time is kept. This subset of observational data is ther
presenzed to the O.I. mass &nd wind analysis.

L further thinning is made of Closely located SYNOP and SEIFP data.



If there are three or more inside a model box on the Gaussian grid of
size 1.125 by 1.125 degrees latitude and lengitude they are combined
into one super-observation. This is done through a local C.I. aralysis
(preceeded by 0.I. data checking) with a modification so as to take no
information from the first guess. The position of the
super-ctsarvatiorn is chosen a&s tue averagz of the corst. Lusing
observations. Those are no longer used in the analysis.

The next step is the 0.I. data checking. The O.I. system is used
to analyse an observed variable without using that datum and to check
the normalized departure

C/\o ‘/\b)l.;>. r7 (Eito )

where Ew is the estimated e*ror in the 0.I. algorithm and a is minimum
allowed value for this error. It is due to the fact that the
0.I. error estimate goes to zero with infinite data coverage and cannet
take into account the facts that neither the first guss neocr the the
structure functicns ({correlastion functions) used in the assimalation
tan resclve scales smaller than several hundred Xkm.

The ECMWF scheme uses the boX methed for solving the O.I system.
This means that all observations from a rather large area and vertical
interval are combined@ in one big correlation matrix M and the system is
solved only once for this area by inverting M. Ideally the area should
be global in order to achieve a smooth and consistent analysis
everywhere. This is not cecmputationally possible so the box method is
an approximation to this. Still a 1large number of observaticns
comprising several hundred data (<451 at present) are combined in the
©.1. analysis and their inter-dependencies are exploited. The basic
boxes are aproximate sguares of sides 5.625 degrees of latitude and
data selecticn extends from the centre out to a distance of half the
diagonal plus the compenenent scale lengih in case of data checking cor
twice the scale length for the final analysis. If there are more than
451 data in the boX plus & minimun area extending inte the surrounding
hoxes the base box is split into four. This can be repeated again if
there are still too many date (see Fic. 15). Verticaliy the interval
is from surface to 100 hPa cor from 300 hPa to 10 hPa fcr & second slakb.






In the O0.]. data checking the inverse M has to be modified so as
teo give zerc weight to the datum to be checked.

For the gridpoint evaluation of analysis increments the matrix ¥
is not actually inverted since the analysis at a gridpoint can be
writcen

T‘M*l PT'
ak::f“ B = &
where_g is the vector of observations and_g is

= M'B

Inside one analysis box there the vector of coefficients, C, is
constant andé independent of the gridpoint to be analysed. The same £
can thus Dbe used to evaluate all ¢ridpcints in the box as the szalar
product of the correlations P (between observations in € andé the
gridpoint)} and the vector C. L is for economy reasons computed by
solving the linear system

Me= B

through elimination. All gridpoints inside the basic bpox plus a
certain overlapping area cutside are analysed using the same
observations. Many gridpoints are analysed twice or more times due to
the overlapping of anaiysis areas. These values are then averaced
according to the proximity of the contributing boxes. BAlsc a vertical
cverlap and averaging is done. This ensures that not only the analys:is
variables themselves but also their spatial derivatives vary smoothly.

The variables analysed are heights and winds on the model's
Gaussian grid and vertical levels. Temperatures are calculated througnh
the hydrostatic relation and the variables are spectrally transforned
to the model space.

B.4 Humidity and surface analysis

The humidity aralysis it a uni-variate 3-éimencsionzl C.J systern in
relative humidity. Observations cof temperature and dew pcint from
EYNQOP, SHIP and TEMP are converted to relative humidities. 2l1lso cloud
information is used to ascribe relative humidities to certain layers.
Satellite precipitable water content is converted to relative humidi:ty
and those data are als¢c used in the analysis.

The horizontal ceorrelation function is an exponential (Gaussian)
with a length scale of 300 km.

The computation is organised in a way very similar t¢ the mass zré
wind analysis. A first guess check and test for supersaturation is
performed after iInterpolations frem first guess are made and rormalizes
geparctures formed. AZsc multi-level and O0.I. checks &re rerfcrmes.
The analysis is done using the box technigue in the same way as before



with the exception that only one vertical slab up to 250 hPa is used.

Surface analyses ©of sea surface temperatures and sncw depths are
alse made. For other surface variables the first cuess values are
kept.

The sea surface temperature {SST) data used at ECMWT are not real
data but a gridded 5xX5 degree analysis from NMC, Washington. The
problem here is to project the SST data onto the ECMWF Gaussian grid,
but only on to points which are sea points in the model, not land
points or ice points. It is technically rather tricky to fit a low
definition field 1like this cnto a high resocluticn grid where the
definitions ¢f landg, sea and ice may be imcompatible. At presen:
{1986) +this 4is done throuch & spline interpolation techknigque of
increments on the 5x5 degree grid. It is planned to soon start using
higher rescluticon S8T and to replace the analysis method by successive
correction.

Snow depth is analysed using either sSNow infermation oT
precipitation information from SYNOP's. 3 weighted average (i.e. a2
successive correction step with no weight to the first guess) of the
reported snow depth is formed using an influence radius of 333 km.

The accumulated precipaticn data is converted to snow fall if the
reported temperature is less than 2 €. Snow melt is estimated 4if the
temperature &t the lowest medel level is above 0 C. These estimates of
snow fall ané snow depths are# weighted together and added to the
persistence {(previous) analysis.

the analysis uses a weighted averacge

i1f no data are available
5 precdiction and 2 % climatology.

usinc 98 % of the first ques
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