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) the coefficient of thermal expansion,
» the kinematic viscosity, and a the kinematic heat
~conductivity (or thermal diffusivity). The overbars
represent ensemble averages and the lower case terms,
u, and 6, are the fuctuating components of the velocity
and temperature |
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Eq. (8) involves &, an equation for which is obtained
from (6) so that
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Modeling assumptions Me\lb(l 1471% (_Ve\ry sim;lar,
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The primary contribution of Rotta (1951) was to sug- .
9770 b

gest an assumption for the term, p(9u;/dx;+ du;/dx:),
which he called the “energy redistribution term” since
one of its functions is to partition energy among the
three energy components while not contributing to the
total. [ Upon contraction, the term drops out of Eq. (7)].
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framework is

and therefore fdllows Kolmogoroff’s (1941)-hypothesis
of local, small-scale isotropy. |
Since there is no isotropic first-order tensor
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For w6, two forms are possible. We choose

du 0 du,0
1 u,0= —q)\z( 4 ) (16)
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Assuming w6 proportional to 332'/6.\-7., we obtain

— a6t
10,62 = —q)u-a—-. ' (17)
Xk

It is questionable whether the pressure diffusional terms
can be discriminated experimentally. Hanjalic and
Launder (1972) assert they are small in the first place,
Therefore, for the present we set

pui=p6=0 (18)

to complete the required modeling assumptions.
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Triz Level 2.5 turbulence closure theory

Goverhiing egustions (MY82, Janjic 1990). |
d(q?/2)/dt - (8/32) [1qSq (8/3z)(q2/2))
=Pg+ Pp-¢, (3.1)
Ps=- wu(3U/3z2) - wv (8V/32) :
Pb=Bgwey, e=g3(Bs1)™"  (3.2)

- wu=KMoU/3z, - wv=KMaV/3z,
- W6y = KHO6y/dz, - ws = KH3S/dz, (3.3)

KM=1qSM, KH=1qSH, (3.4)

SMCBA1AZ6M )+ SH( 1-3A2B ,6H- 1241A,6H)=A,,
SM( 1+ 6A126M-9A1A,6H)-
SH( 12A126H+ 9A1A6H)=A{{ 1-3C4), (3.5)
GM = 12972 [(3U/32)2 + (3Y/32)?] .
o OH== :ls’g ? 8g a&w{ﬁz . 4ifh)

{ Alternative:
P2+Pb-e=[SMOGM+SHGH-B1~ 1] g3171 }




MY 74, Miyakoda and Sirutis 1977:

PS PS
I=Tokz (k2+19) ™", lo=od{ [ |Z|qdp] [ [ qdp] ™!
PT PT

x=const, 1g<90 m

For exceptionally large shear, and/or thermal
instability, the system (3.5) may degenerate
(MY82) in the sense that its determinant may
approach zero.

OH<.024, GM<.36-15.6H. (3.9)

Note that the limits (3.9) are more restrictive
than those that are really necessary in order to
prevent the degeneration of the system (3.5).
The motivation for such a choice was to avoid
unrealistically lagge exchange coefficientssin the
cases of unstable stratification.



MELLOR AND YaMADA: TURBULENCE CLOSURE MODEL
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Fig. 3. The stability functions S,{G,;. Ga) and S,{G . G). The heavy solid lines are contours of $,,. whereas 1k
mhdhesmcontwrsofs,, The lighter solid lines are contours of (P, + P,Ve. One could also draw kines of consta
= Gp/Gas, Which are radial lines on this diagram. The shaded portion is where (w"Vg* = 0.12.
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The Level 2 turbulence closure theory

From Level 2.5 for balanced TKE production and dissipation

coverning eguations{MY74;MY82 Janji¢ 1990)
Rf = - Pp/Ps, (4.1)

Ri =-GH/GM = (SM/SH) Rf, (4.2)
SH=F{(F,-F3Rf)/(1-Rf), (4.3)

SM = Fq (Fs- F6 Rf) (F’?- Fg Rf)-1 SH (4.4)

- Fq,... Fgfrom MY82 Ay, Ay, By, By, Cy; Rj from
(4.2¢), substituting (4.4) into (4.2,), a
quadratic eq. for flux Richardson # with the root

Rf=.664[Rj+.1765-(Ri2-.317 Rj+.0312)1/2]

KM=
12{[(8U/32)2+(3V/32)2)[B1( 1-Rf)SM]1}1/25M

KH=
12{[(8U782)2+(8v/82)7][B1( 1-R)SMI} 1/ 254
[c.f., MY74.4Eqs.{ €6a)-( 6B

s‘—‘__

v o 9?‘2*?:..

| varies linearly with z reaching the value of the
Level 2.5 master length scale at the top of the
lowest model layer.

—r S -
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Implementation of the Level 2.5 model

e “Forward-backward": TKE updated first,
updated TKE to recalculate exchange coefficients

e VYertical staggering

2,16, By 30 5 041 L-i/Z
...................................... V, 1.5 i rceceeee
246,65, 5, b7k

e TKE equation solved in split mode: horizontal
and vertical advection, TKE production and
dissipation, vertical diffusion treated in
Sequence.

e Horizontal advection
Adv (V;qz)l_+1/2 =
S5 [Adv (vL,a%L+1/,) + Adv (VL+1,G2+1/,)]

e Yertical advection

=, L
T b q

e Correction of negative values due to advection:
production dissipation dominating.

- -
2



Computational problem of the Level 2.5
TKE production/dissipation in the split mode:

a(q%/2)/3t = A g3,
3q/9t = Ag?

A=[SMGM + SHGH - By~ 1] 171

A positive or negative, depends on stability and
shear, implicitely through GM, GH and 1, on TKE.

Possible time differencing scheme
gt =qU + AT At (gt 1)2
0T =11 - (1-4ATqTAD" 2] (28TAD T
6" =1+ (1-4ATqTAD 2] (2aTAD .
o At~ 0, q;%* - qT, gy physical solution; g,

cornputational, shiould be darmped or removed.

e Another problem, unless At = 1 min,
expression under square root negative, rather
. disappointing 'ibitively.:eggensive S

B




e |f the time step limitation locally exceeded,
TKE growth rate restricted
(gt 1 )2=
[1-(1-4ATqTAL) ' *12( 24TqT A)~2(qF)2,

17 1-4AT At » 0,

(qT*1)2=4(q1)2,  jFr 1-4ATAtGT < O

If the time step limitation exceeded, TKE still
quadruples in a single time step

e Slowing down analogous to polar filtering and
implied deceleration of gravity waves associated
with the application of the semi-implicit scheme.

¢ fssential in order to get the Level 2.5 scheme
working in the eta model.
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1440 MONTHLY WEATHER REVIEW

FIG. 7. Vertical cross section of log,0g? (¢% in m? s72) at 36 hours
extending from 26°N 96°W to 55°N 87°W. The shaded steps rep-
resent the model topography. Model layers are indicated along the
vertical axis. Lighter shading on the left indicates the sea surface.
The dashed contours correspond 10 negative values of log,yy?.

As an additional refinement of the physical package,
a viscous sublayer (e.g., Zilitinkevitch 1970; Pielke
1984 ) has been recently introduced next to the surface
(Black and Mesinger 1989). Due to potentially reduced

zontal resolution, this result cannot be co
relevant for intercomparison of the two m
dicates, however, the benefits that one m
from the application of regional models
refine the global forecasts. ¢

N

\

In an atmospheric model using the stej
eta coordinate, three major problems car
pated: (1) the internal boundaries at the v
of the mountain walls, (2) vectorization :
physical package. The first two were add
successfully solved, by Mesinger et al. ( 1*
third one, that of the physical package, is ¢
this paper.

In the case of the cta coordinate, desigl
prehensive physical package is complicated
of experience with the step-like mountain
tion, particularly concerning the representat
The Level 2.5 turbulence closure model in -
Yamada hierarchy (Mecllor and Yamada
cf. Vager and Zilitinkevitch 1968; Zilitinke
was chosen to represent the turbulence ab«
face layer. The model was implemented
splitting. In early experiments, :oi?ﬁ as

L I . T T p e Py ol il 2 I P -

7. Conclusions
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-ure transfer resulting from the presence
T, its incorporation into the model was
by a return to the conventional use of
rection scheme (Betts 1986; Betts and
in the sense that the shallow convection
n the situations when insufficient mois-
n vertical columns prevents the deep
produce positive precipitation. A con-
ovement of an east coast storm forecast
with these modifications (Black and
}).

yointed out, the eta model has also been
n the tropics (Lazi¢ and Telenta 1988).
*d to be important for testing the con-
e and convectively driven circulations.
1s tested in 48 hour simulations of the
nes Connie, Irma, Damien and Jason
from the Australian Monsoon Experi-
) period. The initialized (then) opera-
I analyses were used to specify the initial
d the boundary conditions were derived
ved ECMWEF forecasts. For the analyses
ime GTS data were available, excluding
node AMEX data. From the synoptic
the results were considered as remarkably
e circumstances, both in absolute terms,
to the results obtained with other models
lenta 1988; Lazi¢ 1990). In particular,
wed the ability to predict the genesis of
ccasts also compared favorably with the
ational products (communicated by La-
e, since the eta model had higher hori-

lem was encountered: | Kk was 1aking on too 1arge us
negative values in large parts of the integration domain,
leading eventually to numerical instability. The prob-
Jem was found to be of numerical origin, and related
to the treatment of the TKE production/dissipation
term. A suitably designed time-differencing scheme
eliminated this problem. With this scheme, TKE ad-
justs quickly to the forcing irrespectively of the initial
conditions, and behaves well, staying within the bounds
expected from physical considerations and high reso-
lution PBL simulations. Except for rather insignificant
errors produced in the advection step, no artificial con-
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F1G. 8. Vertical cross section as in Fig. 7, but for loge of matched
Level 2 and Level 2.5 heat exchange coefficients (in m?s™!),
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