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Yertical coordinates
o Phillips (1957),
o= (p-p1)/(p5s-pT),

terrain-following, no problem with the lower
boundary condition, most popular.

e [Early problem, non-cancellation of errors
in the two terms of PGF (Smagorinsky et al.,
1967). Many ideas about, see e.g. review by
Mesinger and Janj it ( 1985).

e Currently used schemes result of three-step
procedure: (i) calculation of geopotential at
terrain following coordinate surfaces, (ii) linear
extrapolation/interpolation to constant pressure
surfaces, and (iii) evaluation of the pressure
gradient force on the constant pressure surfaces.

¢ Importance of a "coherency”, or "hydrostatic
consistency” in steps (i) and (ii) stressed by
Rousseau and Pham (1971), Janji¢ (1977,
1979),
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e Let the horizontal domain be scaled in such a
way that the grid distance be equal to 1. Due to
periodicity, for any function f (i), where i is the
horizontal index, f(M+i)=f(i). The values of M
and Lm are 120 and 15, respectively.

¢ Consider spectral horizontal representation
in terms of trigonometric functions which is
equivalent to the grid-point representation on the
M-point grid.  The term “equivalent" is used
here to denote the requirement that the spectral
representation have the same number of degrees
of freedom as the grid-point representation, and
yield the same values at the grid points of the M-
point grid. This requirement will be satisfied if
the coefficients of the truncated trigonometric
series are computed using the approximate
Fourier transform formulae.

¢ [n order to calculate the error, spectrally
represented temperatures on the ¢ levels are
needed.  Following e.g. Mesinger and Janjic
(1987), the temperatures are retrieved from
the geopotential,

A

® .Pr"oblems with consistency, even if required
explicitely, for steep slopes of sigma surfaces

and/pr thin sigma layers (Mesinger, 1982;
Mesinger and Janji¢, 1985),

® [Explicit vertical interpolation to constant
pressure probably best (Mahrer 1984; | i"i.
Smagorinsky et al. 1967; Kurihara 1968, :
Miyakoda, 1973; Tomine and Abe 1982). Second

order. interpolation, energy conserving scheme
by Mihailovi¢ and Janjié ( 1 986).

® Problems with lateral diffusion, advection .

) Higher and steeper mountains with higher
resolution, more problems to be expected.

® Pressure? Problems with lower boundary, |
abandoned at U.K. Met Office (e.g., Cullen, 1985),

* 27 TechniﬁcaL_gifﬁculties,ino special benefit. “

o‘ 67 Technical difficulties, similar problems
with PGF on sloping coordinate surfaces,
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e Step-mountain 7 (Mesinger 1984)?
Almost as simple as o©, quasi-horizontal
coordinate surfaces, easy to implement in an
existing sigma model, no difficulties with
topography . of any height or slope. Internal
boundaries, conservational properties,
vectorization - Mesinger et al. 1988, physical
package - Janji¢ 1990.
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Pressure Gradient Force Error in
c-coordinate Spectral Modetls (Janji¢ 1989)
e PGF errors in o-coordinate spectral models
often believed to be small or unimportant, little
evidence published -to. support such a view
(Simmons 1987; Simmons and Jiabian 1990).

¢ (Consider horizontally homogenous
atmosphere at rest, and in hydrostatic
equilibrium. The pressure gradient force is zero
everywhere, and the computed pressure gradient
force in a discretized system will represent the
error of the discretization method.

¢ et the following information about this
atmosphere be available in a vertical cross
section atong a constant latitude:

(i) Surface pressure ps (Inps) on equidistant

horizontal grid with M independent points;

© (1) Surface geopotential &5 on the same M-point

horizontal grid; and,
(iii) Geopotential ¢ on the same M-point
horizontal grid, and on Lm equidistant G levels.



® For this purpose we choose the Bourke
( 1974) hydrostatic equation

OL=0L+ 1+R[(TL+1+T)/2] In(oL+1/01),

~
- for L A8 o
OLm=0s+R{T|m + 2U %
[(TLm-TLm~l)/ln(OLm/GLm—l)] \ h‘
*xIn(1/0Lm)/2) ?f‘"\'
il

xIn(1/01m).

® The Spectrally represented tem peratures can
be obtained from the geapotentials using either of
the following procedures:

(i) Grid point values of temperature are
computed from the grid point values of
geopotential, and then the temperature s
converted into the spectral form; or

(1) The geopotential is converted inta the
spectral  form, and then the  spectrally
represented temperatures are obtained from the
original, spectfal form of Bourke's (1974)
hydrostatic equation, Due to linearity of the

operators involved, both procedures yield the
same answer |

Having defined the temperatures, the pressure
gradient force error of the spectral method is
Calculated using the following procedure:

® The spectral coefficients of dlnps/3x are

calculated, and then these coefficients are used to
recalculate the grid-point values of dlnps/3x on

a regular 2M-point grid, i.e. the grid with twice

the resolution of the original M-point grid.

® The spectral coefficients of —30/3x are
calculated from the spectrally represented
geopotentials on each o level, and then, the
coefficients of the expansion of —3¢/3x are used
to compute the grid-point values of —9¢/9x on
the M-point grid. This is the first term of the
pressure gradient force.

® The spectral coefficients of temperature on
each o level are used to recalculate the
temperatures &¥the grid points of the 2M-paint
grid.



e The product —RTdlInps/3dx is calculated at

the grid points of the 2M-point grid on each ¢
level. Then, the spectral coefficients of this
product are calculated, but all spectral
components which cannot be represented on the M
-point grid are truncated in order to avoid
aliasing. The remaining coefficients are used to
recalculate the values of —RTdlnps/dx at the

grid points of the M-point grid.  This is the
second term of the pressure gradient force.

e The sum of the first and the second term of
the pressure gradient force is the pressure
gradient force error at the grid points of the
M—point grid.

¢ The pressure gradient force error of the

finite-difference method is calculated by the
formula:

—8x®g - R TX §xInps

e The geopotential on the o levels from an
analytical temperature profile T(p) (Mesinger

1982).
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¢ In the main experiment, a single-grid-point
mountain located in the middle of the domain, i.e.
at the point with the horizontal index M/2+1.
The remaining part of the domain is assumed to be
flat.- The surface pressure is 800 mb at the top
of the mountain, and 1000 mb over the flat
terrain (e.g. Mesinger and Janji¢, 1987).

® In order to examine possible impact of the
horizontal scale and shape of the mountain, the
experiments are repeated with three different
shapes of the three-point mountain: a triangular
mountain with the slopes tinear in Inp, an abelisk -
shaped mountain, and a trapezoidai mountain
(three-point elevated plateay).

® The surface pressures at the tops of the
three-point mountains are again 800 mb. In the
Case of the obetisk-shaped mountain, the surface
pressures at the two mountain points other than
the top point are : . -

T .

Ps=[1000 - 200 exp (-.25)] mb = 844.24 mp,

® The widths at the bases of the single-point,
and the three-point mountains are 6° and 12°,
respectively. The heights -and slopes of the
mountains are modest compared to the examples
given e.g. by Mesinger and Collins ( 1987).
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than those of the finite-difference method, particularly
in the no-inversion case; in this case, due to the tem-
perature profile and the pressure gradient force scheme
chosen, the errers of the finite-difference method are
hardly detectable {cf. e.g. Mesinger and Janjié 1985).

In order to examine their spatial distribution, the
pressure gradient force errors of the spectral method
around the mountain poini are plotied for the six lowest
model levels in Fig. 4 (lightly shaded bars) for both
inversion (left pancl) and no-inversion (right panel)
cases. Going further up, the error patterns of levels 11
and 10 very much repeat themselves, switching from
onc 10 the other, depending on whether the vertical
index is even or odd. For comparison, the finite-dif-
ference pressure gradient foroe ermor is also displayed
(cross-hatched bars) at the two points adjacent to the
mountain point. It should be noted that the finite-dif-
ference errors are actually defined in between the
mountain point and the two adjacent points. Thus, in
the figure, they arc shified for half # grid distance away
from their actual jocation.

Note that in the inversion case the amplitude of the
spectral error wave packet is genenalily of the same order
of magnitude as the errors of the finite-difference
method. The large error of the spectral technique in
the no-inversion case is somewhat surprising.
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b. Three-point mountains

The rms peessure gradient force errors on the o levels
for the triangular, obelisk and trapezoidal shaped three-

point mountains are shown in Figs. 5, 6 and 7, re- .

spectively. Again, the upper panels comespond io the
inversion, and the lower ones 10 the no inversion cases.
As before, the lightly shaded bars are reserved for the
speciral, and the cross haiched bars for the finite-dif-
ference method.

As can be seen from Fig. 5, in the case of the tri-
angular mountain, the rms errors are significantly re-
duced compared to the single-point mountain. How-
ever, in the rms sense, the pressure gradient force errors
of the speciral method are again considerably larger.
As expected, the errors of the finite-difference method
in the no-inversion case are negligible.

Compared to the triangular mountain, the results
for the ‘obelisk-shaped mountain show a general in-
crease of the rms errors in the inversion case. Note that
the emrors of the finite-difference method at higher levels
are larger than those corresponding to the single-point
mountain, and approach the errors of the spectral
method. In the no-inversion case, the errors of the
spectral method are slightly smaller than in the case of
the iniangular mountain,
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FiG. 7. Same as Fig. 6, but for the tapezoidal (elevated plateau)
three-point mountain.

The errors for the trapezoidal mountain very much
resemnble those for the single-point mountain, except
for the fact that the amplitude of two-grid-interval wave
in the spectral rms error is now reduced.

In all tests with the three-point mountains, in the
inversici case the amplitude of the spectral error wave
packet (not shown) remained generally of the same
order of magnitude as the ervors of the Anite-difference
method,

4. Conclusions

The examples of small-scale mountains considered
indicated that Lhe o~coordinate pressure gradient force
errors of the speciral method can be large, and thal she
errors spread away from the mountains. In the rms
sense, these errors were larger than the errors of the
finite-diffcrence method. In the inversion case, the am-
plitudes of the spectral error wave packers were gen-
enally of the same order of magnitude as the errors of
the finite-difference method.

Contrary to the situation with the finite-difference
method, the magnitude of the rms pressure gradient

:
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sensitivity to the absence of the inversion. Namely,
error of the latter remained relatively large, while
error of the former almost vanished.

The experiments with varying the honizomal s
and the shape of the mountain showed the sensitil
of the speciral method 10 the steepness of the mount
Generally, the steeper the mountain, the larger
pressure gradient force error. However, in the no
version case, the rms errors of the generally steg
obelisk mountain were slightly smaller than thos
the triangular mountain. o

The pressure gradient force errors of the L
method showed little sensitivity to changing from' b
single-point mountain to the trapezoidal three-pi
mountain. Note that the steepnesses of the slope
these two mountains are the same. This suggests
the errors are less sensitive to the horizontal scal
the mountain than to ils steepness.

Relatively large pressure gradient force errors of
spectral method observed in the no-inversion can]
dicate that the mechanisms responsible for the ¢
are diflerent from those of the finite-difference o
ordinate models. Consequently, the methods for
ducing the error in the finite<difference models (
Gary 1973; Janjié 1977, 1980; Mesinger and Ja
1985; Mihailovié and Janji¢ 1986) should not be:
pected 1o operate effectively. -

As already pointed out, il seems natural w0 exj
difficulties with speciral representation in Lhe prese
of small-scale topography because of slow converge ¢
of the Fourier series. In this situation, in order 1o
culate the pressure gradient force in o-coordinate §|
tral modecls, it may be advantageous to use the fit
difference technique on the finer grid used 1o elimis
aliasing.
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Ci.l ";-* dg-* . at Hee dstarfowcs ®
i / Vi 3,6..% ToudP depind 4 disturbance amplitude of 3°C, Tables 1 and 2 indicate that the pressure
" T ':.M' 4 | gradient error in a 10-level model over the continental rise would be about
/ “t o : - ‘ 10 cm 5™ or 12 em 571 depending on whether a reference state density
kel lisaer duterpdlobion: . =t profile is removed or not. The corresponding error in a 30-evel mode]
A dye LR C¥8-R) = € +dPORY) - would be about an order of agnitude smaller, |
t-h ¢ As a final example of the kind of error that exists mear steep
A% dep: &S0t} 8‘¢s:-‘-':-;: topography in o-coordinate models, we show the truncation error using a
o: A s _?;&( It) borizontal and vertical resolution that results in g hydrostatically inconsistent 5
h% ¥ oengr Sy @"-dn# . 3y ¥ WCY-F)-cp- scheme. The results shown in Fig. 6, computed with 5x = 1km, are all baged .-
A ' on a hydrostatically consistent scheme since (1) is satisfied for K < 50. To l'i
1 ! —_— . . ® examine inconsistent schemes, we recomputed the largest truncation error in!
h% e Y (deh. ot heigld *ﬁ":;;u) the water column, as in Fig. 6, but with different values of the grid size sz,
. oud cruacquenbly ¢ Fig. 7 shows the results for sx = § and 10 km respectively. Withsx = § km
&% ) W (Fig. 7a), the consistency requirement ( 1) is satisfied only for K < 25. Larger
L 8 P a-3, B e m";ﬁ" i values of X result in sufficiently small so's that (1) is violated. In this
ax

, Situation the scheme does not converge, and ina&ng' the vertical resolution
hydeesbobcatly - aungstent beyond K = 25 results in a er truncation érror, as pointed ont by Janjic
¢¥ \ “h (1977) and Mesinger (1982). As predicied by (1), the stfuation is worse wih :
43 . hyeestbobic. dncousivhinsy 53 = 10 kan (Fig. 7b). In this case, The scheme Ts bydrotatically consistent !
pr P xample of by id i the werbiol: only for K’ <12 This example clearly shows the complex nature of the |
-~ = *x sheqqered " A ! pressure gradient force CITOr it 0-cO0rdinate models, It is obvigusly essential Lt
¢35 Mh werdisal aud »""“'“*“"‘f" to _choose the horizontal and vertical resolution carefylly, not only 10 -
¢ o _ _ to ont: 1 tion_carefylly, 9 {2
' hovinewdol suigtubiou : accommodate the particular ocean problem at hand, but also 1o satisfy the
3y ’ hydrostatic consistency condition (1).
j 18Pl tx &1 8cdlaC e e ().
G AR L i
: - 5 Summary and conclusjons !

This study analyses and documents the truncation error, and the error
due to hydrostatic inconsistency, associated with computinig the pressure

gradient force over sté‘cp*tbpography in o-coordinate ocean models. The
intent of the Study is neither 1o advocate nor to discredit the use of o-
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Fig. 1I. The temperature profiles used to calculade the errors aof the
- Corby « and of Burridge and Baselar pressure gradient force
W schese [lower panel), and the looation of the grid point at whick the
- eTrors were caisulated (upper panel). (After Motinger, 1982)
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Table 1.

Zrrors of ths pressure gradient forée analogs obtsined using the
Corby et al. and the Burridge and Haselsr schexe, for the “no inversion
casc” and the “inversion case™; see text for details. Valuss are girven
in incremants of geocpotential (na-'al. between two neighbering gria
polnts, along the direction of the inereasing terrain elevations. (Mots
that soue of the punbers in the last two lines are slightly different
Arom those published in the referrs! paper; *his is a result of the
renoval of an error thal Mesinger has Tound in his program for oslecula-
tion of the Burridge and Hagseler scheme values. “he nufbers published
‘previcusly actually resresented errers of a scheme which within the
Beopotentixl @radisnt term used geopotentials of the ¥ «0,9 surfate,
rather than valués definesd by (4.22).)
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Fig. 1. The tompersture profiles ond the lecetion of the grié point ot which presaure grodiont force
errors wers calculsled by Mesinger (1982).
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Fig. 2. Ervorsof he Arskeve (1972) -Brewn { 1974) pressure grediont ferce scheom, for the “mo :
imversion case” (left hand panel), "inversisa case™ {middle pancl) aod sn isentropic
stmoaphers (right hend ponet), for & vertical structure of 25 sigme layers of equel thickness, .
Values are given in Lncrements of geopstantisl (m? °2), betwesn twe aetghbering ¢7id points, ;
olong Lhe direction of the increesing ierreinslevations, | :
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Fig- 3. Ervers of the Mestad Grid Podel {sen taxt for delaits) prasaurs gradiont force scheme, for the
T Tes feversien case” (et hand penel), sad the “laversion cie” (right hand panet), for &
vertical structore of 25 sigme Jeyers of squet thickness. Yalues ore given in increments of
gropeliantial (m? 372), Detween twe neighbering grid peiats, sleag the diraction of the

incrensing lerrain elevetions.
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Fig. 4. Errorsef the Arokews-Susrez 8-conserving pressure gredient ferce scheme, expanded o
tnclude Worizeats) differenciag, for the "ne {aversion case™ (Teft band pune)), and the
“inversion case” (right hand panel), for @ vertical structurc of 25 sigma Yayers of oqusl
thickness. Yalues ore given In increments of yopolentiot (2 372), betwaen tve meighbering
orid points, along Whe direction of 1 increasing terrein slevations.
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fable 1, The first end the pecond term of the pressure
gradient force approximation as well as thelr
sum a8 a function of parameter m. All values
are given in m2/sec2-
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