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interpolation methods that Mmaintain certain properties suggested by the data. Such
properties include monotonit;ity and convexity, and provide a means of avoiding the
oscillations often seen in polynomial interpolation. These methods reduce or eliminate
the overshooting possible with the semi-Lagrangian transport method.

We summarize our current work in this report. More details are included in papers being
prepared for journal publication. In Section 2 we describe various shape preserving
interpolators and summarize an evaluation of their relative performance when applied
to several test functions. In Section 3 we show selected examples from applying the
interpolators to one-dimensional semi-Lagrangian transport and summarize our more
complete study. We consider uniform translation of specified test shapes. In Section 4
we summarize results from the application of the schemes that performed best in the
first tests to two-dimensional semi-Lagrangian advection on a plane. The test case is
uniform rotation of specified test shapes, We extend the two-dimensional advection on
a plane to advection on the surface of the sphere in Section § and show that no serious
problems are introduced by that geometry, The test case is solid body rotation of test
shapes about an axis rotated with respect to the polar axis of the coordinate system.
Finally, in Section 6 we compare several methods for calculating the departure point in
spherical geometry,

2. THE INTERPOLATION PROBLEM
We begin by defining the grid {(zillo), 7 < 23 < ... < z,, and the data values
{7;}. 1 = f(z:). Lt is also convenient to define the discrete slopes

i = (foes ~ ) zier - 3} (2.1).

The data are locally monotonic at z; if
BioyA; >0, (2.2)
and locally convex if

Al‘—' > IAI * ama . aT V (2‘3)

-

For concave data, the inequality in (2.3) is reversed. We define a piecewise interpolant
P € (*z),2,], with K > 0. On each subinterval [Zis2i41), et
0= (z-z)/h

h.‘ S T4 — I . (24)

and

plz) = p.to) . -2, (2.5)

The inerpolant p is constrained to have the following interpolatory properties

plz) = fi, dp{z;)/dzr = d, . (2.6)
Here. d; is some estimate of the derivative of f at the endpoints of the interval. The
interpolant is specified on the subinterval in terms of the data ¥i, and the derivative
estimates d; at the endpoints of the subinterval, that is

Pi(6) = pil8, fi, fivr,diydiyy) (2.7)

The interpolant thus adheres to the standard osculatory representation, although the
functional form of p; is not necessarily the usual Hermite cubic polynomial form. In order
to reduce the number of achemes involved in the intercomparison, only interpolating
ferms which involve use of Jocal information have been included, i.e., d; is a function of
e few surrounding values of f;. In this fashion we have excluded from consideration inany

giobal schemes; for example, the classic C? cubic splines which minimize the integral .

of the curvature of the interpolant over the entire domain, exponential splines under
tension (Spath, 1969), and global versions of the monotone, piecewise interpolants of
Fritsch and Carlson {1980) and Delbourgo and Gregory (1983). These schemes require
information from the entire domain to interpolate within any one subinterval. Following
this restriction, schernes which differ from each other in the following three major ways
are considered:

* * The method of estimating the derivative is varied according to algorithms that

have been suggested in the shape preserving literature.

* ¢ The type of interpolating function is varied to encompass cubic polynomials,

v&lional functions, and quadratic Bernstein polynomials with extra knots.

* * To guarantee monotonicity or concavily /convexity in the interpolating function,

certain constraints are imposed on the derivative estimztes. The appropriate
constraint depends upon the interpolation form.

I is convenient to address these items in reverse order in the following subsections.

2.1 Constraints on the derivatives

Certain constraints must be imposed on the derivative estimates used in the interpo-
lation schemes in order for the interpolants o maintain any convexity/concavity or
monolonicity present in the data. The constraints are reviewed in this section, pro-
ceeding froin the ieast Lo the most restrictive form. The constraints can be written in
lermis of restrictions on the derivative estimales ¢ at the endpoints of an interval, as

& function of the discrete slone A within the interval Recanss af thic iha sancteaint
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on d; based on &, of the interval to the left may be different from that based on A,
of the interval to the right. One may choose to constrain the derivative differently for
inlerpolation over the two intervals in which case the interpolant is C°, or insist that
constraints associated with both intervals be satisfied simultaneously, in which case the
interpolant is C!. When the constraint on d; depends not only on the discrete slopes over
the adjacent intervals A;_;, A;, but also the slope estimate d;_;, or di;, at the other
end of the interval, the C! interpolants become global. Such forms are not considered
in this report.

The requirement that the derivative estimates bound the discrete siope for a C° inter-
polant

(di — Ai){Aai-digy) >0 (NCCo) (2.8)

and lie between the adjacent discrete slopes for a ! interpolant

{di - (a1 -di) >0 (NCC1) (2.9)
must be true for the interpolant to remain convex/concave. These requirements are
identified as Necessary Conditions(s) for Convexity/Concavity, C® and C!, respectively.

In order that the interpolating function be monotonic and C? the derivatives must satisfy
the Necessary Condition for Monotonicity, (NCMO0)

sign(d;) = sign(4,) = sign(dyy,) A #0

{NCMO) (2.10)
d,‘:d,‘+]=0 6."‘-:0

that is, the derivative estimate at the end points must have the same sign as the discrete

slope on the interval. For a C! interpolant

sign{A; ) = sign(d;) = sign(A,;) Ai_,A;>0 (NCM1) (2.11)

di=0 A 1A 20,

The derivative estimate at a'd#ta point must have the same sign as the discrete slopes
surrounding it or be zero if the data are not monotonic at this point. This condition is
the Necessary Condition for Monotonicity, C! {NCM1).

For the rational and piecewise quadratic interpolation forms to be discussed below, the
necessary conditions, NCMO and NCMI, are also sufficient conditions for monotonic-
ity. Similarly, the NCCO and NCC1 are sufficient conditions for convexity with these

interpolants. On the other hand, for Hermite cubic interpolants NCMQ and NCM1

are necessary but not sufficient for monotonicity and must be augmented by additional
constraints on the derivatives.

Fritsch and Carlson (1980) have [ound both necessary and sufficieny conditions for mono-
tonicity of Hermite cubic interpolants. Let a = 4,38, 3=d, /A thenior A, =0
the Hermite cubic interpolant will be monotonic if and only if {a,3) lies within the
domain M,, defined by the union of two domains

Moo= MoC A, L60 Bg
wlere
Mefa, 3) = {a,d : 8la.3) < 0} {2.13)
Me{a. 8) =lo.p: 0= a«<3,0<9 <3}
and

dlad)={a-1+(a-YF-1)+(B~1)"-3a+4d- 2. {2.13)

HA;=0,d, = d;.y =0 and the necessary condition discussed earlier is also sufficient.
Embedded in this domain M., is the region M, recognized independently by de Boor
and Swartz {1977) which provides a sufficient condition for monotonicity of the Hermite
cubic. This sufficient condition

0<n<3,0<9<3 (SCM) (2.15}
is easier 1o apply than the more general necessary and sufficient condition [ M.) in which
o aid ¥ mav be dependent on each other. Throughout the remainder of this report
this simipler condition will be referred wo as the Sufficient Condition for Monotonicity
[SCMI). As before, we define C? and ! forms depending on whether the derivatives o
are bounded by just A of the interval being interpolated or by the & of the two adjarzent

intervals simultzneously.

At an extremum where Lhe data are nol monectonic, SCM1 limiting provides a severe

restriction as d, is then Zero there. Hyman (1983) has relaxed The SCM1 limiting—4

concepl where the data reach a local extremum. and are not monoionic. He proposed
the followiag limit on the derivatives.
e max{.d )L 3(0. A, )0 0 A
d, - l max wmin(0.d,).3(0. A ,.) ¢ - A {216
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OBmin = mi“(Aiu Al'-l) Apax = ma-x(Al"Ai—l) .

This allows for overshoot at local discrete extrema and thus is nonmenotonic but does
provide some control of the overshoot and, in particular, prevents oscillations at the
edges of flat plateaus.

2.2 Interpolation forms

Three types of interpolating functions are considered—al] have appeared in the recent
literature regarding shape preserving interpolation.

¢ Cubic polynomials {(de Boor and Swartz, 1977; Fritsch and Carlson, 1980; Hy-
man, 1983; Fritsch and Butland, 1981)

* Rational functions (Gregory and Delbourgo, 1962; Delbourgo and Gregory,
1983, 1985)

* Quadratic Bernstein polynomials with extra knots (McAllister et al., 1977;
McAllister and Roulier, 1978, 1981).

The Hermite cubic and rational interpolating funtions can be described using the for-
malism of Delbourgo and Gregory (1985). Consider the function

pi = Pi(8)/Q.(6) (2.17)
on the interval 0 < 9 < 1, equivalently £; < 1 < z;,,, where
Pi(0) = [ies8® +{rifiy — hidiy,) 62(i — )
and H{rifi — hidi) 8(1 - 6)? + fi(1 - 0)° {2.18)
Qi(8) =1+ {r, - 3)6(1 - 0) (219}

We consider four choices of the parameler r;

» If ri = 3, p; redugessto the standard Hermite cubic polynomal interpolation
form. Recall that the interpolant will be monotonic if the d; lie within the
domain M,.

o ey = 14+(di+d;4,)/&5;, then P and' @, reduce to quadratic polynomials, and Py
- is identified as a rational quadratic interpolant. Delbourgo and Gregory {1985}
have shown that provided d; and diy) satisly the NCM, p will Le monsotonic

over the subinterval, otherwise this interpolant is not well defined.

- {A-—

o Wri =14 max(Cife;,Cifeis)) where ¢; = A, — d,, ¢igy = dyyy - ALC; =
disy ~ d;, then P; and Q; are cubic polynomials and p; is identified as the
rational cubic interpolant version 1.

o ry = 1+ eiaifei + e;fe;yy, the P and Q; are again cubic polynomials and
P« is identified as the rational cubic interpolant version 2. Delbourgo and Gre-
gory (1985) have shown that if the derivatives satisfy the convexity/concavity
constraints NCCO or NCC1 then both rational cubic versions will be con-
cave/convex. If the derivatives satisfy the monotonicity constainis NCMGO or
NCML1 then both versions will be monotonic. Delbourgo and Gregory (1985)
liave also shown that Version 2 is in general more accurate than Version 1.

The piecewise quadratic Bernstein polynomials with extra knots cannot be described
using the previous formalism. This interpolant is constructed by piecing together two
quadratic Bernstein polynomials within each interval, with the point of intersection
{the extra knot} determined by a rather complex algorithm which cannot be succinctly
described with a few equations or figures. Because of this, the reader is referred to the
descriplions found in the series of original articles (McAllister et al., 1977; McAllister
and Roulier, 1978, 1981). The characteristics of the Bernstein polynomials, together
with the algorithms developed for constructing the knot, the value of the interpolant at
the knot, and the interpolant derivative at the knot guarantee that the interpolant will
be menotonic provided NCM is satisfied, and convex/concave provided NCC is satisfied.

2.3 Derivative estimation procedures

Table 1 lisis the algorithms used in estimating derivatives ai the nodes. Several of the
algorithms suggested in the literature for shape preserving interpolation which differ for
unequally spaced data reduce to a common form when the data become equally spaced.
Our first comparison uses equally spaced data, and therefore common algorithms are
grouped together. T'he rable als;gincludﬁ an algorithm identified as Cubic. which does
not usually appear as a derivaliVe estimate. This scheme arises by computing a cubic
interpolant through the four nearest points. The slope at the nearest Lwo points can
then be writLen as a linear combination of the four surrounding data points. Such a
scheme resuils in an interpolant which is only C° continuous. It is included Lecause
this form of interpolation is often used in semi-Lagrangian problems. Tle harmonic
Inean, geomelric mean and Fritsch-Butland derivative estimates aulomatically satisfy
the NCM and NCC constraints. The others generally must be modified (o satisfy them.

—
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TABLE 1.

Identifier Algorithwm
Akima adi_\+pb;
i +8#£0
di={ °+P >
(A70, FC80, Ha3) {(m_ 2+A'.! a+8=0

a=|Aiy - Al B=|Aic) - A

Arithmetic Mean
(FC80, GDg2, d; = lﬁi;:,iﬁl
DG83, H83)

Deficient Spline

Geometric Mean

(DG83) d; = {’igﬂ{ﬂi)\/ﬁ-‘-lﬁi Bi18i20
0 A< 0

Harmonic Mean

28, 44,
(FBS"} d‘- = {iA.‘-; +A.‘i A‘._IA'. 2 0

Rational Linear Y Bi4;<0

(GD82)
McAllister-Roulier
(MR81)
Fritsch-Butland
3ai—,ilal
(FBs4, H83) d; = {m“(ﬁi—l.A;)+2mln(A.--,,A,-) Biabi >0
0 A, A <0
Cubi i .
ubic . {gm.-,ﬂan, 8isy) £ € (0, %i41)
R S 2 € (zio1z)
Hyman
(H83) d; = Bia=T8i0 +78.- 84,

12

Algorithms for derivative estimates as they simplify for evenly spaced data. Rel-
erence codes are aé follows: ATO-AKima (1970), DG83-Delbourgo and Gregory
{1983), FB84-Fritech and Butland {1984), FC80-Fritach and Carlson {1980),
GDB2-Gregory and Delbourgo (1982), H83-Hyman (1985), MR81-McAtiister-
Roulier (1981). '

2.4 Intercomparisons of interpolation schemes
The accuracies of the interpolation schemes have been tested by applying them to three

shapes: a Gaussian, a cosine bell, and a triangle. These shapes were chosen because they

™

have similar forms, but may be successively more difficult to approximate accurately.
The Gaussian is C%°, the cosine bell is C! and the triangle is C°. Tests using resclutions
of ten points and forty points were performed.

The shapes were successively displaced 100 times, by 1/100 of the grid interval, and
measurements of the accuracy were made. This was to establish the sensitivity of the
representation to the relative position of the grid and test shape. The accuracy of any
one scheme varied by at least a {actor of five over the 100 realizations. We intercompared
the schemes using the accuracy averaged over all realizations. We have tabulated the
erTor statistics as & function of interpolation form, derivative approximation scheme and
derivative limiter in Rasch and Williamson (1987). We included the seven derivative
approximatijons, the five interpolation forms described above and various monotonicity
and convexity constraints on the derivatives as appropriate for the interpolation form.
We also considered the unconstrained versions for reference.

These tables of errors provide a staggering amount of information and the discussion
justifying the conclusion about the interpolation from the tables is somewhat tedious.
The tables and discussion are not repeated here. Out of the mass of numbers considered,
there are logical inferences to be drawn relating the various schemes to each other. These
conclusions may not be universal, as definite known properties of particular fields might
be used to advantage in the interpolation scheme. Minor exceptions can be found in
our tables that might imply some other scheme is ideal for such specific applications.

We begin by itemizing our conclusions regarding the interpolating functions.

* The Hermite cubic and the second version of the rational cubic interpolant
appear to be the most useful interpolation formulas. The first version of the
rational cubic interpolant is consistently inferior to the second.

» The Bernstein quadratic interpolant is generally of comparable accuracy to the
rational form mentioned above. We lound it to be somewhat more difficult to
program for the various special cases, which results in a corresponding increase
in the complexitly of computer c_ode.and execution time.

« The rational quadratic interpolant is of comparable accuracy to the SCM limited
Hermite cubic for onic data, but it does not allow the flexibility of the
Hermite cubic near extrema, or allow for the concave/convex structure provided
by versions of the rational cubic interpolant. For data which have an extremum,
this scheme is not recommended, because there is no allternative 10 assuming
the slope goes Lo zero at a discrete extremum. This results in much larger errors
in the vicinity of the extremum, than the cubic, rational cubic and piecewise

guadratic spline forms.



Conclusions regarding the derivatjve eslimates are:

» The geometric mean, harmonic mean and Fritsch-Butland derivative sstimates
are consistently fess accurate than the others. Their virtue is their simplicity.
While they may result in visually pleasing interpolants they are generally of
insufficient accuracy for many zpplications. The rational-finear derivztive esti-
mate, equivalent to the derivative estimate suggested by McAllister and Roulier
(1981), and the harmonic mean estimate suggested by Fritsch and Butland
(1984) for equally spaced data, is the least accurate of ali the slope estimates.
The Fritsch-Butiand slope is always more accurate than the rational linezr slope.

The Akima approximation perforns extremely weil for data with smail-scale
{eatures, but less well for the broader, more rounded shapes. Careful examina-
tion of the results suggests the Akima scheme is actually quite accurate in the

..

vicinity of the extrema, and much jess accurate over the rest of the domain.

Except for the intersection of straight lines such as triangular peaks where the
Akima estimate shines, the Hyman derivative estimaie is the most accurate,
followed generally by the cubic, then arithmetic. The disadvantage of the cubic
derivative approximation is that it does not provide for a continuous interpolant
while the others do.

Monotonicity constraints generally improve the interpolation of monotonic data
and of data approaching a flat plateau. These constraints degrade the interpo-
lation near extrema by not allowing any overshoot that might be implied in the
underlying data. The derivative estimate is constrained to be zero in the vicin-
ity of extrema with the ¢! form. The C° continuity constraint is less serious in
this regard than the C!.

* Where strict monotonicity is not required, relaxatior; of the monolicity condition
at any extremum seems desirable to aliow the interpolant to form an extremum
somewhere other than at a data poiﬁt. Application of Hyman's iimiter for the
Hermite cubic or the convexity condition for the rational cubic seems desirable

o prevent overshooling in ihe approach to a flat or nearly fiat plateau.

3. ONE-DIMENSIONAL, SEMI-LAGRANGIAN ADVECTION

Based on the evaluation of the varions shape-preserving interpolalors described in the
previous seclion, we chose those which rated well for further 1ests in oxe-dimensional
semi-Lagrangian adveciion by a uniform wind field. The Eulexian lormi of the evolution
equalion lor the advection by a constant wind field of a scalar field in 1:e absence of
Sources and sinks js

...-!O..-

af(x,t) af(z,t
* gt tv ,g,: bao (3.1)

where f is a scalar field such as mixing ratio, ¢ is time and v is the constant advection
velocity. Given [ at time L, the solution at time ¢ + At is

fz.t + A = f(1,1) {3.2)
where
t=zr-vAtL. {3.3)

The evaluation in this section focuses exclusively on the interpolation aspect of the
sojution. Given the departure point Z, an interpolation is made to find f(i,t). The
interpolated value is then the forecast value f(z,t + At). We consider only the Hermite
cubic and second version of the rational cubic interpolant coupled with arithmetic, cubic,
Hyman and Akima derivative approximations. Unmodified and appropriately limited
derivative estimates are considered,

We integrate the advection equation with vAt/Ax equal to x /12. We chose an irrational
number oo that the relative position of the test field and grid would change with time
and given a long enough integration would become almost uniformly distributed over
the domain. The equation was integrated for 1000 time steps with the solution plotted
every 200. The plots are superimposed using a coordinate system that moves with the
advecling velocity. The test shapes deform due to errors in the interpolation. The line
code in the figures is such that the shorter the pattern members, the later in time the
solution.

Rasch and Williamson (1987) present results from cosine bell and square wave initial
conditions, with ten nonzero gridpoints. We select a few examples of the square wave
tests 1o illustrate here the general properties observed. The figures show results from
arithmetic, cubic, Hyman and Akima derivative estimates ordered top to bottom.

Figure | shows results from the Hermite cubic interpolant. The left column shows
the uniimited forms of the deriyvative approximations. Strong oscillations greater than

10% of the true signal are evifént with the Hyman and sritlimetic d&iivative estimats, Sl >

The cubic derivative estimate shows less over/undershoot and the Akima estimate the
least. The Akima version seems Lo be evolving toward a peaked shape. Figure 1 (center
column) shows results from the Hermite cubic interpolant when the derivative estimales
&re modified Lo satisly the SCM0. The monotonicity condition has improved the solution
by eliminating the overshoot at the expense of increased diffusion and a decrease in the
maximum value, at least for the arithmetic and cubic derivatiave estimates. The Hyman

EEl
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and Akima derivative versions are improved by the limiting procedure, with little or no
increase in diffusion of the shape. Imposition of the SCM1 constraints {right column)
results in a very substantial increase in the phase error of all versions except the cubic
derivative estimate. However, this interpolator is ! only where the derivative eslimates

were modified.

o of | . e
z 3 ]
£ ~
[y
&~ &
4 &7 1
b ]
o
2
o \ ] 2

NYMAN

AKIMA

UNLBAITED SCMi

Fig. 1. Semi-Lagrangian advection with Hermite cubic interpolation of an initial square wave
shown every 200 time steps (superimposed using & coordinate system that movea with
the advecting velocity). The line code ia such that the shorter the pattern members, the
later in time the solution (the shortest pattern occasionally bieeds inte an apparent solid
line). Left column is for unlimited derivative estimates, center for estimates modified
to satisfly SCMO and right for SCM1. Top row for arthmetic mean derivative estimate,
second row for cubic, third for Hyman and bottom for Akima.

The rational cubic interpolant {Fig. 2) results in a more rounded profile for the un-
limited derivative estimates (left column) but provides a substantial reduction in the
over fundershooting and' ‘amwn when compared to the Hermite form (Fig. 1, left
column) for the arithmetic, cubic and Hyman derivative estimates. Thus we consider
this solution to be better. On the other hand, the solution using the Akima derivative
estimate is worse with the rational than with the Hermite cubic interpolant. The !
necessary condition for monotonicity (Fig. 2, right column) increases the diffusion of the
interpolation with the polynomial derivative estimates but leaves that with the Akima

P P | - « e AD . - [ -1

Note that the C! monotonic rational interpolant does not show the increase in phase
error seen with the C! Hermite monotonic interpolant in Fig. 1, right column.

ARITHMETIC
ME AN

cusIC

HYMAN

AKIMA

UNLIMITED ’ WM

Fig. 2. Arin Fig. 1 except with rationai cubic interpolation. Left
column is for unlimited derivative estimates and right for
estimates modified to satisfy NCM1.

4. TWO-DIMENSIONAL SEMI-LAGRANGIAN ADVECTION IN A
PLANE

We have also evaluated the Hermite and rational cubic interpolants for advection in
two-dimensional Cartesian geometry. We consider three methods of applying shape
preserving interpolation Lo the two-dimensional semi-Lagrangian advection problem.
The first is to split the two-dimensional advection operator into two one-dimensinal
operators via explicit fractional time steps or time-splitting. This approach was used
by Purnell (1976) following Strang (1968) Lo obtain a scheme which was second order

in time. Each fractional time step involves one-ditnensional interpolation only.

The second method involves monotone piecewise bicubic interpolation. Carlson and
Fritsch (1985) have extended Llieir univariate piecewise cubic interpolation (Fritsch and
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GFodume s - FAPC Scheuaeh: -
Features (strengths) of the method.

.8 A"volume"” (=grid box) scheme: grid point value is
treated as a volume (“zone”) average;

e Volume boundaries are treated as (possibie)
discontinuities, and physical properties of the fluid
are used to calculate the interaction of neighboring ! -

- fluid elements (zones) ‘\_— .:I g

Godunov (1959): introduced the method
exploiting the solution to the so called Riemann’s
" problem: iwo constant states in a tube, separated
by a discontinuity. “Piecewise constant” method.

ﬁ;uu- ik-—s—.

M Van Leer (1979): “piecewise linear” method.

Colella, Woodward (1984) “piecewise purabohc"
method, (ppM) -

esulting schemes are hot based on series
expar‘s'ons and for accuracy fhey do not rely on
emoothness of the fields !

R ¥ X
|

s nawty Aong .)

( K, R(reax)ex(x)

N L o S

* tht»rw?{w adweeh oy ot bonuolorey

% Eulenom resdop

cousbn wk l.au‘q- ovtraqes

(prece wnse co#-o{'o-wf" reducen

b wpskreowm schewme for covitont
'Udodl'%)

Slope. adiusl—uul'

ecewnse bueor  (Voy Leer 1417)
piecewnse porabolic
(PPM) (otlele. b Wood wrrd 1484)

I N .



_O0O7C —

yid BRAM VAN LEER

Step 3. Starting from the approximate initial values (3), integrate Eq. (1) over a

nite time-step Ar. This is achieved by shifting the distribution w{r®, x) over & distance

At = o Ax along the x-axis:
W', x) = w{t*, x — o dx). 4

i icati f equations it is practical
of the probable application of the scheme to sysicms of equall .
-':I:I:::gh nnl‘:'leccsnry) 10 restrict ¢ by the vsusl Courant-Friedrichs~Lewy (CFL) -

wdition
) lot < I (%)

I hus, the shift will never be prenter than dx.

Step 4 (- Step ). Determine the new mesh averages

A - .z'T I'm W, x) dx. (6)

Ihese steps are illusteated in Fig. |
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i ' ; . (1) Detcrmining the mesh sverages {broken
Fia. 1. The tint-ordet upstream-centered scheme. | ¢ ) | sver
tine) of the initinl-value distribution {solid line). (2) The approximalte |mlu'|l-value dumbul:‘o:zo: _
(solid) and afrer (broken) convection over a distance edx. (3) Delermining the new mesl
{broken) of the convected distribution (solid). (4) The initial values for the next time step.

The numerical vutcome of the ubove procedure is

LT N _ _ .
N W =fai)@gd]lolin = Wyg — 0d( W il o<,

This is precisely the upsiream-centered scheme of Courant, Isascson, and Rees

(CIR) [4) applicd 10 mesh averages of w instend of nodal-
{1, Eq. (10))).

Scheme (7) can also be related to the integral version of Eq. (I) in one space-time

mesh, that is, to

L

This equation is equivalent to

(W1 - By Ax + ((awy) — {awy)) 41 =0, (9) : S |

efo YR+ lolFyn= Fin— od v if ¢20, )

point values (cl. Van Leer -

) . NUMBRICAL OCONVECTION

" whege.the in;led-b’nékéﬁ denote averaging over the time step. Equation (9) |

+ " tan} i formulating the scheme for conservation laws (cf. Section 6). With 1l

. ,:',-whcrp' -

. wise constant inltial values (3) we get

> R (‘“‘t). - ‘

4

ov.qm il a0,
LR if a<®,

~.and the familiar l'onln {7) resuls. Note that, while Eq. (9) is exact, scheme {7

first-order accurate since the time averages (ow,® are derived from the crudest

- approximation of the true initisl-value distribution.

Once we recognize this, extension of the scheme towards a higher order of ¢
becomes a straightforward matter. All we have 10 do is replace the true initi
disteibution (1%, x) by a pieccwise approximation that has a higher order of 2
than (3). In view of Eq. (2), where the mesh average of W is defined with resy
constant weight (unction, it scems natural to further approximute ¥ picc
terms of Legendre polynomials:

w(r®, x) «= B, 4m + (B eum x_‘ﬁg&m + odisum ’(r FI::‘I‘;-' "1'). - ;;

X, XX < X5

- This ensures that integrating w(r®, x) with constant weight over any mesh (»
' yields the proper average Ry,

Let us first consider the possibilities of fitting the initial data in cach me

. linear function. We may write

dity W
w(r®, x) = Frprm + ﬁfl_';'L(x = Xeumh X <X <Xy,

——
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- Is some average of the gradient of HW{1.® x) in the mesh (x,, x,,,). The evnlue

" this average gradient belongs to Step |; what sort of average is taken will be le
". " for the moment. Equation (12) replaces Eq. () in Step 2; Step 3 remains the sar
. :-fiew procedure ls illustrated in Fig. 2. Note that w(s®, x), although smoother

Eq. (3), Is still discontinupus. The scheme now updates # with second-order ae

.'-":‘ for o 5> 0 we get_-' .
' -._.'_.'.“ .'_..".. W“‘ - p." — 'd.w - ('nx' — 0KJ|nw — J-l -Ili').

This, again, is an upstream scheme; & central-difference scheme such as th

» " a L{] l', I3
I ' wt, x) dx I' + I‘ an{t, x) dr e 0. ®.1. * Wendroff [5]} scheme -could never result from the procedure followed abovs
g ] . o

. fespoct 10 the integral equation (9) we bave, for o > 0,

AR ] fa

T kawd = alPim + 10 = o) S’




Tne scheme s Zppied in the eta mode) n the following manner. As the firsy
Siep of the sigpe adjusliment procedure maxima and minima (n the profile of g

procedure. with average values within layers kept constant in each sweep eng
Lentsof the iinear seunents of the q profile aCross these lavers which are at
i€ <) of the smaller of the two steps at its interfaces are moved to the
HIA=pOINLS 01 that slep Tnis 15 1llustrateg inFig 44 The gotteq iine In the
Ngure represents g hypathetical profiie of aprior to the adjustment procedure.
AL e LIS S0 OF thus brocedure values at layers k and k+3 would be
identified as 3 mimimum and as a maximum, respectively, ang r lagged not to be
hanged” Slopes which layers k+ 1 and k+2 would obtain as a resuit of the first
Sweep of Uhe ciaope adjustment are shown by the two full tines in the ftqure.
The Cusde iy an bresent set Lo have three iterations performed since inspection -
has shown that afier three iterations little in view of adjustable steps remains
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ment procedure of the eta moge] moisiure svection
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vialt Dilerian advection Procicin versions ¢f 3

T L, felerred t as GOdUTan - { ppi wlwings, u
LA el 15115 pageg SCNer¥s: Tney nave been déveloped with the ob Jettive of
ST fiows winen contain diccontinuities, such as sheck waves Mocr of
Wi i e teen done in the ¢ ieles of aerodynamics ang astrophysics,
Tlsthiny Lo gy ey in Melewr 0dogy are &6 far few and very recent
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