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Statistical Weather Forecasting

Harry R. Glahn

1. INTRODUCTION

Statistical weather forecasting, in its broadest sca<e, has
undoubtedly been practiced for thousands of years. A1l that is
necessary is for someone to collect some data, someone to process it,
and soimeone to use the results to make a forccast. Ancient man,
seeing a dark cloud approaching and thiinking that rain was likely,
would be practicing statistical weather forecasting even if he had no
knowledge ot the physical processes involved. However, in this
chapter we use the term statistical weather forecasting to mean fore-
casting through the use of a formal statistical analysis of the data,
with the results of that analysis being clearly stated.

Statistical forecasting is a branch of objective weather fore-
casting, the other branch being numerical weather prediction. Allen
and Yernon (1951) have defined an nbjective forecast as *... a fore-
cast which does not depend for its accuracy upon the forecasting
experience or the subjective judgment of the meteorologist using it.
Strictly speaking, an objective system is orns which can produce one
and only cne forecast from a specific set of data.”" (Subjective
Judgment s, of course, used in the development of the system.)
Occasionally, these restrictions are relaxed sTightly or some sub-
jectivity may enter into the definition of "a specific set of data.”
For instance, an observation of temperature at a certain location may
be needed as input to an objective scheme, and this observation may
not be available for some reason. It may, then, have to he estimated
from other data., E£ven though this estimate is made subjectively and
requires skill on the part of the metcorologist, the feorecast would
probably still be called objective.

Some statistical techniques are veny simple, wvhereas other pro-
cedures are more complicated. Various forms of scatter diagrams and
histograms fall {into the first category. Discriminant analysis and
logit analysis are examples of the latter category.
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In the early years of operational nunerical weather prediction,
competition rather than cooperation dominated the relationship
between those indlviduals engaged in developing statistical models
and thase rescarchers concerned with developing numerical models.
Each group thought that its approach was the best way to proceed anc
that the other branch of objective weather prediction was not
necessary. Ltven though the barriers between the two groups have nol
yet vanished, each group has become much more tolerant of the other

roup's viewpoint. 3Statistical modelers now use the results from -
?rather than compete with) numerical models, and numerical modelers -
recoynize the usefulness of properly app]f‘d statistical procedures. b

In this chapter. we will review the three general methods of
“application of statistical models and describe the statistical tech.
niques that have been applied to weather prediction, Emphasis will’
be placed on those technigues that have been used operationally.
Other discussions of statistical models employed in objective weathe
forecasting can be found in Allen and Vernon (1951), Gringorten
(1955), Panofsky and Brier (1958}, U. §. Navy (1963}, Glahn (1965},
and Miller (1977).

2. METHODS OF APPLICATION
2.1 Classical Mathod

Before the days of numerical models, statistical techniques
necessarily incorporated the time lag., That is, if one wanted to
develop a scheme for forecasting the maximum (max) temperature for
tomorrow, the input would consist only of observational data avall-
able at the time that the forecast was to be made. This situation
can be expressed as

-

where ?t {5 the estimate {forecast) of the predictand (dependent

varfable} Y at time t and X5 is a vector of observational data

{ independent variables) at time 0. (The abservations are not
necessarily all made at time O but must be avatlable at that time. )
This technique has become known as the “classical’ a approach for lacb
of a better name (Klein, 1969}. 1In applcatiun, the input is the
same as in develeopment.

2.2 Perfect Prog Method

As numerical models were implemented and impruved, it was reco
nized that their cutput must be exploited to the greatest possitle
extent., However, these models did not predict wmuny ot the weether
variables with which users were concerncd - for instance, max
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temperature. This situation led to the deveiopment nf the perfect
prog (prog for prognosttc) technique (Klein et al., 1909},

A concurrent relationship between the predictand variable and
the prediclor variables 1s developed, which can be exproused as

Yo = fo(%),

where 7, Is the estimate of the predictand ¥ ot time 0 and Xy is

a vector of observations of variables that can be predicted by
pumerical models. The time relationship need not be exaclly con-

current, hut it is mych more ‘nearly so than in the classical tech-
nique. Even thounh YD is an astimate, it is not a "forecast" in

the sense of "iooking ahead"; it is more appropriately called a
“specification."

In application, jt is inserted into Eg. (2) to provide a fore-
cast Yt:

Yt = fz(_xt}- (3
The vector X, is obtained from numerical model output. This

approach assumes that the model output is “perfect" {hence, the name
*perfect prog").

2.3 Model Output Statistics Method

Although the perfect prog technique makes use of numerical model
output, it is not necessarily true that the statistical relationship
between Y and x at time 0 is the best relationship for time t when

p 1s estimated by numerical models as in £q. {3). “In order to

0vercome this problem, the model output statistics (MOS} technique
was developed (Glahn and Lowry, 1972). In this approach, a sample of
model ocutput 1s collected and a statistical relationship is devel-
ocped, which can be expressed as

Yy = £33y, (4)
where ?t is the estimate of the predictand Y at time t and Xt fs

a vector of forecasts from numerical models. The numerical model
predictions X X, need not be limited to time t but could be valid

either before or after time t; however, the projection times of the
different variables will u5ua1ly be grouped around t. In applica-
tion, £q. (4) is used as developed.

292

2.4 Comparison of Classicai, Perfect Prog, and MOS Techniques

Tahle 1 summarizes the development and application aspects of
the three techniques. Since the classical technique docs not depend
on numerical models, ft s w15§ usetul Tor very shorf-range Fore-
casting. " TH rfrength af most rgmerical models T{es tn predictTng
QVIWTf'several hours to a fcw days In advance. Tor predictions of up
to 4 hours, say, simple statistical models and even persistence may
be quite good in comparison to numerical models or statistical fore-
casts derived from them. The classical technique 1s relatively
simple to use, observations are usually abundant for model develop-
ment, and therc is no dependence on a numerical medel to complicate
the application.

For many purposes, the perfect prog technique glves qiite good
results, Since Eg. (2} is based entirely an observations (or simple
calculations made from them), a large data sample wsually can be
obtaincd to ensure a stable relationship, (A stable relatinuship is
one that will give similar results on dependent and independent
data.) The avoilability of observatfons also may allow useful strat-
ifications of the data. That is, different relationships ran be
developed for different months of the year, hours of the day, etc.

In addition, as numerical models become more accurate, forecasts
based on Eq. {3) will {improve even without redevelopment of the func-
tional relationship f2'

for medium range forecasting, MDS {s the hest technique if {a) a
sufficient sample of model output can be obtained for development and
{b} the model does not undergo major changes. Use of MOS usually
requires more planning than the other technigques because the model
output desired may not be saved without special arrangements. The
major disadvantage is that a relationship f3 developed for one model

may not hold for another model. Therefore, 1f the operational made
is changed substantially, a new relationship should be developed.
This redevelopment can be done only after the new model has been used
for a long enough period to cbtain an adequate data sample. At the
time that this chapter was written, changes in the National Weather
Service (NWS) models being employed by the Naticial Meteorological
Center (NMC) have not presented serious problems in MOS applications.

Changes in numerical models that might materially affect MOS
applications could be any of three types: (a) the model produces the
same output variables, but the overall skill is higher; (b} the model
produces the same output variablcs and the overall skill is about the
same, but the errvor characteristics are different; or (c) the model
produces different output variabies with or withnut an increase in
skill, (We assume that a new medel would not be dmplene-nted if the
skil1l level was below lhat of the old modeb.) Ta the 11 st case wee
of the new model would probably decreane the skil]l ot b forecasts
slightly {(without redevelopment} unless the model skiltl was increased
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Tabie 1. Development and application equations for the classical,
perfect prog, and.MOS technigues.

_ Deve lopment Mpplication
Technigue equation _equation
Classical ?t s fltjoJa
Perfect prog YO = f2(50) ?t = fz(jt)

v Y|
MOS Yt = f3(5t)

aDeve]opmr:nt and application equations are identical.
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considerably. If the skill did increase markedly, then the MOS

ski11 would probably.also improve. For a new model! with equal skill ..

but different error characteristics, the MOS skill would undoubtedly &
decrease.  If the new model didn't produce the same output variables, ©

the old variables would have to be estimated (by interpolation or
other computations from the new variables). A decrease in MOS skill
would tikely result unless the new model was considerably more '
skillful.

Even with these potentfial probiems, it is likely that MOS will
be used operationally more than perfect prog and will produce better
forecasts for many years to come. At some point, some of the appli-
cations may shift to perfect prog. However, when the predigtand is
2 dichotomous event (e.g.. precipitation/no_pricipifation) and the

statistical relationship estimates the probability of that event, MJS

will always be superior to perfect prog. MOS ircorporates the N
inaccuracies of the numerical model, and as the skill becomes small
for large projections (f.e., long lead times) the estimated proha-

- bilfty will approach climatology. Perfect prog will not give this

result; that is, the possible range of predictions in the perfect
prog approach is just as great for long-time projections (say 5 days)
as for short-time projections (say 12 hours), unless the numerical
model itself becomes much smoother with time and perhaps spproaches
climatology. Therefore, perfect prog probabilities will not be
reliable ?1.3., will not correspond to observed relative frequen-
cies). Figure 1 shows schematically the relationship between MOS and
perfect prog probabilities as a function of projection.

Although relatively 1ittle experience to date has bcen abtained
in applying Eq. (4) to a model other than that on which it was deve-

loped, the evidence available suggests that the decrease in skill is L

minimal. Major operational models share many of tne same charac-
teristic errors - incorrect phase of systems at long projections,
missed cyclogenesis, etc. The forecasts prepared by two models fre-
quently look more like one another than either looks like reality,
That is, major error characteristics for different models are simi-
lar. As Tong as this situation exists, relatiorships developed on
ong model can be applied to another model without major loss in
skill.

A1l of the statistica) models presented in the following sec-
tions, such as scatter diagrams or regression, can be uted with any
of the techniques discussed above. In the following sections, an
estimate of a predictand may at times be called a "forecast” even

ihough #o time projection is actually invoived.

3. HISTOGRAMS

. Perhaps the simplest statistical mode) one might apply is the
histogram. Figure 2 shows the relative frequency of frozen precipi-
tation at Salt Lake City as a functior of the 1000-500 mb thickness

ry
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Figure 1. Schematic diagram of upper and lower limits of MOS and
perfect prog forecasts as a function of projection.
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Figure 2. Relative frequency of frozen precipitation at Salt Lake
© City, Utah, as a function of forecast 1000-500 mb thick-

ness (after Glahn and Bocchierd, 1975).
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forecast by the primitive equation (PE} model {Shuman and Hovermale,
1968). The relative frequencies have been calculated fur 40 m inter-
vals. The interval must be wide encugh to encompass several cases in
the region of greatest concern and-yet be small enough to give suf-
ficient detail to be useful. The intervals need not he the same
width.

The histogram can be applied directly. However, Figure 2 poses
a question: “"Should the relative frequency for each thickness hand
be used exactly as plotted?" This question really has two parts,
ane invelving smoothing and one involving interpolation. [s there
any reason to belleve that, the relative frequency should be hiyher
for the 5600-5640 m band than fur the bands on either side? If not,
smoothing is suggested, Also, shouid one use 19% for 5441 m and jump
to 64X for 5439 m? If not, Interpolation is suggested. In any case,
Judicious use of histograms can produce a useful objective tool, and
3 computer is not required for its development or use.

4. SCATTER DIAGRAMS

Another model rivaling the histogram in its stmplicity is the
scatter diagram. It is primarily a noncomputer technique and was
used as early as the beginning of this century by Besson (1905). The
technique has also been called graphical regression and was studied
tn detail by Brier (1946). It has been used extensively by the U.S.
Weather Bureau, now the National Weather Service, since the mid-
1940's and several papers appeared in the Monthly Weather Reviow
circa 1950 illustrating the use of this model. A typical paper from
this period is that by Thompson (1950).

In its simplest form, coordinate axes are established on a
diagram such that the ordinate represents the dependent variable or
predictand and the abscissa represents a single independent variable
or predictor. Points are then plotted on this diagram depicting the
available data sample. Finally a line can be drawn by vye which
seems to fit the data points. In application, a forecast of the pre-
dictand is found hy reading the ordinate value of the line at the
abscissa value of the predictor. Such a completed diagram is shown
in Figure 3.

Usually, however, one wants to use two or more predictors. In
this case, the coordinate axes should be the values of the pair of
predictors, and the predictand values are plotted at the points on
the diagram representing the data sample. An analysis is then made
of the plotted data. The analysis is subjective and will depend on
the skill of the analyst. The analyst must be careful not to "over
analyze" the data, especially in regions where few data points exist.
In general, the analysis should be rather smooth and, in case of
doubt, known physical relationships may furnish a key to correct
analysis.
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Figure 4§ shows an example of a two-predictor scatter diagram
quen frnm Thumpson (1950), Precipitation amount can Le forecast
With Figure 4 and the observed values of the two predictors, Xy

{700 mb height at Oakland) and Xy {San Francisce minus Los Angales

sea level pressure difference). If one wishes to use more than two
predictors, other diagrams can be plotted and analyzed. for
instance, predictors 3 and 4 can be combined on a diagram similar to
Figure 4. The predictand value “forecast” from Figure 4 can be
called predictor *g. Similarly, the predictand value estimated from

X3 and Xy can be called Xg - Then Xg and Xg can be the coardinates

on another scatier diagra in which the actual predictand values are
plotted as a function of Xg and Xg - {A variation of this procedure

is to plot deviations between the prefiminary estimates Xg and xg

and the actual values Y.} An analysis of these valuos will then
define estimates of Y given values of g and xg. Thompson (1950)

presents an example of a six-predictor scatter diagram procedure.

The scatter diagram model is very simpie in principle, yet it
allows for any dogree of complexity that the data warrant. Its suc-
cess will depend on the analyst's ability to choose meaningful pre-
dictors, as will the success of any techpique. Thompson (1950)
offered the following comments concerning the analysis: "While the
meteorological relationships brought out by the primary graphical
combination of each pair of variables may ... be discussed from a
physical standpoint, and thereby the reasonableness of the isograms
checked, very little can be said about the secondary combinations.
Here the complexity of the joint relationships, as well as the prob-
able effect of other variables not considered in the integration,
defeats any attempt to supply a theoretical or physical justification
for the distribution of the isograms. Consequently the construction
of these charts must depend almost entirely upon an analysis of the
data."

Scatter diagram analysis is very useful when resources ara
limited and only small amounts of data are available. It does not
lend itself easily to processing by electronic computer, and the
method itself implies hand analysis [although some individuals,
including Freeman (1961), have attempted to automate the procass].
For this reason, ather technigques are usually to be preferred when
samples consisting of several thousand cases and a computer are
available. Also, no reliable significance test exists for the
scatter diagram procedure to determine whether added pradictors will
lead to increases in forecast accuracy on new data. Therefore, a
forecasting system based on scatter diagrams should always be tested
on new data if at all possible.

St

Figure 4.
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Ha00: Height of TOOmb surlace of Oaklond {feet)

Precipitation amount plotted as a function of 700 mb
height at Oakland versus the San Francisco minus Los
Angeles sea level pressure difference. Isolines repre-
senting rainfall amount have been adjusted to a scale of
Q to 160 for input to another diagram [after Thompson,
1950).
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5. REGRESSION

It has become increasingly clear during the last 20 years that
the use of large samples is very desirable in the solution of
meteorological prediction problems. Three reasons can he cited
for this conclusion. First, the autocorrelation of many meteoro-
logical variables does not approach zero unless observations are
taken quite some time apart. Therefore, the number of degrees of
freedom for such data is much less than the sample sizoe. Second,
many variables usually can be found that possess a relationship to
the predictand, and one frequently wants to include ~ or at least
test the desirability of including « a large number of these poten-
tial predictors. In the application of most models, this process
uses up many degrees of freedom, Third, the distribution of the pre-
dictand is frequently highly skewed, so that the very weather situa-
tions that are most important to predict occur very infrequently. A

large sample is necessary to include a representative number of such
situations,

The use of large samples and the inclusion and testing of many
predictors necessitates the use of an electronic computer and a model

that lends itself to computer application. Linear regression is
such a model,

5.1 Simple Linear Regression
The simple linear regression model ts of the form

Y=< a4 g+ g,

where Y is the predictand, X is a predictor, a and B are parameters,
and ¢ 15 the error term. The predicted value of Y is ¥, where

Y = a+ b,
in which a and b are estimates of the parameters.

In this model, the sum of squares of the observed errors {i.e.,
the €;'s) is minimized over a dependent sample of size n:

N n
{y, - Yi)z = min ¥

N2
min e = min i
= 1 i

=1 i

LU = |

2
1(Yi - a - bX;)".

Taking partial derivatives of Ie% with respect to a and b and setting
i

each derivative equal to zero yields the so-called normal equations:
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n n
an+ b E Xi - I Yi =,
i=1 i=]
n n o, n
a I Xi +b I X‘ - L XiY1 = qQ,
=] i=l j=1
Solving for a and b gives
n n n
n IX.Y,- X, LY
=100 qep b gep !
b= N n
2 2
i=1 =]
n n
as 1 L Y1 - ? b xi.
N a1 |

This one-predictor model is useful for {llustrative purposes an
can be applied to situvations such as that shown 1in Fiqure 3,
Usually, however, several predictors need to be considered. As a
result, one is led to multiple linear regression.

5.2 Multiple Linear Regression

If we form matrices ffom data samples of size n for the predic-
tand and p predictors, then

r=x-%

and
y=y-Y

are nxp and nxl matrices, respectively, in which each column 1s the -

[

[
o

deviation from the mean of the corresponding original variable,

Variance-covariance matrices can be calculated as follows:
1 .
21 = X%

T
51225 = 5 2%

1 1y a 32
SptF Xy oy,
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where a prime denotes a matrix transpose.

equation, derived in a4 manner analaqous to
Section 5.1, js

The mul tiple reqressign

the one-predictor case 1p

g IS -
YRS S - X5 Sy ¢ Y (%)

Associated with £q. (5) are a reduction of varfance (Ry) and 4

muttiple correlation coefficient (R) that are defined a5 £ 10w,

n n 3
RN D2 AN
2 1=1 i=]
RY = R¢ = 3 0 T
1 ¥12
= LY. . ¥
M ey i

= variance of Y - error variance of y
variance of" Y

These quantities

are easlly caleulated from the variance—covariaace
matrices:

S, 57 s S5 571 s
Ry = g2 . 21 ;f] 212 2 j}l 212
= -
T s g Wl e e [ P P i

LRy ol pags T
L sy i, A " At

av. R nge P - L AR e
Pl s 2. AW F G et o

PRl LT angieT e, -
et T A R MLAemAT Co. mOds:, 1en g JSeT 10 A3TLIr Mnat the
JONT JISTrioution ar predictand and predictlars, except that no pre-
dictor may be an exact Tinear function of one or more other predic-
tors. In that case, the Inverse of §11 could not he determined;
that s, it would be singular. For real meteorological data and
sample sizes much larger than the number of parameters (f.e., p+1),
this problem.ielq?m arises.

LFY Y X

Under certain conditions, analysfs of varfance can be used for

testing the significance of the reduction of variance, Rz, and of

individual terms 1n the equation. The conditions are that the sample
be drawn randomly from a muttivaria

regression equation {g developed, The F value corresponding to R2
1s calculated according to line 2 in Table 2, This calculated valye
€an then be compared tg the tabled F value for a desired o level
(probabitity of Type I error) with P and n-p-1 degrees of freedom,

Tsble 2. Analysis of variance table for reduction of variance asso-
clated with multiple Vinear regression model.?

Sum of  Deqrees of Mean i

-

e e e = g ——

D e e ——

b

factor cancels out in computing F,

Source Squares freedom square F value
Total 1 n-1 .
, B )
Rugression equation - Rp p (I—Rz} ;
p predictors p
g
? g2
R--R -p-1).
2_g2 N B U
pth predictor in Rp—Rp_l : ] p oo T
rejression equation o
* l‘-'—!:
: P e -l —-
‘eﬁ Ciaix " i ‘__‘t_‘;
Patterned after Panofsky and Brier (1953).
PAIl entries fn these colums should be multiplied by ni2. This

Ve
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Suppase R2 is significant in a particular situation, and ane
wonders whether a particular predictor is really adding any predic-
tive information over and above the other p-1 predictors. Consider
that predictor as the last or pth predictor. Then the appropriate F
value is shown on line 3 of Table 2 and has 1 and n-p-1 degrees of
freedom. This test is valid, under the conditions stated above, pro-
vided that the chaice of which predictor to test is not based on an
analysis of the data sample. This topic will be discussed further in
Section 5.3.

The model discussed in this section is a linear mode}, and other
models may be more appropriate. However, if the population distribu-
tion is multivariate normal, then this_model is the best medel that
can be found. If a researcher wants to “screen® oGt from a much
larger set of possible predictors the p predictors to include in the
equat ion, then the approach described in the next section can be
used.,

5.3 Screening Regression )

Screening regression, as the term is usually defined in meteor-
ology, combines multiple linear regression with an objective method
of selecting a "good" set of predictors to use in the equation from a
larger sct of m potential predictors. Since regression finds the
solution that minimizes the estimated error variance on the dependent
sample, it is logical to choose a set of predictors that woyld be
better than any other set for reducing this error variance. However,
if p predictors were to be picked from a set of m predictors, then
the number of combinations for even & moderate value of m is quite
large {unless p is very small or approaches m}. Specifically, the
number of such combinations is

4
cll'l = m:

p o pl(m-pJT’

It is usually not feasible to compute all these combinations, so
some shortcut must be taken to find a "good" set that may not be the
"best” set.

Screening can be done in one of several ways. The simplest is
what may be called forward selection. This procedure consists o
first selecting the one predictor from the total set of m predictors
under consideration that reduces the variance of the predictand more
than any other possible predictor, then choosing the predictor that
together with the first one selected reduces the variance more than
any other such combination of two predictors, and continuing the
selection procedure on a Yone at a time® basis until the additional
reduction of variance afforded by any predictor s very small., This
procedure insures that the first predictor selected is the best
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single predictor, but it does_not_jnyure that the first two_chosen
are the besi pair, etc. This stepwise selection was dlscussed as

earTy as 1940 by Wherry (1940) and was introduced into the meteoro~ .
togical literature by Miller (1958) following some unpublished work
by Bryan (1944).

The question arises as to how many predictors to choose. One
might be tempted, after selecting p-1 predictors, to test the addi-
tional reduction of variance given by the pth predictor using the F
value computed in the third Vine of Table 2. This procedure was
suggested by Lubin and Summerfield (1951) and is sometimes done.
However, it must be considored only as a stopping criterion, That
is, one must not attach any parthﬁTar signiflcance Tevel to it. The-
reason for this limitation {is that the test is being performed on k
the next best predictor and not on a predictor that has been selecte *
at random.

Miller (1958} has suggested a modificatinn to the standard F °
test that compensates for the testing of the best of several
remaining potential predictors. Instead of using the critical value
F(l-u) at each selection step, he suggests using the value F'(l—a) a

Fl—u/(m-p+1) at the pth selection step with scme desired probability

of Type I error a. This criterion is rather harsh, since it assumes
{approximately) that the (m-p+l) tests that could be performed at the
pth selection are independent and, in the absence of additional
complications, tends to lead to the selection of too few predictors
if some accepted value of o such as 0.05 1s used (Zurndorfer and
Glahn, 1977). Additional complications could {nclude highly nonnor-
mal distributions or non-zero autocorrelation for the predictors.
The test proposed by Miller {op. cit.) will also tend to compensate
for nonzero autocorrelations. However, it should be remembered that,
because of all the complications, this test is primarily a stopping
procedure and no exact level of significance should be attached to

.

The decision as to the exact number of predictors to select is
many times overemphasized. The mean square errvor for independent
data is usually not very sensitive to the number of predictors in the
equatfon within rather broad limits. Figure 5 shows schematically
the kind of results that have been obtained from experiments (e.g.,

see Docchieri and Giahn, 1972). R2 on dependent data always
increases with the addition of another predictor but tends to ”level,ﬁ
out” so that little is to be gained in terms of the mean square error’
of the predictand by [nqlguing more than, say, 12 terms. The mean
square error on test data need not decrease monotonfcally. A small
test sample will frequently cause the mean square error curve to be

irrequler. Also, for a large number of predictors, the ré test
sample curve will usually turn downward. However, a broad, flat
maximum will qenerally be found where, for practical purposes, the
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Figure 5. Schematic diagram of mean square error as a function of

number of predictors.
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predictions are of cqual quality. For this reason, almast any

"practical® sto ping procedure 1s quite adequate, such as (a) when
thh"éﬂﬁﬁﬂwygdgggfaﬁ of yariange of the rnext predictor is less than
0.003, (b) when 1Z7predictors have been selected, (c) when the reduc—

tion"in mean square error is less than, say, 0.05°F for temperature
or 0.2 mph for wind speed, or (d) Miller's F(I—u}'

Angther version of screening regressfon is to find the reduction
of variance for all m predictors, and then start eliwinsting predic-
tors one by one until some stopping criterion is met. This hackward

elimination procedure also does nat yield the unique best set, and
significance testing for it has been fnadequately studicd.  However,
some stmple stopping procedure similar to those mzthods deserfbed for
forward selection can be used. A complication could occur if one
prodictor were an exact Hngar function of g sgt of other predictors.
Then §11 would be singular. This possibility is very unlikely with

real meteorolpgical data, unless one were to actually formulate a
predictor from a 1inear relationship., For fnstance, one could
include only two of the following three predictors: 500 mb heiyght,
1000 mb height, and 1000-500 mb thickness.

S5t111 another algorithm combines the above two procodures.
Forward selection is done with an F test being performet at each
step. When the added reduction of variance is insufficient to be
Jjudged significant, the procedure 1s stopped. ilowcver, hetween each
selection step, all the variables selected up to that point {and not
subsequently discarded) are tested for significance. The least
significant is discarded if it does not moet the test, and again all
thosc remaining are tested until none is discarded.

Forward selection screening regression has been used more than
any other computer-oriented mode) for statistical wealher prediction.
Many studies were made at the Travelers Research Center, lnc. in the
late 1950's and early 1960°s ustng this procedure in combination with
the classical approach. For instance, Veigas et ai. (19%8) produced
an obhjective methoed for predicting the behavior of hurricanes in the
western Atlantic and Gulf of Mexico that was subsequentty used opera-
tionally by the National Weather Service. More recently, the
Techniques Development Laboratory (TOL) of the Hations) Weather
Service has developed many operational preducts based on this modeld.
Most of these products involve the MOS technique, but some forecasts
are based on perfect prog and classical procedures.  Theue present-
day uses of regression analysis are discussed in Section 11.

5.4 Regression Estimalion of Event Probabdlities w'rd |-

The screening regression model can he used when the predictand
is binary. For instance, the predictand might take on the value of 1
when an event occurrcd and 0 when it didn't, The regression
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gg%atjon then, can be thouaht of as yielding the probability (or
relative frequency] of The event Tar Featistic combinat jon< of pre-

dictor values. This approach was used by Mook (1948) and Lund
(1955}, but no extensive application was made of it until Miller
{1964) and others began using {t at the Travelers Research Center in
the 1960's. They dubbed it REEP for regression estimation of event
probabilities. Miller (op. cit.) realized that the probabilistic

model also held for multiple cate?ories. For instance, i ceiling
heéTght 7 dTvided into Tive mutuaTTy cxclusive and exhaustive cate-
gorfes and each category is used to define a binary predictand, then

the set of five regression equations (all with the same predictors)
will give a set of probabilities, Pi, where By =1(i=1, ..., 5)
) i

An important property of this model is that 1t minimizes the P-
score defined by Brier (1950}, which has certain desirable charac-
teristics (Brier, op. cit.; Murphy, 1974} and which is frequently
used in probabilistic Forecast verification (see Chapter 10).
UnfOrEEEEEely, the 1indfvidual pI‘s are not constrained to the zero-

o  ————— b

ogg‘jgterval. Selecf?&ﬁhaf-predictors can be made by choosing rext

the predictor that contributed most to the R2 of any one of the cate-
gories. Significance tests based on assumptions of normality are not
appropriate. Experience has shown that, gererally, 3 larger sample
{3 required to obtain stable results when the predictand is binary
than when 1t7is Continuous =" """ = o Lo et O

S ———— ——— b L8 . e b3 g ot

5.5 Binary Predictors

The screenfng regression model can be used when one or more of
the predictors are binary. A1l predictors were binary in the first
applications of REEP. An early reference to the use of binary vari-
ables in regression is Sufts (1957), and Neter and Wasserman {1974)
give a good discussion of the subject,

A binary variable (sometimes called an indicator or dummy
variable) can arise naturally. For example, an observation may be
made in this format, as in the case of rain or no rain. In addition,
2 continuyous variable can also be “dummied"; this process is usually
carried out in one of the two ways indicated in Table 3. (Variables
are never really continuous, since only discrete values are ysed in
practice. owever, temperature measured to the nearest degree is
quasi-continuous and will be considered to be continuous in this
chapter.) In transformation 1, each dummy variable indicates whether
or not the original variable has a vatue corresponding to its par-
ticular defining interval. In transformation 2, each dummy varfable
indicates whether or not the origtnal variable has a value less than
the upper limit of its particular defining interval. Note that any
one of the four dummy variables for transformation 1 is redundant
with the other three and, although all four could be screened (a
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Table 3. Two methods of transforming a continuous variable into
binary variables. 1In any particular column, ones and
zerces can be interchanged without affecting predictive
capability. : .

Binary variable
transformation 1

Binary varfable

Original variable transformation 2

category 1 2 3 4 1 2 !
1 1 0 0 0 0 0 0
2 ] 1 0 0 1 0 0
3 0 0 1 0 1 1 0
4 0 o 0 1 1 1 1

-

s
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fourth would never be selected), only three {any three} can be
included in a regression equation. For transformition 2, only three
meaningful variables are possible; the fourth would always have the
same value, Oumny variable No. 1 corresponds to Ho. 1, and lin. 4 to
No. 3, for transformations ! and 2, respectively. However, Hos. 2
and 3 for transformation 1 have no match in transformation 2.

Any combination of three dummy variables for transformation }
will give the same reductinn of variance as the threc ducmy variables
for transformation 2. However, Nn. 2 for transformatlion 7 may be
better than any single predictor for transformatinn 1. When scveral
dummy variables are created from a continuous variable, careful con-
sideration should be given-to which transformation to use. A predic-
tor such as No. 2 for trancsfaormation 1 treats a certain cateqory of
the original variable one way and the categories on both sides of it
another way. This procedure may be appropriate if the predictand is
continucus and fs a guadratic function of the criginal (undummied)
predictor or if the predictand is binary and was dunmied by transfar-
mation 1. Faor instance, suppose a binary predictend represenis
ceiling height from 1000 to 1900 feet at 1200 GMT. T[hern 3 binary
predictor representing that same ceiling interval at 0900 GMT would
be a good predictor. However, if the predictand is continuous, then
a few binary predictors defined Ly transformation 7 will nsually
yield better resylts than the same number of predictors defined by
transformation 1.

Although dummy predictors have the potential of accommodating a
nonlinear relationship between the predictand and predictors, some
Tnformation is lost since all values within a defining intrrval are
treated the same way (unless each value is represented by a different

dumny variable). Also, it takes several binary predictors to provide
é@QuEﬂihe‘Sﬂmg_iniormatioqmgg'gggk;gqginuuus predictor,” The number

of binary variables to be defined for a given predictor is usually
quite arbitrary as is the interval to associate with cach variable.
Traditional statistical significance tests are even less applicabte
in this case, due both to the binary nature of the variables and to
the unknown number of degrees of freedom used in choosing, say, five
out of eight possible dummy variables crcated from a single predic-
tor.

The use of all binary variables permits much more efficient com-
puter use, since one value need occupy only one bit rather than a
complete word and, in addition, faster logical rather than arithmetic
operations can be used in obtaining sums of squares and cross prod-
ucts. However, realization of this advantage usually requires con-
siderable programming effort and use of such a program would have to
be rather extensive.before the effort would be worthwhile.

e

5.6 Computed Predictors

Although vegression as prosented above is a linear model, non-
linear relationships can be incorporated through special computa-
tions. For instance, divergence is not chserved but can be calcu-
lated from wind ohservations. In addition, a predictor can be
“Jincarized” in various ways. That is, it can he transformed in such
a way that it has a more nearly linear relation.hip with the predic-
tand than did the original variable. Consider cgain the histogram
examle shown in Figure 2. [f we want to use several predictors,
including 1000-500 mb thickness, then we could include a transformed
or computed predictor representing the heights of the bars in Figure
?. " The transformation could be exactly as indicated in Fiqure 2, or
a curve could be fit that would undoubtedly pravide a variable that
would be more robust on independent data.

5.7 Orthegonal Predictors

We may have a problem in which we want to distill most of the
Yinear predictive Information from a large set of variables without
using a large rumber of degrees of freedom. For instance, 1000-500
mb thickness values may be avatlable at cach of 25 stations sur-
rounding a station for which we wish to predict max temperature.

The predictors are highly correlated and we wouldn't want to include
all 25 in a regression equation. We could screen the 25 and select,
say, five. Another altermative s to transform the 25 variables intg
another set of variables that are more efficient in termy of
retaining the large scale predictive information and discarding the
small scale “nofse." Orthogonal functions can be used for this pur-
pose.

Assume that pressure values are available at each of m points
and at each of n times. At each point the mean over time can be
found and the deviations from the means put into an nan matrix P,

The element Po. on the diagonal of % (P'P) is the variance of the
pressure at the ith point and the element PiJ is the covariance of

the pressures at the ith and jth points. The time series of k new
variables, represented by the nxk matrix U can be found by

y=eT

where T is an mxk matrix of coefficients of k functions st m points.
The matrix T is an efficient transformation matrix 1f the columns
arc orthogonal. "Also, the total variance of the columns of U is

equal tc the total varfance of the columns of P {f the columns of T
are orthonormal and k = m. Then
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(I is a kxk 1dentity matrix) and
tr(d'V) = tr(2'P},

where tr represents the trace of a fatrix. The original pressure
deviations at the m points can be approximately reproduced from the
new functions by

A

|

=0T,
and, if k = m,
Bee.

Several authors, including Wadsworth (1948), White et al,
(1958), and Jorgensen (1959), have adapted orthanormal VYschabyscheff
functions for this use. The m points occur in a rectangular array
and functions of degree zero through r and zero through s are used in
the two dimensions, respectively. The columns of T are then made up
of cross products of two functfons. The function composed of the
function of deqree zero in both directions represents the mean of the
m points. Functions composed of one function of degree zero and one
function of degree not zero represent patterns which vary in only one
directfon. In general, the low degree functions represent large
scale features of the map, whereas the high degrec functions repre-
sent small scale features.

Much of the variance of pressure, and of many other meteoro-
logical variables, s explained by large scale camponents., On the
other hand, it is the very small scale components that contain mast
of the observational error and are the least predictable. If very
small scale features in the pressure map furnish much predictive
information for other variables, then it is usually not beneficial to
represent those features in terms of orthogonal functions.

Even though the transforming functions - the columns in T - are
orthogonal, the new variables - the columns in U - are not neces-
sarily orthogonal. Therefore, T is not as efficient as it might be,
and the regression constants which relate a predictand to the new
variables must be determined by considering the covariances between
those new variables as well as the variances. That is, it is necos-
sary to examine the complete matrix

| R,

3 (W),
The most efficient way of represeating the linear information in

a_set of:géggtjémgﬁfﬁﬁgh“ﬁf1dﬁiﬁﬁg“ﬁpmppncnt§. These functions were

Tntroduced into meteorology by Lorenz (1956) who called them

£mpirjggjugcghggonalafunqgipgi (EUFs}. EOFs have been used to

sfudy meteorofogicaT data and for predictive purposes by several
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researchers, 1ncludin? Gilman (1957}, White et al. (1958}, Glahn
{(1962), and Grimmer (1963). 1In addition to

the condition
|
o Wy =0
is also imposed here, where D is an mxm diagonal matrix. Since
u=rT,
substitution can be made to yield
Lo »o.

The matrix
1 =
7 (B'P) =R

js the covariance matrix of the original varfables. Therefore,
T'RT =D '

The columns of T are the characteristic vectors and the correspondi
diagonal elements of O are the roots of the matrix R. The k column:

of T which correspond respectively to the k largest diagenal ¢lemen
of D explain a larger fraction of the total varfance of the origina

a—— =

- var1dbf;s, % tr(P'P}, than any other k linear combinations of those

variables.

e

Regression estimates y of a predictand time series y (in terms -

of deviations from the mean}) can be found by
YeUA,

where A is the kxl vector of regression coefficients corresponding °
k of the new variables. The vector A is now easily determined from

1 -1
A=4 (D7 y),
since the inversion of D is trivial.
It s worth noting that if the original variables are norma)iz
to unit variance, the characteristic vectors and roots will not in

general be the came as with the nonnormalized ygffﬁﬂ]g;, For
instancd, the pressure al a point™in middle latitudes has a larger

variance than it does in low latitudes. [f points from both region: b



. are included without normalization, the columns of U having the
largest variances will be dominated by the middle latitude pres-
SuUres. e T

An advaptage in the use of EOF's is that_the points do not have
to be in any organized patlern patially. Therefore, observations
taken"at stations can bé Tsed directly rather than requiring the
ficld to be specified in terms of a grid before the orthogonal func-

tions are applied.

5.8 Normalized Variables

Although regression can be applied to variables with practically

any distribution, it is the_optimum model if the variables have a
multivariate normal distribution. Boehm {1976) suggests that each
variable used in 1hé analysTs should be “transnormalized." That is,
some method such as histogram analysis or curve Fitting should be
applied to each variable separately, both predictand and predictors,
so that the resylting transformed variable will have a {ncar) normal
distribution. Boehm (op. cit.] uses the term transnormalized to

highlight the fact that this transformation is nof jist Subtracticn

of the mean and division by the standard deviation. It is the same
trancformabian discussed by Panofsky and Brier (1958, p. 41}. After
the regression analysis is performed on the normalized variables,
predictions of the normalized dependent variable can be made. Then

these values must be transformed back to the original varfable.

6. DISCRIMINANT ANALYSIS

Certain meteorological variables do not lend themselves well to
prediction by linear regression due to their nonnumerical natyre,
highly nonnormal distribution, or nonlinear relationships to the pre-
dictors. [n such cases, multiple discriminant analysis fMoA} pro-
vides a useful tool that has been applied extensively to weather
forecasting problems by Miller (1962) and others at the Travelers

Research Center, Inc.

Discriminant analysis was conceived by Fisher {1336} and first
brought into the literature by Barnard (1935). MOA refers specific-
ally to the Fisher analysis on more than two predictand groups.
Barnard {op. cit.) used the analysis on 4 groups, but she considered
only one discriminant function, Hotelling (1935} and others (Fisher,
op. cit.; Brier, 1940) evidently appreciated the possibility of more
than one function and mentioned the determinantal equatfon involved,
but the burden of calculations forbade extensive use of MDA until the
can?utational scheme of Bryan {1950) or electronic computers became
available. .

For a given problem, there is a maximum of p or G-1 {whichever
is smaller) discriminant functions, where p_1s the number of predic-

tors and G the number cf. groups. These functions are mutually.
uncerrelated and are found thrcugh the selution of the eguations:

Ol - DYy =0, (37 1 eeey mingp, 6-1))

where W and B are respectively the matriees of within and between
qroups sums of squarecs of the predictors, | is the ldentity matrix,
the Xj's {eigenvectors) are the coefficients in the discriminant

functions, and the lj'ﬁ arc the roots {eijenvalues) of the deter-
minantal equation

Wl - g s 0.

In the special case involving only two groups, only one function fis
possible and ts coeffifiants are proportional o those derived by,
(ggiggsipq, Therefore, for this special case, the two analyses are
equivalent.

A significance lest, which is a gencralization of Mahalanobis'

02. for the predictand-predictors relationship based on large sample
theory has been developed by Rao {1952) and uses the statistic

1 G-1

V .= “B) s n o3
oG n{tr W °B) Jil I
where n is the sample size and it {s assumed that G-1 roots exist.
VpG is digtributed as x2 with p(G-1) degrees of freedom provided
that the predictors are multivarjate norimnal within each group and
that the covariance matrices for each group are identical.

The jmportance of each discriminant function jJ is indicated by
its associated root a,. Since the number of discriminant functions

may be less than the minimum of p and G-1, the signiffcance of each
root can be tested by an approximate procedure due to Bartlett
(1934). for cach nonzero rool, the test statistic

[n - (3/2}p + G)] In (1 + 2}

is computed. This statistic ic approximitely distributed as x? with
p+G-2j degrecs of freedom.

The selection of variables for MDA by screening has also been
described by Miller (1962). In the sam: way that the selection for
regression maximizes the F-statistic, the selection for MDA maximizes



YPG. At each step, after p-1 predictors have been selected, the
quantity

= nl -1 : -1
Voo = Vip-1)g = nltr(W " By) = (i’ By y)]

is evaluated for cach remaining possible predictor and the largest
value indicates the preferred variable. This statistic is con-

sidered to be distributed as X with G-1 degrees of freedom (Rao,
1952), and Mitler {1962) sugyests, as with regression, that the

critical value le-u/(m-p+1) be used since the selection is not
random. .

MDA as used in prediction can be considered to be a lipgar
transformation from a_p-dimensjonal predictor space to a G-l dimen:
sional_discriminant s acgﬁlassumtng B-1 < P). such that the sample
points prttedf1ﬁ'tﬁEBHisér3ﬁYﬁiﬁl gpace exhibit as much clustering
according to predictand category and as little dispersion from their
respective cluster centers as possible. There will be, then, G

regions in the discriminant space, one for each predictand category.

Let us consider the effect of the relationship between one of
the predictors and the predictand on this transformation and the
desirability of using this predictor. Three possibilities can be
mentioned:

{a) It may be that a particular value of the predictor will
indicate only one predictand category, and that category
will be indicated by no other value of the predictor. This
situation is the most desirable. It does not matter how
the predictand categories are arranged on the predictor
scale; group 1 could be between group 4 and group 5 just as
well as anywhere else {see Figure 6)}. Thus, this type of
nonlinearity is accommodated by MDA, since no numerical
scale is associated with the predictand categories them-
selves. ‘ :

(b} It may be that a low predictor value will indicate two dif-
ferent predictand categories. In this case the regions in
the discriminant space containing the points representing
these two predictand categories will be superimposed
{untess the effect of other predictors can spread them
apart), and the predictor will be worthless in discrimi-
nating between these two predictand categories. However,
the predictor could still be very useful in separating
these two predictand categories from all the rest and could
also distinguish between those remaining categories. No
transformation of the predictor before i1ts inclusion in the
analysis would be useful in separating the superimposed
groups. See groups 3 and 4 in Figure 6 for an example of
this situation.

up
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Groups 3 & &4

e Xse
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See text for explanation.

Hypothetical relationsh
5 to the predictor x.

figure 6.
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{c) Tt could happen that both low and high values of the pre-
dictor would indicate the same predictand cateqory. This
situation is very undesirable since the predictor would
tend to spread the points in the discriminant space repre-
senting this predictand category and these points might
group themselves {nto two distinct regions (see group 2 in
Figure 6). This type of nonlinearity is not accomnodated
by MDA, and a nonlinear transformation of the predictor is
indicated if ft is to be used. In a screening procedure
where the raw variable is a possible predictor, it will
probably be overlooked as its monlincar relatianship to the
predictand will not be recognized.

Since the criterion for selecting the variables and for deter-
mining the functions themselves is to maximize the between to within
groups variance ratio, groups with many cases will highly influence
the results. This state of affairs {s generally detrimental, except
in those cases in which the costs of misclassification are all equal
and the concern is only for the number of correct forecasts. Miller
(1962} has attempted o counteract the large group effect in predic-
tor selection by making the size of all groups equal to that of the
smallest group during the selection process and then using the com-
plete sample to determine the discriminant functions and probabil-
1ties of misclassification.

Discriminant analysis can be considered to he complete when the
functions and their associated roots have been found. However, the
prablem of how to use these functions in probabilistic prediction of
the predictand groups still remains unspecified. Miller (1967) used
Bayes' theorem to find the a posteriori group probahilities from the
a priori group probabilities, which are estimated from the sample and
the assumed multivariate normal distribution of the discriminant
functions within each group. For the sample of meteorological data
considered by Miller (op. cit.}, the multivariate normal assimption
proved to be untenable, T e

If the data do not appear to justify the use of a completely
parametric model, discriminant analysis can be used to map the p-
dimensignal space into a G-1 or less dimensional space, and the con-
ditional probability distributions can be determined by other means.
If the dimensionality of the discriminant space is only 1 or 2, a
scatter diagram can be employed to determine how the G groups are
distributed within this space.

Miller (1962) found a nonparametric method described by Fix and
Hodges (1951} to be useful in determining the a posteriori probahili-
ties directly from the discriminant function values. AL any point Y!
within the discriminant space, the probability of each group can be
estimated by the relative frequency of that group occurring in the k
sample points closest to Y'. The value of k should be relatively
large but small compared to the sample size. The k closcst points
can be defined in terms of the Euclidean distance. This procedure is
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essentially a smoothing process, and precautions must be taken to
ensure that the importance of the discriminant functions is taken
into account in this process. Specifically, an arbitrary metric has
been used to transform the discriminant space into a space in which

cach function has zero mean and varlance equal to AJ/AI. The dis-

tance between a point Y' and a sample point Y in this space can be
defined as

\2 W2 2L/
. ;1. oy hfre-n\y,  hfvo
1l s I Mlbos '
yl YZ .YJ'

where Sy is the standard deviation of the jth discriminant func-

tion. This procedure usually produces extreme smoothing over the
least 1mportant functions but retatns the predictive information in
the more important functions.

The most extensive use and thorough testing of the MDA technigue
in meteorology has been in the short range prediction of visibility
and ceiling height undertaken at the Travelers Research Center, Inc.
{e.g., see Enger et al., 1964).

7. CANONICAL CORRELATION

Canonical correlation, first developed by Hotelling {1936), is
a technique for finding orthogonal relationships between two sets of

variables. Consider a situation involving n observations of each of
p variables Xi (1=1,2, ..., p) and of g variables Y, {1 =1, 2,

..y Q). These observations represent points in a p+q dimensional
space and can be arranged_in the nxp matrix X and the nxq matrix Y.
The variables have means X1 and Yi' respectively, and deviations
from the mean are given by x; = X, - X, and ¥y = ¥y - T New
variables x Ei and y gi (=1, 72, ..., r}, where r s less than or

equal to the smaller of p and q, can be formed such that their means
are zero and T

Ax'xA=nl, (6)
B'y'yB=nl, (7)
A'x'y B =n 4, (8)

where 1 1s an rxr identity matrix,
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" ko 0
A= " . (9)
0 .
Ar
and Al LR PUL RS Ao Eqs. {6} and {7) state that the variance of

each of the new variables is unity and each is uncorrelated with all
others in its respective set. Egs. (8) and (9), together with Eqs.
{6) and (7), state that each x Ay is uncorrelated with each y EJ

except when 1 = j and then the correlation is Ajs

It can be shown [for instance, see Anderson (1958)] that the A,

(i=1,2, ..., r) can be found from

-1 -1
(811 312 S22 Sp1 - 2§ DA; = 0
(providing §11 and 5,, are not singular), where the Ay satisfy the
determinantal equation
-1 -
157 S12 533 Spy - 42 11 = 0

and where

and

are the variance-covariance matrices. Then the g, can be found from

= _1 -1
B=ShS, AL

Alternatively, we could use

1

] -1 2 .
(322 321 811 832 - i D By = 0,

=i

-1 -1 2 -
1372 321 811 830 - 47 2 = 0,

and

-1 1
A=5,5,84".
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The latter equations are to be preferred if q < p, becayse the matrix

that aust be diagonalized is then of a Jesser dimension,

The "first" pair of functions, defined by the first column of
cach A and B, have as large a correlation 11 as any other possible

pair of functions, each composed of a linear combination of the
original variables. Also, the “second" function pair has as large

a correlation 5 as any other possible pair of functions, each

being compased of a linear combination of the original variables and
each being uncorrelated with both members of the first pair.

Either set of new variables can be predicted in a least-squares
sense by the new variables in the other set. The predictien
equations are

(xAE) =xAA
and
(X"A) = y B .

In addition, the original variables fn one set can be predicted in a
least-squares sense by the new variables in the other set; for
example, by

I=xR18'S,, (10)

In the case that r = q, Eq. (10) can be written as
yexangh (11)
Similar equations can be written for predicting x.

Eq. (10) represents the prediction equation for each of the }1
in terms of all of the Xi. One may want to relate one set of vari-

ables to the other set byt include only a portion of the correlations
in A, perhaps those k correlations that are Judged to be signifi-

cantly different from zero. An equation corresponding to Eq. {10)
can be written as

1= XAMBS,, (12)

where the rxr matrix a* has only k nonzero elements, the others
having been set equal to zero. Eq. {12) has the effect of including
a contribution only from those k columns of A and k rows of B' corre-
sponding to the k nonzero correlations.

The prediction equations can be expressed in terms of Lthe
criginal variables Xi and Yi- For instance, £q. (11) becomes

Yy

-



rexaarpl.
Biscriminant analysis and multiple rearession,. including REFP, are
special cases of canonical correlation. - For instance, when q = 1
£g. (13) is the same as the least squares regression equation for a
single predictand [see Eq. (5)]. In addition, iIf the predictands
represent group membership 1n the same manner as for REEP, then Eq.
{13) is the same as the set of REEP equations {see Glahn, 1968).
Therefore, canonical correlation has little to offer in a purely pre-
dictive sense over the simpler regression or discriminant analysis
(this statement is not meant to imply that canonical correlation is
not useful in studying relationships between sets of variables). One
possibility for caponical correlation in prediction does exist, and
that involves the use of Eq. (12). As stated previously, defining
EOFs on a set of predictors and using only those functions that
explain a non-triviail portion of the predictor variance as new pre-
dictors in a reqression equation filters out predictor “noise" (of
course, one must be careful to ensure that it really is noise and not
?pod predictive information). Eq. {12) seems to provide a way of
iltering noise out of both the predictor and predictand sets and
could provide more stable prediction equations. However, we know of
no case where this possibility has been investiqated. For, further
discussion of canonical correlation and an example using meteorolog-
ical data, see Glaha {1968).

aaglay, (13)

| }

8. LOGIT MIDEL

The logit model (Brelsford and Jones, 1867; Jones, 1968) pro-
vides a means of fifling a sigmoid or S-shaped curve to data when the
dependent variable is binary and the indepéndent variable is con-
tinucus. From this model, the probability of the binary variable Y

having the value of cne can be expressed as follows:

1
P(Y = liX) = 1+ elp(a_’_ Bx) (14)

The model can also be extended to several independent variables and
to several, rather than two, categories of a dependent varfable.
Determination of the parameters [uv and B in Eq. {14)] is usually more
difficult than determination of coefficients in a regression equa-
tion. [Iterative procedures can be used or, if each specific value of
X in the sample is repeated. and the relative frequency of the depen-
dent event is neither zero or one, then a more direct method of solu-
tion can be used for the following linearized form of Eq. (14):

1n(l*é;2) = a4+ BY.

Usuatly, in meteorological applications, several predictors are to be
included, and this method of solution would require encugh replica-
tions of cach combination of prodictor values to estimale the rela-
tive frequency of the predictand for that combination. We know of no.
mi:teorglegical application whern this methad of solution for meltiple
predictors has been used, For o discussion of this method, see Keter
and Wasserman™ (1974).

9. MAP TYPING

The concept of weather types arose early in the history of
meteornlogy. The aim is to define a pariition of weather maps (or
sequences of meps], so that the differences between the maps (or
sequences) of one type are small compared te the differences hetween
maps (or sequences) of another type, Once a set of weather types has
been defined, it can be used in various ways to forecast specific
weather elements. Carly work was done by Sowle and Weightman (1914)
who stratified storms by their movement. Average tracks, cxpected
direction, and average cpeecids wore then computed. An historic deve-
lopment of weather types was dene by Irving P. Krick at the Califor-
nia Institute of Technology (194%), Teading to the identification of
the so-called CIT types.

The determination of map types can be accomplished in many ways.
Initially, the methods employed were largely subjective, and even in
the application phase, the user had to “decide" what type existed on
a given day, More recently, with the advent of the electronic com-
puter and the desire to process large quantities of data, objective
methods of classification have been developed. One such method that
has been rather extensively applied was developed by Lund (1963).

Tha example he used to explain the method invelved the classification
of wintertime sca level pressure maps over the northeastera U.S. The
sleps involved in this method are;

Step 1. Correlate the sea level pressures on each map with the
corresponding pressures on all of the other maps fin the
sample, That is, if each of 500 maps had 25 values of
pressure {which could be reported values at stations or
at grid points arrived at by an analysis of station
valyes), then each of the 500 maps would be correlated
with 499 other maps, the computaticns of the correla-
tion coefficient involving 25 pairs of values,

Step 2. Select the map which has the most correlatinn coef-
ficients > 0.7 and designate it as Type A.

Step 3. Remove all of the cases that are correlated > 0.7 with
the Type A map, pnd select from the remaining maps the
one with the most correlations » 0.7, Designate this
wap as Type B.
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Step 4. Remove Type B cases, and repeat the process until only

a few cases with correlations > 0.7 remain. the areas for which the analogues are defined, In these days of

numerical prediction models, analogues appear to be of very limited

In application, a map is classified according to the type with which use.

it correlates most highly. Of course, the 0.7 correlation criterion
stated above can be modified desired.
ve can be modified as desire 11. PRESENT STATUS

A probiem in the use of map types {5 that a particular map may

not classify well into any of the defined types. In the Lund method, ' The most concentrated effort today in statistical weather fore-
after the definition of several types, a few cases generally will casting is at the Techniques Development Laboratory (T0L) of the u.S.
romain that are not very similar to any other map in the sample. National Weather Service. TDL's objective systems, implemented by the

National Meteorological Center, produce about 600,000 forecasts daily

Many times only one variable, such as sea level pressure, s from about 90,000 regression and logit equations (as of 1 Apri) 1981)

ysed to define the types. However, the evolution of weather systems These forecasts are disseminated by teletypewriter and facsimile to
and the correspondence to predictand variables depend on morc than civilian and military weather stations and to non-government users
that one olement. Other variables can be included in the definition throughout the United States (6lahn, 1976). The elements being fore-
of types, but finding “good® types - that is, maps which resemple cast include probability of precipitation, precipitation type, pre-
others in terms of all the considered variables - is then more dif- cipitation amount Bermowitz, 1975), surface wind at land stations
ficult. 1tarter, '1975) and at marine stations and over the Great Lakes {Feit |
and gore, 1978), §ggfagg“temgqr§t%re and dew point (Da1la2511e et al. ¢

A possible forecast aid employing map types is to define the 1980), severe copyective weather Reap and Foster, 1979; Charba,
conditional precipitation probabil%tygat g s{ation given that a par- 1979), cToud” amount (Carter and Glahn, 1976), ceiling hgight and yig}
ficular map type exists. This procedure could invoive a lag rela- bility (GTobokar, 1974), storm surge (Pore, 1976; Richardson and Pore
tionship, in which case the application would probably be to existing 1969)- and beach erosion. Some of these current applications are .
maps. On the other hand, it could be a concurrent relationship, in discussed briefTy in this section.

which case the application would probably be to numerical forecasts
of the variable(s) used to define the types. This latter approach

would be a perfect prog application. Augulis (1969) describes a 11.1 Probability of Precipitation
forecast aid developed along these lines; it {5 still in use in the .
'ﬁESter" U.S. MOS probability of precipitation (PoP) forecasts have been pro-

duced operationally by the REEP model for several years. This sta-
tistical product replaced the subjectively produced NMC product in

10. ANALOGUES January.of 1972. The developmental sample was divided into 2 sea- 7 .
sons, - April through September, the summer season, and {ctober '
The term analogue can be defined as follows: “In synoptic through March, the winter season. The event is defined to be 0.01
meteorology, 2 past large-scale synoptic weather pat ern which inches or more of measurable liquid equivalent precipitation in a £
vesembles a given (usually current) situation in its pssential 12 h period at a point, represented by a station rain gauge.
characteristics. The use of analogues as an aid in forecasting is Separate equations were developed for the 12-24, 36-48, and 48-60 h
Eased upon the assumption that two similar synoptic weather patterns projections (i.e., lead times) and for each of the initial data times
will retain similarity through at least a short period of further of 0000 and 1200 GMT. Data for several stations within a reglon were
development® (American Meteorological Society, 1959). Analogues were pooled, and one set of equations was developed that applied to all
investigated comprehensively by Wadsworth (1948) and their use has ' : stations within that region. Details of the evolution of the PoP
been discussed realistically by Willett (1951). forecasting system are given by Lowry and Glahn (1976).

In terms of the P-score, the MOS PoP's improved upon the climats

Selecti o ' h 1ik A t - : .
electing an anajogue 15 ™It e selecting a weather fype logical relative frequency (defined by month and by station) by abuu

the idea is to choose one or more maps which are very similar to

other maps or to a particular map. Generally, map types of , say, sea 48%, 33%, and 34% fer the 12-24, 24-36, and 36-38 h projections, .
level pressure or 500 mb height are empioyed to forecast other feSpectlve1y, for the 1979-80 winter. The corresponding 1979 sumner -
variables such as temperature or precipitation at specific paints. improvements were about 20%, 22%, and 19%. Using the MOS PoP's as

However, analogues of, say, sea level pressure and/for 500 mb height guidance, the local forecasters were able to improve upon them by &
may be used to forecast future states of those same variables over 8.1%, 1.4%, and 2.3% for the three periods, respectively, during the =

1979-80 winter.
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11.2 Precipitation Type

TOL's system for predicting the conditional probahility of preci-
pitation type (PoPT), conditional on the occurrence of precipitation,
gives forecasts for three categordes: frozen {<now or ice peliets),
freezing (freezing rain or drizzle), and Viquid (rain or mixed types)
{Bocchieri, 1979). The PoPT system evolved from the conditional
probability of frozen precipitation (Pof) system (Glahn and
Bocchieri, 1975; Bocchieri and Glahn, 1976}, which had been opera-
tional since November 1972. 1In PoF, explicit probability forecasts
of freezing precipitation were not avaitable, In the PoPT system,
one Jogit equation was daveloped for each initial data time and each
projection. Although data from about 200 stations were used in the
development of cach equation, the predictors were defined to be
departures from 50% values. As an example, consider the 850 mb tem-
perature as a predictor. For each station, the value that specifics
a 50% conditional probability of frozen precipitation was found
empirically. (This value was actually found by determining a one
predictor Togit equation for each station.) Thewo, the B850 mb tem-
perature minus the unique 50% station value was used as a predictor
in the multipredictor logit equation.

Heidke skill scores for the 1979-80 winter guidance forecasts
wera (.88, .86, and 0.84 for 18, 30, and 42 h forecasts, respoc-
tively. These scores were computed only for those cases when the
local PoP forecasts were greater than or equal to 30%.

11.3 Surface Wind

MOS surface wind forecasts for stations throughout the conter-
minous United States have been produced since May 1973 (Carter,
1975). Three regression eguation§_are datermined for each station
for each projection - ong. for the U component, one for the ¥ com-
ponent, and one for speed, A1l three equations have the same predic-
tors o edSire Greater. cons istency befween the three forécasts. = -
forecasts of the U and V components are used to determine direction,
A separate equation is used for speed because speeds determined from
regression estimates of the U and V components are biased toward zero

(Glahn, 1970).

Verification of the MOS forecasts for the 1973-74 through 1979-
80 winter shows a definite improving trend. Mean absolute errorg in
direction for the 1979-80 winter were 26, 30, and 35 degrees for the
18, 30, and 42 h projections, respectivef}. Corresponding skill
scores for speed were .35, 0.34, and 0.26. The speed forecasts have
been inflated (Klein et al., 1959) since 1975 in order to make a
larger number of forecasts of strong winds.
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11.4 Surface Temperature

Statistical forecasts of maximum and minimum temperature have
been made and disseminated operationally by the National Weather
Service since 1965 -longer than any other weather element. Initially
the forecasts were made by the perfect prog technique (Klein and
Lewis, 1970}, but the MOS approach was adopted in August 1973 after
considerable testing showed that MOS furnished hetler farecasts
(Annett et al., 1972; Klein and Hammons, 1975). The forecasts are
made from regression equations developed for individual stations, on
for cach of the initial data times and for each projection. A con-
tinuing evaluation has shown that MOS improves on the perfect prog
forecasts by about 0.5°F in mean absolute error at 24 and 36 h proje
tions. These statistical forecasts have shown a consistent improve-
ment since 1973, The mean ghsalute vrror for 24 h maximum tempera-
ture forecasts was 3.5°F for the 1979-80 wipter period. The fore-
casters are able to imprave on the guidance by a few tenths of a
degree Fahrenheit.

11,5 Extratropical Storm Surge

Storm surge is defincd to be the piling up of water on thy shor
due t§ mcteorological conditions. TOL's statistical systems forecac<
this surge at specific points on the Atlantic (Pore, 1976) and Greal
Lakes (Richardson and Pore, 1969} coasts due to extratropical
storms. The perfect prog technique is used to develup regression
equations that relate the surge to concurrent values of sea level
pressure at grid points surrounding the forecast points. Since a
very good physical basis exists for the dependence of surge on
pressure gradients, the forecasts are quite gnod, and their skill
depends mainly on the skill of the numerical model used to provide
the ‘pressure forecasts (Pore, 1972). Surge forecasts became ¢pera-
tional for Buffalo and Toledo on Lake Erfe in October 1969 and for
Atlantic coastal statiens in October 1971.

11.6 Thunderstorms and Severe Convective Weather

Medium-range (24 h projection) probability forecasts of thunde:
storms and severe convective weather have been operationally avail-
able since the spring of 1972 (Reap and Foster, 1979). In addition.
short-range (2-6 h projection) probability ferecasts of the same
variables were implemented in the spring of 1974 (Charba, 1977,
1979). The medium-range forecasts are provided by REEP equations
developed by the MOS technigue. The predictand is defined by radar
echoes within a specified time period and within an area approxt-
mately 75x75 km. These forecasts of severe convective weather are
conditional probabilities. That {s, given a thunderstorm within th
defined area and time period, the forecast specifies the probabilit
of “the GecurFence of ‘severe weather. It 1s interesting to note tha:
reliable forecasts of 30 to 40% can be made even though the climatuy
logical relative freguency is only G%. -
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The short-range forecasts are also provided by REEP equations,
but the equations contain more predictors derived from recent obser-
vations (of surface atmospheric varfables and radar echiocs) than from
model output. Therefore, this technique is a blend of the classical
and MOS approaches. In addition, the severe storm probabilities as
well as the thunderstorm probabilities are unconditional. Reliable
probabilities approaching 100% are forecast for both predictands,
although for severe storms the climatological frequency for a 4 h
period is only about 2X.

12. FUTURE OF STATISTICAL WEATHER FORECASTING

Stochastic-dynamic prediction is a term used to describe models
that combine statisEics “and dynmamics and produce output in probabil-
ity form. These models show some promise and may be the models of
the future. However, they require considerably more in the way of
compufer resources than conventional numerical models, and much more
research is required before they can compete with present operational
models, Also, like present models, they do not produce forecasts of
many weather elements for which forecasts are required - ceiling
height, cloud amount, minimum temperature, etc. So it is likely that
MOS will Le used for_many years to translate oumerical model fore-
casts into other needed products:” The perfect prog technique may
find increased use for medium-range proJectigiic “,9_ numerical models
become accurate endigh™so that the perfect prog assumption s réasun-
-a-B.T_y_s.a,t—-ig-f-le.‘d—me“ SR BT AT T TEILE LI TR [T - -

More efficient methods of processing large quantities of data,
better statistical models, and better use of present models will help
to improve and to extend the application of statistical forecasting
in the future.

REFERENCES
Allen, R. A., and E. M. Vernon, 1951: Objective weather forecasting.
Compendium of Meteorology (7. F. Malone, Ed.}. floston, Mass.,
American MeteoroTogical Society, pp. 796-801.

American Meteorological Society, 1959: Glossary of Meteoralogy.
Boston, Mass, AMS,

Annett, J. R., H. R, Glahn, and D. A. Lowry, 1972: The use of model
output statistics (MOS) to estimate daily maximum temperatures.
Silver Spring, Md., NDAA, National Weather Service, Technical
HMemorandum KWS TOL-45, 14 pp.

Anderson, T. W., 1958: An Introduction to Multivariate Statistical
Analysis. New York, John Wiley and Sons.

330

Augulis, R. P., 196%: Precipitation probabilities in the Western
Region associated with winter 500 mb map types. Salt Lake City,
Utah, ESSA, Natignal Wealher Service, Technical Metsorandum :
WBTM WR 45-1, 91 pp.

e

Barnard, M,, 1935: The secular variations of skull characters in
four series of Egqyptian skulls., Annals of Eugenics, 6, 352-371,

Bartlett, M. S., 1934: The vector representation of a sample. Pro-
ceedings of the Cambridge Philosophical Society, 30, 327-340.

Bermowitz, R. J., 1975: An application of mode! output statistics to
forecasting quantitative precipitation. Monthly Weather Review,
103, 149-153.

Besson, L., 1905: Essai de prevision methodigue du temps. Observa-
torie Municipal de Monsouris, Annals, 6, 473-495,

Bocchieri, J. R., 1979: A new operational 'system for forecasting
precipitation type. Monthly Weather Revicw, 107, 637-649.

g

Bocchieri, J. R., and H. R. Glahn, 1972: Use af mode) output statis-
tics for predicting ceiling height. Monthly Weather Review,
100, 869-879.

Bocchieri, J. R., and H, R. Glahn, 1976: Verification and further
development of an operational model for forecasting the proba-
bility of frozen precipitation. Monthly Weather Review, 104,
691-701,

Boehm, A. R., 1976: Transnormalized regression probability. Scott
Air Force Base, 111,, USAF, Air Weather Service, Technical
Report 75-259, 52 pp.

=

Bowie, £. H., and R. H. Weightman, 1914: Types of storms of the
inited States and their average movements. Monthly Weather
Review, Washington Suppiement No. 1, 147 pp.

Brelsford, W. M., and R. H, Jones, 1967: Estimating probahilities.
Monthly Weather Review, 95, 570-576.

Brier, G, W., 1940: The discriminant function. Mashington, D.C.,
George Washington University, M.A, Thesis, 34 pp.

Brier, G. W., 1946: A study of quantitative precipitation fore-
casting in the TVA basin. Mashington, D.C., U.S. Weather
Bureau, Research Paper No. 26, 40 pp.

Brier, G. W., 1950: Verification of forecasts expressed in terms of
probability. Monthly ¥Weather Review, 79, 1-3.

ry




331

Bryan, J. G., 1944: Special techniques in multiple regressien.
Cambridge, Massachusetts Institute of Technology, unpublished
manuscript, 17 pp.

f
Bryan, J. G., 1950: A method for the exact determination of the
characteristic equation and latent vectors of a matrix with
applications to the discriminant function for more than two
groups. Cambridge, Mass., Harvard University, Ed. 1. Disserta-
tion, 290 pp.

California Institute of Technology, 1943: Synoptic weather types of
North America. Pasadena, Calif., Department of Meleorology,
Report, 237 pp. ‘

Carter, G, M., 1975: Automated prediction of surface wind from
nuinerical model output. Monthly Weather Review, 103, BAG-873.

Carter, G. M., and H. R, Glahn, 1976: Objective prediction of cloud
amount based on model output statistics. Monthly Weather
Review, 105, 1565-1572.

Charba, J. P., 1977: Operational system for predicting thunderstorms
two to six hours in advance. Silver Spring, Md., NOAA, Hational
Weather Service, Technical Memorandum NWS TDL-54, 24 pp.

Charbq, J. P., 1979: Two to six hour severe lacal storm probabil-
ities: ap operational forecasting system. Monthly Weather
Review, 107, 26B-282.

Dallavalle, J. P., J. §. Jensenius, Jr., and W. H. Klein, 1980:
Improved surface temperature guidance from the limited-area
fine mesh model. Preprints, Eighth Conference on Weather
Forecasting and Analysis (Denvcr). Boston, Mass., American
Meteorological Society, pp. 1-8.

Enger, I., J. A. Russo, Jr., and £. L. Sorenson, 1964: A statistical
approach to 2-7 hr prediction of ceiling and visibility, volumes
I and I1. Hartford, Conn., Travelers Research Center, Inc.,
Contract Mo. CWB-10704, 48 pp. and 195 pp., respectively,

feit, D. M., and N. A, Pore, 1978: Objective wind forecasting and
verification on the Great Lakes. Journal of Great Lakes
Research, 4, 10-18.

Fisher, R. A., 1936: The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7, Part II, 179-188.

Fix, C., and J. L, Hodges, Jr., 1951: Dis&riminatory analysis, non-
parametric discrimination: consistency properties. Randolph
Fleld, USAF, School of Aviation Medicine, Report No. 4,

332

Freeman, M. H., 1961: A graphical method of objective forecasting
derived hy statistical techniques. Quarterly Journal of the
Royal Meteorological Society, 87, 393-400.

Gilman, D. L., 1957: Empirical orthogonal functions applied to
thirty-day forecasting. Cambridge, Massachusctts Institute of
Technolony, Department of Meteorology, Contract Hpo. AF19 (604)-
1283, Scientific Report No. 1, 129 pp.

Glahn, H. R., 1962: An experiment in forecasting rainfall probabfl-
ities by objective methods. Monthly Weather Review, 90, 59-67,

Glahn, H. R., 1965: Objective weather forecasting by statistical
methods. The Statistician, 15, 111-142.

Glahn, H. R., 1968: Canonical correlation and 1ts relationship to
discriminant analysis and muitiple regression, Journal of
Atmospheric Sciences, 25, 23-31.

Giahn, H. R., 1970: A method for predicting surface winds. Silver
Spring, Md., ESSA, National Weather Service, Technical Memoran-
dum WBTM TDL 29, 18 pp.

Gtahn, H, R,, 1976: Progress in the automation of public weather
forecasts. Monthly Meather Review, 104, 1505-1512.

Glahn, H. R., and J. R. Bocchieri, 1975: ObJective estimation of the
conditional probability of Frozen precipitation. Monthly
Weather Revicw, 103, 3-15.

Glahn, H, R,, and D. A. Lowry, 1972: The use of model output statis-
tics (MOS} in objective weather forecasting. Jourpal of Applied
Meteoroloqy, 11, 1203-1211.

Globokar, F. T., 1974: Computerized ceiling and visibility fore-
casts. Pre rints, Fifth Conference on Weather Forecasting and
Analysis (5t. Louis}. Boston, Mass., American Mcteorological
Society, pp. 228-233.

Grimmer, M., 1963: The space-filtering of monthly surface tempera-
ture anomaly data in terms of pattern, using empirical orthog-
onal functions. Quarterly Journal of the Royal Metegrological
Society, 89, 395-408.

Gringorten, I. I., 1955: Methods of objective veather forecasting.
Advances in Geophysics, Vol. New York, Academic Press,
Tnc., pp. 57-92.

Hotelling, H., 1935: The most predictable criterion. Journal of
Educational Psychology, 26, 139-142.




-

333

Hotelling, H., 1936: Relations between two sets of variates.
Biometrika, 28, 321-377.

Jones, R. H., 1968: A nonlinear model for estimating probabilities
of k evenls, Monthly Weather Review, 96, 383-384.
!

Jorgensen, D. L., 1959: Prediction of hurricane motion with use of
orthogonal polynomials. Journal of Meteorology, 16, 21-29.

Kleln, W. H., 1969: The computer's role in weather forecasting.
Weatherwise, 22, 195-218.

Klein, W. H., and G. A. Hammons, 1975: Maximum/minimumn tomperature
forecasts based on model output statistics. Monthly Weather
Review, 103, 796-806.

Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction
of five-day mean temperature during winter. Journal of Metcor-

ology, 16, 672-682.

Xlein, W. H., and F. Lewis, 1970: Computer forecasts of maximum and

minimum temperatures. Journal of Applied Meteorology, 9, 350-
35¢.

Lorenz, £. N., 1856: Empirical orthogonal functions and statistical

weather prediction. Cambridge, Massachusetts Institute of

Technology, Department of Meteorology, Scientific Report No. 1,

49 pp.

Lowry, D. A., and H. R, Glahn, 1976: An operaticnal model for fore-

casting probability of precipitation - PEATMOS POP. Monthly
Heather Review, 104, 221-232.

Lubin, A., and A, Summerfield, 1951: A square root method of
selecting a minimum set of variables in multiple regression:
I. The method. Psychometrika, 16, 271-284,

Lund, I. A., 1955: Estimating the probability of a future event from

dichotomously classified predictors. Bulletin of the American
Metearological Society, 36, 325-328.

tund, I. A., 1963: Map-pattern classification by statistical
methods. Journal of Applied Metearology, 2, 56-65.

Miller, R, G., 1958: The screening procedure. In Studies in Sta-
tistical Weather Prediction (B. Shorr, Ed.}. Hartford, Conn.,
Travelers Research Center, Inc., Contract No. AF19 (604}-1590,
Final Report, pp. 86-95,

Miller, R. G., 1962: Statistical prediction by discriminant
analysis., Meteoralegical Monogrephs, 4, No. 25, 54 pp.

N

Miller, R. G., 1964: Regression estimation of event probabilit1Lng
Hartford Conn., Travelers Research Center, Contract Cwb-107(:
Technical Report Ko. 1, 153 pp.

Miller, R. G., Ed., 1977: Selected topics in svatistical meteoro
ogy. Scott Afr Force Base, I11., USAF, Air Wecather Service,
AS-TR-77-273, 164 pp.

|

Mook, C. P., 1948: An objective method of forecasting thundersto
for Washington, D.C., in May. MWashington, 0.C., $.5. Weathe
Bureau, unpublished manuscript.

Murphy, A. H., 1974: A sample skill score for probabiiity foreca
Monthly Weather Review, 102, 48-55.

Neter, J., and W. Wasserman, 1974: Applied Linear Statistical i
Models. Homewood, I11., Richard E Trwin, TInc.

e

Panofsky, H, A., and G. W. Brier, 1958: Some Applications of Sta
tistics to Meteorology. University Park, PennsyTvania State
University, College of Mineral Industries.

Pore, N. A., 1972: Marine conditions and automated forecasts for
Atlantic coastal storm of February 18-20, 1972. Monthly Wea
Review, 101, 363-370.

Pore, N. A., 1976: Automated forecasting of extratropical storm
surges. Proceedings, Fifteenth Coastal Engineering Conferen
(Honoluluy, Vol. I, pp. 906-913.

Pore, N. A., and W. S. Richardson, 1963: Second interim report q,t
sca and swell forecasting. Silver Spring, Md., ESSA, Nation &
Weather Service, Technical Memorandum WBTM TOL 17, 17 pp.

Rao, C. R., 1952: Advanced Statistical Methods in Biometric
Research. New York, John WiTey and Sons.

Reap, R, M., and D, S. Foster, 1979: Automated 12-36 hour probaﬁ
ity forecasts of thunderstorms and severe local storms. Jou
of Applied Meteoroleqy, 18, 1304-1315.

Richardson, W. §., and N. A. Pore, 1969: A lLake Erie storm surge
forecasting technique. Silver Spring, Md., ESSA, National
Weather Service, Technical Memorandum WBTHM TDL 24, 23 pp.

Shuman, F. G., and J. B. Hovermale, 1968: An operational six-lay E
primitive equation model. Jnurna] of Applied Meteorolugy, 7
525-547.

Suits, D. 8., 1957: Use of dummy variables in regression equati3
Journal of the American Statistical Association, 52, 548-551




