INTERNATIONAL ATOMIC ENERGY AGENCY
ﬁ; UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
U INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP, P.O. BOX 586, 4100 TRIESTE, ITALY, CasLE: CENTRATOM TRIESTE

@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION @

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

(¢ INTERNATIONAL CENTRE FOR THEORETICAL MWYSK'S MU FREESTE UTALIY YA GAIGNAND, # ADRIATIOO PALACT) PO JOK W6 TELEPHOME M8 DOTT  TELEFAX MB2TS  TELEX wleth APH |

H4.SMR/537-11

SECOND COLLEGE ON THEORETICAL AND EXPERIMENTAL
RADIOPROPAGATION PHYSICS
{7 Jenmary - 1 Feleuary 1901)

Co-sponsered by ICTP, ISU
and with the of ICS

INTRODUCTION

J. Van Bladel
URSI
international Union of Radio Science
) Gent, Belgium

Mo Busreg Breaos Cotnibha, | Ted 32401 Tousraw 24163 Tiuta 46009] Aomnce Guest Hoult  Vis Gricuang, ¥ TIL 236741 Tinefan INSI1 Teoes 460449
Too 247 Toeean JM16) Troo 460097 Gunsn Gopt Hoom Vi Buinue, 7 Tu. 12400 Treewax JHSS9 Toos

Micsorsocsson Liv. Via Brny Ji



Introduction

"Guided wave' communicatisn channel
POINT TO POINT

Q

°
o Fa'

"Free space" communication channel

l SPACE

P E - cutput
]’ 2

wave generator receiver

Distribution of radiated power

Directsd heanm
Eroaccasting
atrospheric losses

Radiating currents

reflector

primary
currents

1. Maxwell's eguations

In the early part of the 19th century Faraday discovered the inductis
law, which asserts that a pulsating
magnetic flux creates an electric
field e. In integral form

(Fig. 1.%) :

o
1]
fed .- 4 (1.1)
c
Fig. 1.1 where 3 is the flux of the magnetic

induction b through S. In differential form :

I

s = . b
curl & = - 3t (1.2)

The integral form (1.1) can be obtained from {1.2) by application
of the theorem of Stokes. The flux & which appears in (1.1)

is conservative, i.e. the flux of b through a closed surface

vanishes. We write (Fig. 1.2a})

If b.3@5 = 0 {(1.3)
s

hpplied to the tube of force shown
in Fig, 1.2b this relationship
5, implies that the flux % through

s Sds
{a)
]
b ‘\
52 is the same as through S§1. The
N differential form of integral
1 ~

S relationship (1.3) is
(b)

divb =0 (1.4)

Fig. 1.2 The flux of the electric field is

not conservative. For a closed surface :

S35 o 1
Ié e.ds = E: Q. (1.%)
where Q. is the enclosed quantity of electricity. 1In differential

form :



div€=::—at (1.6}
(o]

The charge density oy is the total charge density, given explicitly
in (1.13). At about the time of Faraday's discovery Ampére showed
that an electric current creates a magnetic field. 1In integral

form {Fig. 1.1}

! 5.3t - %— 1 (1.7)

where I is the current through §. 1In differential form :

curl b = uOEt (1.8)
where Et is the current density. 1In a region devoid of currents
b is irrotational. Maxwell, clearly bothered by the lack of
symmetry of {1.2) and (1.8}, made a fundamentally deep remark in
assuming that, because a pulsating b creates an e, similarly

a pulsating e must create a b . 'This assumption led him to

rewrite Ampére's law as

- = 3z
curl b = W 3, + €o¥0 3t (1.9

It is easy to see, by application of (1.2), (1.4) and (1.9),

that {(in vacuo)

v’b = grad div b - curl curl B = ¢ u ¥b (1.10)
o0 at2

The b field therefore satisfies a wave equation, and electromagnetic

waves are seen to propagate with a velocity

< = {1.11})

This is the velocity of light in vacuo. Light waves are therefore
electromagnetic waves, This fundamental result could not be
obtained if the displacement current

.. - e
Tais = o (1.12)

[

had not been introduced in (1.9).

Equations (1.2)(1.4)(1.6) and (1.9) hold in vacuo. 1In a

material medium electric and magnetic polarizations of densities

m_ and m_ may appear. They contribute to the total charge and
e m

current densities, which are

= - dlv E
Pe = P e_ {1.13)
om

I = T+ 3, EEE + curl ﬁh
The densities p, j and f; represent the centributions of the
free charges, which move under the influence of resp. electro-
magnetic effects (term j)} and non magnetic effects (term ;é).

In an electron gas, for example,

Tt = -nqgue+qDhagrad q

.

(1.14}

3} = ce ja

where {-q}) is the charge of the electron, n the electron density,
U the mobility and D the diffusion coefficient.

By introducing the notations

d=c¢cce +

o
m

{1.15}
F=—L—b—ﬁ

Maxwell's equations may be written as

za.2b : 1.16
curl e = - 3t ( )
curl h = 3 + ia + %% {(1.17)
divd=op (1.18)
divb =0 {1.19)

The most freguent ones concern a linear isotropic medium , For



such a medium

= _ T .. 5 (1.20)
b = “r“oh =uh

agerEo_e—=€; - (1.2°)
Feoe (1.22)

where (e,u,0) are frequency independent. In many technical
applications, however, the constitutive parameters are freguency
dependent (e.g. in a biomaterial),or tensorial (in anisotropic
media such as crystals). The medium can also be nonlinear,

in which case the solution of Maxwell's eguations becomes

much more difficult to perform.

2. Potent_als. Boundary cenditions

Maxwell's equation (1.4) can be satisfied if we set

-

b = curl a (2.1)

Inserting this relationship in (1.2) yields

e
ac) =0

The vector between brackets is irrotational, hence can be derived

curl{e + (2.2)

from a scalar potential. We therefore write

€ = -grad ¢ - %% (2.3}

Use shoulc now be made of the remaining Maxwell's equations to
derive differential equations for ¢ and a. To simplify matters
we shall l}imit ourselves to fields in vacuo. Inserting (2.1)

and (2.3) in (1.6) and (1.9) gives, as ¢ = (1/e,u ),

2-2 -
—curl curl a - 15 é—éi - 15 grad 28, - W3
c ot c ot

- (2.4)
vieaivia. .2

o
These equations contain both a and ¢. They may be uncoupled by
noticing that the potentials are not unigue, hence may be subjected
to the additional "Lorenz" condition

aiva + 58 . (2.5)
c” at

For such cacice (2.4) becomes

2 {2.6)

The last equation is well-known in mathematical physics. It is a
scalar wave equation with second member, which is also satisfied,

for example, by the acoustic pressure, The solution of this



equation is classical. We shall not derived it explicitly, but

merely quote the end result, which is

~ . plr',t - _I_;_r'_l_
o (r,t) = I — av’ (2.7)

o Iz-7'|

The deep physical meaning of this expression is evident. The
formula shows that the effect on an observer located in r at time
t does not depend on the value of the elementary source p dav’

at time t, but at a previous time (t - |T-r'|/e). 1In other
words, effects are not felt instantaneously , but the contribution
of the source element propagates with a finite velocity c. This
retardation property is the basis of a system such as sonar.

It is obviously due to the term in t1/c2)(32¢/3t2) in the
eguation, as the solution of the equation without second time
derivative corresponds to ¢ = *©, hence to vanishing retardation
times. It is to be noticed that this static solution yields

a good approximation at low frequencies, i.e. when the dimensions
of the system are small with respect to A.

The solution for a can be obtained by triple application of (2.7).

Thus, -’

= av' (2.8)

1 and 2, the various components of

the fields behave in a well definec
manner. Let us imagine that a
very thin transition layer exists

between 1 and 2 (Fig. 2.1b). 1In

this layer (1.4) gives

(b)

abx b Bbz
Tl ’5;1 t 37 < 0 [2.9)

Fig. 2.1

At the separation between two media.

Let us integrate this egquation from B to A, along the normal
{the z-axis). This gives

b - ® -
Z(A) bz(B) é ( + Y }dz (2.10)

ax
As the derivatives in the x and y directions are bounded, the
integral approaches zero as B approaches A. We conclude
that the normal components of b have the same value on both
sides of the boundary. The other boundary conditions follow

bky-analegous manipulations. Written in detail they are

bn1 = bn2 Ibn continuous) - (2.11})
dn1 - dn2 = P, (2.12)
En x 31 = En x 52 (Etang continuous) {(2.13)
En x B, - Gn x HZ = i; (2.14)

The notation Ea denotes a unit vector in the a direction.

The boundary conditions show that a charge density pg on S produces
a jump in the normal component of d, while a surface current fs
produces a jump in the tangential component of h. At the

boundary between dielectrics there are no Pg and fs, unless

they are artificially introduced in the form of e.g. current-

carrying windings. Except for that case both dn and Etang

are continuous.

The boundary conditions take a simple form at the surface of a
perfect conductor (a useful
model). In a perfect conductor
€ must vanish, otherwise J would

be infinite, from {1.22), and the

Joule losses too (see Sec. 3).
It follows, from (2.13), that

e is perpendicular to
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the boundary. On the other hand (1.2) implies that b is time 3. Transmission lines

independent. The constant value of b must be zero because it Basic equations

was so at t = -®, i.e. before the sources were turned on. We The potential difference between points x and x + dx may be

conclude, from (2.11), that b (and h) are tangential. In fact, written as

h and js are connected by the relationships

v i . 3.1
Vixtdx,t)-vix,t) = S2 dx = -r ax 1 ={ FF dx + v dx ( }
h=3_xu
s n ) .
. (2.75) In this equation r is the linear resistance in {}m 1, sum of
J. = U x
s n d the resistances
x
s ! 1 : . vgdx of conductors 1
— 1t -+
o~ 0 and 2,{ is the
igdx
v 58 2 ? linear inductance
o Y . -1
X __._..: X {in Hm ') and
t
x=0 x=L Vg the applied
Fig. 3.1 voltage (often zerc

A similar budget may be written for the current in terms of the

linear capacitance C (in F m"1), the linear conductance g

1

tin $ m”') and a possible current source ig (in Am™'). Taking

the limit dx = 0 yields the differential equations

g—;=-:1-£%%+v

g {3.2)

(3.3}

9i v
IR ECIV-egt ig

We shall only consider the sourceless situation (vg =0, ig = 0},

and pay special attention to sinusoidal phenomena. For such
case ( 3.2) and { 3.3) become

g—}i"'r I - ju£I=-—(r+ij)1=¢zz t3.4)

{3.5)

dx " "IV - jucVa~g+ juc)v = -yv
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Incident and reflected waves

when the line is lossless the basic eguations are

ax
( 3.6
al v
i T
Eliminating i yields
32v ‘E 32‘, {3.7)
--i" C'—iao
ax 3t

The general solution of this eguation is obtained by way of ths

change of variables

1 1
us=x - ==t vexe+ —¢t { 3.8)

Ve T |
which converts { 3.7) into

3¢

uvw=0 { 3.9)
The general solution of this equation is

v= £u) + g{w) = £{x - —— t) + glx + —= t) ( *.10)

The corresponding current has the form

. . Mk
i= R [f(x vpht) - gix + vpht)] (R C) { 3.1%)

Here R, is the characteristic resistance of the line (in Q). and
Vo is the phase velocity (1/VI;). The functions f and g are

arbitrary, and their actual form is determined by the boundary

12

conditions at x = 0 and x = L. The function f represents a

wave to increasing x, as shown
clearly in Fig. 3.2. The function
g represents a wave to decreasing x.

Normally a generator is connected

in x = 0 and a load in x = L. The
Fig. 3.2 f wave then becomes an incident
wave and the g wave a reflected one. It is easy to check that
the incident wave is the only cne to exist when the line is
infinite or, equivalently, when it is lcaded by R,- For such

a case there are no reflections, and the line is matched.

Time harmonic_signals

Voltage and current have the general form

vix,t) = v, cos (ut-kx+¢,) + vy cos (wttkxtg,) { 212}
Lix,t) = %— [vlcos(mt - kx + ¢l) - vzcos(mt + kx + ¢2)]
c
where
. 3
kaJ—-:wﬁ;-H { .13)
Vph g

The quantity X  is the wavelength along the line. 1In phasor

g
form :
Vix) =V e-jkx + VvV ejkx
1 2
[ 3.14)
1 -jkx _ ikx
I(x) = " [V1 e V2 e ]
(e
j e, i,
where V, = v, e and V, = v, e . Writing { *.14) at x = 0 and

x = d leads to the value of the input impedance of the line
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7 Z! + j tg ké { 3.15)
J=Z'=-L-—|-—ﬁ
R, 1 1+32) tg

When the line is lossy the for-

Fig. 3.3

mulas become

v=v e-uxe-jB} +V euxejﬂx
2 ( 3.16)

=1 -ex_ -ifx _ ax_Jpx
Izc v, e e v, &*%e ]

Attenuation and propagation constant are given by
2 . . -~
vP = @+ 387 = 1.2 v 5%5% 4 290 = (rg-u?lo) + g + wza) € 31T

The characteristic impedance becomes

2 _z 2 wlf o - { 3.18)
Zc =g = (Rc + 9 xc) = £g wzﬂc+1€w£g wWra)
g +u'c
The input impedance is now
4 )+ t d
TR €29
' ¢ Lt

if the locad is matched (Z{ = 1} the input impedance is 2.,

irrespective of the length of the line.

14
Reflecticn coefficient on a lossless line
From [ 3 .14} the ratio between reflected and iacident voltages
{the reflection coefficient})
|
— is
l v, I Y2 25k
. 2 KKy = oo = 2P 020
v
q] L i 1
Fig., 3.4
At a distance d from the load,
therefore,
K=k e ka ( 3.21)
Reflection coefficient and impedance are connected by
Zi(x) -1 1+K ( 3.22)
' R .
Kix) = zi x) +1 zi = 1-K)

This formula shows that a measurement of Zi may be obtained from
a measurement of K (in amplitude and phase}. The value of K may
be deduced from an observation of the interference between reflected
and incident waves down the line. The amplitude of the voltage

is given by

i = l 2 2 .
}vl * vyt Vv, cos (2kx + 4,-9))

( 3.23)

=, v1V1 + K%+ 2 |R] cos (2kx + #y-4))
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(2} Reflections create peaks of voltage., For a given absorbed

- VZPRC X ( 3.28)

The danger for breakdown increases with |K‘.

The general appearance of the curve |V(x)| is as shown in Fig. 3.4.

The maxima occur at points where the two waves are in phase, Power&i

. -~
t.e. for

v
max

- kx + ﬁ = kx + % + n2n { 3.24)

i [{3) the input impedance is much more sensitive to small freguency
These points are separated by (3 _/2). The minima {destructive
3 excursions when the load is unmatched. This "leng line effect"”

interference) correspond to
will be explained in the problem session, together with methods
- kx4 ¢1 = kx + ¢2 o tZP“ to match an (originally unmatched) load, and the use of the

Smith chart.

They are located (A /4) from the maxima. An observation of the These various considerations may be applied, in slightly

ratio of maximum to minimum (the standing wave ratic) gives IKl : modified form, to the lossy line. There,

K=K a~2vd _ K, e~2ad _-238d

1+ g2 3
+ +IK .29
VSKR = YATV2 o 1= 1+ (K| ( 3.26) ) { )
vitVy 1= 22 - e
v zl
-1
L K=o

The location of the maxima and minima gives (d5—¢1), i.e. the plLase
angle of KL. One is then able to construct KL, and from there to
determine the unknown 2; by use of ( 3,22). The method is the

classical way of determining impedances at high frequencies.

Matching
In most applications it is desirable to match the load to the line.

The reasons are :

(1) The power to the load. It is given by

2 2 2
v
1 V2 vy

. e 2
o T [ x]2) ( 3.27)

f-1re vt
=5 Re (VI) =

07 is maximum when l}(l = 0,
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. : .2
4., Power budget Poynting's vector - the first term is Joule power (a generalization of the ri
* L a

formula of network theory)
Scalar multiplication of Maxwell's equations (1.16) and (1.,17)

— - the second term is the rate of increase of the electromagnetic
with resp. h and e gives

B energy .
S - - ab 4
R.ourl @ = -R . ot ¢.10 - the third term is the electromagnetic power leaving the
e.curl h = e (] » }a * %%) ) (4.2) volume. It is the flux of the vector of Poynting
Subtraction of the second equation from the first yields Ss=zexh (W m‘z) (4.8}
div(e x h) = h.curl e - e.curt h = -o ?f -n %E I %E An interesting application is sketched in Fig. 4.2, in which a
- . - - - t L] t
3j W 3 radiating antenna is surrounded by a
- Ig - - 3 - ad 4 _
= -Jg . (7= - eal - (h. SE *t e ﬁ) (4.3} e

perfectly conducting screen.

where we have eliminated @ by Boundary condition (2.15}) implies

n writing the free charge current e x that Foynting's vector s lies
S as in the tangent plane of 51.
Ef =3 + Ea = de + cga (4.4) - It f?llows that no power penetrates
_ ”} antenna thiough S1, hence that the outside
vector %a is the applied electric world has been screened from the
Fig. 4.1 field. Let us now integrate(4.3) Fig. 4.2 radiating system.

over a volume V, to obtain (Fig. 4.1
T e T o 1= :2 - < = b -~ ag
Hgapte x has = -11f gligi“av + H e 3¢V - JIE (h. 3¢ + €. LhHav  14.5)
The variation in the electromagnetic energy contained in V is

a = 15 ,[R.db + €.4d) av {4.6)

It follows that (4.5) can be rewritten in the form of a power budget,

to wit

1155, 3gav = 501, 13, %av . %% + 115 .(® x F)ds (4.7)

Let us interpret.the various terms of this relationship. The left-
hand member is the power delivered by the applied electric field

(in the form of, for example, chemical or thermoelectric power ).

The second member shows how this power is spent :

H
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. Thi ion clearly shows that the tip of a describes a curve
5. Sinusecidal phenomena, Polarization his equatic y p

Signals with a sinusocidal time dependence play an important role

~-

in Telecommunications. Such signals are carried by fields with

ux-]uy

ux+]uy

time-harmonic components of the form PROBE

a = a .. cos{wt + ¢x) ///$

3, = A, cos{ut + ¢!) (5.1} t.= 4

a, = a,, coslut + ¢ ) (b) (c) o {d)
The vector a could be an electric field, a current density, a Fig. 5.1

velocity or any other relevant vector quantity. The components -
in the (a_,a.) plane. This curve is an ellipse, as can be shown
— r'°i
of a can be written in phasor form as e -
by the following simple calculation. Let us take the (ar,a.)

j¢ i
X
Ay = a8 plane as the ¢x,y) plane. The coordinates of the tip of the vector
bl
A = Y 5. are
y ayme {(7.2)
it - - ;
A =a & 2 X = a . cos wt a, sin wt
F4 Zm
{5.6)
where capital letters are used for the complex guantities. Complex Y = aryCo8 wt - ainin wt

form (5-2) contains the relevant phase and amplitude informatiocn.
- The time-coordinate t is a parameter which may be eliminated
It allows resteoring the actual time dependence by the simple
by making use of the relationship
operation
jwt .2 2
a (t) = Re [Ax e ! (5.3) sin“wt + cos‘wt = 1 (5.7)

The full vector a can analogously be written in complex form as This gives

R=A%, + AT, + A0 2 2 5
X X Yy z°z (Xary - Yarxl + (Xaiy - Yaix) = (arxaiy - aryaix) {=.8)
= (a,,cos 6 u, + aymCOSs ¢ U, + A, cos ¢,u,) (5.4) which is the equation of an ellipse {(Fig. 5,1a). A time harmecnic
+ jla, sin ¢ u + aymsin ¢yuy + a, sin 6 u,} signal is consequently elliptically polarized, An important

' particular case is the linear polarization, which occurs when Er

and a. are parallel. For such case the oscillating vector remains
We have separated the complex vector into its real and imaginary ! .
— _ parallel with a given direction during itswhole period of variation T
components a, and a,- This allows restoring the actual time
(Fig. 5.1b). An advantage of the linear polarization (examples of
dependence by triple application of (3.3}. Thus
which are the vertical and horizontal polarizaticns) is that a
_ jwt
aft) =Re[Ke ] =7 coswt~d;sinut (5.5) small probe in the form of a short antenna will pick up a maximum
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voltage when parallel with the field, and no signal when perpen-
dicular to the latter. This consideration leads to the use of

-
polarization diversity, a system in which frequency use is increasec

by transmitting two signals of identical frequency on waves
with mutually perpendicular polarizations.

Another important particular case is the circular polarization,

in which the Sr and ;i vectors have the same magnitude, but are
perpendicular, The tip of the vector now describes a circle,
either in the clockwise direction(with respect to the z-axis :
see Fig., 5,1clor in the counterclockwise direction (Fig. 5.1d}).
The basic vector equations discussed in the previous
sections may be written in complex form by replacing Fg by jw

whenever needed. Maxwell's eguations, for example, become

curl E = -juB

curl H = 3D + J + J

tot {5.2)
div B = 0
div b =P

It is to be noticed that a complex vector such as E is a function
of the space coordinates (x,y.,z).
The form of the power budget under time harmonic conditions may

be obtained from (5.9). In a medium of parameters (ec,u,0) we

write
— — — - —k = — —_ -
H .curl E - E.curl H = -juH ,B - E.(-ij* + * )
tot s .10)
or
div(E ﬁ* il . =2 ljtotlz = =%
iviE x H } = ~jupif|® + juelE|° - — o + E ;.3
) G .11}
In this expression the notation lilz stands for A.X = |5r|2 + la;

A classical result from circuit theory asserts that the time-

average of the product of two sinusoidal quantities a and b

22
*
is given by % Re(AB ) , where A and B are the complex representa-
tions of a and b. Applied to power budget 15.11) this formula
gives
= 2 .
1 = =* 1 |T¢ ¢ 1 S
5 ReIJ’{} E -CpordV = 3 II‘II % — 9V + 3 Re .ré (E x H }.d5 5.12)

2.

It is seen that the average power delivered by the applied field

{(left-hand member) is spent in the form of

- an average Joule effect in the conductors (first term, second
member )

- an average radiated power (second term, second member).

The vector E x ﬁ* is the complex vector of Poynting. Half its

real part represents the average power flux per m2.
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6 , Modes and eigenfunctions

We shall discuss the basic ideas of the eigenfunction method on the
-~ very simple example of the flexikle

string, a basic component of

The string is under tension T, ard

is acted upon by an external force
1

of density p{x) (in N m '). The
force on a small element of string
dx is therefore p(x)dx. The equation

satisfied by the small displacement y(x,t} of the string is a

wave eguation, viz.

331 _B 331 . . bix,t)
axz T atz T

y =0 in x = 0 and x = L

(6.1)

. : . -1
The symbol p d&enotes the mass density of the string (in kg m '}.

The velocity of propagation is ¢ -V {T/p). Under time-harmonic

conditicns :

(6.2)
Y=0at x=0and x = L

A first question concerns the existence of free vibrations, i.e.

of time-harmonic displacements which may be sustained in the
absence of external forces. From (12.2) the problem reduces to
the determination of functions yn(x) satisfying

2

a%y
n
z ¢ Anyn

dx (6.3)
yn = 0at x = 0and x = L
These functions are the eigenfunctions of the operator (dzldxz).

Their main property is that, acted upon by the operator, they

several musical instruments (Fig. 6 .1).

24
reproduce their own form, but with a coefficient An termed the
eigenvalue. It is easy to solve { 6.3} explicitly. Thus,
. nhx
Yp = 8107
2 ' ( 6.4)
A= -8
n L

The frequency of the free vibrations, cbtained by equating

1 T
v, =n 2L\|p { 6,5)

The eigenfunctions enjoy a crucial property, which is : they are

(w%0/T) to (-} ), is

orthogenal. By this we mean that

L
fy. y dx =0
o n'm

{(for m £ n} { 5.6)

To solve a system such as { 6.2) by the method of eigenfunctions,

we expand ¥(x) in a series

Y(x) = ni1 AL y,(x) { 6.7)

The problem is to determine the A, To do so, we write
2 2

a7y
4Y _ 1 a .5 aa 6
- = y (6.8}
dxz n de n'nin
P(x) = I B y_(x) (6.9)

The validity of the term by term differentiation involved in

{ 6.8) is not automatically guaranteed, but in the present case

it can be shown to hold. Making use of ( 6 .6) allows determination
of B . Multiplying, indeed, ( 6.,9) with yn(x), and integrating
from 0 to L, vields

L . L 2 L
é Y, (x}P(x)dx = B i y,dx = 3 B ( 6.10)

or
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2 b .
B, =f/ vy, Pax (8.1
o
Iné;rting { 6,7},{ 6,8) and { &9} in ( ©,2) gives, upon eguating
coefficients of Yoo
: 1 Bn
An =573 3 [ 6.12}
Wy

The solution for Y(x) is therefore

L 13
I P{x'}sin n;x dx*'
Y(x) = - ; L@ 73 sinn}I—x { 6.13)
2n°pL v -vn

This sclution is obtained in the form of an infinite sum, the
"building blocks" of which are the eigenfunctions. Such a sum

may easily be programmed on a digital computer. Notice the infinite
amplitudes which occur at the resonant frequencies Yor These
infinities disappear when the frictional and radiative losses of
the string are taken into account. Notice that expansion [ 6.7)

can alsc be used to solve the general wave equation ( 6.1},
Coefficient An is now a function of time an(t), and steps similar

to the previous ones show that a, satisfies

2
d%a_(t) 2 L
_n T .nm _ 2 . nux
a¢2 t g ) a (t}) = oL i, pix ,t J)sin T 9% ( 6.14)

This is the equation of an (L,C} circuit.

7. Closed electromagnetic wavequides

The modal expansion in a waveguide makes use of the eigenfunctions

~

of the Dirichlet problem

fm = grad L
H
Vzcb +u2¢ -0 in S
. m mm (7.1)
¢m -0 on C

=2
J 5% as e

The index m really stands

for a double index {m,n}.

Fig. 7.1

In a rectangle, for

example (Fig. 7.3},

s — 2 iy R .o BTy
¢mm a sin == sin = { 7.2}

We also need the eigenfunctions of the Neumann problems
§m = grad ¥
2, - in
vzwm * “n'n °
(7.3)
oV, on
@m0

= 2
_Jjglgml as « 1
The field expansions are

B u T A(z), Y
E(r) = ﬁ Vm(z)grad L ﬁ yn(Z)gr&d Yy, X U, + m m oz A
H(r) - & Im(z)ﬁz x grad o + LT (z)grad v, + I Bn{z)vn u,

o

The problem is to find the expansion coefficiants. The method pro-

: uan_ ceeds by requiring ( 7.4) to satisfy
Maxwell's eqguations. The source terms

T E are volume electric and magnetic

i currents, J and K, and sidewall

Fig, 712
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aperture fields. Detailed calculations give, for the E (or TM)

modes

de
_— jw‘uo Im

= - A - —f_g K.(u, x grad ¢ )ds

-f (3, x E).(4, x grad ¢ )do

c { 7.5}
axT
T+ Jweg Vo = —,r£ J.gred ¢ ds
Jue, .-
e B L CAS L
Uy 8

Here, ﬁn i1g a unit vector perpendicular to the waveguide wall. The

contour integrals containing (u x E) represent the excitation through
the aperture.

Similar equations hold for the H (or TE) modes :

—
!

av,
n - - —
&=t juuo In - -J‘.;‘ K.grad Y5 das - {, (un % E).grad v, de

aly,

o+ Jwev, - B, = - fé’ J.(grad v, % Ez)ds

Jum, - - - o -
Vot —g B, - - JS (K.uz)vn ds ~ f (1 x B).u, v, do

n s s

For both modes two of the three unknowns may be eliminated,

and an equation for the third obhtained. For the TE modes,

for example, and for perfectly conducting walls,

2
alv
2
B - "i"'n = flz)

(7.7)
dz

where f(z) is a source term which vanishes outsides the source
region.

Far away from the sources, therefore, Vn is a linear

combination of -exponentials. When k > Vo i.e. when the frequency

is above cut-off, Vn is of the form

.6)

. 28
A2
-ijz-vz. z ka v, 2
Ae n+BE

{7.8)

outside the sources. The mode is propagated, and transmission line

The wavelength in the guide is

theory may be applied.

{ 7.9)

(7.10)

A propagated mode is therefore dispersive. When k< Vo i.e. below

cut-off and outside the sources, Vn is of the form

-Iv - kTz + vﬁ - k% z

Ae + Be ( 7.11)

The mode is attenuated. The same considerations hold for the
TM modes.
It is clear that the number of propagated modes is fihite.
By suitable choice of the frequency it is poussible to launch only
one mode (monomode operation). This lowest mode always belongs
to the TE family. In a rectan-
gular guide the relevant data

are

X

{ 7.12)

1
=

cut off freg = £
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8, pPlane waves. Reflection and transmission at plane interfaces where E] and E2 are arbitrary complex coefficients, and
By definition the fields in a plane wave depend on a single space ,
. . . . 72 = -w ey + Japuo = {o + jB)2
¢oordinate, say z. Keeping therefore only derivatives with (6.6}
V jw C e s
respect to z and t in Maxwell's equations {1.16) to (1,19} Zc = E:%;E {the characteristic impedance)
yields In a good conductor the displacement current {jud| is, by defini-
f de dh _
g_i = - 3EX tion, negligible with respect to the conduction current |oe|.
z
1 (8.1} For such case
ah de R
_Y = -ge - B _)i y = (-‘ + J, wys 1_;1
N Bz X at 5.7)
= |9l )
2, = 20 (1+3)
[ de 3(-hx]
5;1 = -u 9t The quantity § is the penetration depth, defined as
) (8,2} 2
= | —=— 8
3-h) e de 8 =55 (8.8)
~ 3z = ¥ at

This depth, which is of great importance in practice, is of the order

A plane wave is therefore the superposition of two linearly

of lum at 10GHz for a good conductor

polarized waves, one with e in the x direction, the other with .
= such as Cu or Al, The practical
e in the direction. Equations (8,1) and (8,2) are of the
* 4 meaning of § is ¢learly illustrated
transmission line type, and it is clear that (e_,h ) play the
ype: x'y pray by condidering the transmission
role of v and i, In a lossless medium : .
- - of power in a conductor illuminated

e, = flz-ct)+glzect) by a2 plane wave at normal incidence.
1 (8.3) The fields in vacuum can be written as
h, = = [f{z~ct)-g(z+ct)]
y R
c -jkz jkoz
where Fig. B.1 Ex=e vKe (8.9)
Rc = VE {the characteristic resistance) H 1 ( —jkoz K jkoz}
= e - -]
) o (8.4) Y Reo
C =2 == the propagation velccity)
Vﬂ_ﬁ propag Y In this formulas k_ = (27/)) and R, refer to vacuum, while K
In a lossy medium, under time-harmonic conditions, is the reflection coefficient. In the good conductor :
-y2 Yz -uz -jBz az JjBz -2 -3 Z
Ex = B1 e + E2 e = E1 e e + E2 e e Ex =T e ¢ e 6
. {8.10)
1 =Yz Yz (8-5) * T - % -3 -z-
Hy = zc (E.I e - - E2 e } Hy = E; e a

The values of K and T are obtained by expressing continuity of

Ex and Hy at z = 0, This gives
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22 fue 3% il
T%""'—E= 2]—599 4:20& 4 (8.11)
RCO

It is seen, from (8.10), that fields and currents decrease exponen-
tially, and that practically no fields are left at a depth of, say,
56. Such a property is obviously important for the design of
shields. It is also to be noticed that the z-dependence embodied
in ( 810) still holds under oblique incidence. The proof is omitted
here.

When the conductor is perfect total reflection occurs, i.e.
the amplitude of the reflected field is equal to that of the

incident field. The reflection pattern

Fig. 8,2

is shown in Fig. 8,2 for both fundamental polarizations. This
pattern is obtained by imposing the boundary conditions discussed
in Sec. 2, which require the tangential component of ‘e and the
normal component of h to vanish on the metal. The surface

charge and current densities which appear on the conductor are
found (a posteriori) from (2.12) and (2.15). Thus, for both

polarizations.,

PS = EoEn £ zioﬁun.}:i)

(8.12}

Jg = upx H = Z(En x ﬁi)

These formulas remain approximately valid when the conducting
surface is slightly curved. This remark is of considerable

importance for the solution of the scattering problem discussed
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in Sec. l6.
As a last configuration we consider the boundary between two

lossless, non magnetic dielectrica

u
n -
u : .
- r {Fig. 8.,3). Assume first that
7\ t // 9
AN @_:Or=fv E is polarized perpendicularly
A A
\ i £ to the plane of incidence
Js r!
T~ E —
9, )‘HEEF r2 {i.e. the plane formed by uy and
: t t En). In this case the reflected
! and transmitted fields are
Fig. 8.3 given, at a typical point O, by
L2
_ cos@; - N - sin"0; _
E.L =K = E.

1

H
[
-
N!

cosB. + \|N - sin“0,
1 1 (8.13}
2c050i

m|
t
+3
"
[ul]

"+

[
o
Ni

o

s@, 4+ N - si .
co 01 5in 01

where N = (Er2/5r1)' For the polarization in which H is perpen-

dicular to the plane of incidence :

_ - N cosg, - N - sin20i _
Hr = KJHi = > Hi
N cosei +Y{YN - sin 01
(8.14)
_ 2Ncose, _
Ht = 37 i~ 3 Hi
N cosei +\|N-51n ei
In both cases the transmission angle Ot is given by
sing, = 1= sino, (8.15)

C
These formulas find an application in, for example, the study of
the influence of the ground on the radiation pattern of an antenna.
The relationships given above must be reinterpreted when Epq €ppr

a situation which occurs, for example, when a wave propagates



from a dielectric into an air-filled

/<: - region. For such case N :is less
exponential

decay than unity, and (8.15) cannot be

(a)

satisfied 1if sinoi > yGEZ Under

these circumstances the wave in

(bi ) air is not a classical plane wave,
b but a field pattern which remains
Fig. 8.4
"glued" to the boundary on the air side, and the wave in the dielectric
is totally reflected at the boundary (Fig. 8.4a). This behaviour

explains how an optical fiber is capable of guiding a wave while

suffering low radiative losses (Fig. B8.3hb}.
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9. Ray tracing
Ray tracing is a method used at very high frequencies, i.e., at
short wavelengths. Wavelengths ) are said to be short when the
characteristics of the medium supporting the wave vary little
over a distance A. For such case the wave behaves locally as
a plane wave, and its direction of propagation is that of the
ray. A typical time-harmonic component is written as

_ -jks(T)
E, = sx(r,x)e : {9.1)

The surfaces S(r) = const. are the phase fronts. At high freguencies

the amplitude Ex is expanded in a series in the small parameter
{(1/k}, Thus,

1

€ .(T,k} = € (T) + ¢ éxl‘r) PR (9.2)

k
Expansions of this kind are inserted in Maxwell's equations.,
Taking into account that

-jks -

curl E = e {curl £ - jk grad s x €) (9.3)

yields

curl € - jk grad s x € = -jk R_, u &

- —_ - - {9.4)
curl & - jk grad § xd¢ = %E_ ErE + of
¢o
Equating the dominant terms (the terms in k) leads to
grad S x Eo = ”réRco x'o
- {9.5)
o
grad S xi’oz --R—Eo
co

—

Equations {9.5) show that grad 8§ is perpendicular to both 5; and

x—o' and that Eo is perpendicular to jo' They also imply the

"eikonal eguation"

rr

lgrad s|% = e.u_ = n (9.6)
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The index of refraction n is a function of x,y,z. The rays are
the orthogonal trajectories of S{x,y,z); they are therefore
tangent to grad 5. If & is the length of arc measured along the

ray, the equaticns of the latter take the form

dx d dz

al af J:1 A (9.7)
P T T

ax ay 3z

These equations are chtained by making use of the relationship
2 2 2
&+ Gp o - (9.8)

We now eliminate § by the following manipulation :

2
a dx, _d, 85, _ 3°s dx . 3’5 _d 3%s az
at (n 57} = 3t Bx) = axl 4 * 3xay al * xaz af,
t353% , 1352’ 12s 8%
= n %x 3y 3xay T n 3z 3xdz
moex gx2 0 3y 9xdy (9.9)
2 2 2
B I Y- as §_§]
T 2n ox [( x (ay) + (57)
_1an?
T 2n ox

Combining with similar equations involving y and z yields

%r {n %f) = grad n (9.10)

It is clear that %i is the unit vector E% along the ray. Once

the rays are found, S(r)} follows from

F-=n

and a straightforward integration. Thus,
L
S(P)= S(P_) + i. n al {9.11)
t .
o

In a homogeneous veolume n is constant, hence grad n = 0. Eg. (9.10}

then implies that'a is a constant, which in turn implies that the rays

radius >
curvatuze p
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are straight lines. 1In an inhomogeneous region, however, (9,10)
) gives
ray dG B an
n E[L + up at = grad n (9.12)
dﬁz
The vector E[* is perpendicular
to the ray, as
center of
curvature du
—15 =1q {9.13)
Fig. 9.1 d P n :
It follows that
dﬁﬂ
_ (grad n
a - { o ).L {9.14)

whare the subscript L denotes projection on a plane perpendicular
to the ray. A possible graphical
construction of the ray follows
1 1 from (9.14). Assume, indeed,
. that the direction of the ray
is known in PO (unit vector Go)‘
The unit vector in a neighbouring
peint P1 may be obtained from
Fig. 9.2 :
{3.14) by the operation
grad n
3 N
(9.15)

u1 = uo + POP1

This relationship allows a point by point construction of the ray

(Fig. 9.2). Egs. (9.12) and (9.13) also yield

u,-grad(loggn) = 1 (9.16)
It is clear, from (%9.16), that the rays are curved in the direction
of high indices 1.
Ray tracing can go further, and generate the laws governing
th2 amplitude and polarization of the fields along a ray. These

lavs are obtained by equating terms of higher order in (1/k) on
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The detailed calculaticns are beyond |

the scope of the present notes.

both sides of {9.4).

10, Faraday effect

-Macroscopic parameters of a cloud of charges

Let the cloud consist of particles of charge g and mass m, dis-

tributed with density n. One of the characteristics of the

cloud is the plasma frequency, given by

%)

;

1 ng 0.1
fp T2 ome

[ ¢]

A few values for an electron cloud are

- 12 14 1¢
niem ™) 108 10%! 10 10 10

f 90MRz %BSGHZ 9GHz S0GHz 900GHz2
P

When the cloud is immersed in a D.C. pmagnetic field Eo' the

particles are

g Ver i
,-@————-D-.._ - subjected to a
,’ ~ P ~ -
,/ N ,/ \ circular motion of
{ = C) \ f \‘ angular freguency
\ "o y \ oEO | b
\ / \ / W = D {102)
N Vs \ / c m
- \\ - AS //
— -~ -
gC) ™ Vai This is the cyclotron

frequency. It has a

Fig. 10.1 sign, from which the

rotation sense may be deduced. For an electron g = -e.

A few values for an electron cloud are {10000 Gauss = 1 T},

b, (Gauss) 143 357 1070 3550 12500
£_(GHz) 0.4 1 3 10

.

Given these parameters, it is possible to show that a charged

cloud in a Eo behaves like an anisotropic medium in which

D = €.E, where
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€ jef o]
- e . o {10.3)
) 3] e

If we neglect the collisicons, and the associated losses, the

parameters are

2.
w

25~ =1 + =B

. Eo m2_m2
c
2

i'-g - WCUJD ‘10.4)

“TEg - m(mz—w )
c
2
",-E:ll _ 1 _ EE
E =g = 2

o w

eboz

Ffor the electron w, = -

. The z-axis is directed along Bo'

Plane wave propagation

For a wave propagating in the z-direction Maxwell's egquations

become

y

In
- ?Ex = JUEE, - GE'E_ = JuD_ £0.5)

-

- ME'P = A
?2_— - we z;x + ]LJEE? -. JmDy

To uncouple thgse 4 equations with 4 unknowns we replace Ex’ Ey
by the linear combinations

=1 (= _ia
A= 3 (Lx~J;y) £o.6}
1
B = 3 (E\-jEv)
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In terms of these components:
= = _ o = - i f10.7)
E = Exux+Eyuy-A(ux+Juy)+B(ux qu)
N e
The electric field has clearly been split into two circularly
polarized components. For the magnetic field, analogously,
C =2 (H-jH )
¥ lo.8)
D= ] ({H + 3H
2 X J y)
H = qux+Hyuy = C(ux+juy)+D(Gx-jE&)
When these components are inserted in {19.5} two systems of
(unccupled} egquations are obtained. For the (A,C) couple :
3z - "lueu, (i0)
40.9)
da{jc -
"“é%—l = Jule-e')A
Elimination of C gives
a?a + mzu (e-e'}A =0
Tz - 0
dzz o] £0.10})
In a similar fashion we obtain
a’B , 2 0.11
-3 + wu_(e+e')83 = 0 ae.11)
dz e

Let us assume tHat b, > 0, i.e. that the wave propagates



41

in the positive direction of Eo' For such case the rotation
sense of the "A" wave is that of the iens. This "ionic"
wave has a propagation constant ki given by

2
u

2

2 vy o 2 2 ]
ki = w uo(E-E ) = ko [ 1 - GTEITG;TU fLo.12)

The "B" wave is similarly an "electronic" wave, with constant

2

2 2 by L w2 w ]
ke = W uO(E+E )} = ko [1 - ETG:$5:TT a0.13)

It is clear that the wave is propagated when k2 > 0 {passband),

but that it is attenuated when k® < 0 {stop band).

o] > 15

///% electronic wave
/ 7

/mp// ‘ sass

fecl P

[17“7'*" s |
€. 2, .2 c
(5_) .mp + 5

Fig. 1l0.2
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Faraday effect
This effect arises because the two basic waves, A and B, have
different propagation constants. Let us assume that both waves
propagate, and that E is linearly polarized in the x-direction
at z = 0. Thus,
F(0) = §, = 2(@_+30,0+ (T -30) {10.14)
X 27X Y 2°°x Y
L N [
.A-wave B-wave
FParther down the z-axis this field has become
=jK.z -1k z
= i a0 1 Loy e 10
E(z) 2(ux+3uy)e + 2(‘x juy)e (10.15)
/f
‘N\\\\\ 5~
a0

Fig.10.3

Such a field is again linearly polarized, but in a new direction

x' forming an angle @ with x. This is shown by applying the

following coordinate transformation

EX = GX' cos @ - ﬁ&' sin ©
(1616}
Y By

(=]
n

sin p + Gy. ces @



The electric field is now

+30 -3k, z -33 =ik 2 ]
- 4= i J
E(z) = E‘ ux; [Q <} + e e € 0e,17)
S 10 -jk;z -ige -jk.z
du [T T
It can be written as
- ke+ki z
E(z) =T, e 2 {0,18)
provided we set
K, K
_ i e
g = ] z ao.-9)

This is the angle which characterizes the Faraday rotation.

If we look at the reflected wave in Fig. (10.3) we see that it
propagates against the magnetic field, hence that boz < 0.
As a result, the angle O is the negative of (1Q19) with respect

to the direction of propagation. It therefore has the same

direction in space, a property which has interesting technological

applications.
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11, Far field

u

radiating in free space., The

complex vector potential A(T).,

J derived from (2.8), is of the form
__ -3k jr-r'l
- = M r [+}
MO = 2pfpdrle s o

qm

origin FE:E'!

Fig. 1L1 _ . _
At large distances, in a direction

of unit vector E,
fr -*'| ¥ R - u.r' £1.2)

Inserting this value in {7.1) gives the far field expression

_-3k R
s~ % Y
R 47

o ik u.r'
INITiry e ° av’ 11, 3)

lim A =
R+= -

o

direction dependent vector N(u)

The E and H fields, cobtained from (1.17) and (2.1}, are

-ik R
E(r) = Flu) R
-jk R nl.4)
1 - =, e - °
H(r) = o {u x F) R
co
where F is the transverse vector
F=ux {uxN) 21,5)

These very important formulas will be discussed further in the

lectures on Antenna Theory.

When the dimens:ons of the source are small with respect to the

wavelength A, the bxponential in N{u) may be usefully expanded as
ik _U.T'

e © =1+jk6.?'+%(jk]

il 6}

Fig. 7.1 shows time harmonic currents
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Inserting this value in (11.3) gives

-jk R
lima =2 .39[111 I (@' + 3k, I rYIE )@y’ + tems in kg] (1.7
Roce R %

Suitable manipulation of this equation leads to the far fields

o TIEGR
- BRge 2T e 5 2= = .3
E = i R [ koc ux (ux Pe) kou x Pm + terms ir. ko
. (11.8)
-jk R
=~ 1 e _°T2 - 3 2= T .3 ¢ . }.3]
H = yid ) koc u x Pe - ko ux (ux Pm) + terms in kg
We reccgnize in these formulas the contributions of, first, an
electric dipole moment
_ -I — —_ —_
- - {11.9}
P, T TIFF av !IIV pPTAav s IIS p, T dS
and, second, a magnetic dipole moment
—_ ‘| -— —
Pm = '2'" I!Iv r % J 4av (11.10)

The discussion can be carried further, and the terms in kg shown
to consist of contributions from e.g. quadrupcle moments. The
fields of the dipoles will be mentioned again in the lectures on

Antenna Theory.
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12 Time harmonic sources. Directivity

A time harmonic vector is elliptically polarized, i.e. its tip
describes an ellipse. Polarization is discussed in Sec, 5 of

the Refresher Course. A time harmonic field alt) may be represented
by a complex vector A= Er + 3 ;i' through which the actual

time dependence may be restored by the simple operation

a(t} = Re [A &I%%) = 3 cosut - a sinut (12.1

The main axes of the ellipse are often chosen to be the x and y axes.

For such choice {Fig.1l2 1)

£<0 A= F(u, - 3¢ Ey) (12.2)

y
T
o . 3
///’ﬂ-_-cx) The sign of ¢ determines the sense
x
\Qxth__-_’,// in which the ellipse is described.

The value ¢ = 0 corresponds

to a linear polarization, and
Fig. 12.1

el = 9 to a circular polarization.

The average value of !5]2 is given by

—_ —_— =% —_ *
<|at2>av = % A.A =.12' |A|2 = % (1+EZ)FF {12.3)

Under time harmonic conditions the power -budget takes the form

T 12
- —% 1 'Jfl 1 - —k —
3 Re ff‘{‘ Ea.deV =3 Irf 5 av «+ 7 Re Ié(E x H ).ds (12.4)

1

where Ef = G(E + Ea} denotes the total free-charge current. It

is seen that the average power delivered by the applied field

(left-hand member) is spent in the form of

- an average Joule effect in the conductors (first term, second
member) .

- an average radiated power (second term, second member),

The vector E x H is the complex vector of Poynting. Half its

real part represents the average power flux per mz.
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To write the retarded potentials (1.13) in complex form
we notice that time retar@ftion becomes phase retardation.
If T is the period, the phase shift due to propagation takes
the form

Ef) L oor < 2 |ET =k |E-E a2.5)

as cT = A. This leads to the expression _
-k -zt
Fr) = =2 fryp Lx'le av' (12.6)

It is clear, from this formula,
that the contribution of an
elementary source J av' decreases
with distance, and is phase-retar-

ded through an angle

origin 0 kol;—;ll' where k_ = % = %1 .
Fig. .2 An added distance of (2/2}, for

example, introduces an additional phase shift of 180°, i.,e, creates
a phase reversal. Two contributions which were initially in phase
(constructive interference) may now, by way of shifts in direction
or distance, end up in phase opposition (destructive interference}.
This interplay of phase and amplitude may be clarified by looking
at the far-field. At distances R large with respect to the maximum
dimension d of the source, |r-r'] in a direction of unit vector u

may be written as
IT-T'| = R - u.T' + terms in % (12.7)

As shown in Sec.1l of the Refresher Course, substitution of (12.7)
in (12.8) leads to the following general form for the fields in a

direction of unit vector u :
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ml
n
vl
=)

[12.8)

=l
-
"]
]
-

In this equation R, = VUOIEO = 3771 is the characteristic impedance
cf vacuum. It is seen that E is perpendicular to B. 1In addition,
as T is a transverse vector (i.e. a vector with polarization plane
perpendicular to u), E and H are perpendicular to 1, It is also seen
-~hat the R-dependence of the fields is of the form (e—]kOR/R),
-ndependently of the nature of the sources and the direction of
observation. The latter only influences the coefficient F{u}.

Ecotice that a general criterion for the validity of the far-field

approximation reguires the distance to satisfy

2
R > ___2‘; {(12.9)

an example : the far field distance of a parabolic antenna of
ciameter 1.,20m, transmitting at 10GHz (* = 3cm), is 96 m.

From (2.8) the complex Poynting's vector is given by

ExH =1 |F|I?% Wwom 2 (12.10)

It lies in the direction of ob-
servation u. The power per
steradian in the direction

u is |FI?/2R__, hence the total
radiaﬁed power is of the

form

e 11 |Fte, @) Zsirbaedo
o

Fig. 12.3

1 =2
f’=§§"“II|F|dQ=
(e8]
(12.11)
As the average power per steradian is (P/dﬂl, the directivity D of

the source mary be defined as
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DiO,$) = power per steradian in u

~ average power per steradian

13, Aperture antennas

= 2 ’ Fig. 13 shows an aperture located
[Flo,¢) |° . (12.12) J P

~

%?fflfib.¢)]2 aq in a perfectly conducting screen.

On the screen E vanishes, but

Important parameters for an antenna are its maximum directivity tang

and its side-lobe ratio {often expressed in dB). A three-dimen- in the aperture this component is

sional plot of |F(J)l is termed the field radiation pattern of the different from zero. In fact, (un x E)

antenna, and that of|fizis the power radiation pattern. Fig.12.3 is the source of the field to the right

; ; P ; of the scree as can be seen from
shows a source with a fairly structured radiation pattern, eviden- n,

i 13.1
cing shadow zones and secundary lobes. Fig. the formula
-jk |r-r']
E(F) = curl -2‘—“ JI G, x Eir') ET-—dS'J
The narrowness of the main lobe increases the accuracy with ap |e-r
which the angular position of a beacon may be determined (in (13.1)

s 12 17 : " 3 3 3
azimuth or elevation). Early guidance and landing systems As in Sec. ¢ the "far field” approximation can be applied to

went one step further by using two beams- this formule, but such an exercise is left to the reader. The

main problen is to determine Gn % E. This task ideally reguires
solution of an integqral eguation. 1In many cases, however, a
reasonable assumption can be made concerning En x BE. At very

short A, for example, Gh x E may be replaced by En X Ei everywhere
but in the -mmediate vicinity of the sharp edge C. The contribution

to the integral in (33.1) of this small region, just a few A wide,

is negligible. With the assumption

- = - =y (13.2}
un X E = u, b4 Ei

g it becomes possible to 7

? determine the far field
w produced, by, for example,
t}

a rectangular aperture

! Reiativa
. sl strength illuminated by a plane
RANGE
A

wave at normal incidence.

@

If the wave is polarized

’ -0722
ffhxz’“\/n\i wetm?  parallel with the broad

+
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side we set Ei = E u_ (Fig. 13.2a). Using (13.1) yields a radiation
pattern in the (x-z)} plane of the
general form shown in Fig. 13.2b.

When the rectangular aperture terninates
a rectangular wavequide, a configuraticn

often found in airborne antennas, E,

i
becomes the field of an incident
Fig. 13.3 dominant mode {Fig, 13.3)
= X =
Ei = E cos a uy (13.3)
The diagram of Fig. 13.2b shows that the opening angle AQ,
defined by the 3dB points,is given by
sin (29) 5 0,58 2 (13.4)
2 " a
For small (A/a), this yields
A A 1,18 2 (13.5)
~ a
Such a relationship is quite general. In every plane containing
the axis of the main beam :
A 113.8)
0 & 3
A = Icm

(b}

Fiq. 13.4
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where d is the "dimension"™ of the aperture in the plane under
consideration. Fig.13,4a shows the elliptical aperture of an
;ntenna, and the opening angle in the vertical plane. Fig.13.4b
shows actual figures for the rectangular aperture of a "half-cheese"
antenna, often used in conjunction with marine radar sets. As the

horizontal dimension is 7.5 broader than the vertical one, the

beam is 7.5 times thinner in azimuth than in elevation.



Fig. 13,5

X-band (3cm) search radar and X- and Ku band

{3 and 1.8 cm) tracking radar
(Hollandse Signaal "goalkeeper" system}.
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14. General equivalent circuit

Fig. 14.1 shows a horn antenna fed by & waveguide. For such a
structure the terminals A and B are replaced by a terminal plane S.

The transverse fields in S can be written, in monomode propagation,

T - as
X
Ll X! -
R ‘ —
Y u.O N P - E = Ve
A\ e X tr
\ - ) Htr = I(uz X e}
S ’ m
1 - -
o , ——
radiated In these expressions e is
wave .
{e>0) incident the eigenvector of the mode.
_ wave :
(ei>0) The ratic (V/I) is the gene-
Fig.1l4.1 ralized antenna impedance Za.

The "“generator" short circuit current is introduced through the

formula

e=J =1 H 114.2)
Ige JS u, x H on S

In this expression 3; is the current density induced on the short
circuited § by an incident wave Ei'ii' The value of Ig (a receiving
parameter) can be deduced from the transmitting properties. To
clarify this statement, let
-3k R

E = VF 5L~7{—— (14.3)
ke the far field of the transmitting antenna in a direction d.
The antenna is excited by a "voltage" V on § (Fig. %-1}- As E is
proportional with V, a factor V has been explicited in (14.3) , The
dimensionless vector F, a function of U, is now independent of
the level of the signal in the waveguide. The far field shown
in Fig. 14-1 is elliptically polarized, ¢ being positive in tha
indicated rotation sense. Detailed calculations, based on a

reciprocity property, show that, for the direction of incidence -u,
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4 F.Ei(O)

I = =< p—
9 kR, ff|e|2ds
s

(14.4;

The corrésponding open circuit "voltage" is

. -
in a =] =
vV =21 = n FI|.E. (0]} (14.5)
9 a3 [ IkReo !f|e|2ds J l

. s

S m——— ——

——

zeff

For a coaxial line, for example,

1 Yy

= ?n(a?b) T

<
i3

voltage between central

conductor and shield (24.6)

-2 27
Iiel"es = fitarm
Good reception requires the signal-to-noise- ratio to exceed a
threshold value, which varies from application to application.
To evaluate the (8/N)} ratio, it is necessary to know the signal
pewer, i.e. the power which flows through S to the receiver.

This power can be written as

1 = 2
P - |E. |“ s {14.7)
rec ZRCO i eff

where (|Ei|2l2Rco) is the time averaged incident power density

. -2
(in Wm °), and Seff is the antenna cross section. A cross-section

2
of 2m”, for example, means that, if the antenna is illuminated
by a plane wave of power density 3quh2, the power down the

transmission line is 6uW. The cross section {which is a "receiver"

characteristic} is given by

5 = =2 M P ’ (14.8)

5&

The symbol G denctes the gain of the transmitting antenna. It

is equal to Dn, where D is Epe directivity, and n the efficiency,
i,e, the ratio of the effectively radiated power to the power
flowing to the antenna. An efficiency of 0.9, for example,

reans that 90% of the power is effectively radiated, while

10% is dissipated in the vicinity of the antennma. The factors

» and P lie between zero and one. The factor M measures the mis-
match between antenna and load impedances. Itfreaphes unity
when the load is matched, i.e. when Z, = z;. The polarization

L
factor P is given by

ERCAL Ll '
p = 1 - eff*™1 (14.9}
= 2% |2 F] 215 2
IF120E 12 1 I PIE, ]
In terms of the parameters shown in Fig. 7.1 :
o2 S yqln2 2
- (eg-e) g W1=e7) 11-e) {14.10)
P = — + COos87Q v 5
{1+e3) (14e7) (1+e7) (1+e])

vhere © is the angle hetween the major axes of the ellipses. Factor P
reaches unity when 0 = 0 and € = “Ey. Maximum extracted power
therefore obtains when incident and radiated ellipses have the

same shape, are similarly coriented, and are described in opposite
senses in space (i.e, in the same sense with respect to the

direction of propagation). Complete polarization mismatch

Ji.e. zero received power) obtains when the ellipses have the

same shape, are perpendicular to each other, ang are described

_n the same sense in space.

.



Application : microwave relay

57

The incident power density on 2 is
@
R W, = 1 5 G w2 (14.11)
- { 4nR
l -1
‘@L— g— From (14-8) the power to the receiver
: ! in 2 is
1 2 2 2
@ NP . =(G" )(p (14.12)
Fig. 14.3 2 47 4R 4R 1

For antennas with an aperture, there

S = K

eff

For a parabolic antenna K = 0.7.

be 2 m. Then, at A = 5 cm

4 S
D = eff A

AZ
Assuming an efficiency n = 1, and O:

@

Sgeom

PO N

exists a coefficient K such that

(14.13)

Let the diameter of the antenna

11,000 114.14)

= 1 W yields

(14.15)

{Rinkm)
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15, Antenna arrays.

A typical iptenna array is shown in Fig.l5-1, The signals from

the various radiators add ur

in space. Tc avoid unnecessary
complications we shall assume
that the radiators are identical
and identically-oriented, but the

excitation voltages V., in the

i
cross sections Si may be

different. The points 0, are

i
identically-located reference

Fig, 15.1 points, with respect to which

the radiation vector is vi?. The total far field with resmect to a

common origin O is therefore

_ -3kR -3kR -jkR -JkRy,
E = 2 —ywe 1 = e 2 T e
Ftot H V.lF ——-—R1 + VZF mRz L VNF R
N
-jkR jku.p “jku.p jku.p,
e ' =
==gx— WV, e 1~‘Vzt2 2+...VNe N F O as.

T T~ T

array factor ®(u)

It is seen that ®{u) is independent of the nature of the
individual radiators (which may be short dipoles, or the huge
parabolas encountered in radicastronomic applications) .The
array factor, on the other hand, is a function of the geometry
of the array, the relative excitation of the elements, and the
dirgction cf observation u. The simplest example is perhaps

that of a linear array of N elements (Fig. 15.2), Assume
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that the feed voltages Vi have

[‘;E_J the same amplitude, but experience

~

a phase shift g from element i
to element i+1. For such case the

array factor becomes

N-1 NB
J(5-8) sing (15.32}
singR
2

Rio) = e
Fig, 15.2

where B-a+ka sin 0.

The amplitude of R reaches a maximum (equal to N) for B=0, i.e.

for a direction Bmax given by

. a
Sln = - —— -
0rnax ka

(15.3)

e
>

The maximum in 9=Oma results from the constructive addition

x
of the element contributions. The general variation of ®]|
is shown in Fig.15.3 for several values of N. The detailed 0

dependence for q=z0, N=6 and a={()X/2) 1s shown in Fig.15.4, where

8=0

,
n2

™
0=-3 o

Fig. 15.3 Fig.15-4

the maximum(R is obtained for 0=0, i.e. for a "broadside"

&0

direction. Notice that & is rotationally symmetric with respect
to the axis, hence that a complete plot of R is cbtained by
rotating the weridian cross-sectionshown in Fig.15-4 around the
axis.

It is clear, from (8.3} that the largest possible value of ®,
i.e, N, can only be obtained if (a}/2ra) does not exceed unity.
It is also clear that the direction of maximum radiation can be
shifted in space by varying a. Such a variation can bhe obtained
electronically, a methed which is sometimes preferable to

mechanical scanning.
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1§ Scattering cross-sections

A typical scattering configuration is
shown in Fig.l6.1 , which disgplays a
target of arbitrary shape and con-

stitutive parameters {(€,u,0), immer-

‘ sed in an incident electromagnetic
incident

wave wave of arbitrary time dependence.

The determination of the scattered
Fig . 16.1 fields is a most difficult task,
often made somewhat easier by assuming that the incident wave is
plane and time-harmonic. Such a restriction is reasonable hecause,
at large distances, the fields of an arbitrary socurce behave
locally as those of a plane wave (see eq.ll.4'}), Further, Fourier
expansions with respect to time and space coordinates show that an
arbitrary incident wave may be considered as the superposition
of an infinite number of time-harmoni¢ plane waves.

The power density in a progressive plane wave is cbtained

from 15.12) and (B8.5) as

.1 E x F).u.as -
LA 5 Re ffI (ExH ).uids =

a— IE;1? wn? (16.1)
unit co N

area
Illuminated by this wave the "scatterer" or "target" becomes a
source of ;induced currents (volume or surface conduction currents,

polarization currents ..,.), and acts as a secundary "antenna"

producing a far field,

— - e-ij )
Bsc = l:.sc“'l) R Vo
-jkR
- _ .L - — e 2 {16.2)
Hge = g_fux Fse! ™R Am!

Such a formula holds for every observation direction u. From (5.12]
the time averaged power radiated in an elementary solid angle 4%

centered on u is
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1 = =% . - 2 1 = 2
d@ = = Rel(E x B__).ulR%d%) s ——|F_ | a2 w 116.3)
5C 2 sC sC 35 ZRCO sC
The total scattered power follows by summing over all solid
angles (i.e. over 4m steradians}. Thus,
1 - 2 (16.4)
= =—JI |F__|° 49 W
Psc 2Rco 4 sc
A quantity independent of the power level, the total scattering
crcss-section, is obtained by dividing the power by the incident
power density. Thus,
= 2
11 F |
sC
Osc s —3T o (16.5)

g_fu, ) = -
sc’ i Wy |Eiiz

This cross-saction is a function of frequency, of the direction of

incidence Gi' and of the state of peolarization of the incident

2

wave, To illustrate the concept : a o e of 3 m“ means that

s
the target, illuminated by 1 kW per mz, will scatter 3 xW.
The total scattering cross-section does not express how

much power is scattered in any given direction 4, This directional

sersitivity is expressed by the bistatic cross-section obistﬁlai)'
which can be most conveniently defined by way of a numerical

2

exzmple, Let W, = 1 kW m <, then o = 2 m? means that a power

bis
ag
L=2l3 (16.6)
dfce = 2035 kv
is scattered in an elementary solid angle dQ centered on the

direction u. A very important particular case is that of the

merostatic or radar cross-section. It is the bistatic cross-

section relative to the backscatte-

ring direction (-Ei). Thus,

Oraalyy) = obis(-ui]ui) (16.7)

. -2 _
With wi g.1Wwm*, a Orad

means that
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dag
= [+194 (16.8)
af . =035 w
is scattered\back in a solid angle d{t ({towards the radar set,
see Fig. 16.2,
The previous considerations are operaticnal definitions. They
O | do not solve the real problenm,
-5 31 -
.ma . which is to find F(u}. We
27 ignore this difficult assignment,
1 and limit ourselves to a display
of a few typical results.
o} r e
1 2 3 Fig, 16.3 shows the total cross
ka section of an iron sphere
Fig, 16.3 as a function of the radius a.

The frequency is 7.1 1014 Hz (green light), and the curve is drawn
as a function of the dimensionless parameter ka = (2ma/)). Fig.16.4

shows @
ragd

£
%cad ' [ 2A

for a perfectly conducting sphere. Notice the successive

2
e b \\‘_,/
3 Tbis
uaz ka = 4,1
27 10
ka = 1,1
17 1
v v T 0,1 v ——a-
o 1 2 3 4 o° 50° 180°
ka ) . E}
i 16.4
Fig. Fig, 16.5

"resonance" peaks. Fig. 16.5shows, for the same sphere, the bistatic

cross-section as a function of the angle of observation 0.

w7

. Doppler effect

y
'
)
|
h
Y
v
Fig. 17.1
dence on a perfectly ¢

Let K' denote the axes
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Consider an incident plane wave
propagating along the z-axis in the
"laboratory"” frame, i.e. in

the axes of a (static) observer.

The incident fields are

e, = E cosl{ut - % z)

ix
(17.1}

E w
h = =— cos{wt - = z)
iy Rco c

This wave impinges at normal inci-
onducting plane moving with velocity v.

in which the conductor is at rest. According

to special relativity the fields in K', at veleocities v<c<e,

are related to those in

]
X

e

h! =
y

Relativity also implies
the measurement of a fi

Lorentz transformation

zZ =

t =

Combining (17.1}, ({17.2}

fields
e T E(1
E
h! = —
iy~ Rco
where

K by
e, - vuohy

(17.2)
hy - ve e,

that the coordinates of an event (e.g.

eld) in K and K' are related by the

' ]
z' + vt (17.3)
£+ vz'
2
c

and (17.3) gives the transformed incident

1]
- %)cos(m't' - %— z'})
(17.4)
_ ¥ ||_El1
{1 c}coslw t 2 )
{17.5)

Vi = ¥
e =@ -z w)
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This formula expresses the Doppler shift. More generally, for
arbitrary velocities and a wave prepagating in a direction making
an angle a with the z-axis :
L}
W = e (1 - £ cos a) (17.€)
1- 2.
c2

The Doppler shift is the source of numerous technical applications,
e.g. in the area of electronic navigation., This shift is also

of fundamental importance for the operation of moving target
indicator radars (MTI), burglar alarms etec... To clarify this
statement consider the simple model shown in Fig. .1, In the

K' axes the reflected wave is

= - -y 1 w'
e, = -E(1 c)cos{m t' o+ c 2 }
{17.7)
h' o= =E(1 - Yycos(uw't' « L o)
ry T R, c c

The reflected fields in K are obtained from those in K' through

the "inverse" transformation formulas

- 1 '
e, = e + v“ohy
h_ =h' + ve e
(¢]
Y Y x (17.%)
z' =z - vt
£ =t - Y2
cz
This gives
! mll
e, = -E{1 ~2 c)cos(w"t t o z)
{17.¢)
. L1]
hry = ﬁg—ll -2 %)cos(m"t + %—z)
co
Here w" is the angular freguency of the radar echo, which is
twice Doppler shifted according to the formula
1. ¥
w" = W € - v (17.10)
A w(1 2 c)
c
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18, The radar equation

Neise cutput

~ The thermal noise at the terminals
z JWWL of an impedance Z is given by (Fig. 9.1a}
dv? = 4kTR{w}af (18.1)

(a) The gquadratric values add up. Let Q

be the quadratic gain of the system

g {Fig.18 .1b)

. — I |2 .
v
Q

T;;TE (18.2)

VO Qfw) =

If no additicnal noise were created

(b} the gquadratic fluctuation would be

Fig. 181, 2
19 dV:é= 4kTRg{w)Q(wldf (18.3)
Because of additional noise sources, a noise factor F » 1 is intro-

duced, hence

2 .
dv0 =4 kT Rg{uﬂQ(u)F(m)df (i8.4)

If the input system has ng times as much noise as Zg (where ng, the

noise source factor, is » 1) :

2 = -
avZ = 4 k T R_(wal w)[F(mHng(m} 1]« (18.5)

—
Forg

This gives (Fig.18,2)

W,

~2 2
(vg) =4k T 5 R_QF

daf
noise £ eft
y

=4k TRy Qg Fegglay B (18.6)



67

e where
£2
B = 6—51- df
£ ref
! (18.7)
£2
F_ = lS F -2 af
18,2 av B Q
Fig. : £ ref
1
Minimum_detectable signal ,
iy ovd)
— signal _ — }min.{%) = N (18.8)
{v2) {v2) output
noise noise

The minimum signal to noise ratie at the output depends on the

detection method, the equipment etc ...

Radar signal

From {( .12) the power density inci-

dent on the target is

———- v o boil G (18.9)
A —_— 1R ",

where G is the gain (Dn) of the

antenna. The power scattered in a

Fig. 18.3 solid angle 40 is (Fig.l18.3)
s aa
P = W, %ead 47 {18.10)

The solid angle of concern is, from (14.8) ,

S
af =

eff _ 1 G AZ M P (18.11)
D 41D

Therefore

2,2
G~ A
= —— MPP
rec 64n3D4 rad tr

Radar equation

averaged over all frequencies

+
3

c2x?
= a M P
rec 64n3D4 rad tr }

kTEB Feff N
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(18.12)

(18.13)
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List of symbols za‘= Ra + jxa = antenna impedance )
a = magnetic potential (T m) 2. = characteristic impedance of a medium (o
b = magnetic induction (T) 2, = a load impedance (f)
- -1 ~
c = (egug) 0:5 - 3,10% & velocity of light in vacuum (m s '} £ = electromagnetic energy (J)
d = electric induction (C m ?)
- - f =
§ = electric field (v m ) a power (W)
Ea = impressed electric field (v m™)) R = array factor (dimensionless)
- 1 =9 -1
Eifﬁi = incident fields € * 3gw 10 Fm
B = magnetic Field (A m ') A = wavelength in vacuum (m)
. -7y -1
J = volume current density (A m %) Bo =47 10 " Hm
Ea = applied volume current density (A m"?) v = freguency (Hz)
P -1
35 = surface current density (A m_1) G = conductivity {5 m ') X
ko = g = %1 = wave number in vacuum (m'T) Opig = bistatic creoss-section (m")
= -2 o, = radar cross-section (m?)
Mg = electric polarizatien density (C m™ %) rad 2
. -1 a = total scattering cross-section (m”)
. = magnetic polarization density (A m~ ') s¢ -3
0.5 o = volume charge density (Cm °)
n = {eul = index of refraction
i ¢ = electri¢ potential (V)
U, = unit vector in directicn a
} & = magnetic flux (Wb)
D = directivity (éimensignless) 0 = solid angle (sr)
F = radiation vector (V)
G = gain of an antenna (dimensionless)

I = current (a)

M = mismatch factor {dimensionless)

]
n

polarization factor {dimensionless)

-l
n

electric dipole moment (C m)

o
1

n - Magnetic dipole moment (A mz)
R. = distance to the origin (m)
Rco= luofco)o'5 = 120m = characteristic resistance of vacuoum ({2}

Seff = effective cross-section of an antenna (m2)

W = electromagnetic energy density (J m-3)
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