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Basic Concepts in Signals and Systems*

8.C., DUTTA ROY
Department of Electrical Engineering,
Indian Institute of Technology,Delhi,
New Delhi-110016, INDIA

SUMMAR Y

In this series of lectures, basic concepts in signals
and systems will be discussed, Starting with the definition of
linear systems, some elementary signals are introduced, which
is followed by the notion of time-invariant systems. Signals
and Systems are then coupled through impulse respor se, Convo-
lution, and response to exponential signals. This raturally
leads to Fourier series representation of periodic signals and
consequently, signal representation in the freguency domzin in
terms of amplitude and phase spectra. Linear system respoﬁse
to periodig_ signals,discussed next, is then easy to understand.
To handle non-periodic signals, Fourier transform is introduced
by viewing a non-periodic function as the limiting rase of a
pericdic one, §gg;its application to linear system analysis is
illustrated, The concepts of energy and power signals and the
corresponding spectral densities are then introduced. The
discussion ends with the derivation of the transfer function

required for distortionless transmission.
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i, Linear Systems: Definition

The concept of linear systems plays an important role
in the analysis and synthesis of most practical systems, be it
communication, control or instrumentation. Consider a system
5 which produces an output y when an input x is applied to it
(both y and x are usually functions of time). We shall denote
this symbolically as

8

X * Y
Then S is said to be linear if it obeys two principles, viz.
principle of superposition and principle of homogeneity. The
former implies that if Xy + Yy (note that we have omitted $ gbove
the arrow: this is implied) and Xy + ¥ou then X 4%y ¥ ¥1¥Y5.
The principle of homogeneity implies that if x . y, then
aX =+ gy where « is an arbitrary constant. Note, in passing,
that o could be zero i.e. zerc input should lead to zero output
in a linear system, Combining the two principleg, we can now

formally define a linear system as one in which

Xy, 2*Yy, o ® a¥t &, + ¥yt 8, (1)

where the notation =2 is used to mean “implies",

As an example, consider the system described by the well-

known equation of a straight line

Yy =mx + ¢ (2)
It may seem surprising but (2) does not describe a linear

system unless c=0, simply because zero input does not lead



to zero output, Another way of demonstrating this is to apply
ax as input; then the output is

Y' = max+tc # ay= max+ca

By the same token, the dynamic system described by

a .
5% + 5y = 5% + 6 ()

i
s not linear, because (x=0, y=0) does not satisfy the eguation

Another, and a bit more subtle example is shown in Fig.l
Is this system linear? Obvicusly x=0 leads to z=0 but then this
is only a necessary condition for a linear system, Is it suffi
cient? To t . =
est this, apply A=K then z=z_. Now apply
X = =
=-x,3 the output is etill z_ instead of

o
-z . The obvious conclusion is that the system is nonlinear

Almost all practical systems are nonlinear, which are usually
much more difficult to handle than linear systemé.Hence we make
our life comfortable by approximating (or idealizing?) a nonlinear
system by a linear one. Alsd, in many situations, a nonlinear—
system is "incrementally” linear, i.e. the system is linear if
an increment a in x is considered as the input and the correspond-
ing increment Ay in y is considered as the ouwlput. Both (2)
and (4) are descriptiond of such incrementally linear system§. A
transistor amplifier is a highly nonlinear system, but it behaves

as a lin i
ear one if the input is an ac signal superimposed on

a2 much larger dc bias,

2. Elementary Signals

A signal, in the context of electrical engineering, is

a time-varying current or voltage, An arbitrary signal can be

decomposed into some elementary or "basic" signals, which, by

These are (i} the

themselves also occur frequently in nature

t where amay be real or imaginary or

(t) and (iii) the unit

at
e ', we

exponential signal e

complex, (ii) the unit step function u

impulse function, §(t). When a is purely imaginary in

get a particularly important situation, because i a=jwand w

is real, then

el¥t = cos wt + j sinut (5}

Thus sinusoidal signals, coswt and sinut, which are so important

in the study of communcations, are special cases of the exponential

The quantityw, as is well known, ia the frequency in

quency in cycles/sec or Bz.

signal.

radians/sec, while f=u/{2 r) is the fre

The unit step function, shown in Fig.2.is defined by
4] <0

u(t) = {6}
1 t>0

Note that it is discontinuous at t=0, The unit impulse function

e(t) is related to vt} through

t
ult)y = f &) d (7}
or -
du (t}
t) = ——— (&)

dt



Obviously, it exists only at t=0, and the value there is
infinitely large, but

« o

Iodlrddy = f slr)dr =1 (9)

-- 0

i.e. the area under the plot of §!t) versus t is unity, This
is called the strength of the impulse; for example, the strength
of the impulse Kéft) is K. Obviously, there is some formal
difficulty with regard to the definition of §(t), but we shall
not enter into this debate here. ¢(t) can be viewed as the limit
of the rectangular pulse shown in Fig 3 as #0; Fig,.3 also
shows the representation of &§(t). Two important properties of

6{t) are that

x{t) s(t-to) = x(tol c(t—to) (10)
and

; x{t)glt-1) dr = x(t) (11}
Equation {11) easily follows from (9) and (10), and represents

the “sifting® or “Sampling” property of the impulse functior.

3. Time Invariance

At this point, we need to introduce another concept viz,
that of time-invariance of a system, A system 8 is time-invarient
if a time shift in the input signal causes the same time shift

in the output signal i.e. if x(t)= y{t) implies x(t~t0)+ y{t-to).

Both (2) and (4} are descriptions of time~invariant system, On
the other hand, y(t)=tx(t) represents a time-varying system, Most

of the practical systems we encounter ‘are time-invariant systemd.

Systems which are linear and time-ipvariant (LTI1) are

particularly simple to analyze in terms of their impulse response

or frequency response function, as will be demonstrated in what

follows .,

4. Impulse response and convolution

Consider an LTI system whose response to a unit impulse

function is hit), i.e.

#t) - hit) (12)

By time-invariance, therefore

slt = 1)+ hit-1) {13)

By homogeneity, if we multiply the left hand side of (13) by

x(r)d7 . the right hand side should also get multiplied by

x{v)daT 1i.e.

(14}

x (1) 6{t-t)dr» x{1) hit-t}dr

By superposition, Lf we integrate the left hand side of (1{)

we should do the same for the right hand side 1i.e,

; x{{) 6it- ¢)8r = [ x (t)h{t-1)dr {15)

- -



But , by (11), the left hand side of (15) is simply x({t), so
the right hand side should be y(t). Thus if the unit impulse
response h(t) of an LTI system is known, then one can find the

output of the system due to an arbitrary excitation x(t) as

yie) = 1 x{r) hit-t)ar (16)

-

®
= fx{t-t)h(+)d ¢ (11
where the second form follows simply, through a change of variable,
The integral {16) or (17) is called the convolution integral

and the operatibn of convolution is symbolically denoted as
yit) = x(t) * hnit)

It is a simple matter to prove that convolution operation is commu-
tative {i.e. x{t) * h(t) =h(t)*x(t); infact, this is what
equivalence of (16) and (17) implies), assoclative l(i.e,

x(e)* [hy (£)* hy(£)]= [x(t)* hy(£)]* h,(t): this is useful in

the analysis of cascade connection of systems) and distributive
(f.e. x(e) *[hyde) + ny(e)] = x{t)*hy (E)+x(£)*hy(t): this is

useful in the analysis of parallel systems).

As an example of application of the convolution integral,
consider the RC network shown in Fig. 4, where both x(t} and
y{t) are voltages, and the capacitor is uncharged before

aj plication of x{t) (an alternate way of expressing this is to

say that € is initially relaxed). W¥nhen x(t)= &(t), the current

This impulse of current charges

in the circuit is ift}= &(t)/R.

the capacitor to a voltage

1 Yo {t 1 {18)
T

(=R ]

at t=0+ For t >0+, 5{t) = 0: hence the capacitor charge

decays exponentially: so does the voltage across it, according

to

-t/ (RC) (19)
yit) = -7.1{-(:- e /R

Thus the impulse response of the RC network is

me/T 20
nit) = £ e ule) (20

where T=RC is called the time constant of the network,

Now suppose the input is changed to a unit step voltage 1 e.
x(t}=u{t). Then the response is, by (17},

« -t /T 7
ylt) = r % e u(rtul{t-1)ar (21)

-1/T -t/T

3 e dy =(1-e Ju {t) (22)
0

L] Ll

where the lower limit arises due to the factor ufr) and the

upper limit arises as a consequence of the factor uft-1} in

the integrand.



5. LTI System Response to Exponential Signals

st
Let x(t)=e be applied to a system with impulse response

h{t); then by (17), the response is

yit) = 5 hr) 3087} 4 {23)
= e s n()e s ar (24)
= H(s) BSt (25)
where
H{s) = f hit) e™®" a; {26)

is called the system function or transfer function of the system,
and is a function of = only. A signal for which the output
differs from the input only by a scaling factor (perhaps conplex)
is called the eigenfunction of the system, and the scaling factor
is called the eigenvalue of the system, Obviously, eSt is an

eigen function of an LTI system, and H(s)} is its eigenvalue,

When s=jw, H represents the frequency response of the
system, i.e. if x(t):ej“t or its real part {coswt) or imaginary
part (sinyt), then the ocutput will be H(jw)ejwt or Re Bujmleiwt]
or Im Eﬂjm)ej “t] respectively. For example, if H(j,) = |H W) |
ejéﬁ(jw) and the input 1is coswt, then t he output shall be
iH(]w)Icos(mt+£ﬂ()mH. H{jw)} varies with frequency, and the plots
of |H{jw)| and JH{ju) versus » are known as magnitude and phase

responses respectively,

10

Since the principle of superposition holds in a linear
system, the response to a linear combination of exponential
signals, I a; esit, will be of the form Ii a; H(si)esit. It
is precise;y this fact which motivated Fourier to explore if an
arbitrary signal could be represented as a superposition
of exponential signals. As is now well known, this can indeed
be done - by a Fourier serjes for a periodic signal and by
the Fourier transform for a general, not necegsarily periodic,

signal.

6, The Fourier Series

Consider a linear combination of the exponential signal

elvot with its harmonically related exponential signals eJk“ot

k=0 + 1, +2,..... &

x(t) = I a, ejk“ot (27)
= -

In this, k=0 gives a constant term or d.c., in electrical

t

engineering language: ejuo is8 the smallest freguency term,

with a freguency we and period T=2'/”o , and is called the
fundamental. The term ejzwot has a frequency 2w,, while e"jz“’ot
has a frequency -2w°: the period of either term is T/2, and
both the terms represent what is known as the second harmonic,
A similar interpretation holds for the general term ejkmot,
which has a period T/]|k|. WNote that we take the frequency as
positive or negative, but the period is taken as positive.

Obviously, the summation (27) is periodic with a period equal
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to T, in which there are |k| periods of the general term efkue t

but only one period of the fundamental,,

What about a given periodic function x{t) with a period
T 1. e. x({t+mT)=x(t), wm=0,+1, +2,...? Can it be decomposed into
the form (27)? It turns out that under certain conditions
which are satisfied by all but a few exceptional cases, one
can indeed do so. To determine ak's, multiply both sides of
(27) by e'jn“ot and integrate over the interval ¢ to T, Obviocusly

T JJik-nla t

this results in an integral [ e dt on the right

0 T
hand side, which is zetro if k#n, and T if k=n. Thus an=(l/T)Ix(t)
0

e3P0t 5 or

-jkmot
a, = x(t) e dat {28)

3]
(=

a, represents the weight of the k-th harmonic and is called

the spectral coefficient of x(t}. a, is, in general, complex,

A plot of |a;] versus k will consist of discrete lines at k=0

+1, +2,...,; it resembles a spectrum as observed on a spectroscope,
and is called the amplitude sbectrum. Similarly, one car draw

a phase spectrum,

It is obvious from {27) that x{t) could be written as

the summation of a sine and a cosine series, and that the

T
corresponding coefficients could be found from [ x(t) cos ket dt
T 0
and f x(t} sinket d4t, It is,however, much more convenient to

0
handle the exponential form of the Fourier series as given in (27).
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As an example of application of the Fourier series,
consider the pulse atream shown in Fig. 5.

Note , at this point, that in (28), the lower and the
upper limit of integration are not important so long as their
difference is T This is so because It°+T¢f(k-n)u°t is indep-
endent of to. In the example under conzgderation. it is
obviously convenient to choose the interval —wg =t eT/2
which virtually becomes -1/2 £ t < + 1/2, because x(t)=0 at
other values of t within the chosen interval. Hence

t/2
A e-jkuot

=2

-1/ 2

2y dt

2A
o sin
o

1]

sin ————n

= 1A (29)

kw 1
o)

2

This is of the form tA sin x/x, where x=km°1/2.

Note that ay is real, and can be positive, zero or
negative. Hence separate amplitude and phase spectrum plots
are not necessary: a single diagram suffices and is shown in
Fig.6. HNote that a, has a maximum value at d,c, i.e. k=0,
the value being A (this checks with direct calculation from
Fig.5), The envelope of the spectrum is of th~ form sin x/x
and exhibits damped oscillations with zeros at x= w{i.e; kwoz

2n/t), 2nii,.e. km°= ?’1)4evees. Further, the sketch is
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symmetrical about x=0, because sinx/x is an even function,
The spectrum conaists of discrete linés, two adjacent lines
2%

being separated by T =9, radians/sec,

Some important points emerge from the sketch of Fig.¢€,
As T increases, the lines get closer and ultimately when T+=,
corresponding to a single pulse, the spectrum becomes continuous
and will be characterized by the function rAVEEE?aézl , where
k v, has become the continous variable w, This,as we shall see,

is the Fourier transform of the single pulse.

Secondly, since the lines concentrated in the lower
frequency range are of higher amplitude, most of the enerqgy
of the periodic wave of Fig.5 must be confined to lower
frequencies, Thirdly, as T decreases, the spectrum spreads
out i.e, there is an inverse relationship between pulse width

and frequency spread.

Since the energy of the periodic wave is mostly confined
to the lower fredquency range, a convenient measure of bandwsidth
of the signal is from zero frequency to the frequency of th2
first zero crossing i.e. the bandwidth in Hz, B, can be ta<en

as 1/4.

If x(t) of (27) is the voltage across or the current

resistox,
through a one ohm.then the average power dissipated is

T
1
T é 'Ix(t}l2 dt. If one writes |[x({t] 2=x(t)x‘(t) and substirutes

for x(t) and x* (t) from (27), there results the following ¢

14

- * i {k-n)u_t
k)2 =k I oay a; e @ {30)
Kfte® Qzmw=
T jik-n)a_t
o dt is zero if k#n and

As we have already seen, [ e
o

equals T when k=n. Thus average power becomes

T . .
5 lxe) ae = b a2 (31)

1
T

This is known as Parseval's theorem,
A periodic signal that 1is of great importance in digital

communication is the periodic impulse train

x{t) = ¢ S(t-kT) (32)
kzew

as shown in Fig.7. If this 1is expanded in Fourier series

- jkuot
x{t) = [ a, e (33)

where mo=2n/T, then

T/2 ~jku t 1
I se) e ° at = 7 (34)
_T/2

o

=
It

=l

The spectrum is sketched in Fig.8.
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that is the bandwidth of this signal? lThe amplitude is a
constant at all frequencies, unlike the spectrum of Fig 6,.Hence
the bandwidth is infinite. This agrees with our observation
about bandwidth and pulse duration, because Fig.7 is the

degenerate form of Fig.5 with t »0 and A =+«

7. Linear System Response to Periodic Excitation
From the discussion of Section 5, it follows that

2 linear system,excited by the periocdic signal of (27), will
which is

produce an output signal,,also pericdic with the same period, snd is

given by
- jkuot
yit)= ¢ a, H(jkuu)e {35)
kSww
where
- ~-fut
H{jw) = s hit) e dt (36)

and h(t) is the unit 1mpulse'response.
As a simple example, consider the RC network of Fig.4;

we have already derived its impulse response as

1 -t/ (RC)
h(t) =%e ° ult} (37}
s0 that 1
- -t (jm+ = )
H{juw) = [ %b e RC dt {38)
0
R S ‘ {(39)
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When excited by the periodic impulse train of Fiq.7,

the response y{t) can be found in two ways First, since

s(t)~»hit),

it follows that Jp—

T §(t-kT) = I h(t-kT)

- " k

so that

- (t-kT) / (RC)

y(t) = éc e u (t-XT) (40)

Should you try to sketch this waveform, you would realize how
messy it .loaks: also not much information about the effect of
the RC network will be obvious from this sketch. ©On the other

hand, the Fourier series method gives, from (35), (34) and

(39}
= . jke t .
yi) = 17T e © 1)
- jkﬂlo RC+1
- Jka _t
Let this be written as I b e © , then the sketch of

k

ke o
Ibk1 versus w=kw, looks 1like that shown in Fig.9. Comparing
this with Fig.8, we note that the RC network attenuates higher
frequencies as compared to lower ohes and hence acts as a low-
pass filter. The bandwidth of the filter B, is defined as the
frequency at which the [H(jw} | £alls down by 3 dB as compared to

its d,¢, value i.e,
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lati2mg) |= H{jo)//2 {42}
combining this with (39) gives Bf=1/(21RC).

What would be the response of the RC filter to the
rectangular pulse stream of Fig.57 This will of course depend

on the relative values of T,tr and B £

First let us confine ourselves to the time domain., IE the
product RC is comparable to T, then the output will consist
of overlapping pulses, and will retain very little similarity
to the input, Let, therefore, RC<<T. then depending on 1, tne
response during one period will be of the form shown in Fig.10,
It is cobvious that for fidelity, i.e. if the output is to

closely resemble the input, we regquire RC<< t<T,

Now, turn to the frequency domain. If the signal bandwidth
is taken asbBb = 1/tHz, then obviously for fidelity, the RC
filter must pass all frequencies upto 1/t Hz with as littls
attenuation as possible. Thus 8 ¢ must be at least equal to b=1/1
Since the attenuation is 3 db instead of zero at Bf and th=
input spectrum is not limited to B, the pulse shape will be
distorted. For reduced distortion, we need to increase Bf and

we expect good results if Bf>>ﬂ i.e. RCecq,

8, The Fourier Transform

Now consider a nonperiodic function x{t) which exists

in the range -T/2 < t < T/2, and is zero outside this range,

18

Consider a periodic extension xp(t} of x{t), as shown in

Fig.11. xp(t) can be expanded in Fourier series as

- jkuot
xp(t) = £ 8y e (43)

K==

where mo=2w/T and

T/2 ~jkuw_t
a =L 7 x,t) e ° at (44)
k- T-r/2 P
1 T/2 =Jku ot .
=rF 1 xit) e dt (45)
-T/2 .

because for |t| < T/2, xp(t)=x(t). Also, since x({t)=0 for |t] >T/2,

we can write

1 " -jkwot

a, =& wa{t) e dat (46)

If we define
L] -jwt

X(Juw) = 5 x(t) e it (47}
Then from (46}, we get

a =lx(jkm)=l-~ (jhu )

k T o 2y xUMe e, (48)

Thus (43) can be written as
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20
- jkuw t
x (6) = 3 1 XUkadug e © (49)
ke~ » Referring te (26) or (36}, it should be obvious that the
. impulse response h{t) and the frequency response H{ju) are
Now let To+= : then x_(t)+x(t), Xy, & continuous po eq y fresp 3
P Fourier transform pairs, Explicitly
variable, Wy dy and the summation becomes an integral. Thus . »
(49) becomes .
: H{jw) = FMie)] (53)
17 Jut (s ‘
x(t) = == f X(jw) e du 0) As an example of Fourier transformation, consider the
- .
rectangular pulse shown in Fig.12. Notice that this is the
Combining (47) and (48), we now formally define the Fourier limiting form of the periodic function of Fig.5 with Taw .
tranaform of x{t) as _ Applying (51), we get
' - 1ot
X({w =Fpe)] = srxie) e at {51)
-~ /2 ~-Jut sin (\urfa,.
X(ju)= A s y e dt = A (54)
-1/2
and the inverse Fourjer transform as 1 (wt/2)
5 R =L 7 xyoel®t a (52)
) =¥ K ] = 77 7 juwle w This, as will be easily recognized,is the 1imiting form of
-

Fig.6, and is the envelope of the same figure, This verifies
Without entering into the question of existence, we simply the observation made earlier in Section 6,
state below the conditions,named after Dirichlet, under which
L(t) is Fourier transformable. These ares The Fourier transform has many important properties, the
most important in the context of analysis of linear systems

being that it converts a convoiution in the time domain tec a

1) folxed)jdat < -
- . multipl t
2) finite number of maxima and minima within any plication in the frequency domain i.e. if
finite interval, and .
= * = -
3) finite number of finite discontinuities within any y(t) x(t}* hir) f- x{r)h(t-1)dr (55)

finite interval.
then, assuming that y(t), x(t) and hi{t) are Fourier transformable,

and "}[Y(t)l= Y{ju), we get
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y{ju) = X(juw) H{jw) (56}
The proof of (56) is simple and proceeds as follows:
L] - —jmt
Y(w =g9f)] = 5 [ s x(x) hit-gldr]e  at (57)
Interchange the order of integration and notice that (t) does
not depend on t; the result is
T - - ~Jut
Y(ju) = 5 x(s ) s bhit-1) e dt 7] dr (58)
- m

- .-

Let t-4=¢ ;

so that

- B -JuT
Y{jwl= 1 BH{ju) x{1) e dr (59)

Y(ju) = H{ju IX{juw) (60)

In words, this amounts to saying that the spectrum of the output
of a linear system is simply the product of the spectrum of
the input signal and the frequency response of the system. The

output in the time domain, y(t) can be simply found by taking

the inverse Fourier transform of ¥ {juw).

then the integral inside the bracket becomes e'j"‘Hljm),

22

To illustrate the application of (60}, consider a linear

system having the impulse response

-at
hit) = e u(t) , a>0

which is excited by an input signal
-8t

x{t) = e ult), g=0

By direct integration, it is easily shown that

H(jw) = and X(juw) = —_—
atjw g+ Ju
Thus
Y(juw) = 1

(e+jw ) (B+Juw )

To determine y(t), one may write

A + B

at+juw ftiw

Y(Jw) =

and find A and B as
=—B=-—-.-]-'-.--

B ~-a
so that

(61)

(62)

(63)

(64)

{65)

(66)
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-1 1 1 1
yere g™t [ - ) (67)
¥ o atiw gtiw ]
s e [em0f L e” Tt (68)
B-a

Things are of course, different if 4=p then one goes back to
(64) and uses the property that if F[x(t)] = x(ju) then
J[ex(t)] = § dx(ju)/dy. Accordingly if a=p , then

yit) =t e % y(e) (69)

9. Spectral Density
In using Fourier transform to calculate the energy or
power of a signal, the notion of spectral density is an important

one. The total energy and average power of a signal x{t) are

defined as
e= gim b k)2 at = 5 |x(e)]? at (70)
- 0 --T - -
and
po Umo LT 012 g, (71)
- Jxte) |

respectively. A signal x(t) is called an energy signal if
O<E<w and a power signal if O<Pc<w . A given signal x(t) can

be either an energy signal or a power signal but not both, A

24

pericdic signal (e.g, the one of Fig.5) 1is usually a power
signal, while a non-periodic signal {e,g. the one of Fig.12)

is usually an energy signal. Power and energy signals are
mutually exclusive because the former has infinite energy while
the latter has zero average power. Depending on the nature of
the signal, the spectral density is also to be gqualified as

power or energy.

Consider an energy signal x({t). Using the facts that
[x(t) |2 = x{t)x* (t) and Ffx* (t] = Xx*(-ju) and combining with
the inversion integral (52), it is not difficult to show that

-

E= g [x)[2at =3

R )f du (72)
-
The right most expression in (72} shows that [X{j,) | 2/(2 x)
has the dimension of energy per unit radian frequency i.e,
|-l(jm)|2 has the dimension of energy per unit He, For this
reason, |&{juw) |2 is referred to as the energy density spectrum
of the signal x{(t). Iﬁcidéntally, (72) is known as the Parseval's
relation { efi. (31}]), |
For a periodic signal, which is a power signal, we have

already seen in (31) that the average power P is given by

£ [ak|2 where [a, | is the amplitude of the k-th harmenic.

If we define, in similarity with (72},

P =/ 5, (f) df (73)

-
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constancy of |H(ju)| results in amplitude distortion and

then Sx(fi qualifies as the power per unit Hz and is called
deviation

the power spectral density. 1In terms of Iak[ it i3 easily

seen that

- 2
S, () = k_:: -lak[ S(E-kf ) {74)

vwhere fo=a5/(2') is the fundamental frequency.

10, Distortionless Transmission
A transmission channel is said to be distortionless
if the output is a replica of the input. There may be a change
of level, that is, amplitude scaling is permissible, Alsoc, any
physical channel will regquire some nonzero amount of time
distorzionless

for transmission, so that a delay is inevitable, Hence, ,transmission

occurs if the output y(t) is of the form

y(t} =K x({t-r) (75)
where K and : are constants, Taking the Fourier transform of
both sides, we:get
T=Jur
Y{j w) =K e X (ju) (761

so that the frequency response of the distortionless channel

becomes
~Jur
H{ju) = K e (77}
The important result we have arrived at is that amplitude z~haracter-
istic should be flat and the phase shift should be l:near, Such

ideal characteristics cannot of course be realized. Deviation from

from linear phase causes phase distortion,

.
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