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. 1] THE DISCRETE FOURIER TRANSFORM

One way of implementing & discrate time system | s baged on

v

.THI DISCRETE AND FAST FOURIER TRANSFORMS the fact that the output sequence {y(n)] iz the convolution of the input

sequence {x(n)} with the impulge response sequence {h(n)} of the systsm
as given by : .
5 C DUTTA ROY n a
y(n} = I hird)x{n-r) = I hin-r)x{r) )
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Indian Institute of Technology
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India Recall that in the continuous signal case, the convolution of the input signal

x(t) with the impulse response h(t) gives the gutput y(t) and that in the

frequency domain, this amounts to a multiplication of the transforms (Laplace
or Fourier) of x(t) and h(t) to give the tramsform of y(t). y(t} can then be
obtained by the inverse transform operation. A similar operation can be per-

Text of a seriea of lectures to be delivered at the - formed with discrete time systems if we have a guitable transform. As is

Second Lpllene on Theoretical ana i xperimental Hadid=- . i
propagztion Physics, sponsored by the UKS] anmo the well known, the z-transform does provide such a vehicle; however, for numer-
— ICTP, Trieste, T Jonuary - 1 February 1991 .
' ste, uary ¥ - 1cal computation, a modified version of it, called the Discrete Fourier Tramsfo

(DFT) has been found most suitable. The signal preocessing operatiom then simpl;
boils down to the following sequence of computations:

1. Compute the DFT of {x(n)}

2. Compute the DFT of {h(n)}

3. Multiply the two

4, Compute the inverse DFT (IDFT) of the product.



-2 -

Let, for simplicity, the notation x, be used for x(k) £ x{kT), and con-

- DFT
sider a sequence {xk} of length X {.e. k=0, 1, 2, ... N 1. Then fhe

of {xk] ig defined by

“-1 - l.
A= T xke'jz"“’“. r=0,1,2,...8-1 {2)
k=0

The DFT is thus also a sequence {Ar} of length N. The xk's may be complex

numbers; the A 's are almost slways complex. For notational convenience, let
r

W= e-stlN 3)

go that

N-1 A
A = zka“, £=0,1,...N-1 ¢
T keo

43y with the continuous Fourier tranaform A(w) of a signal

If one compares (

x(t} viz.

Alw) = } l(t)e_jz'ftdt, (s)

e

then one way of interpreting the DFT is that it gives the N-point discrete

spectrum of the N-point time series {x(kT)} at the frequency points i%,

r=0,1,...N-1; the fundamental frequency, obviously, is fo-ll(NT)- T
The inverse DFT (IDFT) of the complex sequence {Ar}. r=0,1,...N-1, is

given by
N-1 6
x =i © AWTE ke0,1,...N-1 (6)
N r
r=0
That this exists and is unique can be easily eatablished by substituting (4)
in {6} and carrying out some elementary manipulationa.

Since eI® 1s periodic with a pericd 2m, it follows from (4) and ( &)

that

m=0,$1,+2,... {n

i.e. both DFT and IDFT yield sequences which are periodic, with periods

.

1
Nf =3 = £ and NT respectively.

2. THE FAST FOURIER TRANSFORM

The Fast Fourier Tranaform (FFT) ia a highly-efficient method for com-
puting the DFT of a time series. A direct computation from (4} would require
Hz complex multiplications; in contrast, application of FFT can reduce this
number to (NIZ)logzn. For example, for N=512, the ratioc (NIZ)logZN + N2
becomes less than 1 percent. This drastic reduction in computation time
through FFT has made the FFT an important tool in many signal processing appli-
cations.

The DFT, given by (4} and its inverse, given by (§),. are of the same
form so that any algoritim capable of computing one may be used for computing
the other by simply exchanging the roles of X, and Ar’ and making appropriate
scale factor and gign changes. ‘There are two basic forms of FFT; the first,

due to Cooley and Tukey [ 1}, {s known &s decimation in time, while the other,

obtained by reversing the rolea of xk and Ar' givea the form called decimat;on
in frequency, and was proposed by Gentleman and Sande [2 }. Clearly, they
should be equivalent; it is however worth distinguishing between them and
discussing them separately,

Let ¥ be even and the sequence (xk} be decomposed as .

{xk} - {Uk} + {vk} (8}

where



U T *n

k=0,1,2,..+

Vi T *aenl

.

(9)

Thus [uk] contains the even numbered points and {vk} containa the odd numbered

pointa of {x.k] and each has N/2 points. The DFT's of {uk} and {vk} are,

therefore,
¥,
2” &/ (N/2)
B = I uke-jzn
T k=0

N
3 -1
- v e-jfnrklll

7 -1
C = I "k°- Javrk/N
T k=0

The DFT we want is

N-1
A= Ex e-thrk.IN

4 k=0 k
L1 31
~Jhnrk/N
= I x,8 + I
ko 2K g | 2L

I r=0,1,2,...N-1

-j2xr /N c

-Br+e t.OiIT(N/Z,

because Bt and Cr are defined for r=0 to % - 1.

with period % 8¢ that

BH—NIZ-Br and Crﬂllz " cr'

N
k=0 k r-O,l.!,...i -1

e_j 2nr(2kt1) /N

Further, Br and Cr

{10)

(11}

are periodic

(12)

Thus
- ~32n (cHV/2) /N
Ar+N/2 Br +e Cr
- _ g-i2wx/n
B - C.o 0<r<N/2 (13)
Finally, using (3), {11) and (13}, we get
A -8+ w’cr _
0<r«<N/2 14)
r
Arm/z l’lr - W Cr

A direct calculation of B, and C from (10} requires (l'lIZ)2 complex multipli-
cations each. Another N such multiplications are raquired to compute Ar‘s
from (14), thus making a total of 2(N/2)2 + K = N%/2 + N, which 1s less than
N2 1€ N > 2. This s 1llustrated in Fig. 1 by a sighal flov diagram for Nes,
where we have used the fact that H“lz = -1, 80 that W - HH-HIZ_

The DFT's of {ui} and {vk}. k-O.l,.-.g- ~ 1, can now be computed through
a similar decomposition 1if % is even; thus the computation of {Br) and {Cr'}
reduces to the task of finding the DFT's of four ssquences, each of N/4 samples
These reductions can be continued as long as sach gequence has an even number
of samples. Thug if N = ln, one can make n such reductions by applying (§).
and (14), firet for N, then for N/2, and so on, and finslly for a two-point
function. The DFT of a c;ne-polnt function i1s, of course, the sample :ltseff .
The successive reduction of an 8-point DFT, which begen in Fig. 1 , 1is continue
in Figs.2 and 3, In Fig. 3, ‘the operation has been coapletely veduced to
complex wultiplications and additions. The number of summing nodes 1s (8)(3)a2
and 24 complex additions are therefore required; the number of complex multi-
plications needed are also 24 = (no. of rows)(no. of multiplicetions in each

row) = (3)(8). Half of these multiplications are easily eliminated by noting
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that H7 - ~H3, H6 - »Hz, NS - -Hl and Hb - —HO. Thus, in general, N log2 N.
complex additions and, at most, % N log2 N complex multiplications are required
for the computation of an N-point DFT, when N is a power of 2.
When N 1s not a power of 2, but has a factor of p, one can develop
equations analogous to (9} through (14) by forming p different sequences,
}, 1=0 to p~1, each having N/p samples. For example, if N = 14,

(i)
{u "} '{"pkﬂ

having a factor 3, we can form three sequences

o, .
fu 7F = Ixpe x50 %60 x40 x5}

(1)

{uk } = {xl. X4r ¥z0 Xpoe x13l (153
(2)

fa h = fxg, xg0 xgs %)y, %)}

Each of these sequences has a DFT Bt(i), and the DFT of {xk) can be computed
from p simpler DFT's. Further simplification occurs if N has additional prime

factors,

In the decimation in frequency form of FFT, the sequence {xk], k=0,1,...,N-]

and N even, 1s decomposed as

k=0,1,000,5 = 1 (16)

Yk T Xkan/2 )

i.e. (uk] is composed of the first N/2 points and {Vk} is composed of the last

N/2 points of {xk}. Then one can write

Fi - 2 2 N 12{’1
A= T [uke-j nrk/N . vke-j ﬂr(k+E)IN] = 1 (u+e T, )e-ijrk/N’
k=0 k0 K

r=0,1,...N-1. (a7
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Consider the even-numbered and odd-numbered points of the DFT geparately:

let

0cr<N2 (16)

If 1s this step that may be called the decimation in frequency. Note that

for computing Rr’ {17} becomes

N
2 2eric/ (N/2)
- - ~j2xr!
Re = Ay = L (e (19)

which we recognize as the N/2 point DFT of the sequence {“k + vk}. Similarly,

N
77! (2r+1) ’
Sp = Agpy = L [y hve ]
k=0
l—jZl’(Zﬂ-l)ka
N
'i'-l. .
- "L (u-v ).-jZI'kIN e—thrkl(NlZ) (zm)
kK
k=0 )
~§2nk/n
which we recognize as the N/2 point DFT of the sequence {(uk-vk)e }.

Thus, the DFT of an N-sample sequence {xk}, N even, can be computed as
the N/2 point DFT Vé'f*f'nmple combination of the first N/2 and the last H./Z
simples of {xk] for even numbered points, and a simflar DFT of a differemt
combination of the sawme samples of {xk] for the odd numbered points. Thzs is
illustrated in Fig, 4 for N=8. '

As was the case with decimation in time, we can replace each of the DFT's
indicated in Fig. g4 by two 2-point DFT's, and each of the 2-point DFT's by

two l-point transforms, these last being aquivalency operations. These steps

-1l -

DFT

DFT
(N.=‘+) ———0 Ag

F l'?'ufe 4 -

Ilushohag the fivsh skp m decwnphon 1w E‘vf‘\,‘w"‘y'
A{ove o} FFT for N=§.
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are indicated in Figs. 5 and 6.
There are many veriations and modifications of the two bagic FFT schemes,
which we would not discuse here.

3. APPLICATIONS OF FFT TO COMPUTE CONVOLUTION
AND CORRELATION

It may be recalled that our motivation for introducing the DFT and FFT

was to convert the convolution relation {1) viz.

n - n
y = Lh x = Lh x
nopf B L anrT (21)

into & product form, through the DFT. To this end, assume that both the
impulse response {hn]' and the input {xn} are bandlimited to %’f Hz. Then

the output [yn} 1s also frequency bandlimited. Also, if both {h } and {’,‘n}
are defined for the range 0 < n < N - 1, then {yn} i defined for the range
0<n<2N-~1, For exampls, if {hu} - {hO' hl} and {xn} - {xo, :I:l}, then
{y ) = (hgxg,box #hix b x ), Let the DFT's of {x } and {h } be {A } and {H }
respectively. Then the n-th sample in the IDFT of the product {ArHr} is

N-1

..zo Arnrw”'“ , n=0,1,,..N-1 (22
r=

~
1
2zl

Substituting,in {22),

N-1 Thos N-1 i
Ar = L ka . Hl‘ - I hlw (Y
k=0 £m{}

and carrying out some elementary manipulations, it is not difficult to show

that {22} simplifies to

N-1 » N-1
y, = Ixh = Ixh .+ I x _ (2a)
e SR e

=y, t perturbation term {25)

- 17 -
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The last form is obtained by comparison with (21} while the last term in

(24) represents the "cyclical" part of the convolution, arising out of the

periodicity of DFT and IDFT; h is the cyclical variable passing from ho to

hN—l as k passes from n to n+l. The convolution can be made cyclical in x

instead of h by interchanging x and h in (24).

The procedure outiined at the beginning of ?gfpiopx for implementing a

digital signal processor viz, taking the DFT'a of {xnj and {hn). nultiplying
them, and teking IDFT of the product, does not, therefore, give the desired

output sequence {yn} unless the perturbation term in (24) can be made zero.

This term arises due to the fact that the DFT assumes both {xn] and (hn} to

be periodic. Further, {y;I is of length N instead of 2N-1. Note that if

we extend both {xn} and {hn} to a length 28 by adding N zeros to each, i.e,

.y
if we change {xn} to [xn} " {xu,xl....xu_l,o....o} and similarly for {hn}.

then the perturbation term becomes tero. Further, the sequence {yn] will be

N+N-19 2N-1 terms long 1.4. Y, , will be the last non-zero term in {yn}.

As an example, let N=4 i.e.

b = fxgex)sxy0xy}
(26)

.{hn} = {ho'hl'hz'hil}
. . The true convolution of {xn} with (hn] gives

Fi n =
gfu ve b Yo = %ghg
= Xghytay by

¥y = Xghyt® by txahg

¥y * Kghytx htxgh txshy

Tushahny  decimabon in frequenty form o}
FFT for N=8

Y, = ¥ hgtxghytxshy (27]

Yg = X hytxahy

= x_h

Yg T X33
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On the other hand, the DFT procedure, leading to (24) gives

3

¥ ﬂth_
n k=0 k n-k

8o that

P M L AL PLIPC S IR
Xghgt (x hytayhytashy )

"n xoh1+xlho+(x2h3+13h2)

A x°h2+xlh1+xzho+(x3h1)

Y3 = Xghytx hytagh taghy

-
L}

where the perturbation terms are bracketed. Also (y;} conalatas of only 4

terms. Now let
{in} - {xo.xl.xz,x3,o.o.o,o}
{ﬁn} - {ho.hl.hz,h3,0,0,0,0}

Then the DFT procedure gives

7
¥n kzoxkhn-k
80 that .

Yo = Xghg

¥ = Xphytxihg

Y2 = Xghytx hytxoh,

Y3 = Xghgtx hotxoh +xoh,

¥ " % hytRphytaghy

Y5 = ®hgtxsh,

Yo " *3hy

(28)

(29}

(30

(32)

{(32)

Y § A

By comparing with (27}, we see that fy;} - {yn}. n=0,1,2,...7. Thus, the

modification doee give correct results.

Before stating this simple remedy in formal terma, we would like to
emphasize that blind use of FFI for computing the convolution of two sequences
will lead to incorrect results, because the DFT introduces a periodic
extension of both data and processor impulse response. This results in cyclic
or perjodic convolution, rather than the desired noncyclic or aperiodic con-
volution, If {xn} and{hn} contain N samples each, then the true convolution
should result in 2N-1 samples for [yn}. If DFT is uged, then {Ar} and [“r}
each congist of N samples, so dces {ArHr} and hence its IDFT. Hence {y;}
found by DFT ig not the same ag {yn] because of folding (or aliasing or cycling)
occuring in the time domain.. This can be corrected, am demonstrated by the
example, by adding zeros te both {xn} and {hn} and thereby increase their
lengths sufficiently so that no overlap occurs in the resultant convolution.

We now state formally the steps for computing convolution by DFT:

1. Let {xn} be defined for 0 x n <M -1

and {hn} be defined for 0 faxP-1
2. Select N such that

N>P+M-1

3. Form the new sequences [in] and {ﬁn} such that
R X, 0<n<M~1
= n - -
n {m Mench-1
N h,0«n<P-1
- n - -
n

0, P<n<N-1
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4. Compute the DFT's {Rr} and lﬁr] of {;“} and {ﬁnl by FFT.
5. Compute
(B} = (AR}
6. Find the IDFT of [St] by FFT; the result is {yn}.

This technique is referred to as select-saving.
Next, we consider the application of FFT to compute the cross-correlation

sequence [ny(k)} of two given sequences (xn} and {yn}, each of length W vhere

[ N1 (30)
ny(k} N “fo %Y n-k

and the auto-correlation sequence {ka(k)} of a aequence (xn), where
H-1
Al (34)
R () == [ xx
X% N ad n n-k
Note that the essential difference between comvolution, as given by {(21) and

correlation, as given by (33) and (34) 1s that one of the sequences is reversed

in direction for one operation as compared with the other. Thus, if FFT is to

be used to compute correlation, the same kind of precautions,as discussed for

convolution, are to be exercised, The procedure, here, is based on the fact
that if DF‘I‘{xn] - fAr}. and DFT[yn} - {Br], then
N-1

DFT[nfox“y“‘“} = {a3B)

(3s)

where bar denotes complex conjugate. Thus applied to {33) and (34) ome obtains

{ny(k)} = IDFT {ArBrlN} = IDFT {Sxy("” {36)

2
(R (k)} = IDFT {|Ar| /N} = IDFT {5 _ (x)) (37)

where {Sxy(r)} and {Sxx(r)} are the cross power spectrum sequence and auto

power-spectrum sequences respectively.
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4. APPLICATIOR OF FFT TO FIND THE
SPECTRUM OF A CONTINUOUS SIGNAL

The DFT, as we have seen, is specifically concerned with the analygis
and procesaing of discrete pericdic signals, and that it is a zero-order
approximation of the continuous Fourier transform, It is therefore tempting
to apply the DFT directly to privide, through FFT, a numerical spectral analyeis
of sampled versions of continuous signals. This would be a perfectly valid
application, if the continucus signal is periodic, band-limited and sampled
in accordance with the sampling theorem. Deviations from these cause errors,
and most of the problems in using the DFT to approximate the CFT (C for con-
tinuous) are caused by a misunderatanding of what this approximation involves.

There are, essentially, three phenowmena, which contribute to errors in
relating the DFT to the CFT. The first, called aliasing, occurs due ta
insdsquats sampling Llfi + The lqlution to this problem is to ensure that the
sampling rate is high enough to avoid any spectral overlap. This requires some
prior knowledge of the nature of the spectrum, so that the appropriate sampling
rate may be chosen. In absence of such prior knowledge, the signal must be
prefiltered to ensure that no components higher than the folding frequency appear.

The second problem is that of leakage, arising due to the practical
requirement of observing the signal over a finite inrerval. This is equivalent
to multiplying the signal by a window function. The simplest window is a rec-
tangular function as shown in Fig. T (b), and its effect on the spectrum of a
sine signal, shown in Fig. T (a) is displayed in Fig. 7 (c). Note that there
occurs a spreading or leakage of the spectral components away from the correct
frequency; this results in an undesirable modification of the total spectrum.

The leakage effect cannot always be isolated from the aliasing effect

because leakage may also lead to aliasing if the highest frequency of the
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composite spectrum moves beyond the folding frequency. This possibilicy is

particularly significant in the case of a rectangular window, because the
tail of the window spectrum does not converge rapidly.

The solution to the leakage problem is to choose a window function that
minimizes the spreading. One example {s the so-called "raised cosine” window
in which a raised cosine wave ig applied tc the firsc and last 10 percent of
the data and a weight of unity is applied in between. Since only 20 percent
of the terms in the time series are given a weight other than unity, the com-
putation required to apply this window in the time domain iy relatively small,
ag compared to other continuously varying weight windows e,g. the Hamming

window.
The third problem in relating the DFT to the CFT is the picket-fence

effect, resulting from the inability of the DFT to observe the spectrum as a

continuous function, since the computation of the spectrum is limited to integer
multiples of the fundamental frequency fo = 1/{NT). In a sense, the observation
of the spectrum with the DFT is analogous to looking at it chrough a sort of
"picket-fence” since we can observe the exact behavior only at discrete points.
It is possible that a major peak lies between two of the discrete transform
lines, and this will go undetected without some additional processing.

One procedure for reducing the picket-fence effect ia to vary the number
of points N in a time period by adding zercs at the end of the original record,
while maintaining the original record intact. This process artificially changes
the period, which, in turn, changes the locations of the spectral lines with-
out altering the continuous form of the original spéctrum. In this manner,
spectral components originally hidden from view may be shifted to points where

they may be observed,
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