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we will first consider a simple, but practical example. This
will enable us not only to understand the technique, but also

to see why the technique will not work for other kinds of fading
signals (for example, frequenty selective fading, leading to
signal distortion).

We will analyze the performance of a binary coherent
phase shift keying (CPSK) digital system first, when the
signal is constant, and then, from the probability of error
characteristic obtained for this constant signal, we will
obtain the system performance for slow-flat fading signals.
We will do this for all the types of slow-flat fading signals
generally considered, starting at the very beginning and
analyzing the system's performance using a geometrical
approach. This will enable us to picture what is going on
in the signal-receiving process.

BI-1.2. CONSTANT SIGNAL PERFORMANCE

To represent a digital system geometrically, we make use
of the following fact: ’

Any finite set of physical waveforms of duration T,
say S](t), Sz(t), c ey Sm(t). may be expressed as

@ linear combinatinn of k orthonormal waveforms
¢1(t),¢2(t), coe9, (), where k < m.

That is, each signal, Si(t) can be written as

Si(t) = ai]¢](t)+a12¢2(t)+...+aik¢k(t) , (BI-1)

where the coefficients aij.are civen by

a; s =.7 Si(t)¢j(t)'dt.
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BI-1. SYSTEMS EVALUATION FOR SLOW-FLAT FADING
" A. D. Spaulding
BI-i.1, INTRODUCTION

In this section we will develop the simple technigue to
determine the performance of a telecommunications system with
a slow-flat fading signal once a performance characteristic
is known for the constan® signal. The "slow" in slow-flat
fading means the signal amplitude fades slowly enough in time
that the signal can be regarded as constant over some time
period of interest (such as the tire of a signal element in
a digital system). The "flat" refers to the spectral behavior
of the fading, and impliss that the entire signal spectrum
fades up and down uniformly so as not to distort the signal.

The physical procesﬁes that czuse fading fall into two
broad catagories: (1) absorption and other large volume
effects, which result in a random signal normally called
scatter; (2) the other category is comprised of numerous
specular modes of propagation. The separation of the modes
may take place at sharp boundaries of charged particles or
reflections from isolated objects, etc. e have an assort-
ment of distinct paths that the wave fronts may take in
propagating from the transmitter to the receiver. This
phenomenon is commonly called multipath and each path may
contain some specular and scatter contributions. In any
case, the fading signal received at the receiver becomes
random and can be treated only in statistical terms.,

In order to understand how a8 system's perfqrman;e‘is
degraded by the slow-flat fading signal compared with the
p&rfOrmance for a constant s1gna1 of the same average power,
and how the degree of degrada“1on zan be easily calculated,



Here the basic waveforms, ¢j(t), being crthonorma)l means that

T
]
= f ¢.(t)o.(t)dt
T
[

While the above representation looks similar to the
familiar Fourier expansion ¢f a waveform, it is different in
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two important respects. The waveforms F (t) are not restricted
to sine and cosine waveforms, and (31-1) s exact, even though
only k terms are used. '
Because of the above, cur signaling weveforms, Si(t),
can be represented in the k-dimensional signal space, ¢ (t),
with coordinates given ty the a]J For exampie, cons1der a
set of signals for which k = 2, then the signals, Si(t), are
given by vectors in the space ¢](t), ¢2(t) as in figure BI-1.
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Figﬁfg BI-1." Szgnala repweserved ‘as veetors in a
o signal space, k = 2. -
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As we shall seél'the aJ3ve representation not bn?y allows
visualization of what is actually going on in the receiving
process, but aiso allows the variable, t, time to be removed
from the problem. OQur signals are now represented by simple
vectors n ordinary Cartesian coordinates. That 1s, each
signal is now represented by a point in the signal space with
coordinates aij' A1l the rules of ordinary geometry agply,
for example, the “"distance" ba:zween signals is simply the
ordinary distance between the corresponding signal points.
Digital receivers, actually, by various means, compute
the coordinates of a received signal and then make a decision
based on these coordinztes. (Qne ozvious receiver implementa-
tion is shown in figure B]-2. The actual physical implementa-
tions of the digital receiver may e, as in figure BI-2, a
matched filter form, etc., bu: all these forms accomplish
precisely the same thing, i.e., to compute the signal coordi-
nates, aii’ and then make a decision as to which signal was

sent, based on these aij'
| 91(t)
Ot
T o il
. b, (t)
_. 1 T .
T 0 i2
S;(t) ==
o, (1)
T Jo Tk

Figure BI-2, Froduci integrators used to eccloulats
the signel s cce-coordinzteés. of signal S.(<:).



The additive noise, which interferes without signal and
causes the receiver to make errors when it tries to decide
which one of the m-signalling waveforms was transmitted, a1so
is represented by a point in the recejver's signal space. If
n(t) is the received random-noiss vvaveform, then it (like the
signal) goes through the product integrators (or whatever),
with the result that, as far as the receiver is concarned, the
interfering noise is given by

n(t) = n1¢](t)+n2¢2(:)+...+nk¢k(t) . (81-2)

Therefore, if the receiver received noise only, the ncise would
also be represented by a poirt in the receiver's signzl space,
the noise coordinates given ty Bas Nos veey ny -

Each of our m signals is represented by a unique point in
the signal space. When signal plus noise is received, the
result is a point (signal-plus-noise point) that can be any-
where in the signal space, depending on the noise. If each
of our m signals is equally apt to have been sent, and are cof
equal power, the receiver, in orcer to minimize the average
probability of error when it guesses what signal was trans-
mitted, simply guesses %he signal whose "point" is closest to
the received signal-plus-noise point.

To take a specific example, consider coherent phase-

shift-keyed signals. OQur m signals are.now, say

"

vV W cos (wot+g%l) y 0<t<T

0 elsewhere (BI-3)
i o=1,2, ..., m,

55(¢)

-~ where W is the power in Si(t}_(watts), aqd

w = 2mi/T, for some fixed integer L.
0- - : .



We can choose, then, for our basic waveforms

¢](t) = J2 cos wyt
Co,(t) = V2 sin wgt

]
(g% ]
—
3
o

Note that our signal space is two-zimensional (k
matter what m is. '
Consider m = 2, now

T
a -1 vV2aW cos (w t+w)¢ﬁ5 cos w_ t dt
11 T 0 0
0

.

u
o

212

T
%;/:/ZN cos (m°t+n)Jq?sin wot dt
5 .

Likewise, 351 = /W, 8,, = 0. Therefore, the space and the
points representing the two signals are as shown in figure
BI-3. The point (nl, n2) correspending to additive ncoise
alone is also shown on figure BI-3.

i2
(no,n,)
1 ——
| z "2
'\
s | 9\
~Gresiifim— I Py
n -
W 1 W 32
Figure BI-3. The sigral srace and signal points
for binary CEIX, and the noise pcint (n,, n.).
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Let the interfering noise be zero mean, white Gaussian,
Ssuch as it would be if the noise were galactic or receiver
front-end noise. N, the noise amplitude after it goes through
tﬁe receiver and appéars on the signai space (fig. BI-3),
is Rayleigh distrituted. Its probability density function is

Pyly) = NG XP [ NoB] » ¥20 . (BI1-4)

This says that the probab Tity that the noise amplitude N has

a value in the range Y - dy/2 and y + dy/2 is given by Py (y)dy
where N is the noise power spectral density (Watts/Hz) and B
is the bandwxd;h (Hz), i.e., N oB 1s the noise power. The phase
angle & is uniformly d1;tr1bu;ed i.e., its probability density
function is

.

_ ]
pe(x) = go s CWex<m o,

i.e., 8 has equal probatility of being anything between -=
and m. The coordinate Foints are given by ny = N cos 8§ and
N, = N sin 6. This results in the coordinate points, N and
LPY having zero mean normal distributions,

b (x) = -—]———exp[- T{ABZ_J wcx<e  (BI-5)
M ﬂNoB "o '

Note that since our development led to the signal being
represented on'the signal space by a vector of 1engthqrﬂ
i.e., a rms voltage, the noise dppears on the signal space in

similar terms. That is, N or the variable y in (BI-4) is the
L 1nstantaneous rms aWP1ILJde of the no1se enve%ope

Now let us consider the s1tuat1on where 52 s sent and
we want to compute the p- obab:lzty that the receiver will
decide. S], and- thus make an error. .Ihe s1;uar1on is shown in

BI-7
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figure Bl-4. If the resultant signal-plus-noise point A

in the shaded region {the region whose points are ciosest to
the s, point), then the receiver will decide S5,, and make an
error. This will happen whenever v + Ny is less than zero,
or p, = propability of error given that S2 is transmitted =

probability thatgﬁru-nl<0. The probability, or likelihood,
that Jﬁ#+ n1<0 depends ¢n tne probability distribution of Ny

(JW+n],n

5)

NN

— VW

T

\Figure BI-¢. -The signcl-plus-noise point, giﬁen
_ .that §, was transmitted.
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In our case
pe = prob[ﬁ + n]<0} = prob [n1<_ \f’__] ’

or, from (BI-5)

or

S -y .
Pe = / e dy . (81-6)
j—

The performance P s 2 function of the signal-to-
noise ratio N/NOB. It is common to express the signal-to-
noise ratio (SNR) as signal energ sy E (Joules or Watt seconds)
to noise power spectral density N . For this system, the
following are all identical expres;1ons for the SNR:
SNR = = Mook
Q

NoB NOBT

The integral (BI-6) car be given in terms of the standard
tabulated function called tre error function {erf) or

2 E - )
Pe = 3 [1 . erf\/ﬁg . (BI-7)

where X

. Let us 1ook more c]ose]y at what the above resuIt (BI1-6)
actua]ly says If we have 1n, say the, 1th bit, the signal

BI1-S



level represented byqﬁf, and the noise "evel (in this case
represented by nI), there will or will mot be an error in

this ith bit, depending on the size of ny . The integral in
(BI-6) says that we are taking an average over an infinity of
Such ith bits, weighted according to the probability or Tikii-
hood that ny
pe.in (Bi-6) represents an average probabiiity of error given
that S
with m being very, very large, essentially m x 107? of these

is of proper size to cause an error. That 1s,
, 1s sent. If pg 1s 1073, say, then out of m such bits,

bits will be in error. Of course, therz is no way of teiling
which bits will be in error, only the average number. We have
considered the above case in which only S2 was sent. If we
repeat for the signal S], we obtain the same result. So the
probability of error, Pe (Bl1-6) is the average probability of
error for' the system. _

All digital systems can be put in the above framework and
their performance for a constant signal level and for arbitrary
additive noise calcuiated {(althouch, perhaps not so easily as
above). Note that for the noise, we required knowledge of the
noise as seen by our receiver, how big it was, j.e., its
spectral density, No’ and the probability density of its
amplitude. Note also that the performance turned out to be
a function of_the signal-to-noise ratio E/No (or ﬁﬂg).

0

BI-1.3. FADING SIGNAL PERFORMANCE

We now consider the case where the signal is not constant
but fading. Suppose, however, that our signal is not distorted
by the fading and that the fadinc is slow enough that we can
'considef the signal constant over an appropriate period of

‘time (T seconds in our example). For cur example, we still

.have the same "signal space’” representation of fhe system, .

*

but now our two signals are given by (see (BI-3))

BI-10



S](t) = -JZWJ €os w,t , o<t<T | (B1-8)

wr
(2% ]
——
-
—
L

] ij cos wot » 0<t<T

where the subscript j danctes the signal level in the jth bit.
Nete that the only change we have allowed is in the signal
amplitude and we reguire Hj t0 be constant over the time periz
occupied by bit j. Having pointed out what, precisely, the
"slow-flat" fading rules are, we generally now drop the sub-
script j, and simply sav that the signal amplitude varies
according to some fading d stribution. This says that now

the signal amplitude, just -as the noise before, is random and
wWe can only specify the likelihood or probadbility of it havinag
particular values.

Previously (see fi¢c. EI-3), as we went from bit to bit in
our bit stream, the sigral points on the 2 axis remained
fixed, while the noise Fecint of interest (the coordinate n])
moved randomly up and dcwn the 2.1 axis. We computed the
average probability c¢f error by averaging over many, many
situations (bits) taking into account the probabiltity of n
having values which weculd cause errors,

1

Now with the fadirg signal, the signal point also moves
randomly up and down the ai] axis as we gc from bit to bit.
Figure BI-5 shows the situation fcr three successive bits, con-
sidering signal ?2. B

As before with the noise, to obtain the average proba-
bility of error, we must average over many such bits, taking
into account now, the variable signal point (i.e., the prota-
bility distribution of the signal amplitude) as well as the
variable noise point.  Tais means *hat cur averace must now
consider both the signal distribution dnd the noise distri-
bution, Fortunately, this zan be accomplished quite easiiy

‘using the following rule from probability théoryf'-



Figure BI-§. Signal plus noise, signal faeding.

PLA] = f PLAIB=x] pg(x) dx .
that is, the probability of event A is given by the proba-
bility of event A, given that B has the value x, averaged
over all values that B can have. .-

For our system, we have calculated the performance,
given a2 signal.energy E (or pcwer, W) namely,'pe. The above
Says that for fading signal, we need only multiply the
constant signal performance by the probability density function
of the fading signal energy and tren average (inteqraze) cver
‘all possible values &f tne signa1 energy. Therefore, fronm
(52-7),.we‘héve_ | '

8I-12



P (fading signal) = _/- 172 {1-erfef2— p_(x)di ,
e 0 No E
' ' (BI-9)

where, in order to keep thz variables straight, we have used

2 "dummy" variable of integrat-on, and pE(x) denctes the
probability density function of _

[l

Equation (BI-2) gives the solution far the P, for a
fading distribution of cignal energy E. Quite often we have
given to us, instead, a fading distribution ¢f signal power
W or signal amplitude 5 where W = $%/2. Then, in terms of

power, (BI-9) becomes

pe(fading signal) = Jf % 1-erf X pw(x)dx , {(BI-10)
C

where pw(x) is the fadirg cistribution of signal power W.
Note that, of course, (EI-9) ard (BI-i0) are identical in
form. For signal amplitude S$,{B1-9) becomes

. . ] oy
p_(fading signal) = J{ = | 1-erf Pcix)dx ,  (BI-11)
e P ﬁr"—‘“ S ‘
0 ZNOB

where ps(x) denotes the distribution of signal amplitude.

In (BI-10) the variable of integration x represents signal
power W, while in (BI-11), the variable of integration x
represents signal amplitude S (W = §2/2),

The question now be-omes, what pw(x) or ps(x) should we
Let us first consider the case of a signal whose ampii-

tude fades according to the. Rzyleigh distribution:

use?

- .' ‘2 -'
Polz) = X x‘/ZHO (81-12)



where wo denotes the mean power of the signal; i.e., the mean
value of W. Of course, for constant signal, wo = W. We wili
see later why the Rayleigh distribution is sometimes a good
one to use for multipeth signals.

Equation (B1-11) ncw gives us

] f X -x2/2Mg
p. = = l-erf “i— dx . (BI-13)
€ 2 0 \’ 2N B wO

b

This integral is easily evaluated (especially with a
good table of integrals) to give the known result

Pe © %’ [— - (BI-14)

Again, our result came out in terms of the SNR. As discussed
previously, the signal power to noise power ratio, NO/NOB is
equal to the signal erergy to noise power spectral density
ratio, EO/NO, (Eo = mean value of E) for this system.

What we have shown is that the performance of any system
with slow flat-fading signal can be calculated using the system
performance characteristic in constant signal and the proba-
bility distribution of the fading signal. For example, if we
had available for an analog system (such as voice) some con-
stant signal performarce characteristic {such as articulation
index) as a function of signal-to-noise ratio, then we could
compute the performance for fading signal as above. We would
need to be sure, however, that alil the assumptions inherent
in sTow and “flat" were met or were reasonable appr0x1ma—
tions - to the actual physical situation.

BI-14



In summary, if gC(H/NOB) denotes the performance for
constant signal, anc if p, (x) denotes the probabiiity density
of the signal power W, then the performance of the system in
fading signal, gf(NAJNOB), is given by the average over all
possible values of W,

(H /N B) ][ (x/N B) ( ) dx . (BI-1%)
all W

If ps(x) is tde probebility density of the signal amplitude S,

gf{Ho/Ns8) = g (x*/2N B) pc(x) dx . (81-16)
' all s

Consider now the cases where either the "“slow" assumption,
or the "flat" assumption, or both, is not valid. Our receiver
will sti171 calculate a signal point no matter what kind of
distorted signay the receiver receives. Now, however, the
signal points will move randomly and rapidly all over the
signal space and the computations of the statistics of such
motion will be extremely difficuit. Also, the signals are
usually sprea¢ in time (also frequency), resulting in the
received signals occupying more than their allotted (0,T)
time slot. The result is that, if we are looking at bit j,
for example, there is some signal from bit j-1 still going
on, causing interference, i.e., intersymbol interference.
This, as well ds other problems, indicates why the straight-
forward approach given in (BI-15,16) cannot be used. Ffor this
reason we like to use slow-flat fading approximations whenever

~possible. " The procedures raquired for system performanc= cealcu-
- lations in the case cf "slos and flat" not being valid .are

covered in subsequent sectians.

8l1-1¢%



" "BI-1.4 FADING SIGNAL DISTRIBUTIONS

When the signal is prosagated from the transmitter to the
receiver, it is modified by the propagation media. Quite
often the signal travels to the receiver via one, two, or a.y
number of separate paths. If the signal from each of these
muTtipaths is represented by & signal vector, then the receiver
sees the vector sum of these signal vectors. The phase angle
between any two such vectors is generally on the average,
uniformly distributed, i.e., the phase angle has equal chance
of being anything between -7 and - radians. We are interested
then in the probability distribution of the amplitude (or
power) of the received signal, i.e., the above vector sum.

As mentioned earlier, each path may have some specular and
scatter contributions. Scatter comes from large volume effects,
and means the signal is scattered into many, many small signail
vectors, That is, it is equivalent to multipath with many,
many paths such -that ncne of these many, many received signal
vectors dominate the cthers (i.e., sticks out like a "sore
thumb"). If we have such a sum of many more or less equal-
sized vectors with uniform phase between them, then the
amplitude of the vectcr sum has a Rayleigh distribution.

Figure BI-6 (from Neserbergs, 1967) shows the probability-density
function of n equal-sized vectors forn- 1, 2, 3, 4, and 6
along with the Rayleigh Timit (nw=). We see that the "many
many" above need only be 5 or 6 before the Rayleigh distribu-
tion is a reasonable approximation. In other words, the
situation where we have, say 6 or more distinct paths, and
- the signal components from these paths are essentially ecuai,
then the received signal arplitude is approximately Rayleigh
distributed. - . ' L .
' Syppose, instead, that we have onp‘sbecuﬁar path (due, for
example{ to a direc; line-cf-sight path) and a scatter path,

BI-15



or, equivalently, a numter of other paths from which the
received signals are more or less equal and small compared to
the main signal. An‘examp1e of ane such situation would be
"éonstant groundwave'plus Rayleigh fading skywave". There
are, of course, many octher possisilities. In this case, the

received signal amplitude has a Nakagami-Rice distribution,

~-x %+ 3
ps(x) » & exp | 23225 ] I(i—) (81-17)

where a is the power in the Rayleigh vector, 8 is the power
in the constant vector, and I0 is the zerc-order modified
Bessel function.
If, as before, NO denotes the noise power spectral censity,
then the signal-to-noise ratio is

+

Q
™

W,

|

B * (BI".IB)

=
[#9]
=

Je] 0

The distribution of signal amp}itu&e for the general
case of the sum of any number of such Nakagami;Rice vectors
and resulting special cases is given by Nesenbergs (1967).
Consider the case where we have a direct ray and a single
other path, resulting from a ground reflection. The proba-
bility density for the received signal power, W, is then

:
Vakzy 2-(x-(k3+T)y )2

Py (x) =%

Yoll-k)? < x <y (1+k)2 (BI-19)

where Yo is the power of the_dirgct ray and k is the voltage-
amplitude ratio of the reflected-to-direct ray (reflection
“coefficient). The total mean prEr in. the received signal

is y (1+k?), or the signal-to-noise ratio is

BI-17



?6(1+k2)
NOB N°3

(B1-20)

Experimental observations of received fading-signal ampli-
tudes over various communicaticen zircuits have shown that the
signal amplitude, when expressed in decibels, can sometimes be
approximated by a normal distribution. That is, the signal
amplitude has a log-normal distribution. If, for the signal
amplitude, S, we let Y = 20 log S, then
(R

py(y) = etz R A (BI-21)
g T

—l

R e

(A %]

where u is the mean value of Y(dB) and ¢ is the standard
deviation (dB). The signal distribution for use in (BI-16)
is then

_ __L(ZO]ogx-u}z
2 o I
pe(x) = 2886 , Dex<e .
xv2zma? (BI-22)
For log-normal fading signal, the ¢ is usually given in terms

of the "fading range". The fading range is the difference
(in dB) between the upper and lower decile values. The upper

decile is that value which is exceeded only 10 percent of the
time, and the Tower decile is that value which is exceeded 90

percent of the tine. In terms of the fading range, 2 94 o =
fading range. The average received signal power is

. N, = 170-1u+0.0115¢2 (BI-23)
and the signal-to-noise ratio 1s'HO/NoB.

The'above distributions (3{-12, 17, 19, and 22) pretty well
cover all the signal distributions that are generally con-
sidered for slow-flat fadang Which one to use depends on the -
particular kind of propagaticn path one is interested in. The

BI-12



above distributions of the fading signal say nothfng'as to

how "fast" the signal fades up and down. Therefore, considera-
tion must be given to more than the fading distribution when
trying to decide if a slow-flat assumption is valid.

BI-1.5. EXAMPLES AND REFERENCES

In this section we will give the results for our example
system (CPSK) for all of the fading distributions considered
above. An example for a voice system will also be given.

Figure BI-7 shows the results for the binary CPSK system
for constant signal (BI-7), Rayleigh fading signal (81-14),
Nakagami-Rice fading (BI-17) with the power of the constant
vector 10 dB above the average power of the Rayleigh vecter,
Nakagami-Rice fading with the power of the constant vector
equal to the average power of the Rayleigh vector, and log-
normal fading (BI-22), usirg 2" 13.4-dB fading range. Note
that Rayleigh fading a>so kas a 13.4-dB fading range.

Figure BI1-8 shows the results for the binary CPSK systenm
for the case of constant signal vector plus reflected signal
vector. Results are g‘ven for constant signal (k=0), and for
k = 0.2, 0.6, 0.8, and C.5. We see from figures BI-7 and
BI-8 that a very wide range of system performances can be
obtained depending on the particular kind of signal fading,
present. | ; -

In order to show tke results of using (BI-16) for a voice
system, figure 81-9 is included. 1t shows the performance of a
double-sideband AM system in white Gaussian noise and Rayleigh-
fading signal. The calculations, via (BI-16), are from the
performance in constant siznal for a 5.2-kHz [F bandwidih
. (Cunningham et al., 19%7). -The performance is -given in terms

of the phonetically balenced worg articulation. index;

BI-18



For the nature of fading signals, extensive bibliographies
(Nupen, 1960; Salaman, 1962) are available. A historically
significant survey was performed ty the National Bureau of
Standards (NBS, 1948). A number of good comprehensive texts
are also available (Davies, 1963, for example}.

The representation of digital systems in geometric terms
is covered quite well by Arthers and Dym (Arthers and Dym, 1%62).
Performance characteristics for systems ir fading signal and
in nonGaussian impulsive ncise (as well as Gaussian noise) are
available (Bello, 1965; Corca, 1965; Halton and Spaulding, 1%€6;
Akima et al., 1969; Akima, 1570; etc.

The following list of references includes additional rever-
ences not cited above. The list is hardly complete, but will
provide a great deal of additional information concerning the
characterization of the fading channel, and the performance
of a wide variety of systems with both constant and fading
signal. '
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a reflected vector Vith reflectton coeffzczen. K.

The nofse is Gaussian.
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