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1. INTRODUCTION

Electromagnetic noise can be defined as "all electromaghetic energy from
both intentional and unintentional radiators, except the desired signal for a
specific system of Interest” (Hagn 1975, 1977a)1'2 Such noise (a cause) should
not be confused with interference (an effect), which is the degradation that
the noise can cause to the performance of a telecommunications or an electronic
system *CCIR, 1979).3 Other terms used in the literature for man-made radio
noise irclude: incidental nolse, unintentionally generated radio noise, etc.

There 1s a large body of literature on man-made electromagnetic noise.
The International Union of Radio Science (URSI) has produced summaries tri-
ennial review (e.,g., Herman, 1971; Rivaule, 1972; Hagn 1973.1975,1973),&-7
and the International Special Committee on Interference {CISPR) has given
conside-able attenzion to the allowable radiation limits for specific sources
of noilse (Stumpers, 1970,1971,1973,1975).8”12 The International Radio
Consultative Committee (CCIR) has produced a report on environmental noise
(CCIR, _980).13 The Joint Technical Advisory Committee of the Institute of
Electrical and Electronics Engineers (IEEE) and the Electronics Industries
Associa-ion (EIA) considered radio noise as it impacts on the use of the

spectrun (JTAC, 1968).1A

Spaulding has discussed the problems assoclated with
man-mad= noise and recommended steps for seolutions in the U.5. (Spaulding,
1‘376).]'i Two recent books have been devoted almost entirely to man-made noise
(Skomal, 1978; Herman, 19?9).16_17 These publications, and the references
therein, when combined with a bibliography by Spaulding, Disney and Hubbard
(1975),l8 cover the major work on man~made noise pQPlished through 1978,

Thz composite electromagnetic noise environment observed (or observable)
by a giren recelving system at a glven time and location can arise from various

categorfes of natural and man-made source (see Figures 1 and 2). This chapter

will discuss the noise from man-made sources.
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2. SOURCES OF MAN-MADE NOISES
The intended coherent radiation Erom intentional radiators produces the
largest electromagnetic fielda. The density of international radiators is

14,12
highly correlated with population demsity (JTAC, 1968; Herman, 1579),

Janes, et al (1977, 19?9),19'20 have measured the integrated power density
levels (including that of sub-bands) were log-normally distributed with a
median of 0.03uulcm2. The FM band (B88-108 MHz) had the largest median
(1,3 x lO'zuH/cmZ), the high VHF-TV band (174-216 MHz) was next highest
(2.9 x 10‘3pwlcm2), followed by the UHF-TV band (470-806 MHz) with 2,1 x
10'3uW/cm2, the low VHF TV band (54-88 MHz) with 1.7 x 10‘3pN/cm2; whereas;
the land mobile bands {150-182 MHz, and 450-470 MHz) were the lowest with
2.8 x 10‘5uwlcm2. In addition to their desired emissions, such powerful
transmitcers can radiate broadband nolse (Shepherd and Swmith, 1958),21
harmonics and other unintended radiation, and they can cause problems to
nearly recelvers such as degensitization and intermodulation products
(Lustgarten, et al., 1975; CCIR, 1979).22+23

Unintenticnal man-made radiators alsc contribute to the composite electro-
magnetic environment. Table 1 summarizes some of the primary categories of
such radiators. The level of radiation from these equipments and devices is
typically much less than the levels from intentional radlators. Figure 3 is
an example of the relative contributions to the composite noise environment
at 155 MHz as observed with a scanning receiver with memory.26 Notice tne
relative contributions of the land-mobile transmitter and the ignition noise.
This 3-dimensional display of amplitude versus frequency and time is a useful
way to observe the short-term variability and complexity of the environment
{see also Vincent, 1977 and Herman, 1979 for numercus other examples of the

3-dimensional “signatures” of specific sources}.23:17 Let us now consider the

sources that contribute to the ambient nolse levels,

Suagii i/

The list of potential incidental radiators (Table 1) which can cause
interference is very great {see also Skomal, 1978, Herman, 1979). Frequently,
the closest nolse source to your recelving antenna will dominate the ambient
while it is operating, but it Is possible to identify specifiec sources which
make major contributions to the noilse background by noting complaints (e.g.,
Robertson, 1971)25 or by correlating their characteristics with observed ambie
levels. Since we are dealing with man-wmade noise, let us first consider the
correlation of the composite man-made noise level with population density befo
addressing 1ts measured correlatien with specific electromagnetic sources.
Because of the attenuation of noise field strength with distance from the
source, 1t seems reasonable that man-made nolse levels should correlate,
at least broadly, with populacion in urban areas (Skomal, 1978).16 Allen
(1960)27 presented data relating quasi-peak field strength values measured at
street level to urban populaticn. He computed the probabllity of various
levels being exceeded at 1 MHz as a percentage of locations in an urban area.
This was done over a population range from lD3 to 106 persons. Although Allen
reported a gross correlation between population and noise levels, attempts
to correlate average noise power levels with population density, as measured o
a finer scale, in U.S. Census Bureau standard location areas {SLAs)--of 1 to 5
square miles--have not been successful (SPAULDING et al., 1971).28 SPAULDING
(1972)29 investigated the relationship between population density and average
noise power spectral density, Fa' in decibels above kTO, in signal-free channe
in the band 250 kHz to 48 MHz, In the population density range of 1,000 to
25,000 per square mile, in San Aatonio, Texas, he found no significant corre-
lation between the average population density of an SLA and the average values
of noise level taken at several locations within the SLA (see Figure 4).
Correlation on a finer gscale (down to an individual city block) has not been

attempted.



Hagn &

SPAULDING, et al. (1971),%® prswey (1972),%® seavwpine (1972),%7 and
SPAULDING and DISNEY (1974)3D did find significant correlation between
vehicular traffic density and average noise power spectral density (Figure 5),
especially for frequencies above 20 MHz (Figure 6). Data taken later than
those in Figure 6 indicate that the correlation remains high between 50 and 250
MHz. Therefore, it seems reasonable to conclude that vehicle ignition systems
will be potentially important sources of interference to radic systems operating
above 20 MHz, especlally near roads. In rural areas remote from power lines
and other scurces, automobiles may be dominant noise sources below 20 MHz.

Overhead power lines are known to be an important source of man-made noise
below 15 to 20 MHz. SPAULDING and DISNEY (1974)31 reported relatively gcod
correlation between electrical power consumption in an area and the roo:- mean
square (rms) value of the radio noise below 20 MHz. They noted, howvever, that
information on local power comsumption in the United States is difficul- to
obtain. Overhead lines also can be lmportant above 15 MHz (WARBURTON, et al.,
1969),32 and the Interference to television from power lines has been discussed
(e.g., LOFINESS, 1970; JUETTE, 1972 and March 19).33_35 Let us now consider
in more detail the technical characteristics of the noise from power limes and
automobiles and some other specific sources.

Power lines operating om ac can be categorized by their function {power
transmission or distribution), which determines their operating voltage and
the mechanisms by which they produce radio noise under normal operating
conditions. In general, the lower-voltage distribution and transmissiom lines
(below about 70 kV} produce noise from various types of discharges in gaps,

while the higher-voltage transmission lines (110 kV and higher) generate noise

by vardous kinds of corona (PAKALA, et al., 1968).36 The high rate of current

Hagn 9

rise transforms to a broader spectrum for gap noise than for corona noise, as
observed with peak detectors (PAKALA and CHARTIER, 1971)37 and with quasi-
peak detectors (see Figure 7). The low-voltage lines may also radiate noise

resulting from switching transients and other effects from devices connected to

the lines.

High-voltage dc transmission lines are coming into use (KAUFERLE, 1972).38
ANNESTRAND (1972)39 points out that noise 1s generated at the converter
statlions, which then propagates on the lines. Vincent (lQBO)ao has been
studying this noise, and he has observed that corona from the measurement

This only adds to the problems
1

antenna can be a problem (see Figure 8).
regarding noise measurements already noted by Hubbard (1972)_4

The nolse from power lines is greatly influenced by the weather (and the
state of maintenance of the line., Fair-weather noise levels measured by using
peak and quasi-peak detectors have been reported in the literature of the IEEE
Power Engineering Socilety.

Indeed, most of the measurements of power-line noilse reported in the liter-
ature have been made by using quasi-peak detectors, although some data on power-
line noise measured with peak and average detectors are available (THOMPSON,

W. I., III, 1971). Measurements made with an rms detector are not generally
available in the literature {(Hagn and Shepherd, 1977),42 but some data of this
type were given by DISNEY and LONGLEY (193’3)[‘3 and SPAULDING and DISNEY (19?4).3
Figure 9 presents median values of average noise power spectral density data
obtained in the near field by several investigators at MF, HF, and VHF with rms
detectors. Vertical monopole antennas were used; the antennas were positioned

directly under the line, with the exception of the 15-kV/16.67-Hz line. Ome

of the most interesting observations is that the 115-kV lines were noiser than

L
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the lines with higher or lower operating voltage. The absolute calibrat_on is
ouly approximate, however the relative calibration is +3dB At any given
frequency, the difference between measured medians for the noilsiest and che
quietest line was about 30 dB. PAKALA and CHARTIER (1971)37 stated that noise
increases of 17 dB were likely during rain. They observed that, in 60 parcent
of their measurements, those made with horizentally polarized dipoles praduced
greater nolse than those made with vertically polarized dipoles. The dif-
ferences ranged from 0 to 10 dB over the frequency band 15 kHz to 10 GHz.

The IEEE (1965)"5 indtcated increases of 15 to 25 dB during foul weather ané
also (1971)46 indicated increases of 20 dB during bad weather. Data on radio
interference (RI) levels taken on a Bonneville Power Administracion 345-kV

line between May 1965 and May 1966 (Figure 1) show an average RI level during
raln of approximately 20 dB above that shown during clear weather, while during
snow the average lavel was nearly 26 dB higher than the clear-weather level
(BAILEY and BELSHER, 1968).%7 FORREST (1969)“® potnted out that "defect” noise
oﬁ lower-voltage {11- to 66-kV) lines, caused by sparks and microsparks. tended
to determine the fair-weather RI levels above 10 MHz. He noted that wer
weather could cause RI increases of 5 to 15 dB in the band 100 kHz to 10 MHz,
due to corona, while causing RI levels above 10 MHz to decrease, due to the
shorting out of arcing gaps. Lauber (1976)49 and Lauber and Bertrand (1979)50
have reported on power lime APDs (see also Shepherd and Hagn, 1976).51 The
IEEE (1980)52 has just completed an excellent summary of the technical aspects
of power line noise pertiment to establishing limits on this important nolise

Source.

adgll 1L

Ignitlon noise 1s generally found wherever automcbiles or other vehicles
using sparx-initiated power systems (e.g., trucks, boats, aircraft, and snmow-
mobiles) ace uased. The sources of ignition noise imclude the distributor,
spark plugs, generator. Typically, in a given band, one of these is the domi-
nant sourcz, This noise is highly impulsive and spreads over much of the
frequency spectrum. At the low end of the spectrum (below about 20 MHz),
ignition n>ise 1s generally belleved to be exceeded by power-line noise when
both sourc=s are present, The actual lower limit will, of course, be derermined
by specifi: situations, including the density of automobile traffic and the
proximity o>f power lines. The high frequency limit to the automobile ignition
noise spectrum has not been as well studied. Generally, instrumentation capa-
bility or investigator interest tapers off before the establishment of a clear
upper limir., Increased traffiec intensity associated with the rush hour
comonly mroduces noise spikes 30 to 40 dB above the receilver ncise in a
100-kHz bandwidth at 1.2 and 2.9 GHz for a 30dB nolse figure veceiver (spectrum
analyzer).

The MDs of three vehicles measured in an 8 kHz bandwidch (Shepherd, 197"'51).53
are shown im Figure 1l and aingle-vehicle APDs (averaged over 4 vehicles) are

34,35 Note the change in the

shown in Fgure 12 (Schulz, et al,, 1973-1974).
shape of the APD in Figure 1l as a function of engine speed. Shepherd, et al.
(1975) hawe also surveyed a vehicla population using a spectrum analyzer (peak
detector) to measure Impulse field atrength (see Figure 13). This survey was
extended st 50 MHz and 153 MHz to include over 10,000 vehicles in the U.S5.
(Shepherd, et al., 1977)-57 Figute l4 shows the distribution of noise levels

observed #t 10m using the procedures of the Soclety of Automotive Engineers

(SA-E)58 as applied to passing vehicles. Figures 15 and 16 show similar
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distributions versus vehicle type and country of origin {for non-uUS 3. EXAMPLE MEASURES OF MAN-MADE NOISE

vehicles) respectively. Other sources of noise have also been studied Due te the variability of man-made noise it is necessary to treat it
(e.g., Vincent and Ellison, 1974).59 but they will not be discussed further statistically. The noise envelope statistics discussed in Chapter 6 are
here (see references 16, 17 and 44.) equally applicable to describing atmospheric and man-made noise. These

s:atistics include the rms voltage, the average voltage {and the dB difference
between rms and average, Vd) and the various distributions (e.g., APD). The
quasi-peak voltage, measyred by passing noise envelope waveform through a
circult with & very short charging time and a long discharge time and averaging
the output, has been used by CISPR workers and others, For power line noise
the gp meter typically reads about 10-15 dB higher than an rms meter (Lauber,
1980). Under certain circumstances the relationship between quasi-peak and
ros values of a given envelope can be computed for random noise (Cook, 1979),60
but in the general case no analytical relationship exists. Another measure
used in the peak voltage (for the period, T).

Examples of the APD, ACR, PDD and PSD (see Chapter 6 for definitions)
for the magnetic fleld strength of man-made noise in a coazl mine are given in
Figures 17-20 (Kanda, 1974, 1975)61‘62 for comparison with Figures 10-13 ia
Chapter 6.

As previcusly mentioned, the 3-dimensional display of amplitude versus
frequency and time 18 most descriptive of the derails of the nolse varlation.
The scanning receiver approach used by Vincent (1977)25 and the Fouriler

transform approach of Bensema (1977)63 are both most useful.



4. EMPIRICAL PREDICTIONS OF THE COMPOSITE NOISE
ENVIRONMENT FROM INCIDENTAL RADIATORS

Spaulding and Disney (1974)31 have discussed two methods of predicting
man-made radio noise average power levels. Onme method is based directly on
past measurements in specified environments; the other depends on the corre-
lation of past nolse measurements with some predictable parameter(s) of the
environment {e.g., traffic density for frequencles above 20 MHz). Skomal
(1978)16 has developed empirical formulas for noise level versus frequency and
distance from the center of a metropolitan area measured along or above the
earth's surface. Vincent (1980)64 observed "hot spots" and "cold spots” in
the Los Angeles area at 100 kHz and observed that noise levels in the downtown
area (with mostly underground power lines) were lower than in the surtrounding
area-~in contrast to Skomal's model which predicts contours of levels decreasing
with distance from the city's center. In some cities it is difficult to specify
a central reference location in order to use Skomal's model at the shorter
distances.

Let us consider now Spaulding and Disney's first prediction method which
assumes that the behavior patterns noted at "typical™ locations will be the
same at similar locations in the future. Analysis of the available data base
for each category of locatlon will then provide the estimates of the man-made
radio noise conditions to be found in future locations in the same category.
The user must determine the category that best describes the location for which
he desires to predict the noise level, and he must make modifications if he
uses a different antenna or detector.

Spaulding and Disney (1974)31 used the same measurement system with an
rms detector to obtain data in the band 250 kHz te 250 MHz with a short vertical

antenna near ground at various sitea in the U.5. Over 300 hours of data were
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obtalned simultaneously on ten frequencies over the period from 1966 through
1971 in six states and in the District of Columbia. Three environmental cate=-
goriss were defined: rural, residential, and business. Rural areas were
defized as locaticns where land usage is primarily for agricultural or similar
pursmits, and dwellings are no more than one every five acres., Residential
areaz (urbar or suburban) were defined as any area used predominantly for
sing.e or multiple family dwellings with a density of at least two single
family units per acre and no large or busy highways., A business area was
defired as any area where the predominant usage throughout the area is for any
type of business (e.g., stores and offices, industrial parks, large shopping
centers, maln streets or highways lined with various business enterprises, etc.
These results were analyzed statistically, and the least-squares fit for
Fam' the median values of Fa’ for each environmental category is reproduced as
Figuoe 21. The slope with frequency was found to be -27.7 dB/decade for each
environmental category (at the 95% confidence level). The equations for Fam
in dE(kTo) for each category are: rural, Fam = -27.7 logmfMHz + 67.2; resi-
dential, Fam = =27.7 loglofHEHz + 72.5; business, Fam = -27.7 loglofMHz + 76.8,
The other man-made noise prediction shown is for a quiet rural location
{CCIR, 1964):65 Fam = -28.6 loglofHHz + 53.6. These quiet rural predictions
are typlcal of the lowest levels at sites chosen to ensure a minimum amount of
man-made noise. Data are also glven for urban parks and college campuses:

F =
an 27.7 laglofMEHz + 69.3. For comparison, the curve for galactic noise is

Fam = -23.0 loglofMHz + 52.0. These results have been adopted by the Inter-

naticial Radio Consultative Committee (CCIR, 1980)13 as the best available

estimates.
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These man-made noise data are daytime values. At night these 20-50 MH=
levels can drop 5-10 dB tec a minimum around 0400 hours, and at 100 MHz and 250
MHz they can drop 3-5 dB. At the lower frequencies in the HF band the aight
levels are frequently controlled by atmospheric noise from lightining, and che
man-made levels cannot be observed (see Figure 21). The dirunal variation
decreases for the MF band and {3 again only 3-5 dB at 0.25 MMz, with valies at
night being slightly higher than during the day.

Let us now consider the variability about these median values due t2
location within a given generic environmental category and with time while az
a given location.

An example distribution of local median values of man-made noise at 20
MHz In residential areas 1s given as Figure 22, The value GT is the standard
deviation of all measured medians about the regression line for Fam versas
frequency (5.0 dB for residential areas and 6.5 dB and 7.0 dB for rural and
business areas, respectively)., ¢ is the standard deviation for locatisn wari-

NL

ability at each of the measurement frequencies, Values for GNL are given Ia
Table 1 for each freqqency and environmental category.

Figure 23 gives the distribution of Fa values obtained on 20 MHz during an
hour (0839-0939 hours local time) in a residential area in Boulder, Colorado.
The median and the upper and lower deciles afe indicated. The time variabi_ ity
for the different environmental categories has been estimated by Spaulditg amd
Disney (1974)31 for each of the ten measurement frequencies in terms of :he
upper and lower deciles, Du and D; (in dB, relative to the median)., These
values, summarized in Table 1, are the root-mean-squares of all the locaziom
valuea for each frequency and environmental categery. Let us now consider the

models derived from this empirical data base,

Hazn 17

Hagn and Sailors (1979)66 presented four models for the probability dis-
tribution of the short-term (Al minute) mean values of man-made radio noise
available power levels based upon the data of Spaulding and Disney (19?4):31
a model based upon a single Gaussian distribution (simple Gaussian), a slightly
more complicated model based upon two Gaussian distributions (compound Gaussian),
a more complex model based upon the Chi-square distribution, and a Gaussian
wodel with the parameters estimated using the Chi-square results, These
models assume that the mean value is glven by the Fam expressions for the
appropriate environmental categories. Approximate expressions for the standard
deviations are given in Table 2 (see Figure 24 for an example at 20 MHz of
a2 comparison with date). When the skew 1s negligible and the distribution
between the deciles is required, the simple Gaussian model (or the Gaussian
derived from the Chi-square) is often adequate; whereas the two-part Gaussian
model or the Chi-square model is needed when there is significant skew. These
model distributions should not be confused with the amplitude probability distri-
bution (APD) of the envelope of the nolse waveform at the output of the pre-

detection filter of a communication receiver,
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‘5. ANALYTICAL MODELS OF THE COMPOSITE ELECTROMAGNETIC NOISE ENVIRONMENT
Spaulding (Chapter 6) has reviewed noise models for the envelope statistics
of atmospheric moise, and Skomal (1978)16 has summarized the theory of envelope
statistics of man-made radio noise developed by Middleton (1972, 1973, 1977
1979, 1980y¢7°7
A truly comprehensive statistical-physical model of the composite electro-
magnetic environment has been developed by Middleton (1977, 1979). Analytical
first-order probability densities and distributions, as observed at the output
of the initial (linear) stages of typical narrow-band receivers (of bandwidth
AER). are obtained for three basic classes of electromagnetic noise. These are,
respectively: (1), Class A noise, characterized by input bandwidths AEN less
than AfR; (ii), Class B noise, where AEN is larger than Afﬂ; and (ii1i), Class C
noise, which is a linear combinatlon of Class A and Class B components. These
modele combine statistical and physical structures: the nolse sources are
assumed to be independently, randomly distributed in space and emit arbitrary
waveforms randomly in time, so that the basic statistics are Poisson. The
emitted waveforms obey appropriate propagation laws (e.g., the wave equations)
and explicitly include the effects of source and receiver antenna patterns,
relative doppler effects, source distributions in space, and other geometrical
factors. The results are highly nongaussian, as would be expected, but they
are analytically tractable and canonical (i.e., the form of the probability
structures are essentially invariant of the waveform and of kinematic and geo-
metric details)}. This is stromgly true of Class A nolse (such as some man-made
noise and communications signals), but only moderately so for Class B noise
{such as atmospheric noise and automobile ignition noise) whose statistics are

sensitive to the source distribution and propagation laws. Excellent agreenent

of the statistical-physical model with experiment is found for the relative APDs
both basic Classes A and B (see Figure 25). These quantitative models, appro-
priately calibrated to reality by simple experiment, are useful for: (1)

the assessment of EM environments, for the purposes of spectrum management;

(2} the evaluation of receilver performance and the design of optimum receivers
in these strongly nongaussian situations; and (3} determination of system per-
formance.

Techniques have been developed to estimate the Middleton model parameters
from experimentally measured APDs (Middleton, 1979). It should be noted that
this is not simply curve fitting. The model, once the parameters are determined,
is capable of predicting the APD gquite well in dB relative to the rms value
(see Figure 25). Currently, an empirical model (e.g., Hagn and Sailors, 1979)66
is still required to predict the probability of occurrence of a given rms value

for a given environmental category (e.g., business, residential or rural).
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IMPULSE FIELD STRENGTH — dB(1uV/mikHa)
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FIGURE 15
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FIGURE 17
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AFD, 1 MHz, vertical component, 1.2 kHz predetection
bandwidth, April 17, 1973, 12:20 p.m., Iltmann No. 3.
(After Kanda, 1974)
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PERCENT 185 VALUES EXCEEDING DADINATE

EXAMPLE DISTRIBUTION OF SHORT-TERM LOCAL MEDIAN
AVERAGE NOISE POWER SPECTRAL DENSITY (20 MHz,
RESIDENTIAL AREA)
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FIGURE 25
LU 1 S e A S e 1
Ag* 0.005 297 MHz
60 \x Tg:o.l 1€ ¥Hz Noise Bondwididh T
X -Denotes Meosured Points

S0 -
LTl o —
0 —
1| -
10 Receiver Noise

0-—
-IO‘ lzl | N A I T O O | | |

010 | 020 40 60 80 90 85 1] 89

Percent of Time Ordinate is Exceeded

C'ompar'is_on of measured envelope distribution, P &-&),, of
automotive fgnition noise from moving traffic ! 0’8
with full Class B model. [Data from Shepherd, 1974]

TABLE 1 CATEGORIES OF UNINTENTIOWAL RADIATORS

Overhead powar transmission and discribution liges.

Ignition systems (e.g., automotive, aircraft, small
engines, etc.).

Indusctrial fabrication and processing equipment
{including arc weldars).

Electric motors and generators.

Electzric busses and trains (excluding their power lines).

Contact devices (e.g., thermostats, bells, and buzzers).

Electrical control, switchings, snd comverting equipment
(e.g., 5CRs, and ac/dc convertars).

Hedical and scliemtific apparatus.

Lamps (e.g., gasecus discharge davices and neon signs).

Variocus elsctrical consumer produccs.




APPROXIMATE PORMITLAS FOR THE

STANDARD DEVIATIONS, IN 4B
Environmental
Category Simple Gaussian and Chi-Square Composite Gaussian
Business for 0.25 ¢ fHHz < 2.8 for 0.25 < fg, < 100
e - 9.0 Oy T 10-3 . gy 2 8.0
for 2.5 £ fyy, < 10 [fmz for 100 £ f!ﬂh X 250
Iy = Opy? = 8.0-4 logml—ﬁ—] Ogg 2 9.5 , Oyg 5 7.3
for 10 5 £HHz < 100 ] ‘
Oy ¥ Ogy? = 8.0 + 4 loglo[-—i%—zl
Residential for 0.25 £ fHﬂz < 250 for 0.25 £ fm < 100
o“sa“xlsﬂ.o Ogy £ 2.0 .om_s&.o
for 100 s 'HH: £ 250
Opg ¥ 8.0 , Ty = 4.0
Rural for 0.25 £ f}ﬁz £ 2.5 for 0.25 £ IHBz < 100
UNZUNX’59'°+I‘ logm Loy Ouu§9.0 . am_::'ﬁ.o
fer 2.5 ¢ fm“ < 250 " for 100 < f}ﬁiz $ 250
Oy # Oyy? £ 8.0-4 logw[—lai] Oy % 6.3 , Oy £ 3.5







