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Note to the Student

The following notes are based on my course “Monte Carlo Methods in Statis.tical
Mechanics: Foundations and New Algorithms” given at the Cours de Troisieme
Cycle de la Physique en Suisse Romande {Lausanne, Switzerland) in June 1989.
My lectures in Trieste will of course emphasize multi-grid Monte Carlo (MGMC)
methods {Section 5.2), but I felt it might be useful for the lt.udcnt to see these
methods placed in a wider context. In particular, Sections 2-4 give the background
on Monte Carlo methods in statistical mechanics and quantum field theory that
motivate the introduction of MGMC; Section 5.1 gives my perspective on deter-
ministic multi-grid {MG) methods and sets the notation; and Section 6 dis‘cusses
an important competitor of MGMC, namely auxiliary-variable and embedding al-
gorithms.

Section 5.2 has been updated compared to the June 1989 version, and I have
added a new Section 5.3. However, for lack of time [ have left Section 6 unchanged;
the reader interested in recent developments in auxiliary-variable and embedding
algorithms is urged to consult my review talk at the Lattice '90 conference {1].

1 Introduction

The goal of these lectures is to give an introduction to current research on Mont:e
Carlo methods in statistical mechanics and quantum field theory, with an emphasis
on:

1) the conceptual foundations of the method, including the possible dangers
and misuses, and the correct use of statistical error analysis; and

2) new Monte Carlo algorithms for problems in critical phenomena and quan-
tum field theory, aimed at reducing or eliminating the “critical slowing-down”
found in conventional algorithms.

These lectures are aimed at & mixed audience of theoretical, computational and
mathematical physicists — some of whom are currently doing or want to do Monte
Carlo studies themselves, others of whom want to be able to evaluate the reliability
of published Monte Carlo work.

Before embarking on 9 hours of lectures on Monte Carlo methods, let me offer
& warning:

Monte Carlo is an exiremely bad method; it should be used only when
all aliernative methods are worse.

Why is this so? Firstly, ol aumerical methods are potentially dangerous, compared
to analytic methods; there are more ways to make mistakes. Secondly, as numerical
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methods go, Monte Carlo is one of the least efficient; it should be used only on
those intractable problems for which all other numerical methods are even less
efficient.

Let me be more precise about this latter point. Virtwally all Monte Carle
methods have the property thai the siatistical error behaves as

1
y/computational budget

€rror ~

{or worse); this is an essentially universal consequence of the central limit theorem.
It may be possible to improve the proportionalily constant in this relation by a
factor of 10° or more — this is one of the principal subjects of these lectures —
but the overall 1/,/n behavior is inescapable. This should be contrusted with
traditional deterministic numerical methods whose rate of convergence is typically
something like 1/n% or e™™ or e”*". Therefore, Monte Carlo methods should be
used only on those exiremely difficult problems in which all alternative numerical
methods behave even worse than 1/,/n.

Consider, for example, the problem of numerical integration in d dimensions,
and let us compare Monte Carlo integration with a traditional deterministic method
such as Simpson’s rule. As is well known, the error in Simpson's rule with n nodal
points behaves asymptotically as n™*¥ (for smooth integrands). [n low dimension
(d < 8) this is much better than Monte Carlo integration, but in high dimension
{d > 8) it is much worse. So it is not surprising that Monte Carlo is the method
of choice for performing high-dimensjonal integrals. It is still a bad method: with
an error proportional to s~1/2, it is difficult to achieve more than 4 or 5 digits
accuracy. But numerical integration in high dimension is very difficult; though
Monte Carlo is bad, all other known methods are worse.’

In summary, Monte Carlo methods should be used only when neither analytic
methods nor deterministic numerical metheds are workable (or efficient). One gen-
eral domain of application of Monte Carlo methods will be, therefore, to systems
with many degrees of freedom, far from the perturbative regime. Bul such systems
are precisely the ones of greatest interest in statistical mechanics and quantum
field theory!

It is appropriate to close this introduction with a general methodological ob-
servation, ably articulated by Wood and Erpenbeck (4]:

!This discussion of numerical integration is grossly oversimplified. Firstly, there are determin-
istic methads better than Simpson’s rule; and there are also sophisticated Monte Carlo methods
whose asymptotic behavior {on smooth integrands) behaves as n~* with p sirictly greater than
1/2 [2, 3j. Secondly, for all these algorithms (¢xcept standard Monte Carlo), the asymptotic
behavior as n — oo may be irrelevant in practice, because it is achieved only st ridiculously large
values of n. For example, to carry out Simpaon's rule with even 10 nodes per axis (s very coarse
mesh) requires n = 109 which is unachievable for d 2 10.
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.. .these [Monte Carlo| investigations share some of the features of or-
dinary experimental work, in that they are susceptible to both statis-
tical and systematic errors. With regard to these matters, we believe
that papers should meet much the same standards 8s are normally re-
quired for experimental investigations. We have in mind the inclusion
of estimates of statistical error, descriptions of experimental conditions
(i.e. parameters of the calculation), relevant details of apparatus (pro-
gram) design, comparisons with previous investigations, discussion of
systemalic errors, etc. Only if these are provided will the results be
trustworthy guides to improved theoretical understanding.

2 Dynamic Monte Carlo Methods:
General Theory

All Monte Carlo work has the same general structure: given some probability
measure ™ on some configuration space S, we wish to generate many random
samples from 7. How is this to be done?

Monte Carlo methods can be classified as static or dynamic. Static methods
are those that generate a sequence of stafistically independent samples from the
desired probability distribution m. These techniques are widely used in Monte
Carlo numerical integration in spaces of not-too-high dimension [3}. But they are
unfeasible for most applications in statistical physics and quantum field theory,
where = ia the Gibbs measure of some rather complicated system (extremely many

coupled degrees of freedom).

The ides of dynamic Monte Carlo methods is to invent a stochastic process with
state space § having 7 as its unique equilibrium distribution. We then simulate
this stochastic process on the computer, starting from an arbitrary initial configu-
ration; once the system has reached equilibrium, we measure time averages, which
converge (as the run time tends to infinity) to w-averages. In physical terms, we
are inventing a stochastic time evelution for the given system. Let us emphasize,
however, that this time evolution need not correspond to any real “physical” dy-
namics: rather, the dynamics is simply a numerical algorithm, and it is to be
chosen, like all numerical algorithms, on the basis of its computational efficiency.

In practice, the stochastic process is always taken to be a Markov process.
So our first order of business is to review some of the general theory of Markov
chains.* For simplicity let us assume that the state space S is discrete (i.e. finite
or countably infinite). Much of the theory for general state space can be guessed

¥The books of Kemeny and Sneil [5] and losifescu [8] are excellent references on the theory of
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from the discrete theory by making the obvious replacements (sums by integrals,
matrices by kernels), although the proofs tend to be considerably harder.

Loosely speaking, & Markov chain (= discrete-time Markov process} with state
space 5 is a sequence of S-valued random variables X, X|, X3, ... such that suc-
cessive transitions X; — X,,; are statistically independent (“the future depends
o the past only through the present”). More precisely, a Markov chain is specified
by two ingredients:

¢ The initial distribulion a. Here a is a probability distribution on §, and the
process will be defined so that P{X, = z} = a,.

¢ The transition probability matriz P = {p.,}.pes = {plz — 1)}, pes- Here
-P is a matrix satisfying p,, > 0 for all =,y and 33, p,, = 1 for all z. The
process will be defined 8o that P(X,, = y|X, = z) = p,,.

The Markov chain is then completely specified by the joint probabilities

PXo==zy, Xy =z, Xp =23, ..., Xy = 2,) = Ou Pror, Prove ~ Prw_yan »
(2.1)
This product structure expresses the fact that “successive transitions are indepen-
dent”.
Next we define the n-step transition probabilities

Y = PNy, =yl X =2). (22)

Clearly pl) = 65, Y = pyy, and in general {p{2)} are the matrix elements of P*.

A Markov chain is ssid to be irreducible if from each state it is possible to
get to each other state: that is, for each pair z,y € S, there exists an n > 0 for
which p‘(t:’ > 0. We shall be considered almost exclusively with irreducible Markov
chains.

For each state x, we define the period of z (denoted d,) to be the greatest
common divisor of the numbers n > 0 for which i} > 0. If d, = 1, the state z is
called apersodic, It can be shown that, in an irreducible chain, all states have the
same period; so we can speak of the chain having period d. Moreover, the state
space can then be partitioned into subsets §,,5;,...,5; around which the chain
moves cyclically, i.e. pl") = 0 whenever z € §;, y € §; with j — i # n  (mod d).
Finally, it can be shown that a chain is srreducible and aperiodic if and only if, for
each pair ¢,y, there exists ¥,, such that p‘:’;) >0 for alfn > N,,.

We now come to the fundamental topic in the theory of Markov chains, which
is the problem of convergence to equilibrium. A probability measure = = {m,},c¢

Murkov chains with finite state space. At a somewhai higher mathematical level, the books of
Chung [7] and Nummelin [8] deal with the cases of countable and generalstale space, respectively.



is called a stationary disiribution (or imvariant distribution or equilibrium disire-
bution) for the Markov chain P in case

Y wpny = 7, foraliy. (2.3)

A stationary probability distribution need not exist; but if it does, then a lot more
follows:

Theorem 1 Let P be the transition probability matriz of an irreducible Markov
chain of period d. If a stalionary probability distribution x ezists, then it is unigue,
and x, > 0 for all z. Moreover,

lim pd+7} dr, ifze S,y S;withj—i=r (modd)
et Prv {0 fzeS,ycS withj—i#r (modd) (24)
for all z,y. In particular, if P is aperiodic, then

lim ) = x,. (23)

This theorem shows that the Markov chain converges as ¢ — oo to the equilibrium
distribution =, irrespective of the initial distribution a. Mozreover, under the con-
ditions of this theorem much more can be proven — for example, a sirong law of
large numbers, a central limit theorem, and a law of the iterated logarithm. For
statements and proofs of all these theorems, we refer the reader to Chung [7].

We can now see how Lo set up a dynamic Monte Carlo method for generating
samples from the probability distribution ». It suffices to invent a transition prob-
ability matrix P = {p.;,} = {p(2 — y)} satisfying the [ollowing two conditions:

(A) I:('r)educibiﬁty."' For each pair z,y € §, there exisis an n > { for which
iy >0

(B} Stationarity of . For each y € S,

Y e Py = Wy (2.6)

Then Theorem 1 {together with its more precise counterparts) shows thal sim-
ulation of the Markov chain P constitutes a legitimate Monte Carlo method for
estimating averages with respect to x. We can start the system in any state z,

3We avoid the term “ergodicity® because of its multiple and conflicting meanings. In the
physics literature, and in the mathematics literature on Maskov chains with finiie stale space,
“ergodic” is typically used as & synonym for “irreducible” [6, Section 2.4] [6, Chapter 4]. However,
in tbe mathematics liternture on Markov chuing with general state space, “ergodic™ is used as a
synonym for “irreducible, apetiodic and positive Hartis recusrent™ {8, p. 114] [¢, p. 168].
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and the system is guaranteed to converge Lo equilibrium as £ — oo [at least
the averaged sense (2.4)]. Long-time averages of any observable f will converge
with probability 1 to x-averages (strong law of large numbers), and will do so with
fluctuations of size ~ n~'/? (central limit theorem). In practice we will discard the
data from the initial transient, i.. before the system has come close to equilibrium,
but in principle this is not necessary (the bias is of order 1", hence asymplotlically
much smaller than the statistical fiuctnations).

So far, so good! But while this is a correct Mounte Carlo algorithm, it may
or may not be an efficient one. The key difficulty is that Lhe successive states
Xu, Xy, ... of the Markov chain are correlated — perhaps very strongly — so
the variance of estimates produced from the dynamic Monte Carlo simulation
may be much higher than in static Monte Carlo (independent sampling). To
make this precise, let f = {f(2)}zes be a real-valued function defined on the
state space § (i.e. a real-valued observable) thal is square-integrable with respect
to m. Now consider the siationary Markov chain (i.e. start the system in the
stationary distribution x, or equivaiently, “equilibrate” it for a very long time
prior to cbserving the system). Then {fi} = {f(X.)} is = stationary stochastic

process with mean
pr = (f) = 2w f(=) (2.7)

and unnormalized autocorrelation function’

Cit) = (fufors) — 1} (2.8)
3 f(=) [mapll) — mamy] £(3)-

The normalized autocorrelation function is then

prs(t) = Cy()/Cy;(0). {2.9)

Typically py;{t} decays exponentially (~ e~1/7) for large ¢; we define the ezpo-
nential autocorrelation time

=1l —_ 2.10
et = WO B (210)

and
Tezp = 3‘;? Teap.f- (2.11}

Thus, T,.p is the relaxation time of the slowest mode in the system. (If the state
space is infinite, T.., might be +oo!}

In the statistics Literature, this is called the autocovariance function.

e
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An equivalent definition, which is useful for rigotous analysis, involves consider-
ing the spectrum of the transition probability mairix P considered as an operator
on the Hilbert space [%(%)." It is not hard to prove the following facts about P:

(a) The operator P is a contraction. {In particular, its spectrum lies in the
closed unit disk.)

(b) 1is a simple eigenvalue of P, as well as of its adjoint P*, with eigenvector
equal to the constant function 1.

(c) If the Markov chain is aperiodic, then 1 is the only eigenvalue of P (and of
P*) on the unit circle.

(d) Let R be the speciral radins of P acting on the orthogonal complement of
the constant functions:

A=inf{r spec(P} 1) C {A:|A) < r}}. (2.12)
Then R = e~ /7een, .

Facts (»)-(c) are a generalized Perron-Frobenius theorem [10]; fact (d) is a conse-
quence of a generalized speciral radius formula [11, Propositions 2.3-2.5|.

The rate of convergence to equilibrium from an initial nonequilibrium distri-
bution can be bounded above in terms of K (and hence 7..,). More precisely, let
v is a probability measure on 5, and let us define its deviation from equilibrium
in the {2 sense,

/fdu—ffdrr' . (2.13)

v
dovi®) = || 1l = sup
T 1 llpgay<t

Then, cleasly,
di(aPiw)y < [P P 1Y) dy(eg ) (2.14)

And by the speciral radius formula,
1P 1Y ~ R = exp(—t/res) {2.15)

asymptotically as t -+ oo, with equality for all ¢ if P is seli-adjoint (see below).
On the other hand, for a given observable f we define the inicgrated autocor-
relation trne

> eintt) (2.16)

1=~

Tit,f =

+ i prs(t)

=1

Ba = 83—

% () is the space of complex-valued functions on S that are squate-integrable with respect
to w: |Ifll = (3, %+ {f(2)]*)*/* < oo. The inner product is given by (f,g) = 3., x. f(z} g{(z).
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[The factor of % is purely a matier of convention; it is inserted so that Tintf = Top s
if pry(t) ~ e /" with 7 3 1.] The integrated sutocorrelation time contrels the
statistical error in Monte Carlo measurements of (f). More precisely, the sample
mean

f

]

1N

-5 (2.17)
ni

has variance

var(f) = i i Cyislr — 3) (2.18)

= % i: ( —%') Cyylt) (2.19)
tz=fn-t)
s ;11-(21'.'":.;)01;(0) forn>r (2.20)

Thus, the variance of f is a factor 27, ; larger than it would be if the {f:} were sta-
tistically independent. Stated differently, the number of “effectively independent
samples” in & run of length n is roughly n/ 2%y

It is sometimes convenient to measure the integrated autocorrelation time in
terms of the equivalent pure exponentiial decay that would produce the same value
of T2 pys(t), namely

Fnty = ! (2.21)
intf = T v - .
" s ()
This quantity has the nice feature that a sequence of uncorrelated data has Fotf =
0 {but 7y = %) Of course, Fipyy is Hl-defined if 1, ; < %, as can occasionally
happen in cases of anticorrelation.

In summary, the autocorrelation times 7., and T,y Play different roles in
Mente Carlo simulations. 7., places an upper bound on the number of iterations
Tine which should be discarded at the beginning of the cun, before the system
has attained equilibrium; for example, n4,. =~ 207, ,, is usually more than ade-
quate. On the other hand, 7, determines the statistical errors in Monte Carlo
measurements of (f), once equilibrium has been attained,

Most commonly it is assumed that ., and 7,5 are of the same order of
magnitude, at least for “reasonable” observables f. But this is nof irue in general.
In fact, in statistical-mechanical problems near a critical point, one usually expects
the autocorrelation function pjs(t) to obey a dynamic scaling law [12] of the form

P16 B) ~ It F((B- 8. |t)") (2.22)
valid in the region
> 1, |88 <1, |8 -p|It) bounded. (2.23)
8



Here a,b - 0 are dynamic critical exponents and F is a suitable scaling function;
A is some “temperature-like” parameter, and A, is the critical point. Now sup-
pose that F is continuous and strictly. positive, with F(z) decaying rapidly (e.g.
exponentially) as {z| — co. Then it is not hard to sec that

Texpf ™~ |B - ﬁtlﬂllb (2’24)
Tint,} ™~ |ﬁ - ﬁcr“_u”b (2'25)
et B=6) ~ [t (2.26)

s0 that 7., and 7, s have different criticel exponents unless o = 0.% Actually,
this should not be surprising: replacing “time” by “space”, we see that r,p is
the analogue of a correlation length, while 7;n,; is the analogue of a susceptibility;
and (2.24)-(2.26) are the analogue of the well-known scaling law v = (2 — v —
clearly v # v in general! So it is crucial to distinguish between the two types of
autocorrelation time.

Returning to the general theory, we note that one convenient way of satisfying
condition (B) is to satisfy the following stronger condition:

(B’) For each pair z,y € 5, Xopoy = TyPys- (2.27)

[Summing (B) over &, we recover (B).] (B’) is called the detailed-balance condition;
a Markov chain satisfying (B‘} is called reversible.” (B’) is equivalent to the self-
adjointness of P as on operator on the space {*(#). In this case, the spectrum of
P is real and lies in the closed interval {—1,1]; we define

Mmin = inf spec(P }11) (2.28)
Aumaz = sup spec(P }1%) {2.29)

From (2.12) we have
Terp = —1 (2.30)

ng IIII-X[IA,,",,i, Awuu.-] '

For many purposes, only the spectrum near +1 matters, so it is useful to define
the modified ezponential autocorrelation time

v {-1/[054\,,.,., if Aoz >0 (2.31)

i +o0 if Aoz S 0

¢Our discussion of this topic in [13] is incorrect,

TFor the physical significance of this term, see Kemeny and Snell |5, section 5.3 or losifescu
(8, section 4.5].

Now let us apply the spectral theoremn Lo the operalor P: it follows Lhat the
autocorrelation function py(t) has a spectral representation

A, f
@) = [ Wdoy(3) (2.32)
Amin,f

with a nonnegative spectral weight doy (A} supported on an interval
[/\mm,], Am:.l.t,_l’] C l'\miny ‘\mu]- Cleafly

Tezpf = Tog mu“’\ml‘]%,,\muld (2.33)
and we can define
g = {1 e an
(if Aaz,s = 0). On the other hand,
Mnies
i = 3 [ 15 don() (2.35)
Amin. s

It follows that
1f14e M 1 {14 e Vs
it & sl £ ) =T, 2.36
Tintd = 2 (1 e Mgy ] T 281 - eVt Terp (2.36)

Moreover, since A — (1 + A)/(1 — A) is a convex function, Jensen’s inequality
implies that

11+ p(1)
; = P 2.
S 2 g 1 () (237
I we define the instial autocorrelation time
_ [ logps(1) i pgy(1) 20
Tinitf = {un_deﬁned i pys(1) < 0 (2.38)
then these inequalities can be summarized conveniently as
Tenit, f S 'F:nl,[ S 1":”,.! S f:ﬂ, . (2.39)
Conversely, it is not hard to see that
SUP Ty = BUP Tingg = SUP Tin, = T (2.40)
Jel{x) Jel(x) JER(r)

it suffices to choose f so that its spectral weight de;; is supported in a very small
interval near A .

Finally, let us make a remark about transition probabilities P that are “built
up out of” other transition probabilities P, P,,..., P.:

10
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a) If P, Py, ..., P, satisfy the stationarity condition (resp. the detailed-balance
condition]) for 7, then so does any convex combination P = 3>, A F,. Here
Az20Oand ¥ A =10

b} ¥ P, Py,..., P, satisfy the stalionarity condition for =, then so does the
product P = P\ P, ... P,. (Note, however, that P does no! in general satisfy
the detailed-balance condition, even if the individual P; do.?)

Algorithmically, the convex combination amounts to choosing randomly, with
probabilities {A,}, from among the “elementary operations™ F,. (It is crucial here
that the A, are consients, independent of the current configuration of the system;
only in this case does P leave = stationary in general.) Similarly, the produci
corresponds to performing sequentially the operations P, Py,..., P..

3 Statistical Analysis of Dynamic Monte Carlo
Data

Many published Monte Carlo studies contain statements like:

We ran for a total of 100000 iterations, discarding the first 50000 it-
erations (for equilibration) and then taking measurements once every
100 iterations.

It is important to emphasize that unless further information is given -— namely, the
autocorrelation time of the algorithm — such statemenis have no value whatsoever.

Is a run of 106000 iterations long enough? Are 50000 iterations sufficient for
equilibration? That depends on how big the sutocorrelation time is. The purpose
of this lecture is Lo give some praclical advice for choosing the parameters of a
dynamic Monte Carlo simulation, and to give an introduction to the statisiical
theory that puts this advice on a sound mathematical footing.

There are two fundamental — and quite distinet — issues in dynamic Monte
Carlo simulation:

e Initialization bias. If the Markov chain is started in a distribution o that is
not equal to the stationary distribution w, then there is an “initial transient”
in which the data do not reflect the desired equilibtium distribution . This
results in a systemnatic error (bias).

*Recall that if 4 and B ate sell-adjoint operators, then AB is self-adjoint if and enly if A
and B commute.
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o Autocorrelation in equilibrivm. The Markov chain, once it reaches equi-
librium, provides correlated samples from w. This correlution causes the
stalistical error (variance) to be a factor 2r,,; larger than in independent
sarmpling.

Lel us discuss these issues in turn.

Injtialization bias. Often the Markov chain is started in some chosen configura-
tion z; then a = §,. For example, in an Ising model, z might be the configuration
with “all spins up”; this is sometimes called an ordered or cold start. Alternatively,
the Markov chain might be started in a random configuration chosen according to
some simple probability distribution a. For example, in an Ising model, we might
initialize the epins randomly and independently, with equal probabilities of up and
down; this is sometimes called a random or hot start. In all these cases, the initial
distribution a is clearly not equal to the equilibrium distribution 7. Therefore, the
system is initially “out of equilibrium”. Theorem 1 guarantees that the system
approaches equilibrium as ¢ — oo, but we need to know something about the rate
of convergence {0 equilibrium.

Using the exponential aulocorrelation time 7..,, we can set an upper bound
on the amount of time we have to wait before equilibrium is “for all practical
purposes” attained. For example, if we wait a time 207,,,, then the deviation from
equilibrium (in the I* sense) will be at most €™ (= 2 x 107%) times the initial
deviation from equilibrium. There are two difficulties with this bound. Firstly,
it is usually impossible to apply in practice, since we almost never know 7,,, (or
a rigorous upper bound for it)., Secondly, even if we can apply it, it may be
overly conservative; indeed, there exist perfectly reasonable algorithms in which
Tesp = +00 (8ee Sections 7 and 8),

Lacking rigorous knowledge of the auiocorrelation time r,,,, we should try to
estimate it both theoretically and empirically. To make a heuristic theoretical
estimate of 7..,, we attempt to understand the physical mechanism(s) causing
slow convergence to equilibrium; but it is always possible that we have overlooked
one or more such mechanisms, and have therefore grossly underestimated 7.,,. To
make a rough empirical estimate of 7..,, we measure the autocorrefation funclion
Cyy(t) for & suitably large set of observables f [see below]; but there is always the
danger that our chosen set of observables has failed to include one that has strong
enough overlap with the slowest mode, again leading to a gross underestimate of
Teaxpe

On the other hand, the actual rate of convergence to equilibrium from a given
initial distribution o may be much faster than the worst-case estimate given by
Teep- S0 it is ysual to determine empirically when “equilibrium™ has been achieved,
by plotting selected observables as a function of time and noting when the initial
transient appears to end. More sophisticated statistical tests for initialization bias
can also be employed [14).

12



In all empirical methods of determining when “equilibrium” has been
achieved, a serious danger is the possibility of metastability. That is, it could
appear that equilibrium has been achieved, when in fact the system has only settled
down to a long-lived {metastable) region of configuration space that may be very
far from equilibrium. The only sure-fire protection against metastability is a proof
of an upper bound on T, ., {or more generally, on the deviation from equilibrium as a
function of the elapsed time t). The next-best protection is a convincing heuristic
argument that metastability is unlikely (i.e. that 7., is not too large); but as
mentioned before, even if one rules out several potential physical mechanisms for
metastability, it is very difficult to be certain that one has not overlooked others.
If one cannot rule out metastability on theoretical grounds, then it is helpful at
least to have an idea of what the possible metastable regions look like; then one
can perform several runs with different initial conditions typical of each of the
possible metastable regions, and test whether the answers are consistent. For
example, near a first-order phase transition, most Monte Carlo methods suffer
from metastability mssociated with transitions between configurations typical of
the distinct pure phases. We can try initial conditions typical of each of these
phases (e.g. for many models, a “hot” start and a “cold” start). Consistency
between these runs does not guarantee that metasiability is absent, but it does
give increased confidence. Plots of observables as & function of time are also useful
indicators of possible metastability.

But when all is said and done, no purely empirical estimate of 7 from & run of
length n can be guaranteed to be even approximately correct. What we can say
in that if Tesimated <€ M, then either T = Toptinated OT elbe T 2 A,

Once we know (or guess) the time needed to atiain “equilibrinm”, what do we
do with it? The answer is clear: we discard the data from the initial transient,
up to some time f4,:, and include only the subsequent data in our averages. In
principle, this is (asymptotically) unnecessary, because the systematic errors from
this initial transient will be of order r/n, while the statistical errors will be of
order (v/n)'/%. But in practice, the coefficient of 7/n in the systematic error may
be fairly large, if the initial distribution is very far from equilibrium. By throwing
away the data from the initial transient, we lose nothing, and avoid a potentially
large systemalic error.

Autocorrelation in equilibrium. As explained in the preceding lecture, the vari-
ance of the sample mean f in a dynamic Monte Carlo method is a factor 27int,s
higher than it would be in independent sampling. Otherwise put, a run of length
n contains only n/2rin, s “effectively independent data points”.

This has several implications for Monte Carlo work. On the one hand, it means
that the the compulational efficiency of the algorithm is determined principally by
its autocorrelation time. More precisely, if one wishes to compare Lwo alternative
Monte Carlo algorithms for the same problem, then the better algorithm is the
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one that has the smaller autocorrelation time, when time is measured in units of
compuler (CPU) time. [In general there may arise tradeoffs between “physical”
autocorrelation time (i.e. 7 measured in steralions) and computational complexity
per ileration.] So accurate measurements of the autocorrelation time are essential
to evaluating the computational efficiency of compeling algorithms.

On the other hand, even for a fixed algorithm, knowledge of ., ; is essential
for determining run lengths — is a run of 100000 sweeps long enough? — aund
for setting error bars on estimates of {f). Roughly speaking, error bars will be of
order (r/n)"/%; so if we want 1% accuracy, then we need a run of length = 100007,
and so on. Above all, there is a basic self-consistency requirement: the run length
n must be 3 than the estimates of v produced by that same run, otherwise none
of the results from that run should be believed. Of course, while seli-consisiency
is a necessary condition for the trustworthiness of Monte Carlo dala, it is not a
sufficieni condition; there is always the danger of metastability.

Already we can draw a conclusion about the relative importance of initialization
bias and autocorrelation as difficulties in dynamic Monte Carlo work. Let us
assume that the time for initial convergence to equilibrium is comparable to (or
at least not too much larger than) the equilibrium autocorrelation time 7, ; (for
the obsezvables f of interest) — this is often but not always the case. Then
initialization bias is a relatively trivial problem compared to autocorrelation in
equilibrium. To eliminate initialization bias, it suffices to discard ~ 207 of the data
al the beginning of the run; but to achieve a reasonably small statistical error, it
is necessary to meke a run of length = 10007 or more. So the daia that must be
discarded at the beginning, n4i., is a negligible fraction of the total run length n.
This estimale also shows that the exact value of ny,,. is not particularly delicate:
anything between =~ 20T and = n/5 will eliminate essentially all initialization bias
while paying less than a 10% price in the final error bars.

In this remainder of this lecture I would like to discuss in more detail the
statistical analysis of dynamic Monte Carlo data (assumed io be already “in equi-
librium”™), with emphasis on how to estimate the autocorrelation time 7, and
how to compute valid error bars. What is involved here is a branch of mathemat-
ical statistics called time-series analysis. An excellent exposition can be found in
the books of of Priestley [15] and Anderson [16).

Let {f:} be a real-valued stationary stochastic process with mean

b= (f) (3.1)

unnormalized autocorrelation function

C(t) = {f ford) — ¥, (3.2)

normalized autocorrelation function
p(t) = C()/C(0), (3.3}
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and integrated autocorrelation time

LT

3 ). (3.4

B —

Our goal is Lo estimate u, C(t}, p(t} and 7in; based on a fiite (but large) sample
fis -y fu from this stochastic process.
The “natural” estimator of u is the sample mean

= % 3 7. (3.5)

bt
il

This estimator is unbiased {i.e. {f} = u) and has variance

n-|

wid = 1 % a-Bew (3.6)
b= (n=1) R
= 11; (2r.) C(0) forn>r (3.7)

Thus, even if we are interested only in the static quantity u, it is necessary to
estimate the dynamic quantity 7, in order to determine valid error bars for g.
The “natural” estimator of C(t) is

0w = L % U= Mo - W) (38)
if the mean g is known, and

= -l - —

&0 = w5 L U= Dlhw - D (39)

iz

if the mean g is unknown. We emphasize the conceptual distinction beiween the
autocorrelation function C(t), which for each ¢ is & number, and the estimator
C(t) or C(t), which for each ¢t is a random variable. As will become clear, this
distinction is also of practicalimportance. C'(t) is an unbiased estimator of C(t),
and G(¢) is almost unbiased (the bias is of order 1/n) [16, p. 463]. Their variances
and covatiances are [16, pp. 464-471] [15, pp. 324-328]

war(G()) = % i., [Cm)? + Clm + )Cm — 1)+ x(t, m, m + 1)
+o (}1) (3.10)
o C(1),00w) = | mim[C(m)C(m Yu-t) 4 Clm + w)Clm 1)
+n(!,m,m+u)}+o(%) (3.11)

15

where t,4 > 0 and & is the connected 4-point autecorrelation function

s(r,a,t) = {(fi— ) firr = 8)(Jra - 0} fiie = 1))
—C{r)C(t — &) -~ CL)C(t - ) - C()C(s — 7). (3.12)

To leading order in 1/n, the behavior of ' is identical to that of 6.
The “natural” estimator of p(t) is

A = /) (3.13)
il the mean p is known, and
5ty = (1)/C) (3.14)

if the mean g is unknown. The variances and covariances of j(t) and At} ean be
computed {for large n) from (3.11); we omit the detailed formulae.
The “natural” estimator of 7, would seem to be

Font z% A (3.15)

t=—(n-1)

(or the analogous thing with ), but this is wrong! The estimator defined in (3.15)
has a variance that does not go to zero as the sample size n goes to infinity (15,
pp. 420-431], s0 it is clearly a very bad estimator of 7. Roughly speaking, this
is because the sample sutocorselations {t) for || » 7 contain much “noise” bul
little “signal”; and there are so many of them (order n) that the noise adds up to
a tolal variance of order 1, (For a more detailed discussion, see [15, pp. 432-437|.)
The solution is to cut off the sum in (3.15) using a “window™ A{t) which is ~ 1
for || & T but = 0for [t| > 7:
1 n— |
Tt = 5 2 MOAW). (3.16)

t=—(n—1)

This retains most of the “signal” but discards most of the “noise”. A goed choice
is the rectangular window

1 i< M .
_ < A7
Alt) {u e > M (317)

where M is a suitably chosen cutoff. This cutoff iniroduces a bias

%';‘ ;J(I',)Jro(—:—l) . (3.18)

[ELT

biu(?ml) =
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On the other hand, the variance of 7, can be computed from (3.11); after some
algebra, one obtains

T, {3.19)

int 1

. 202M +1)
var(F) = —(—+n—2 2

where we have made the approximation 1 € M & n. The choice of M is
thus a tradeofl between bias and variance: the bias can be made small by taking
M large enough so that p(t) is negligible for |¢| > M {eg. M = a few times 7
usually suffices), while the variance is kept smali by taking M to be no larger than
necessary consistent with this constraint. We have found the following “automatic
windowing” algorithm {17] to be convenient: choose M to be the smallest integer
such that M > cFuu(M). If p{t) were roughly a pure exponential, then it would
suffice to take ¢ = 4 (since e™! < 2%). However, in many cases p(t) is expected
to have an asymptotic or pre-asymptotic decay slower than exponential, so it is
usually prudent to take c ai least 6, and possibly as large as 10.

We have found this automatic windowing procedure to work well in practice,
provided that a sufficient quantity of data is available (n 2 1000v). However,
al present we have very little understanding of the conditions under which this
windowing algorithm mey produce biased estimates of 7ine or of its own error
bars. Further theoretical and experimental study of the windowing algorithm —
e.g. experiments on various exactly-known stochastic processes, with various run
lengths — would be highly desirable.

4 Conventional Monte Carlo Algorithms for
Spin Models

In this lecture we describe the construction of dynamic Monte Cazlo algorithms for
models in statistical mechanics and quantium field theory. Recall our goal: given
a probability measure v on the state space S, we wish to construct a transition
matrix P = {p,,} satisfying:

(A} frreducibility. For each pair ,y € S, there exists an n > 0 for which p{;) > 0.

(B) Stationarity of x. For each y € 5,

PILIS L (4.1)

"We have also sssumed that the only stzong peaks in the Fourier tranaform of C(2) are at 5e10
frequency. This assumption is valid if C{t) > 0, but could fail if there are sirong anticorrelations.
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A sufficient condition for (B), which is often more convenient to verily, is:
(B’) Detailed balance for x. For each pair z,¥ € 5, m.puy = TyPya-

A very general method for constructing transition matrices satisfying detailed
balance for a given distribution x was introduced in 1953 by Metropolis et al,
{18], with a slight extension two decades later by Hastings (19]. The idea is the
following: Let P = {pl}} be an arbitrary irreducible transition matrix on 5. We
call P) the proposal matriz; we shall use it to generate proposedmoves ¢ — y that
will then be accepted or rejected with probabilities a,, and 1 - a,,, respectively. If
a proposed move is rejected, then we make a “null transition” & -+ z. Therefore,
the transition matrix P = {p,,} of the full algorithm is

Py = Pg:;. G2y forz £y
P = P+ 1A (1-as) (4.2)
ey

where of course we must have 0 < a,, < 1 for all z,y. It is easy lo see that P
satisfies detailed balance for x if and only if

()

Sy = DvPu (4.3)
Qyr L P(rl;)
for all pairs = # y. But this is cui!y arranged: just set
(U}
, Py
ay = F ( o I{")) , (4.4)
T Pry
where F: [0, +00] —+ [0,1] is any function satisfying
F(z)
—_ = for all 2. .
#(i/3) 2 or all 2 (4.5)
The choice suggested by Metropolis el al. is
F(z) = min(z,1); (4.6)

this is the mazimal function satisfying (4.5). Another choice sometines used is

z
142z

F(z) = (4.7)
Of course, it is still necessary to check that P is irreducible; this is usually done
on a case-by-case basis.

Note that if the proposal matrix P happens to already satisfy detailed balance
for =, then we have m, p) /x, pl&} = 1, so that a,, = 1 {if we use the Metropolis
choice of F) and P = P®, On the other hand, no matter what P! is, we

18



obtain & matrix P that satisfies detailed balance for 7. So the Metropolis-Hastings
procedure can be thought of as a prescription for minimally modifying a given
transition matrix PV so that it satisfies detailed balance for x.

Many texthooks and articles describe the Metropolis-Hastings procedure only
in the special case in which the proposal matrix P is symmetric, namely Pl =
;p(n'!') In this case {4.4) reduces to

Oy = F(I!) . (4.8)

Tz

In statistical mechanics we have

-BFe ~BE,
Moo= = =" {1.9)
z T ety z
¥
and hence
Ty _ BB E) (4.10)

Ty
Note that the partition function Z has disappeared from this expression; this is
crucial, as Z is almost never explicitly computable! Using the Metropolis accep-
tance probabilily (&) = min(z,1}, we obtain the following rules for acceplance
or rejection:

o« f AE = E, — E, <0, then we accept the proposal always (i.e. with proba-
bility 1).

o If AE >0, then we accept the proposal with probability e=#2% (< 1}. That
is, we choose a random number  uniformly distributed on [0,1], and we
accept the proposal if r < e=#2E,

But there is nothing special about P being symmetric; any proposal mairix

P ig perfectly legitimate, and the Metropolis-Hastings procedure is defined quite

generally by (4.4).

Let us emphasize once more that the Metropolia- Hastings procedure is a gen-
eral technigue; it produces an infinite family of different algorithms depending on
the choice of the proposal matrix P}, In the literaturc the term “Metropolis
algorithm” is often used to denote the algorithm resulting from some particular
commonly-used choice of P}, but it is important not to be misled.

To see the Metropolis-Hastings procedure in action, let us consider a typical
statistical-mechanical model, the fsing model: On each site 7 of some finite d-
dimensional lattice, we place a random variable o, taking the values £1. The
Hamiltonian is

H(e) = - Y owj, (4.11)
{3}

where the sum runs over all nearesi-neighbor pairs. The corresponding Gihbs
measure i8

w(a) = 27" exp|-BH(o)], (4.12)

where Z is a normalization constant (the partition function). Two different pro-
posal matrices are in common use:

1) Single-spin-flip (Glauber) dynamics. Fix some site i. The proposal is to flip
o;, hence

Wo} (o)) = {} Hai=—omnde, o foralligi (g
0 otherwise

Here P! is symmetric, so the acceptance probability is
al{o} = {o'}) = min(e" 1), (1.11)

where
AE = E({e') - E({c}) = 200 Y ;. (4.15)
Jown of ¢
So AE is easily computed by comparing the status of #, and its neighbors.
This defines a transition matrix F; in which only the spin at site 7 is touched.
The full “single-spin-flip Metropolis algorithm” involves sweeping through the en-
{ire lattice in either 8 random or periodic fashion, i.e. either

P = %Z F; (random site updating) (4.16)

or
P=PFFP, P, {sequential site updating) (4.17)

(here V is the volume). In the former case, the transition matrix P satisfies detailed
balance for 7. In the latier case, P does not in general satisfy detailed balance for
x, but it does satisfy stationarity for x, which is all that really matters.

It is easy to check that P is irreducible, except in the case of sequential site
updating with # = 0.

2) Pair-interchange (Kawasaki) dynamics. Fix a pair of sites 1, 7. The proposal
is to interchange o, and o,, hence

(" ny _ |1 el=0;,¢,=0a and o} = o forall k #4,7
pio} - {o)) = {} o= il b #id
(4.18)

The rest of the formulae are analogous to those for single-spin-flip dynamics. The
overall algorithm is again constructed by a random or periodic sweep over a suitable
set of pairs 1,7, usually taken to be nearest-neighbor pairs. It should be noted
that this algorithm is not irreducible, as it conserves the total magnetization M =
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¥*, o,. But it is irreducible on subspaces of fixed M (except for sequential updating
with g = 0).

A very diflerent apptoach to constiucting transition matrices satisfying detailed
balance for « is the heai-bath method. This is best illustzated in a specific example.
Consider again the Ising model (4.12), and focus on a single site i, Then the
conditional probability distribution of o;, given all the other spins {o;} .., is

P™(o;|{o;};2:) = const{{o;};2.) * exp [ﬁf-’- 2 0;] . (4.19)

j o of o

(Note that this conditional distribution is precisely that of a single Ising spin o,
in an “effective magnetic field” produced by the fixed neighboring spins ¢;.) The
heat-bath algorithm updates o, by choosing a new spin value o}, independent of the
old value a,, from the conditional distribution (4.19); all the other spins {o:};8
remain unchanged.'"” As in the Metropolis algorithm, this operation is carried out
over the whole lattice, either randomly or sequentially.

Analogous algorithms can be developed for more complicated models, e.g. P(y)
models, r-models and lattice gauge theories. In each case, we focus on a single field
variable (holding all the other variables fixed), and give it a new value, independent
of the old value, chosen from the appropriate conditional distribution. Of course,
the feasibilily of this algorithm depends on our ability to construct an efficient
subroutine for generating the required single-site (or single-link) random variables.
But even if this algorithm is not always the most efficient one in practice, it serves
as a clear standard of comparison, which is useful in the development of more
sophisticated algorithms.

A more general version of the heat-bath idea is called partial resampling: here
we focus on & set of variables rather than only one, and the new values need not
be independent of the old values. That is, we divide the variables of the system,
call them {p}, into two subsets, call them {¢} and {#}. For fixed values of the
{8} variables, x induces a conditional probability distribution of {4} given {8},
call it P=({¥}{{#}). Then any algorithm for updating {¥} with {8} fixed that
leaves invariant all of the distributions P*( - | {#}) will also leave invariant a.
One possibility is to use an independent resampling of {¢}: we throw away the old
values {¢'}, and take {4’} to be 8 new random variable chosen from the probability
distribution P*( - |{#}), independent of the old values. Independent resampling
might also called &lock heat-bath updating. On the other hand, if {¥} is a large set
of variables, independent resampling is probably unfeasible, but we are free to use

. " The f:.ler_t reader will nate that in the Ising cose the heat-bath algorithm is equivalent to the
llngll.‘-l'pln—ﬂlp Metropolis algorithm with the choice F(z) = =/(1 + =) of acceptance function.
But this correspondence does not hold for more complicated models.
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any updating that leaves invariant the appropriate conditional distributivns. of
course, in this generality “partial resampling” includes alf dynamic Monte Carlo
algorithms — we could just take {¢} to be the entire system — but it is in
many cascs conceptually useful to focus on some subset of variables. The partial-
resampling idea will be at the heart of the multi-grid Monte Carlo method (Section
5) and the embedding algorithms (Section 6).

We have now defined a rather large class of dynamic Monte Carlo algorithms:
the single-spin-flip Metropolis algorithm, the single-site heat-bath algorithm, and
s0 on. How well do these algorithms perform? Away from phase transitions, they
pecform rather well. However, near & phase transition, the autocorrelation time
grows rapidly. In particular, near a critical point (second-order phase transition],
the autocorrelation time typically diverges as

r ~ min(L, ), {4.20)

where L is the linear size of the system, £ is the correlation length of an infinite-
volume system at the same temperature, and z is a dynamte critical exponent.
This phenomenen is called critical slowing-down; it severely hampers the study
of critical phenomens by Monte Carlo methods. Most of the remainder of Lhese
lectures will be devoted, therefore, to describing recent progress in inventing new
Monte Carlo algorithms with radically reduced critical slowing-down.

The critical slowing-down of the conventional algorithms arises fundamentally
from (he fact that their updates are local: in a single step of the algorithm, “in-
formation” is transmitied from a given site only to its nearest neighbors. Crudely
one might guess that this “information” executes a random walk around the lat-
tice. In order for the system to evolve to an “essentially new” configuration, the
“information” has to travel a distance of order £, the (static) correlation length.
One would guess, therefore, that T ~ £ near criticality, i.e. that the dynamic
critical cxponent z equals 2. This guess is correct for the Gaussian model (free
field)''. For other models, we have a situation analogous to theory of static critical
phenomena: the dynamie critical exponent is a nontrivial number that character-
izes a rather lazge class of algorithms (& so-called “dynamic universality class”).
In any case, for most models of interest, the dynamic critical exponent for local
algorithms is close to 2 (usually somewhat higher) [22]. Accurale measurements of
dynamie critical exponents are, however, very difficult — even more difficult than
measurements of static critical exponents — and require enormous quantities of
Monte Carlo data: run Jengths of % 100007, when 7 is itself geiting large!

VIndeed, for the Gaussian model this rendom-walk picture can be made rigorous: sce [20]
combined with [21, Section 8].
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We can now make a rough estimate of the computer time needed to siudy the
Ising miodel near its critical point, or quantum chromodynamics near the contin-
uem limit. Each sweep of the latlice takes a time of order LY, where d is the
spalial (or space-“time”) dimensionality of the model. And we need =~ 27 sweeps
in order to get one “effectively independent” sample. So this means a computer
time of order L4f* 2 £9+2.' For high-precision statistics one might want 10% “in-
dependent” samples. The reader is invited to plug in £ = 100,d = 3 {or d = 4 if
you're an clementary-particle physicist) and get depressed. It should be empha-
sized that Lhe factor £¢ is inherent in all Monte Carlo algorithms for spin models
and field theories (but not for self-avoiding walks, see Section 7). The factor £*
could, however, conceivably be reduced or eliminated by a more clever algorithm.

What is to be done? Our knowledge of the physics of critical slowing-down tells
us that the slow modes are the long-wavelength modes, if the updating is purely
local. The natural solution is therefore to speed up those modes by some sort of
collective-mode (nonlocal) updating. It is necessary, then, to identify physically the
appropriate collective modes, and to devise an efficient computational algorithm
for speeding up those modes. These two goals are unfortunately in conflict; it is
very difficult to devise collective-mode algorithms that are not so nonlocal that
their computational cost cutweighs the reduction in critical slowing-down. Specific
implementaiions of the collective-mode idea are thus highly model-dependent. At
least three such algorithms have been invented so far:

e Fourier acceleration [25]
s Multi-grid Monte Carlo (MGMC) [26, 21, 27]
‘s The Swendsen-Wang algorithm [28] and its generalizations

Fourier acceleration and MGMC are very similar in spirit (though quite different
technically). Their performance is thus probably qualitatively similar, in the sense
that they probably work well for the same models and work badly for the same
models. In the next lecture we give an introduction to the MGMC method; in the
following Jecture we discuss algorithms of Swendsen-Wang type.

5 Multi-Grid Algorithms

The phenomenon of critical slowing-down is not confined to Monte Carlo simu-
lations: very similar difficulties were encountered long ago by numerical analysts

"Clearly one must take L 2 £ in order to avoid severe finite-size effects. Typically one
approaches the crilical point with L == cf, where ¢ = 2 — 4, and then uses finite-size scaling
[23, 24| to exirapolate to the infinite-volume limit.
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concerned with the numerical solution of partial differential equations. An in.
genious solution, now called the multi-grid (MC) method, was proposed in 1964
by the Soviet numerical analyst Fedorenko (29]: the idea is to consider, in addi-
tion to the original (“fine-grid”) problem, a sequence of auxiliary “coarse-grid”
problems that approximate the behavior of the original problem for excitations at
successively longer length scales (a sort of “coarse-graining” procedure). The local
updates of the traditional algorithms are then supplemented by coarse-grid up-
dates. To a present-day physicist, this philosophy is remarkably reminiscent of the
renormalization group — 8o it is all the more remarkable that it was invented two
years before the work of Kadanoff [30] and seven years before the work of Wilson
[31]! After a decade of dormancy, multi-grid was revived in the mid-1970's [32],
and was shown to be an extremely efficient computational method. In the 1980°s,
multi-grid methods have become an active area of research in numerical analysis,
and have been applied to & wide variety of problems in classical physics [33, 34].
Very recently [26] it was shown how a stochastic generalization of the multi-grid
method — multi-grid Monte Carlo (MGMC) — can be applied 1o problems in
stalistical, and hence also Euclidean guantum, physics.

In this lecture we begin by giving a brief introduction to the deterministic
multi-grid method; we then expiain the stochastic analogue,” But it is worth
indicating now the basic idea behind this generalization. There is a strong analogy
between solving lattice systems of equations (such as the discrete Laplace equation)
and making Monte Carlo simulations of lattice random fields. Indeed, given a
Hamiltonian H(gp), the deterministic problem is that of mintmizing H(p), while
the stochastic problem is that of generating random samples from the Boltzmann-
Gibbs probability distribution e=##(¥), The statistical-mechanical problem reduces
to the deterministic one in the zero-temperature limit 8 -+ +oo.

Many (but not all) of the deterministic iterative algorithms for minimizing
H(p) can be generalized to stochastic iterative algorithms — that is, dynamic
Monte Carlo methods - for generating random samples from e~"/14), For ex-
ample, the Gauss-Seidel algorithm for minimizing ¥ and the heat-bath algorithm
for random sampling from e~## are very closely related. Both algorithms sweep
successively through the lattice, working on one site z at a time. The Gauss-Seidel
algorithm updates @, 50 a5 to minimize the Hamiltonian H(y) = H(yp,, {wybuza)
when all the other ftelds {ip,},4. are held fixed at their current values. The
heat-bath algorithm gives ¢, a new random value chosen from the probability dis-
tribution exp[~H (., {9y} s:), with all the fields {y,}, 2. again held fixed. As
B — +oo the heat-bath algerithm approaches Gauss-Seidel. A similar cortespon-
dence holds between MG and MGMC.

“For an cxcellent introduction to the deterministic multi-grid mcthod, see Briggs 135]; more
advanced topics are covered in the book of Hackbusch [33]. Both MG and MGMC are discussed
in detail in [21).
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Before entering into details, let us emphasize that although the multi-grid
method and the block-spin renormalization group (RG) are based on very similar
philosophies — dealing with a single length scale at a time — they are in fact
very different. In particular, the conditional coarse-grid Hamiltonian employed in
the MGMC method is not the same as the renormalized Hamiltonian given by a
block-spin RG transformation. The RG transformation computes the marginal,
not the conditional, distribution of the block means — that is, it integrales over
the complementary degrees of freedom, while the MGMC method fizes these de-
grees of freedom at their current (random) values. The conditional Hamiltonian
employed in MGMC is given by an explicit finite expression, while the marginal
(RG) Hamiltonian cannot be compulted in closed form. The failure to appreciate
these distinctions has unfortunately led to much confusion in the literature."

5.1 Deterministic Multi-Grid

In this section we give a pedagogical intreduction to multi-grid methods in the
simplest case, namely the solution of deterministic linear or nonlinear systems of
equations.

Consider, for purposes of exposition, the lattice Poisson equation —Ap = f
in a region {2 C 2 with zero Dirichlet data. Thus, the equation is

(_A‘P)z = 2d‘Pr - E Yo = f: (5.1)
o' ja—af|=1

for ¢ € §, with @, = 0 for = ¢ Q. This problem is equivalent to minimizing the
quadratic Hamiltonian

H) = § S(oe— e = e (62)

More generally, we may wish to solve a linear system
Ap = f, (5.3)

where for simplicity we shall assume A to be symmetric and positive-definite. This
problem is equivalent io minimizing

Hig) = 3le A0) — (frv) (54)

Later we shall consider also non-quadratic Hamiltonians.

Our goal is to devise a rapidly convergent iterative method for solving numer-
jcally the linear system (5.3). We shall restrict attention to first-order stationary
linear iterations of the general form

pD = M 4 Nf, (5.5)

"For further discussion, see {21, Section 10.1].
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where ") is an arbitrary initial guess for the solution. Obviously, we must demand
at the very least that the true solution ¢ = A~ f be a fixed point of (5.5); impusing
this condition for all f, we conclude that

N =(IT-MA". (5.6)

The iteration (5.5} is thus completely specified by its iteration matriz Af. More-
over, (5.5)-(5.6) imply that the error et} = p") — u satisfies

e(ll+l) — Me(n) . (57)

That is, the iteration matrix is the amplification matrix for the error. It follows
easily that the iteration (5.5) is convergent fur all initial vectors ¢!} if and only if
the spectral radius p(M) = lim, o ||[M"||'/ is < 1; and in this case Lhe conver-
gence is exponential with asymptotic rate at least p( M), i.e.

lle*™) — il < Kn*p(M)" (5.8)

for some K,p < oo (K depends on »{'}).
Now let us return to the specific system (5.1). One simple iterative algorithin
arises by solving (5.1) repeatedly for .:

ey 1

(= X et h

i |x—zff=1

. (5.9)

(5.9) is called the Jacobi steration. It ie convenient io consider also a slight gener-
alization of (5.9): let 0 < w < 1, and define

w \ "
Pt = Qw2 W

o |e—at|=1

(5.10)

(5.10) is called the demped Jacobi iteration with damping parameter w; for w = 1
it reduces to the ordinary Jacobi iteration.

It can be shown [36] that the spectral radius p{ My ,.) of the damped Jacobi
iteration matrix is less than 1, so that the iteration (5.10) converges exponentially
to the solution . This would appear to be a happy situation. Unforiunalely,
however, the convergence factor p{ My, ) is usually very close to 1, so thal many
iterations are required in order to reduce the error {|¢™ — || to a small fraction
of its initial value. Insight into this phenomenon can be gained by considering the
simple mode! problem in which the domain {1 is & square {1,..., L} x {1,..., L}.
In this case we can solve exactly for the eigenvectors and eigenvalues of M), .:
they are

¢® = sinpiz, sinp,z, {5.11)
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o= (1 -w)d g(cosm + cos py) (5.12)

2m L. i i igenvalue
where pi,pr = i E.:ﬁ‘ o B The spectral radius of M), is the eigenvalu

of largest magnitude, namely

r
p{ﬁ’fp_:‘u) = A]%T% l-w [1 — €08 L+ 1]
1-0(L™). (5.13)

It follows that ((L?) iterations are needed for the damped Jacobi iteration t.o
converge adequately. This represents an enormous computetional labor when L is
large.

It is easy to see what is going on here: the slow modes (A, z'l) are the long-
wavelength modes (p,p2 < 1). [ w = 1, then some modes with wavenumbfr
p = {pi,p) = (7,7) have eigenvalue A, = —1 and o also are slo)ar. ':[‘?us
phenomenon can be avoided by taking w significantly less than 1;.for simplicity
we shall hencelorth take w = %‘ which makes A, > 0 for all p.] It is al.so easy to
see physically why the long-wavelength modes are slow. The .]:ey fnc‘t is thatl th:
{damped) Jacobi iteration is local: in a single step of the algorithm, “¥nfor1nat!on”
is transmitted only to nearest neighbors. One might guess that this “information
executes a random walk around the lattice; and for the true solution to be reached,
“nformation” must propagate from the boundaries to the interior (and back and
forth until “equilibrium” is attained). This takes a time of order L, in agreement
with (5.13). In fact, this random-walk picture can be made rigorous [20].

This is an example of a critical phenomenen, in precisely the same sense thtft
the term is used in statistical mechanics. The Laplace operater A = -Ais
critical, inasmuch as its Green function A~ has long-range correlations (pow.er—
law decay in dimension d > 2, or growth in d < 2). This means that the solutgon
of Poisson’s equation in one region of the lattice depends strongly on the _soluuon
in distant regions of the lattice; “information” must propagate globally in order
for “equilibrium” to be reached. Put another way, excitations at many leng‘th
scales are significant, from one lattice spacing at the smallest to the e.nure.lal.hce
at the largest. The situation would be very different if we were to consider instead
the Helmholtz-Yukawa equation (-A + m?)e = f with m > 0: ils Green
function has exponential decay with characteristic length m™', so that reg.ions of
the lattice separated by distances 3> m~' are essentially decoupled. In this case,

“information” need only propagate a distance of order min{m~', L} in order for
“equilibrium” to be reached. This takes a time of order min(m~*, L*), an est.imal.e
which can be confirmed rigorously by computing the obvious genera.hzahon‘o{
(5.12)-(5.13). On the other hand, 2s m — 0 we recover the Laplace operator with
its attendant difficulties: m = 0 is a criticel point. We have here an example of
critical slowing-down in classical physics.
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The general structure of a remedy should now be obvious to physicists reared
on the renormalization group: don't try to deal with all length scales al once,
but define instead a sequence of problemns in which cach length scale, beginning
with the smallest and working towards the largest, can be dealt with separately.
An algorithm of precisely this form was proposed in 1964 by the Soviet numerical
analyst Fedorenko [28], and is now called the multi-grid method.

Note first that the only slow modes in the damped Jacobi iteration are the long-
wavelength modes {provided that w is not near 1): as long as, say, max{p;,ps) =
Z,wehave 0 < A, < % (for w = —;), independent of L. [t follows that the
short-wavelength components of the error et") = ™} — & can be effectively killed
by a few (say, five or ten} damped Jacobi iterations. The remaining error has
primarily long- wavelength components, and so is slowly varying in z-space. But a
slowly varying function can be well represented on a coarser grid: if, for example,
we were told el") only at even values of =, we could nevertheless reconstruct with
high accuracy the function e at all z by, say, linear interpolation. This suggests
an improved algorithm for solving (5.1): perform a few damped Jacobi iterations
on the original grid, until the (unknown) error is smooth in z-space; then set up
an auxiliary coarse-grid problem whose solution will be approximately this error
(this problem will turn out to be a Poisson equation on the coarser grid); perform
a few damped Jacobi iterations on the coarser grid; and then transfer (interpolate)
the result back to the original {fine) grid and add it in to the current approximate
solution.

There are two advantages to performing the damped Jacobi iterations on Lhe
coarse grid. Firstly, the iterations take less work, because there are fewer lat-
tice points on the coarse grid (277 times as many for a factor-of-2 coarsening
in d dimensions). Secondly, with respect to the coarse grid the long-wavelength
modes no longer have such long wavelength: their wavelength has been halved (ie.
their wavenumber has been doubled). This suggests thal those modes with, say,
max{p,,p:) > X can be effectively killed by a few damped Jacobi iterations on
the coarse grid. And then we can transfer the remaining {smooth) error to a yet
coarser grid, and 8o on recursively. These are the essential ideas of the multi-grid
method.

Let us now give a precise definition of the multi-grid algorithm. For simplicity
we shall restrict attention to problems defined in variational form'": thus, the
goal is lo minimize a real-valued function (“Hamiltonian™) H(y), where ¢ runs
over some V-dimensional real vector space I/. We shall treat quadratic and non-
quadratic Hamiltonians on an equal footing. In order to specify the algorithm we

must specify the following ingredients:

""In fact, the multi-grid method can be applied to the solution of linear ot nonlinear sysierns
of equations, whether or not these equaiions come ftom a variational principle. See, for example,
(33) and |21, Section 2.
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1) A sequence of coarse-grid spaces Un = U, Usicry Unizay -5 Un. Heredim Uy =

N; and N=Ny>Ny,> Nyjg>-o > Ng.

2) Prolongation (or “interpolati;:n“) operators pi—y: Upy — Ui for 1 <1< M.
3) Basic (or “smoothing”) iterations S Ur % Hy = U for 0 < l_ < M. l,{efe
H; is & space of “possible Hamiltonians” defined on U;; we discuss this in

! L .

more detail below. The 1ole of S is to take an approximate minimizer ¢;

of the Hamiltonian H; and compute a new (hopefully better) a.pproxlm-ate
minimizer @} = Sy}, H;). [For the present we can i‘magine that S; consists

of & few iterations of damped Jacobi for the Hamiltonian H;.] Most generally,
we shall use two smoothing iterations, S and S}**'; they may be the same,

but need nrot be.

Cycle control parameters (integers) 3 = 1 for 1 < ! < M, which control the
number of times that the coarse grids are visited.

4

—

We discuss Lhese ingredients in more detail below.
The multi-grid algerithm is then defined recursively as follows:

procedure mgm{l, ¢, H;)

comment This algorithm takes an spproximate minimizer ¢ of t.he
Hamiltonian H;, and overwrites it with a betier npproximate min-

imizer.

v — 8" (p, )
if { >0 then
compute H_1(-) = Hi(e+pia—1-)
¥v—0
for j =1 until % do mgm(!— 1,9, 1)
¥ ot ¥
endif
p — (@, Hi)
end
Here is what is going on: We wish to solve the minimize the Hamiltonian H;, and
are given as input an approximate minimizer . The algorithm consiats of three
steps:
1) Pre-smoothing. We apply the basic iteration (e.g. & few sweeps of damped
Jacobi) to the given approximate minimiger. This produces a better approximate
minimizer in which the high-frequency (shori-wavelength) components of the error
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have been reduced significantly. Therefore, the error, although still large, is sinooth
in z-space (whence the name “smoothing iteration”).

2) Coarse-grid correction. We want to move rapidly towards the minimizer o*
of H,, using coarse-grid updates. Because of the pre-smoothing, the error ¢ — -
is a smooth function in z-space, so it should be well approximated by fields in the
range of the prolongation operator p;;_,. We will therefore carry out & coarse-
grid update in which  is replaced by @ + pui— i, where 3 lies in the coarse-grid
subspace U;_,. A sensible goal is to attempt to choose ¥ 50 as to minimize Hy;
that is, we attempt to minimize

Hioi(¥) = Hip + pu_v). (5.14)

To carry out this apptoximate minimization, we use a few () iterations of the
best algorithm we know — namely, multi-grid itself! And we start at the best
approximate minimizer we know, namely ¥ = 0! The goal of this coarse-grid
correction step is to reduce significantly the low-frequency components of the error
in  (hopefully without cresting large new high-frequency error components).

3) Post-smoothing. We apply, for good measure, a few more sweeps of the
basic smoother. (This would protect against any high-frequency error compouents
which may inadvertently have been created by the coarse-grid correction step.)

The foregoing constitutes, of course, a single step of the multi-grid algorithm.
In practice this step would be repeated several times, as in any other iteration,
until the error has been reduced to an acceptably smali value. The advantage of
mulli-grid over the traditional (e.g. damped Jacobi) iterative methods is that, with
a suitable choice of the ingredients py;_,, S; and so on, only a few (maybe five or
ten) iterations are needed to reduce the error to a small value, independent of the
laitice size L. This contrasts favorably with the behavior (5.13) of the damped
Jacobi method, in which O{L?) iterations are needed.

The muiti-grid algorithm is thus a general framework; the user has considerable
freedom in choosing the specific ingredients, which must be adapted to the specific
problem. We now discuss briefly each of these ingredients; more details can be
found in Chapter 3 of the book of Hackbusch [33].

Coarse grids. Most commonly one uses a uniform factor-of-2 coarsening be-
tween each grid {3 and the next coarser grid {3;_,. The coarse-grid points could be
cither a subsct of the fine-grid points (Fig. 1) or a subset of the dual lattice (Fig. 2).
These schemes have obvious generalizations to higher-dimensional cubic lattices.
In dimension d = 2, another possibility is a uniform factor-of-/2 coarsening (Fig.
3); note that the coarse grid is again » square lattice, rotated by 45°. Iigs. 1-3 are
often referred to as “standard coarscning”, “staggered coarsening”, and “red-black
(or checkerboard) coarsening”, respectively. Coarsenings by a larger factor (e.g.
3) could also be considered, but are generally disadvantageous. Note that each of
the above schemes works also for periodic boundary conditions provided that the
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Figure 1: Standard coarsening (factor-of-2) in dimension d = 2. Dots are fine-grid
siles and crosses are coarse-grid sites.
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Figure 2: Staggered coarsening (factor-of-2) in dimension d = 2.

Figure 3: Red-black coarsening (factor-of-y/2) in dimension d = 2.

linear size Ly of the grid {3y is even. For this reason it is most convenient to take
the linear size L = Lj; of the original (finest) grid 2 = {2y to be a power of 2, or
at least a power of 2 times a small integer. Other definitions of coarse grids (e-g-
anisotropic coarsening) are occasionally appropriate.

Prolongation operators. For a coarse grid as in Fig. 2, a natural choice of
prolongation operator is piecewise-constant injection:

(P 1@i-1)raeety = (P1oDnw,  forallz i (5.15)

(illustrated here for d = 2). It can be represented in an obvious shorthand notation

by the stencil
t (5.16)
1 1] ’

For » coarse grid as in Fig. 1, a natural choice is piecewise-linear interpolation,
one example of which is the nine-point prolongation

2

i (5.17)

N e e
-l kel =

L
2

Higher-order interpolations {e.g. quadratic or cubic) can also be considered. All
these prolongation operators can easily be generalized to higher dimensions.

We have ignored here some important subtleties concerning the treatment of
the boundaries in defining the prolongation operator. Fortunately we shall not
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have to worry much about this problem, since most applications in statistical
mechanics and quantum field theory use periodic boundary conditions.

Coarse-grid Hamiltonians. What does the coarse-grid Hamiltonian Hi., look
like? If the fine-grid Hamiltonian H; is quadratic,

Hip) = %(% Awp) = (i) (5.18)
then so is the coarse-grid Hamiltonian H;_;:
Hio($) = Hile+pri-1¥) {5.19)
= %(%Ar-nﬁ)“ {d,$} + const , (5.20)
where
Ar = Pl AP {5.21)
d = pii(f ~ Aw) {5.22)

The coarse-grid problem is thus also a linear equation whose right-hand side is
just the “coarse-graining” of the residual r = f — Ayp; this coarse-graining is
performed using the adjoint of the interpolation operator pis_). The exact form
of the coarse-grid operator 4;_, depends on the fine-grid operator A; and on the
choice of interpolation operator pry_;. For example, if A; is the nearcst-neighbor
Laplacian and p;i_; is piecewise-constant injection, then it is easily checked that
Aj_, is also & nearest-neighbor Laplacian {multiplied by an extra 2¢-'). On the
other hand, if pr;_, is piecewise-linear interpolation, then A;_; will have nearest-
neighbor and nexé-nearest-neighbor terms (but nothing worse than that).

Clearly, the point is to choose classes of Hamiltonians 7; with the property that
it H, € H; and @ € U, then the conrse-grid Hamiltonian H;_, defined by (5.14)
necessarily lies in H;-,. In particular, it is convenient {though not in principle
necessary) to choose all the Hamiltoniane to have the same “functional form”; this
functional form must be one which is stable under the coarsening operation (5.14).
For example, suppose that the Hamiltonian H, is a ¢ theory with nearesi-neighbor
gradient term and possibly site-dependent coefficients:

Hig) = 5 3 (pa—pa) + X Vile:), (5.23)
le—z'§=1 =
where
Vilps) = Apy + mapy + Acpl + hatpr. (5.24)

Suppose, further, that the prolongation operator p;y_; is piecewise-constant in-
jection (5.15). Then the coarse-grid Hamiltonian Hy_,(¥) = Hi(¥ + pri-1¥) can
easily be computed: it is

Hey) = 3 T G DV et (620
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where
Vi) = XNy + a9y + AW2 + by, (5.26)
and
o' = 2a (5.27)
A= 20 (5.28)
Ky = X (4dps +Ry) (5.29)
T€H,
A, = X (8 +3map, 4 AL) (5.30)
x€B,
By = 3 (400! + 3n.9? + 24000 + b)) {5.31)
€8,

Here B, is ihe block consisting of those 2¢ sites of grid §}; which are affected
by interpolation from the coarse-grid site y € _, (see Figure 2). Note that
the coarse-grid Hamiltonian H;_, has the same functional form as the “fne-grid”
Hamiltonian Hj: it is specified by the coefficients o', X, ki, A, and &. The
step “compute H;_,” therefore means to compute these coeflicients. Note also
the importance of allowing in (5.23) for ©* and y terms and for site-dependent
coefficients: even if these are not present in the original Hamiltonian H = Hyy,
they will be generated on coarser grids. Finally, we emphasize that the coarse-grid
Hamiltonian H;_, depends implicitly on the current value of the fine-lattice field
w € Uy although our notation suppresses this dependence, it should be kept in
mind.

Basic (smoothing) iterations. We have already discussed the damped Jacobi
iteration as one possible smoother. Note that in this method only the “old” values
9" are used on the right-hand side of (5.9)/(5.10), even though for sume of the
terms the “new” value (™) may already have been computed. An alternative
algorithm is to use at each stage on the right-hand side the “newest” available
value. This algerithm is called the Gauss-Seide! steration.' Note that the Gauss-
Seidel algorithm, unlike the Jacobi algorithm, depends on the ordering of the grid
poinis. For example, if a 2-dimensional grid is swept in lexicographic order (1, 1),
(2,1, ..., (L,1), (1,2), (2,2), ..., (L,2), ..., (1, L), (2, L), ..., (L, L), then the
Gauss-Seidel iteration becomes

P = 210l e 4 o e L (532)
Another convenient ordering is the red-black (or checkerboard) erdering, in which
the “red” sublattice {}" = {z € : &) + -+ + x4 is even} is swept firat, followed by

7t is amusing to note that “Gauss did not use a cyclic order of relaxation, and ... Seidel
specifically recommended against using it” (37, p. 44n]. See also [38].
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the “black”™ sublattice (I* = {x € {: 2, + ---+ z4 is odd}. Note that the ordering
of the grid points within each sublattice is irrelevant {for the usual nearest-neighbor
Laplacian (5.1)], since the matrix A does not couple sites of the same color. This
means Lthat red-black Gauss-Seidel is particularly well suited to vector or parallel
computation. Note that the red-black ordering makes sense with periodic bound-
ary conditions only if the linear size L of the grid @, is even.

It turns out that Gauss-Seidel is a better smoother than damped Jacobi (even
if the latler is given its optimal w). Moreover, Gauss-Seidel is easier to program
and requires only half the storage space (no need for separate storage of “old” and
“new” values). The only teason we introduced damped Jacobi at all is that it is
easier Lo understand and to analyze.

Many other smoothing iterations can be considered, and can be advantageous
in anisotropic or otherwise singular problems [33, Section 3.3 and Chapters 10-11].
But we shall stick to ordinary Gauss-Seidel, usually with red-black ordering.

Thus, ST and 8" will consist, respectively, of m; and m, iterations of Lhe
Gauss-Seide] algorithm. The balance between pre-smoothing and post-smoothing
is usually not very crucial; only the total m, + m; seems to matter much. Indeed,
one (but not both!) of m; or m; could be zero, i.c. either the pre-smoathing or
the post-smoothing could be omitted entirely. Increasing m, and m. improves
the convergence rate of the multi-grid iteration, but &t the expense of increased
computational labor per iteration. The optimal tradeoffl seems to be achieved in
most cases with m, + m; between about 2 and 4. The coarsest grid {2, is a special
case: it usually has so few grid points (perhaps only one!) that §, can be an exact
solver.

The variational point of view gives special insight into the Gauss-Seidel al-
gorithm, and shows how to generalize it to non-quadratic Hamiltonians. When
updating site =, the new value ¢! is chosen so as to minimize the Hamiltonian
H(yp) = H(ws, {wy}yzs) when all the other fields {p,}, . are held fixed ai their
current values. The natural generalization of Gauss-Seidel to non-quadratic Hamil-
tonians is to adopt this variational definition: . should be the absolute minimizer
of H(p) = H(p- {@utyz=)- [If the absolute minimizer is non-unique, then one
such minimizer is chosen by some arbitrary rule.] This algorithm is called nonlin-
ear Gauss-Seide]l with exact minimization (NLGSEM) (39]. This definition of the
algorithm presupposes, of course, that it is feasible to carry out the requisite exact
one-dimensional minimizations. For example, for a ' theory it would be neces-
sary to compute the absolute minimum of a quartic polynomial in one variable.
In practice these one-dimensional minimizations might themselves be carried out
iteratively, e.g. by some variant of Newton’s method.

Cycle contrel parameters and computational labor. Usually the parameters y
are all taken to be equal, ie. 5 = 4 > 1 for 1 <1 € M. Then one iteration
of the multi-grid algorithm at level M comprises one visit to grid M, v visits lo

35

grid M - 1, 4* visits to grid M — 2, and so on. Thus, v determines the degree of
emphasis placed on the coarse-grid updates. (y =0 would correspond to the pure
Gauss-Seidel iteration on the finest grid alone.)

We can now estimate the computational labor required for one iteration of the
multi-grid algorithm. Each visit to a given grid involves m, + my (.}aus.s-Seide]
sweeps on that grid, plus some computation of the coarse-grid ]laml]tu‘man -a.nd
the prolongation. The work involved is proportional to the number of la‘ttlce points
on that grid. Let W; be the work required for these operations on grid i. Then,
for grids defined by » factor-of-2 coarsening in d dimensions, we have

W, = 2=y, (5.33)
$0 that the total work for one multi-grid iteration is

1
z 'TMJPVJ

i=A1

u
WM z (Tz—d))\l-!

t=At
Wo(l—y27%y"  ify<2, {5.34)

work{MG)

2

IA

Thus, provided that 1 < 27, the werk required for one entire multi-grid iterat-ion
is no more than (1 - 4274)~! times the work required for m + m; Gaus.s-Seidel
iterations (plus & little auxiliary computation) on the finest grid alone — irrespec-
tive of the total number of levels. The most common choices are v = 1 (which is
called the V-cycle) and 7 = 2 (the W-cycle).

Conuergence praafs. For certain classes of Hamiltonians H — primarilqr qm}dratic
ones — and suitable choices of the coarse grids, prolongations, smoothing itera-
tions and cycle control parameters, it can be proven rigorousty'” that the multi-grid
iteration matrices M; satisfy a uniform bound

Ml < C <1, (5.35)

valid irrespective of the total number of levels. Thus, a fixed number of multi-grid
iterations (maybe five or ten} are sufficient to reduce the error to a small value,
independent of the latlice size L. In other words, critical slownng-down has been
completely eliminated. _
The rigorous convergence proofs are somewhat arcane, so we ca_unot describe
them here in any detail, but certain general features are worth notu.lg, The con-
vergence proofs are most straightforward when linear or higher-order interpolation

17For a detaited exposition of multi-grid convergence proofs, sec [33, Chaptcrs} 6—8,'10, 11], {41)
and Lhe references cited therein. The additional wotk needed to handle the piecewise-consiant

interpolntion can be found in [42].
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and restriction are used, and v > 1 (e.g. the W-cycle). When either low-order inter-
polation (e.g. piecewise-constant) or 4 = 1 (the V-cycle) is used, the convergence
proofs become much more delicate. Indeed, if both piccewise-constant interpolation
and a V-cycle are used, then the uniform bound (5.35) has not yet been proven,
and it is most likely false! To some extent these features may be artifacts of the
current methods of proof, but we suspect that they do also reflect real properties
of the multi-grid method, and so the convergence proofs may serve as guidance for
practice, For example, in our work we have used piecewise-constant interpolation
(so as to preserve the simple ncarcst-neighbor coupling on the coarse grids), and
thus for safety we stick to the W-cycle. There is in any case much room for further
research, both theoretical and experimental.

To recapitulate, the extraordinary efficiency of the multi-grid method arises
from the combination of two key features:

1) The convergence estimate (5.35). This means that only (1) iterations are
needed, independent of the lattice size L.

2) The work estimate (5.34). This means that cach iteration requires only a
computational labor of order L? (the fine-grid lattice volume).

It follows that the complete solution of the minimization problem, to any specified
accuracy &, requires a computational labor of order L9,

Unigrid point of view. Let us look again at the multi-grid algorithm from the
variational standpoint. One natural class of iterative algorithms for minimizing
H are the so-called directional methods: let py,py,... be & sequence of “direction
vectors” in U, and define w/"*!) to be that vector of the form (™ + Ap, which
minimizes H. The algorithm thus travels “downhill” from ! along the line
(") + Ap, until reaching the minimum of H, then switches to direction p..,( starting
from this new point p("*1}, and so on. For a suitable chaice of the direction vectors
PurP1, ., this method can be proven to converge to the global minimum of H (39,
pp. 513-520|.

Now, some iterative algorithms for minimizing H(y) can be recognized as spe-
cial cases of the directional method. For example, the Gauss-Seidel iteration is
a directional method in which the direction vectors are chosen to be unit vec-
0I5 €1,€4,+..,€n (i.e. vectors which take the value 1 at a single grid point and
zero at all others), where N = dimU. [Onec step of the Gauss-Seidel itera-
tion corresponds to N steps of the directional method.] Similarly, it is not hard
to see [40] that the multi-grid iteration with the variational choices of restric-
tion and course-grid operators, and with Gauss-Seidel smoothing at each level,
is itgelf a directional method: some of the direction veciors are the unit vectors
e(lm, e.(,m, ciey ew:‘) of the fine-grid space, but other direction vectors are the im-
ages in the fine-grid space of the unit vectors of the coarse-grid spaces, i.e. they

ar

are pay g e[,”, PALi e-g”, el PALL ef{,{. The exact vrder in which these direction vectors

are interleaved depends on the parameters m;, m; and 5 which define the cycling
structure of the multi-grid algorithm. For example, if m, =1, m, =V and v = 1,
the order of the direction vectors is {M}, {M — 1}, ..., {0}, where {{} denotes
the sequence pary e(,'), PaLt ey), civy PALL e%:. Ifmy =0, m, =1and y = |, the
order is {0}, {1}, ..., {M}. The reader is invited to work oul other cases.

Thus, the multi-grid algorithm (for problems defined in variational form) is a
directional method in which the direction vectors include both “single-site modes”
{M?} and also “collective modes” {M — 1}, {M — 2}, ..., {0} on all length scales.
For example, if pr;_, is piecewise-constant injection, then the direction vectors are
characteristic functions x g (i.e. functions which are 1 on the block B C (I and zero
outside B), where the sets B are successively single sites, cubes of side 2, cubes
of side 4, and so on. Similarly, if pry—, is linear interpolation, then the direction
vectors are triangular waves of various widths.

The multi-grid algorithm has thus an alternative interpretation as a collective-
mode algorithm working solely in the fine-grid space /. We emphasize that this
“unigrid” viewpoint [40] is mathematically fully equivalent to the recursive defi-
nition given earlier. But it gives, we think, an important additional insight into
what the multi-grid algorithm is really doing.

For example, for the simple model problem (Poisson equation in a square), we
know that the “correct” collective modes are sine waves, in the sense that these
modes diagonalize the Laplacian, so that in this basis the Jacobi or Gauss-Seidel
algorithm would give the exact solution in a single iteration (Mot = Mus = 0).
On the other hand, the multi-grid method uses square-wave (or triangular-wave)
updates, which are not exactly the “correct” collective modes. Nevertheless, the
multi-grid convergence proofs [33, 41, 42] assure us that they are “close enough™
the norm of the multi-grid iteration matrix M; is bounded away from 1, uniformly
in the lattice size, so that an accurate solution is reached in a very few MG iter-
ations (in particular, critical slowing-down is completely eliminated). This view-
point also explains why MG convergence is more delicate for piecewise-consiant
interpolation than for piecewise-linear: the point is that a sine wave (or other
slowly varying function) can be approximated to arbitrary accuracy (in energy
norm) by piecewise-linear functions but not by piecewise-constant functions.

We remark that McCormick and Ruge [40] have advocated the “unigrid” idea
not just as an alternate point of view on the multi-grid slgorithm, but as an
allernate computational procedure. To be sure, the unigrid method is somewhat
simpler to program, and this could have pedagogical advantages. Bul one of the
key properties of the multi-grid method, namely the O(L*) computational labor
per iteration, is sacrificed in the unigrid scheme. Instead of (5.33)-(5.34) one has

W = Wy (5.36)
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and hence

(1)
work(UG) = Wy Z oAM=
i=Al
Mwy ify=1 a7
~ w751 (580
Since M = log, L and Wy, ~ L?, we obtain
LPlogL ify=1

work(UG) ~ {L"“"l&z’? ify> 1 (5.38)

For a V-cycle the additional factor of log L is perhaps not terribly harmful, but for
a W-cycle the additional factor of L is a severe drawback (though not as severe
as the O(L?) critical slowing-down of the traditional algorithms). Thus, we do
net advocate the use of unigrid as a compuiational method if there is a viable
multi-grid alternative. Unigrid could, however, be of interest in cases where true
multi-grid is unfeasible, as may occur for non-Abelian lattice gauge theories.

Multi-grid algorithms can also be devised for some models in which state space
is 2 nonlinear manifold, such as nonlinear o-models and lattice gauge theories
[21, Sections 3-5|. The simplest case is the XY model: both the fine-grid and
coarse-grid field variables are engles, and the interpolation operator is piecewise-
constant (with angles added modulo 2x). Thus, a coarse-grid variable ¢, specifies
the angle by which the 27 spins in the block B, are to be simultaneously rotated.
A similar strategy can be employed for nonlinear o-models taking values in a
group (7 (the so-called “principal chiral models”): the coarse-grid variable v,
simultaneously left-multiplies the 27 spins in the block B,. For nonlinear o-models
taking values in 2 nonlinear manifold M on which a group G acts [e.g. the n-vector
model with M = 5,_, and ¢ = SO{n)], the coarse-grid-correction moves are
still simuttaneous rotation; this means that while the fine-grid fields lie in M, the
coarse-grid fields all lie in G. Similar ideas can be applied to lattice gauge theories;
the key requirement is to respect the geometric (parallel-transport) properties of
the theory. Unfortunately, the resulting algorithms appear to be practical only in
the abelian case. (In the non-abelian case, the coarse-grid Hamiltonian becomes
too complicated.) Much more work needs to be done on devising good interpolation
aperators [or non-abelian lattice gauge theories.

5.2 Multi-Grid Monte Carlo

Classical equilibrium statistical mechanics is a natural generalization of classical
statics (for problems posed in variational form): in the latter we seek to minimize
a Hamiltonian If(), while in the former we seek to generate random samples from
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the Boltzmann-Gibbs probability distribution e ##(v), The statistical-mechanical
problem reduces 1o the deterministic one in the zero-temperature limit 8 — +co.

Likewise, many (but not all) of the deterministic iterative algorithms for min-
imizing H{p) can be generalized to stochastic iterative algorithms — that is,
dynamic Monte Carlo methods — for generating random samples from e=?%1+),
For example, the stochastic generalization of the Gauss-Seidel algorithm (or more
generally, nonlinear Gauss-Seidel with exact minimization) is the single-site heat-
bath algorithm; and the stochastic generalization of multi-grid is multi-grid Monte
Catlo.

Let us explain these correspondences in more detail. In the Gauss-Seidel algo-
rithm, the grid points are swept in some order, and at each stage the Hamiltonian
is minimized as a function of a single variable @,, with all other variables {,}, ..
being held fixed. The single-site heat-bath algorithm has the same general struc-
ture, but the new value . is chosen randomly from the conditional distribution
of e 1) given {ip,},4:, i-e. from the one-dimensional probability distribution

P(g.)dp, = const x exp [~BH (g, {eylyse)] del (5.39)

(where the normalizing constant depends on {¢,},..). It is not difficult to sce
that this operation leaves invariant the Gibbs distribution e ?#¥), As 3 — +o0
it reduces to the Gause-Seidel algorithm.

It is useful to visualize geometrically the action of the Gauss-Seidel and heat-
bath algorithms within the space U of all possible field configurations. Starting
at the current field configuration , the Gauss-Seidel and heat-bath algorithms
propose {0 move the system along the line in U consisting of configurations of the
form ¢' = @ +th, (—o0 < ¢ < oo), where 8, denotes the configuration which
is 1 at site 2 and zero elsewhere. In the Gauss-Seidel algorithm, ¢ is chosen so
as to minimize the Hamiltonian resiricted to the given line; while in the heat-
bath algorithm, t is chosen randomly from the the conditional distribution of
e~#16) restricted to the given line, namely the one-dimensional distribution with
probability density Pong(t) ~ exp[— Hoona(2)] = expl— H{g + t8,)].

The method of partial resampling generalizes the heat-bath algorithm in two
ways:

1} The “fibers” used by the algorithm need not be lines, but can be higler-
dimensional linear or ever nonlinear manifolds.

2) The new configuration ¢’ need not be chosen independently of the old con-
figuration  (as in the heat-bath algorithm); rather, il can be selected by any
updating procedure which leaves invariant the conditional probability distribution
of e~ #(#) resiricted to the fiber.

The multi-grid Monte Carlo (MGMC} algorithm is a partial-resampling algo-
rithm in which the “fibers” are the sets of field configurations that can be obiained
one from another by a coarse-grid-correction step, i.e. the sets of fields ¢ + pr, ¢
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with ¢ fixed and ¥ varying over U;_;. These fibers form a family of pareliel affine
subspaces in U}, of dimension Nr_, = dimU—,.

The ingredients of the MGMC algorithm are identical to those of the determin-
istic MQ algorithm, with one exception: the deterministic smoothing iteration S
is replaced by a stochastic smoothing iteration (for example, single-site heat-bath).
That is, 5( -, Hy) is a stochastic updating precedure ; — (] that leaves invariant
the Gibbs distribution e~

f dipy e Py (i — gt} = df e (5.40)
The MGMC algorithm is then defined as follows:

procedure mgmc(l, ¢, i)

comment This algorithm updates the field » in such a way as to leave
invariant the probability distribution e~#*1.

p — S (e, Hi)
if {> 0 then
compute Hy\(-) = Hi{lp + pra-1 * )
10
for 7 =1 until 5, do mgme({ — 1,9, H_,)
ety
endif
¢« SI™ (e, Hy)

end

The alert reader will note that this algorithm is identical to the deterministic MG
algorithm presented earlier; only the meaning of &, is different.

The validity of the MGMC algorithm is proven inductively, starting at level
0 and working upwards. That is, if mgme(l — 1, -, Hi_,) is a stochastic up-
dating procedure that leaves invariant the probability distribution e ?"i-1, then
mgme(l, -, H;) leaves invariant e/, Note that the coarse-grid-correction step of
the MGMC algorithm differs from the heat-bath algorithm in that the new config-
uration ¢’ is not chosen independently of the old configuration @; to do so would
be impractical, since the fiber has such high dimension. Rather, ¢’ (or what is
equivalent, ) is chosen by a valid updating procedure — namely, MGMC itaelf!

The MGMC algorithm has also an alternate interpretation — the unigrid view-
point — in which the fibers are onc-dimensional and the resamplings are indepen-
dent. More precisely, the fibers are lines of the form ' = @ +tya (—o0 < { < o),
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where x4 denotes the funclion which is 1 for siies belonging to the block B and
zero elsewhere, The sets B are taken successively to be single sites, cubes of side
2, cubes of side 4, and so on. (If linear interpolation were used, then the “direc-
tion vectors” xy would be replaced by triangular waves of various widths.) Just
as the deterministic unigrid algorithm chooses ¢ so as lo minimize the “condi-
tional Hamiltonian™ H.a(t) = H{p + txn), so the stochastic unigrid algorithm
chooses ¢ randomly from the one-dimensional distribution with probability den-
sity Pruna(t) ~ exp|— Homd(t)]. Conceptually this algorithm is ne more compli-
cated than the single-site heat-bath algorithm. But physically it is of course very
different, as the direction vectors y g tepresent collective modes on all length scales.

We emphasize that the stochastic unigrid algorithm is mathematicaily and phys-
ically equivalent to the multi-grid Monte Carlo algorithm described above. But it
is useful, we believe, to be able to loock at MGMC from either of the two points of
view: independent resamplings in one-dimensional fibers, or non-independent re-
samplings (defined recursively) in higher-dimensional (coarse-grid) fibers. On the
other hand, the two algorithms are not computationally equivalent. One MGMC
sweep requires 8 CPU time of order volume (provided that v < 2¢), while the time
for a unigrid sweep grows faster than the volume |cf. the work estimates (5.34)
and (5.38)]. Therefore, we advocate unigrid only as a conceptual device, not as a
computational algorithm.

How well does MGMC perform? The answer is highly model-dependent:

o For the Gaussian model, it can be proven rigorously [26, 21, 42] that =
is bounded as criticality is approached (empirically r = 1 — 2); therefore, critical
slowing-down is completely eliminated. The proof is a simple Fock-space argument,
combined with the convergence proof for deterministic MG; this will be discussed
in Section 5.3.

e For the ¢' model, numerical experiments [26] show that 7 diverges with the
same dynamic critical exponent as in the heat-bath algorithm; the gain in efficiency
thus approaches a constant facior F(A) near the critical point. This behavior can
be understood [21, Section 9.1] as due to the double-well nature of the o' potential,
which makes MGMC ineffective on large blocks. Thus, the correct collective modes
at long length scales are nonlinear excitations not well modelled by ¢+ @ + Lxx.
(See Section 6 for an algorithm that appears to model these excitations well, ai
least for A not too small.)

¢ For the d = 2 XY model, our numerical data [27] show a more complicated
behavior: As the critical temperature is approached from above, r diverges with a
dynamic critical exponent z = 1.430.3 for the MGMC algorithm (in either V-cycle
or W-cycle}, compared to z = 2.1 + 0.3 for the heat-bath algorithm. Thus, critical
slowing-down is significantly reduced but is still very far from being climinated.
On the other hand, bejow the critical temperature, 7 is very small (= 1 — 2),
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uniformly in L and 8 (at least for the W-cycle); critical slowing-down appears to
be completely eliminated. This very different behavior in the two phases can be
undersiood physically: in the low-temperature phase the main excitations are spin
waves, which are well handled by MGMC ({as in the Gaussian model); but near
the crilical temperature the important excitations are widely separated vortex-
antivortex pairs, which are apparently not easily created by the MGMGC updates.

® For the O(4) nonlinear s-model in twoe dimensions, which is asymptotically
free, preliminary data [43] show a very strong reduction, but not the total elimi-
nation, of critical slowing-down. For a W-cycle we find that z = 0.6 (I emphasize
that these data are very preliminary!). Previously, Goodman and I had argued
heutistically |21, Section 9.3] that for asymptotically free theories with a continu-
ous symmetry group, MGMC (with a W-cycle} should completely eliminate critical
slowing-down except for a possible logarithm. But our reasoning may now need
to be re-examined!

5.3 Stochastic Linear Iterations for the Gaussian Model

In this section we analyze an important class of Markov chains, the stochastic
linear iterations for Gaussian models [21, Section 8[.'* This class includes, among
others, the single-site heat-bath algorithin {with deterministic sweep of the sites),
the stochastic SOR algorithm (45, 46] and the multi-grid Monte Carlo algorithm
-~ all, of course, in the Gaussian case only. We show that the behavior of the
stochastic algorithm is completely determined by the behavior of the corresponding
deterministic algorithm for solving linear equations. In particular, we show that
the exponential autocorrelation time 7., of the stochastic linear iteration is equal
to the relaxation time of the corresponding linear iteration.
Consider any quadratic Hamiltonian

Hlg) = 3(p:49) = (f19), (5.41)

where A is a symmetric positive-definite matrix. The corresponding Gaussian

measure
dr(@) = const x e~ Howl+liw) g, (5.42)

has mean A~'f and covariance matrix 4-'. Next consider any first-order station-
ary linear stochaslic iteration of the form

P = M 4 NF o4 Qe (5.43)

where M, N and @ ate fixed matrices and the {{") are independent Gaussian
random vectors with mean zero and covariance matrix . The iteration (5.43)

'Some of this material appears also in [44].
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has a unique stationary distribution if and only if the spectral radius p(M) =
Vi, o, || M ||1/7 38 < 1; and in this case the stationary distribution is the desired
Gaussian measure (5.42) for al} f if and only if

It

N = (I-MA"! (5.44a)
QCQ" = A'-MA'M'T (5.44b)

{here ¥ denotes transpose).

The reader will note the close analogy with the deterministic linear problem
(5.3)-(5.6). Indced, (5.44a) is identical with (5.6); and if we take the “zero-
temperature limit” in which H is replaced by 8 with 8 — +oo, then the Gaussian
measure (5.42) approaches a delta function concentrated at the unigue minimum
of H {namely, the solution of the linear equation Ay = f), and the “noise” term
disappears (Q — 0), so that the stochastic iteration (5.43) turns into the deter-
ministic iteration (5.5). That is:

(2) The linear deterministic problem is the zero-temperature limit of the Gaus-
sian stochastic problem; and the first-order stationary linear deterministic iteration
is the zero-temperature limit of the fitst-order stationary linear stochastic itera-
tion. Therefore, any stochastic linear iteration for generating samples from the
Gaussian measure (5.42) gives rise to n deterministic linear iteration for solving
the linear equation (5.3), simply by setting Q = 0.

(b) Conversely, the stochaatic problem and iteration are the nonzero-temperature
generalizations of the deterministic ones. In principle this means that a determin-
istic lincar iteration for solving (5.3) can be generalized to a stochastic linear itera-
tion for generating samples from (5.42), if and only if the matrix A-' — MA-' M7
is positive-semidefiniter just choose » matrix Q satisfying (5.44b). In practice,
however, such an algorithm is computationally tractable only if the matrix Q has
additional nice properties such as sparsity (or triangularity with a sparse inverse).

Examples. 1. Single-site heat bath {with deterministic sweep of the sites) =
stochastic Gauss-Seidel. On each visit to site i, v, is replaced by a new value Iy
chosen independently from the conditional distribution of {5.42) with {p;} ., fixed
at their current values: that is, ¢! is Gaussian with mean (fi — 3,4 059, ) /. and
variance 1/a,,. When updating ¢, at sweep n 4 1, the variables p, with j < i have
already been visited on this sweep, hence have their “new” values cpﬂ"' D while
the variables w; with j > { have not yet been visited on this sweep, and so have
their “old” values \pg"). It follows that

lP'(ﬂ+|l = a (f. _ Zanj‘P_(,'"“) _ Ea'J‘P_(}"J) + rl._.'”{f"’ , (5.45)
FAL J>¥

where ¢ has covariance matrix . A little algebra brings this into the matrix form
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{5.43) with
M = —(D+ L)"LT (5.46a}
N = (D+L)-l (5.46b)
Q¢ = (D+ L)--l_[)l!2 (5.46¢)

where D and L are the diagonal and lower-triangular parts of the matrix A, respec-
tively. It is straightforward to verify that (5.44a,b) arc satisfied.'” The single-site
heat-bath algorithm is clearly the stochastic generalization of the Gauss-Seidel
algorithm. .

2. Stochastic SOR. For models which are Gaussian (or more genezally, “multi-
Gaussian”), Adler {45 and Whitmer [46] have shown that the successive over-
relaxation (SOR) iteration admits a stochastic generalization, namely

w(2—w)

12

i<i >
(5.47)
where 0 < w < 2. For w = 1 this reduces o the single-site heat-bath algorithm.
This is easily seen to be of the form (5.43) with

M = —(D+wL)’ l(w 1D+ wLT] (5.482)
N = w(D+wi)™! (5.48b)
Q = w2~ w)*D+wl)' D' (5.48¢)

where D and L are as before. It is straightforward to verify that (5.44a,b) are
satisfied '

3. Muiti-Grid Monte Carlo (MGMC). The multi-grid Monte Carlo algorithm
mgme (defined in Section 5.2) is identical to the corresponding deterministic multi-
grid algorithm mgm {defined in Section 5.1) except that S is a stochastic rather
than deterministic updating. Consider, for example, the case in which S; is a
stochastic linear updating (e.g. single-site heat-bath). Then the MGMC is also a
stochastic linear updating of the form (5.43): in fact, M equals My, theiteration
matrix of the corresponding deterministic MG method, and N equals Nyj;; the
matrix @ is rather complicated, but since the MGMC algorithm is correct,
must satisfy (5.44b). [The casiest way to sce that M = My is to imagine what
would happen if all the random numbers £1") were zero. Then the stochastic linear

IWe remark that this verification never uses the fact that I is diagonal or that L is lower
tiangular. It is sufficient tohave A = D+ L+ LT with D symmetric positive-definite snd D + L
nonsingular. However, for the method to be practical, it is important that D'/ and (D + L)~
be “easy” to compute when applied io s veclor.
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updating would reduce to the corresponding deterministic updating, and hence
the same would be true for the MGMC updating as a whole.]

‘ 4. Langevin equation with small time step. As far as | know, there does not
e).ust any useful stochastic generalization of the Jacobi iteration. However, lel us
discretize the Langevin equation

d 1
d—l': = —EC(A‘P“ f) + E ] (549)

where § is Gaussian white noise with covariance matrix C, using a small Lime step
8. The result is an iteration of the form (5.43) with

5
M = 1- EC/!A (5.50a)
§
N = §c' {5.50b)
Q = &1 (5.50¢)

This sa.tilsﬁes (5.44a) exactly, but satisfies (5.44b) only up to an error of order 6. If
C = D!, these M, N correspond to a damped Jacobi iteration withw = 6/2 < 1.

. It 'is straightforward to analyze the dynamic behavior of the stochastic linear
iteration (5.'43). Using (5.43) and (5.44) to express ©!™) in terms of the independent
random variables o}, £(0) g1 gin-1) e find after a bit of manipulation that

(") = M) + (I - M")A"'f (8.51)

and

cov(p™, 1) = M* cov(p®, oM7Y + { (A~ — MeA~ (M) (M) s <t
( )( ) M"‘[A*l _ M‘A’I(M")’E s>t

. (5.52)
Now let us either siart the stochastic process in equilibrium

() = A'f (5.53)

cov(p™,p™) = 4! (5.53b}

or eise let it relax to equilibrium by taking s,t — +oco with s ¢ fixed. Eiiher way,
we conclude that in equilibrium (5.43) defines a Gaussian stationary stochastic
process with mean A~'f and autocovariance matrix

. A Ty-s 3
ortee) = {00 S

Moreov:?r, since the stochastic process is Gaussian, all higher-order time-dependeni
correlation functions are determined in terms of the mean and autocovariance.

(5.54)
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Thus, the matrix M determines the autocorrelation functions of the Monte Carlo
algorithm.

Another way to state these relationships is to recall [47, 48| that the Hilbert
space L?(w) is isomorphic to the bosonic Fock epace (/) built on the “energy
Hilbert space”™ (I/, A): the “n-particle slates” are the homogeneous Wick polynomi-
als of degree n in the shifted field ¢ = p—- A" f, (If U is one-dimensional, these ere
just the Hermite polynomials.} Then the transition probability P{p("} — pln+1))
induces on the Fock space an operator

P=IM)=teM oM oM )o-.. {5.55)

that is the second quantization of the operator M7 on the energy Hilbert space
(see [21, Section 8] for details). It follows from (5.55) that

(IT(M)" !\ 1l||m(=r] = ]|M"“(u,_r|] (5.56)

and hence that

p(L(M) ) 14) = p(M) . (5.57)

Moreover, P is self-adjoint on L*(x) [i.e. satisfies detailed balance] if and only if
M is sell-adjoint with respect {o the energy inner product, i.e.

MA = AMT; (5.58)
and in this case
pT(MYP 1Y) = [U(M) P 1 2y = p(M) = M.y - {5.59)

In summary, we have shown that the dynamic behavior of any stochastic linear
iteration is completely determined by the behavior of the corresponding deter-
ministic linear iteration. In particular, the exponential autocorrelation time r,,,
(slowest decay rate of any autocorrelation function) is given by

exp(—1/r.,) = p(M), {5.60)

and this decay rate is achieved by ai least one observable which is linear in the
field . In other words, the (worst-case) convergence rate of the Monte Carlo algo-
rithm is precisely equal Lo the (worst-case) convergence rate of the corresponding
deterministic iteration.

In particular, for Gaussian MGMC, the convergence proofs for deterministic
multi-grid (33, 41, 42] combined with the arguments of the present section prove
rigorously that cratical slowing-down is completely eliminated (at least for a W-
cycle). That is, the autocorrelation time 7 of the MGMC method is bounded as
criticality is approached (empirically r = 1 — 2}.

6 Swendsen-Wang Algorithms

A very different type of colleclive-mode algorithm was proposed two years ago by
Swendsen and Wang [28] for Potts spin models. Since then, there has been an
explosion of work trying to understand why this algorithm works so well (and why
it does not work even better), and trying to improve or generalize it. The basic
idea behind all algorithms of Swendsen-Wang type is to augment the given model
by means of auziliary variables, and then to simulate this angmented model. In
this lecture we describe the Swendsen-Wang (SW) algorithm and review some of
the proposed variants and generalizations.

Let us first recall that the g-state Potts model [49, 50] is a generalization of the
Ising model in which each spin #; can take g distinct values rather than just two
(e = 1,2,...,q); here q is an integer > 2. Neighboring spins prefer to be in the
same staie, and pay an energy price if they are not. The Hamiltonian is therefore

H(o) = <ZJ.,(I—&,,..,,) {6.1)
13)

with J,; > ¢ for all 4,7 (“ferromagnetism”), and the partition function is

Z = ) exp|-H(o)
{=}
= Z exp [Z Jij (basr; — 1)]
{=} (i3}
= [z; Hl(l YPU) + Pu'sﬂ;‘rr‘,] (62)
e} {if)

where we have defined p,;; = 1 — exp{—J;;). The Gibbs measure gp.(a) is, of
course,

“Pﬂ“l(a) = Z_l exp {Z Jl'; (60,,51 - 1)}
(en}
= Z! H[(l - Pu) + Pljé”unﬂj} (6'3)
S
We now use the deep identity
I
a+b =3 [abuu + bb. (6.4)

=il

on each bond (ij); that is, we introduce on each bond (i3} an auxiliary variable
n,; taking the values 0 and 1, and obtain

Z = Z Z H[(l - pij)'SFJ.j.(l + P-'J‘Su,,.lha..o_,] . (6.5)

[=} {n} (5}
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Let us now take seriously the {n} as dynamica} variables: we can think of n,; as
an occupation variable for the bond (ij} (1 = occupied, 0 = empty). We therefore
define the Fortuin-Kasteleyn-Swendsen- Wang (FKSW) model to be a joint model
having g-state Potts spins o; at the sites and occupation variables n,; on the bonds,
with joint probability distribution

praswilon) = 27 [T = 2} bni0 + Piibnijiboi;] - (6.6)
(i :

Finally, let us see what happens if we sum over the {c} at fixed {n}. Each
occupied bond (ij) imposes & constraint that the spins o; and &; must be in the
same state, but otherwise the spins are unconstrained. We therefore group the sites
into connected clusters (two sites are in the same cluster if they can be joined by
& path of occupied bonds); then all the spins within a cluster must be in the same
state (all ¢ values are equally probable), and distinct clusters are independent. It
follows that

z=13% ( I P-.-) ( I a- Pu’)) ¢, {6.7)
{n} \{ij}:nij=1 (i3} ni;=0

where C(n) is the number of connected clusters (including one-site clusters) in the

graph whose edges are the bonds having n;; = 1. The corresponding probability

distribution,

pre(n) = 27 ( If Pu‘) (( II (1—Pu')) g, (6.8)

i)ini=1 i) mij=0

is called the random-cluster model with parameter g. This is a generelized bond-
percolation model, with non-local correlations coming from the factor g™ for g =
1 it reduces to ordinary bond percolation. Note, by the way, that in the random-
cluster model (unlike the Potts and FKSW models), ¢ is merely a parameter; it
can take any positive real value, not just 2,3,... . So the random-cluster model
defines, in some gense, an analyiic continuation of the Potts model to non-integer
q; ordinary bond percolation corresponds to the “one-state Potis model”.

We have already verified the following facts about the FKSW model:

8) Zpous = Zrksw = Zpe-

b) The marginal distribution of pyxsu- on the Potts variables {e} (integrating
out the {n}) is precisely the Potts model ppou.(7)-

¢) The marginal distribution of prxsi- on the bond occupation variables {n}
{integrating out the {¢}) is precisely the random-cluster model puc(n).

The conditional distributions of g5 are also simple:
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d) The conditional distribution of the {n} given the {a} is as follows: indepen-
dently for each bond (37}, one sets n,; = 0in case 0, # o,, and sets n,; == 0,1
with probability 1 — p,;, pi;, respectively, in case o, - o;.

¢} The conditional distribution of the {o} given the {n} is as lollows: indepen-
dently for each connected cluster, one sets all the spins ¢, in the cluster to
the same value, chosen equiprobably from {1,2,...,q}.

These facts can be used for both analytic and numerical purposes. For example,
by using facts (b), (c) and (e} we can prove an identity relating expectations in
the Potts model to connection probabilities in the random-cluster model:

(60;,¢J)Fa¢u.q = (5ai.r,-)FKSI1‘.q [b]" (b)J
(E(8o,0; H{n})) rrsny
((? = 1)y +1

I

q )mcsn'.u [b)’ (¢)]
<(—”“"q¢>~c@ [by (c)] (6.9)

Here

Yis

1 - .
= vyi(n) = { if i is connected to j (6.10)

0 if{is not connected to j
ar.ld E( - |{n}) denotes conditional expectation given {n}.”* For the Ising model
with the usual convention ¢ = +1, (6.9) can be written more simply as

(0i03} taing = {Vi))eca=2 - {6.11)

Similar identities can be proven for higher-order correlation functions, and can
be employed to prove Griffiths-type correlation inequalities for the Potts model
[52, 53].

On the other hand, Swendsen and Wang [28] exploited facts {b)-(e) Lo devise
a radically new type of Monte Carlo algorithm. The Swendsen-Wang algorithm
(SW) simulates the joint model (6.6) by alternately applying the conditional dis-
tributions (d} and (e) — that is, by alternately generating new bond occupation
variables (independent of the old ones) given the spins, and new spin variables
(independeat of the old ones) given the bonds. Each of these operations can be
carried out in a computer time of order volume: for generating the bond variables
this is trivial, and for generating the spin variable it relies on efficient (linear-time)
algorithms for computing the connected clusters.?’ It is trivial that the SW algo-
rithm leaves invariant the Gibbs measure (6.6), since any product of conditional

“For an excellent introduction to conditional expectations, see [51].

2'Del.ell'minillg the connected componenta of an undirected graph is & classic problem of com-
puter science. The depth-firat-search and breadth-first-senrch algorithma {54] have a running
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probability operators has this property. It is also easy to see that the algorithm
is ergodic, in the sense that every configuration {¢,n} having nonzero pyx sy -
measure is accessible from every other. So the SW algorithm is at least a correct
algorithm for simulating the FKSW model. 1t is algo an algorithm for simulating
the Potis and random-cluster models, since expectations in these two models are
equal to the corresponding expectations in the FKSW model.

Historical remark. The random-cluster model was introduced in 1969 by For-
tuin and Kasteleyn [59]; they derived the identity Zpuue = Znc, along with the
correlation-function identity (6.9) and some generalizations. These relations were
rediscovered several times during the subsequent two decades [60]. Surprisingly,
however, no one seems to have noticed the joint probability distribution gpxsn
that underlay all these identities; this was discovered implicitly by Swendsen and
Wang [28], and was made explicit by Edwards and Sokal [61].

It is certainly plausible that the SW algorithm might have less critical slowing-
down than the conventional (single-spin-update) algorithms: the reason is that a
local move in one set of variables can have highly nonlocal effects in the other.
For example, setling n, = 0 on & single bond may disconnect a cluster, causing a
big subset of the spins in that cluster to be flipped simultaneously. In some sense,
therefore, the SW algorithm is a collective-mode algorithm in which the collective
modes are chosen by the sysiem rather than imposed from the outside as in multi-
grid. {The miracle is that this is done in & way that preserves the correct Gibbs
measure.)

How well does the SW algorithm perform? In at least some cases, the perfor-
mance is nothing short of extraordinary. Table 1 shows some preliminary data [62]
on a two-dimensional Ising model at the bulk critical temperature. These data are
consistent with the estimaie ry, ~ L= [28].7 By contrast, the conventional
single-spin-flip algorithms for the two-dimensional Ising model have 7, ~ L**!
[22]. So the advantage of Swendsen-Wang over conventional algorithms (for this

time of order V, while the Fischer-Galler-Hoshen-Kopelman algorithm (in one of its variants)
{56] has & worsl-case running time of otder ¥V log V, and an observed mean running time of order
V in percolation-type problems [668]. Both of these slgorithms are non-vectorizable. Shiloach
and Vishkin [57) have invented a SIMD parallel algorithm, and we have very recently vectorized
it for the Cyber 205, obtaining a speedup of a factor of 11 over scalar mode. We are curcently
carrying out a comparative test of these three algorithma, ns a function of lattice size and bond
density [58]. In view of the extraordinary performance of the SW algorithm (see below) and
the fact that virtually all its CPU time is spent finding connected components, we feel that the
desirability of finding improved algorithms for this problem is self-evident.

*1Bul precisely becanse T rises a0 slowly with L, good estimates of the dynamic critical exponent
will require the use of eztremely large lattices. Even with lattices up to L = 512, we are unable
Lo distinguish convincingly between z & .35 and z & 0.

51

d = 2 Ising Model |
L X L
64| 1575 ( 10) ] 5.25 (0.30)
128 | 5352 ( 53) | 7.05 (0.67)
256 | 17921 (109) | 6.83 (0.40)
512 | 59504 (632) | 7.99 (0.81)

Table 1: Susceptibility x and autocorrelation time Tinte (€ = energy == slowest
mede} for two-dimensional Ising model at criticality, using Swendsen-Wang algo-
rithm. Standard error is shown in parentheses.

Estimates of zq-

_ g=1| ¢=2 [ 4¢=3 g=4
d=1 0 0 0 G
d=21 0 =035 | 0.55+0.03 ] = 1 (exact??)
d=23 0 = .75 — -
d=4 0 |1 {exact?) - —

Table 2: Current best estimates of the dynamic critical exponent z for the Swend-
sen-Wang algorithm. Estimales are taken from [28] for d = 2,3, ¢ = 2; [63] for
d =2, q=3,4; and [64] for d = 4, ¢ = 2. Error bar is a 95% confidence interval.

model} grows asymptotically like L*'7°. To be sure, one iteration of the Swendsen-
Wang algorithm may be a factor of ~ 10 more costly in CPU time than one itera-
tion of a conventional algorithm (the exact factor depends on the efficiency of the
cluster-finding subroutine). But the SW algorithm wins already for modest values -
of L.

For other Potts models, the performance of the SW algorithm is less spectacular
than for the two-dimensional Ising model, but it is still very impressive. In Table 2
we give the current best estimates of the dynamic critical exponent zy,, for ¢-state
Potts models in d dimensions, as a function of ¢ and d. All these exponents are
much lower than the z 2 2 observed in the single-spin-flip algorithms.

Although the SW algorithm performs impressively well, we understand very
little about why these exponents take the values they do. Some cases are easy.
If ¢ = 1, then »ll spins are in the same state (the only state!), and all bonds are
thrown independently, so the autocorrelation time is zero. (Here the W algorithm
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just reduces to the standard static algorithm for independent bond.per'colal.iou.)
If d = 1 (more generally, if the lattice is a tree), the SW dynamics is exacily
soluble: the behavior of each bond is independent of each other bond, and T‘f"‘ —»
—1/log(l - 1/g) < o0 as § — +oo. But the remainder of our understanding is
very murky. Two principal insights have heen obtained so far:

a) A calculation yielding zsn- = lin a mean-field (Curie-Weiss} lsing mOflel
[65]. This suggests {but of course does not prove) that zzu = 1 for Ising
models {¢ = 2} in dimension d > 4.

b) A rigorous proof that zsiw > a/w [63]. This bound, \.vhil‘e Vﬂitfl for all d
and g, is extremely far from sharp for the leing models in dlmenmons.3 and
higher. But it is reasonably good for the 3- and 4-state Potts models in two
dimensions, and in the latter casc it may even be sharp.

But much remains to be understood! -
The Potts model with g large behaves very differently. Instead of a crll.:cial
point, the model undergoes a firsi-order phase transition: in two dimensions, this
occurs when g > 4, while in three or more dimensions, it is believed to occur dfeady
when g > 3 {50). At a first-order transition, both the conventional algorithms
and the Swendsen-Wang algorithm have an extremely severe slowing-down (rru.;ch
more severe than the slowing-down at a critical point): right at the trmsl’.non
temperature, we expect 7 ~ exp(cL?™1), This is because sets of conﬁguratlf)lls
typical of the ordered and disordered phases are separated by free—t‘anc'rgy barriers
of order L#~!, i.e. by sets of intermediate configurations that contain interfaces of
surface area ~ L%~ and therefore have an equilibrium probability ~ exp(—cL* ').

Wolff [66] has proposed a interesting meodification of the SW algorithm, in
which one builds only a single cluster (starting at & randomly chosen site) u{d
flips it. Clearly, one step of the single-cluster SW algorithm makes less change in
the system than one step of the standard SW algorithm, but it also takes much
less work. If one enumerates the cluster using depth-fizat-search or breadth-first-
search, then the CPU time is proportional to the size of the cluster; and b)( -thc
Fortuin-Kasteleyn identity (6.9), the mean cluster size is equal to the susceptibility:

v = Z(%"T‘l_—l) = x. (6.12)

+

So the relevant quantity in the single-cluster SW algorithm is the dynamic critical
exponent measured in CPU units:

¥
Zl—cluster L P = Z)—cluwler — (d_ ;) . (6'13)
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The value of the single-cluster algorithm is that the probability of choosing a
cluster is proportional to ita size (since we pick a random site), so the work is
concentrated preferentially on larger clusters — and we think that is these clusters
which are most imporiani near the critical point. So it would not be surprising
if zi_ctuster oy were smaller than zgy . Preliminary measurements indicate thai
Zy—ctuster,cPy 18 8bout the same a8 25y for the two-dimensional Ising model, but
is significantly smaller for the three- and four-dimensional lsing models [67]. But
a convincing theoretical understanding of this behavior is lacking.

Several other generalizations of the SW algorithm for Potts models have been
proposed. One is a multi-grid extension of the SW algorithm: the idea is to carry
out only a partial FKSW transformation, but then to apply this concept recursively
[68]. This algorithm may have a dynamic critical exponent that is smaller than
that of standard SW (but the claims that z = 0 are in my opinion unconvincing).
A second generalization, which works only in fwo dimensions, augments the SW
algorithm by transformations to the dual lattice {69]. This algorithm appears
to achieve a modest improvement in crilical slowing-down in the scaling region
18— 8|~ L\,

Finally, the SW algorithm can be generalized in a straightforward manner to
Potts lattice gauge theorics (more precisely, lattice gauge theories with a finite
abelian gauge group G and Polts (6-function} action). Preliminary results for the
three-dimensional Z; gauge theory yield a dynamic critical exponent roughly equal
to that of the ordinary SW algorithm for the three-dimensional Ising model {to
which the gauge theory is dual) [70].

In the past year there has been a flurry of papers trying to generalize Llie SW
algorithm to non-Potits models. Interesting proposals for a direct geueralization
of the SW algorithm were made by Edwards and Sokal [61] and by Niedermayer
[71}. But the most promising ideas at present seem to be the embedding algorithins
proposed by Brower and Tarmayo [72] for one-component ¢! models and by Wolff
|66, T3] for multi-component O(n)-invariant models,

The idea of the embedding algorithms is to find Ising-like variables underlying
a general spin variable, and then to update the resulting Ising model using the
ordinary SW algotithm (or the single-clusier variant). For one-component spins,
this embedding is the obvious decomposition into magnitude and sign. Consider,
therefore, a one-component model with Hamiltonian

H(?) = _ﬂZ‘Ft ‘P + Z V(V’J’) ] (6‘14)

{=v) z

where 8 2> 0 and V{p) = V(—). We write

Yr = Ex I?rl ) (6.15)
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where the signs {e} are lsing variables. For fized values of the magnitudes {|p|},
the conditional probability distribution of the {¢} is given by an Ising model with
Jerromagnetic (though space-dependent} couplings J., = Ble.|lg,|- Therefore,
the {e} model can be updated by the Swendsen-Wang algorithm. (Heat-bath or
MGMC sweeps musi also be performed, in order to updaie the magnitudes.) For
the two-dimensional ¢’ model, Brower and Tamayo [72] find a dynamic critical
behavior identical to that of the SW algorithm for the two-dimensional Ising model
— just as one would expect based on the idea that the “important” collective
modes in the ¢! model are spin flips.

Wolfl’s embedding algorithm for n-component models (n > 2) is equally simple.
Consider an O{n)-invariant model with Hamiltonian

He) = 83 0,0, + Y. V(o)) (6.16)

{aw} z

with @ > 0. Now fix a unit vector r € IR"; then any spin vector o, € R” can be
written uniquely (except for a set of measure zero} in the form

o, = ol teda. rr, (6.17)

where

ol = o, (o.-1)r {6.18)

£

is the component of o, perpendicular to r, and
€. = sgn{e.-r) (6.19)

takes the values +1. Therefore, for fized values of the {o'} and {|o - r|}, the
probability distribution of the {¢} is given by an Ising model with ferremagnetic
couplings J,, = Bl - r|le, - r|. The algorithm is then: Choose at random a unit
vector r; fix the {o'} and {|o - r({} at their current values, and update the {c} by
the standard Swendsen-Wang algorithm (or the single-ciuster variant). Flipping
€, corresponds to reflecting &, in the hyperplane perpendicular to r.

At first thought it may seem strange (and somehow “unphysical®} to try io
find Ising-like (i.e. discrete) variables in & model with a conlinuous symmetry
group. However, upon reflection {pardon the pun) one sees what is going on: if
the spin configuration is slowly varying {e.g. a long-wavelength spin wave), then the
clusters tend to break along the surfaces where J,, is small, hence where o -r 2 0.
Then flipping £, on some clusters corresponds to a “soft” change near the cluster
boundaries but a “hard” change in the cluster interiors, i.e. a long-wavelength
collective mode (Figure 4). So it is conceivable that the algorithm could have
very small (or even zero!) critical slowing-down in models where the important
large-scale collective modes are spin waves.
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Figure 4: Action of the Wolfl embedding algorithm on a long-wavelengih spin
wave. For simplicity, both spin space (o) and physical space (&) are depicted as
one-dimensional.

Even more strikingly, consider a two-dimensional XY -model configuration con-
sisting of a widely separated vortex-antivortex pair: in the continuum limit this is
given by

#(z) = Imlog{z —a) — Imlog(z + a) (6.20)

where z = @, + iz, and & = {cos#,sin#). Then the surface & - ¢ = 0 is an ellipse
passing directly through the vortex and antivortex®. Reflecting the spins inside
this ellipse produces a configuration {s,,.,,} that is a continuous map of the doubly
punctured plane into the semicircle | = 1, o -1 > 0. Such a map necessarily has
zero winding number around the points 1a. So the Wolfl update has destroyed
the vorticity/*

Therefore, the key collective modes in the two-dimensional XY and O(n) mod-
els — spin waves and (for the XY case) vortices -— are well “encoded” by the Ising
variables {}. So it is quite plausible that critical slowing-down could be elimi-
nated or almost eliminated. In {act, tests of this algorithm on the two-dimensional
XY (n = 2), classical Heisenberg (n = 3) and (}(4) models are consistent with the
complete absence of critical slowing-down [73, 74].

In view of the exiraordinary success of the Wolff algorithm for spin models,
il is tempting to try to extend it to lattice gauge theories with continuous gauge
group {for example, U(1), SU(N} or SG(N)]. But I have nothing to reporl at
present!

*With r = (cos ¢, sin¢), the equation of this ellipse is z} + (z; + a tang)? = ¥ sec” .

'This picture of the action of the Wolff algorithm on vortex-antivortex pairs was developed
in discussions with Richard Brower and Robert Swendsen.
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7 Algorithms for the Self- Avoiding Walk

An N-step self-avoiding walk w on a lattice  is & sequence of distinct points
Wiy Wiy -y in L such that each point is a nearest neighbor of ite predecessor.
Let cx [resp. cn(2)] be the aumber of N-step SAWs starting at the origin and
ending anywhere [resp. ending at z]. Let (w}) be the mean-square end-to-end
distance of an N-step SAW. These quantitics are believed to have the asymptotic

behavior

o ~ u N (r)
en(z) ~ pt Nt (o fixed # Q) (7.2)
Wiy ~ N (13)

as N — oo; here 7, ayig and » are critical exponents, while g (the connective con-
stant of the lattice) is the analogue of a critical temperature. The SAW has direct
application in polymer physics {75], and is indirectly relevant to ferromagnetism
and quantum field theory by virtue of its equivalence with the n — 0 limit of the
n-vector model [76].

The SAW has some advantages over spin systems for Monte Carlo work: Firstly,
one can work directly with SAWs on an infinite lattice; thete are no systematic
errors due to finite-volume corrections. Secondly, there is no L {or &) factor
in the computational work, so one can go closer to criticality. Thus, the SAW
is an exceptionally advantageous “lghoratory” for the numerical study of critical

phenomena.
Different aspects of the SAW can be probed in three different ensembles’®:
» Free-endpuint grand canonicel ensemble (variable N, variable =)
e Fixed-endpoint grand canonical ensemble (variable N, fixed x)
« Canonical ensemble (ﬁxet@ N, variable z)

In the remainder of this section we survey some typical Monte Carlo algorithms
for these ensembles.

Free-endpoint grand canonical ensemble. Here the configuration space 5 is the
get of all SAWs, of arbitrary length, starting at the origin and ending anywhere.
The grand partition function is

oo

E(B)= 3 A" en (7.4)

N=u

#57The proper terminclogy for ihese ensembles is unclear to me, Perhaps the grand canoni-
cal and canopical ensembles ought to be called “canonical” and “microcanonical”, respectively,
reserving the term “grand ical” for bies of many SAWs.
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and the Gibbs measure is

m(w) = Z(8)" x A (7.5)

The “monomer activity” 3 is a user-chosen parameter satisfying 0 < < 3. == u~'.
‘As ﬁ approaches the eritical activity 8., the average walk length {N) tends to
infinity. The connective constant g and the critical exponent y can be estimaled
from the Monte Carlo data, using the method of maximum likelihood |77].

A dynamic Monte Carlo algorithm for this ensemble was proposed by Berrelti
and Sokal [77}. The algorithm’s clementary moves are as follows: either one at-
tem]?ts to append a new step to the walk, with equal probability in each of the g
possible directions (here g is the coordination number of the lattice); or else one
deletes the last step from the walk. In the former case, one must check that ihe
proposed new walk is self-avoiding; if it isn't, then the attempted move is rejected
and the old configuration is counted again in the sample {“null transition”). If an
a_tter-npt is made to deiete a step from an already-empty walk, then a null transi-
tion is also made. The relative probabilities of AN = 41 and AN = —1 attempts
are chosen to be

P(AN = +1 attempt) = 22 '
( attempt) T+ a8 (7.6)
P(AN = -1 attempt) = ——

( empt) = an
Therefore, the transition probability matrix is
T%XS;\\\'(W’) Hw < '
plw —o') = -]—+‘7.—£ fw <worw=w =0 (7.8)
T&—‘,A(w) fw=uw=20
where
_ 1 ifoisa SAW
xsaw{w') = {
W) = 10 £ is not  SAW (7.9)

Here w < w’ denotes that the walk ' is & one-step extension of w; and A{w) is the
numlte.r of non:selﬁavoiding walks o’ with w < ', It is easily verified that this
transition matrix satisfies detailed balance for the Gibbs disiribution x, i.e.

r(w)plw = w') = w(w)plw’ - w) (7.10)

for -a.ll. w,w' € 5. It is also easily verified that the algorithm is ergodic {= irre-
ducible): to get from a walk w to another walk o', it suffices to use AN = |

moves to transform w into the empty walk @, and then use AN =
- ' i - 1
build up the walk w'. ’ Hmoves to
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Let us now analyze the critical slowing-down of the Berretti-Sokal algorithm.
We can argue heuristically that

T~ (V)R (7.11)

To see this, consider the quantity ¥(¢) = |w|(t), the number of steps in the walk
at time t. This quantity executes, crudely speaking, a random walk {with drift) on
the nonnegative integers; the average time Lo go from some point N to the point
0 (i.e. the empty walk) is of order N?. Now, each time the empty walk is reached,
&l memory of the past is erased; future walks are then independent of past ones.
Thus, the antocorrelation time ought to be of order (N?}, or equivalently {(N)%.

This heuristic argument can be turned into a rigorous proof of a lower bound
7 > const x {N)? [11]. However, as an argument for an upper bound of the same
form, it is not entirely convincing, as il assumes without proof that the slowest
mode is the one represented by N(t), With considerably more work, it is poasible
to prove an upper bound on 7 that is only slightly weaker than the heuristic
prediction: = < const x {N)!'*7 [11, 78].*5 (Note that the critical exponent v is
believed to equal 43/32 in dimension d = 2, = 1.16 ind = 3, and 1 in d > 4.)
In fact, we suspect [79] that the true behavior is T ~ {N)P for some exponent
p strictly between 2 and 1 + v. A deeper understanding of the dynamic critical
behavior of the Berretti-Sokal algorithm would be of definite value.

It is worth comparing the computational work required for SAW versus Ising
gimulations: (N)?* ~ g¥4/v = =34 for the d = 3 SAW, versus {442 = ¢
(resp.£=**) for the d = 3 Ising model using the Metropolis (resp. Swendsen-Wang)
algorithm. This vindicates our assertion that the SAW is an adventageous model
for Monte Carlo studies of critical phenomena.

Fized-endpoint grand canonical ensemble. The configuration space S is the set
of all SAWSs, of arbitrary length, starting at the origin and ending at the fixed site
z (# 0). The ensembleis as in the {ree-endpoint case, with cy replaced by Nen(z).
The conneciive constant x and the critical exponent oy can be estimated from
the Monte Carlo data, using the method of maximum likelihood.

A dynamic Monte Carlo algorithm for this ensemble was proposed by Berg and
Foerster [80] and Aragio de Carvalho, Caracciolo and Fréhlich (BFACF) {76, 81].
The elementary moves are local deformations of the chain, with AN = 0,12. The
critical slowing-down in the BFACF algorithm is quite subtle. On the one hand,
Sokal and Thomas [82] have proven the surprising result that 7.,, = +oo for all
B # 0 (see Section 8). On the other hand, numerical experiments [13, 83] show
that 7ien ~ (NY'E (in d = 2). Clearly, the BFACF dynamics is not well
understood at present: further work, both theoretical end numerical, is needed.

AN these proofs are discussed in Section B.
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In addition, Caracciolo, Pelissetio and Sokal (83] are studying & “hybrid” algo-
rithm that combines local (BFACF) moves with non-local {cut-and-paste) moves,
The critical slowing-down, measured in CPU unils, appears Lo be reduced slightly
compared to the pure BFACF algorithm: 7 ~ (N} jn d = 2.

Canonical ensemble. Algorithms for this ensemble, based on local deformations
of the chain, have been used by polymer physicists for more than 25 years [84, 85).
So the recent proof [86] that all such algorithms are nonergodic (= not irreducible)
comes as a slight embarrassment. Fortunately, there does exist a non-local fixed-
# algorithm which is ergodic: the “pivot” algorithm, invented by Lal {87] and
independently reinvented by MacDonald et al, [88] and by Madras |17]. The
elemeniary move is as follows: choose at random a pivol point k along the walk
{1 £ k£ £ N —1); choose at random a non-identity element, of the symmetry group
of the lattice (rotation or reflection); then apply the symmetry-group element to
Wet)y -y wy using wi a8 & pivot. The resulting walk is accepled if it is self-
avoiding; otherwise it is rejected and the walk w is counted once more in the
sample. It can be proven [17] that this algorithm is ergodic and preserves the
equal-weight probability distribution.

At first thought the pivot algorithm sounds terrible (ai least it did to me}:
for N large, nearly all the proposed moves will get rejected. This is in fact true:
the acceptance fraction behaves N~* a8 N — oo, where p=019ind = 2 [17].
On the other hand, the pivot moves are very radical: after very few (5 or 10}
accepled moves the SAW will have reached an “essentially new” conformation.
One conjectures, therefore, that + ~ N7 Actually it is necessary to be a bit more
careful: for global observables f (such as the end-to-end distance w?; ) one expecis
Tty ~ NP; but local observables (such as the angle between the 17" and 18
bonds of the walk) are expected to evolve a factor of N more slowly: 7.5 ~
N'*P. Thus, the slowest mode ia expected to behave as Toep ~ N''7_ For the
pivot algorithm applied to ordinary random walk one can calculate the dynamical
behavior exactly [17]: for global observables f the autocorrelation funciion behaves
roughly like

Pty ~ 3 (1 —%)t , (1.12)

from which it follows that

Tint g =~ lOg N (713)
Teapy ~ N (7.14)
— in agreement with our heuristic argument modulo logarithms. For the SAW,

it is found numerically {17] that Tine,y ~ N5 in d = 2, also in close agreement
with the heuristic argument.
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A careful analysis of the computational complexity of the pivot algorithm (36}
shows that one “effectively independent” sample (at least as regards global observ-
ables) can be produced in a computer time of order N. This is a factor N more
efficient than the Berretti-Sokal algorithm, a fact which opens up exciting prospecis
for high-precision Monte Carlo studies of critical phenomena in the SAW. Thus,
with a modest computational effort (300 hours on a Cyber 170-730), Madras and
I found » = 0.7496 + 0.0007 (95% confidence limits) for 2-dimensional SAWs of
lengths 200 < N < 10000 [17]. We hope to carry out soon a convincing numerical
test of hyperscaling in the three-dimensional SAW.

8 Rigorous Analysis of Dynamic Monte Carlo
Algorithms

In this final lecture, we discuss techniques for proving rigorous lower and upper
bounds on the autocorrelation times of dynamic Monte Carlo algorithms. This
topic is of primary interest, of course, to mathematical physicists: it consiitutes
the first steps toward a rigorous theory of dynamic critical phenomena, along lines
paralle]l to the well-established rigorous theory of static critical phenomena. But
these proofs are, 1 believe, also of some importance for practical Monte Carlo work,
as they give insight into the physical basis of critical slowing-down and may point
towards improved algorithms with reduced critical slowing-down.

There is a big difference between the techniques used for proving lower and
upper bounds, and it is easy to understand this physically. To prove a lower bound
on the autocorrelation time, it suffices to find one physical reason why the dynamics
should be slow, i.e. to find one “slow mode”. This physical insight can often be
converted directly into a rigorous proof, using the variational method described
below. On the other hand, to prove an upper bound on the autocorrelation time,
it is necessary to understand all conceivable physical reasons for slowness, and
to prove that none of them cause too great & slowing-down. This is extremely
difficult to do, and has beea carried to completion in very few cases.

We shall be obliged to restrict attention to reversible Markov chains [i.e. those
satisfying the detailed-balance condition (2.27)], as these give rise to seif-adjoint
operators. Non-reversible Markov chains, corresponding to non-self-adjoint oper-
ators, are much more difficult to analyze rigorously.

The principal method for proving lower bounds on 7., (and in fact on 7.,s)
is the variational (or Rayleigh-Ritz) method. Let us recall some of the theory of
reversible Markov chains from Section 2: Let x be a probability measure, and let
P = {p.y} be & transition probability matrix that satisfies detailed balance with
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respech to x. Now P acts naturally on functions (observables) according Lo

(Pf)(z) = z Py S5} (8.1)

In particular, when acting on the space I*(r) of m-square-integrable funvtions, the
operator P is a self-adjoint contraction. Its spectrum therefore lies in the interval
[=1,1]. Moreover, P has an eigenvalue 1 with eigenvector equal Lo the constant
function 1. Let I be the orthogonal projector in {*(x) onto the censtant funciions.
Then, for each real-valued observable f ¢ I*(x), we have

Cp(t) = (f, (P -
= (f, (I - M)PH(I - 1I}f) (8.2)

where (g,h) = (g" h)x denotes the inner product in {*(x). By the spectiral theorem,
this can be written as

Cilt) = j: Al dypi(A), (8.3)

where dyyy is a positive measure. It follows that

1L 2 dvg(d)

2 f1 dvyy(3)

114 pgp(1)

21— pp(1)

by Jensen's inequality (since the function A — (1 4+ A)/(1 ~ A} is convex).*’

Qur method will be to compute explicitly a lower bound on the normalized
autocorrelation function at time lag 1,

Tint,} =

> (8.4)

prs(l) = giﬁ;;, (8.5}

for a suitably chosen trial observable f. Equivalently, we compute an upper bound
on the Rayleigh quotient

el - S

The crux of the matter is to pick a trial observable f that has a strong enough
overlap with the “slowest mode”. A useful formula is

(= PY) = 3 Eapa 1f(2) - SO ®7)

*71t also follows from (8.3) that p;s(t) 2 oy (1) for even values of €. Morcover, this holds
for odd values of ¢ if dvyy is supported on A > 0 (though not necessarily otherwise); this is the
casc for the heat-bath and Swendsen-Wang algorithms, in which P > 0. Therefore, the decay as
t — oo of py;(t) is also bounded below in terms of py;(1).
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That is, the numerator of the Rayleigh quotient is half the mean-square change in
f in a single time step.

Example 1. Single-site heat-bath-algorithm. Let us consider, for simplicity, a
translation-invariant spin model in a periodic box of volume V. Let P, = {F(p —
¢')} be the transition probability matrix associated with applying the heat-bath
operation at site 1.2 Then the operator P, has the following properties:

(a} P, is an orthogonal projection. (In particular, P = P, and 0 < P, < I.)
(b) P1 = 1. (In pariicular, 1P, = A1l = I}

{¢) P.f = fif [ depends only on {g;};4. (In fact a stronger property holds:
FP.(fg) = fP.gil f depends only on {;};z. Bul we shall not need this.)
For simplicity we consider only random site updating. Then the transition matrix
of the heat-bath algerithm is

P = %);P,-. (8.8)

We shall use the notation of the lsing model, but the same proof applies to much
more general models.

As explained in Section 4, the critical slowing-down of the local algorithms
(such as single-site heat-bath) arises from the fact that large regions in which
the net magnetization is positive or negative tend to move slowly. In particular,
the total magnetization of the lattice fluctuates slowly. So it is natural to expect
that that the total magnetization M = 3, o; will be a “slow mode”. Indeed, let
us compule an upper bound on the Rayleigh quotient (8.6) with f = M, The
denominator is

(M, (I -TM) = (M") - (M)* = Vx (8.9)
(since {M) = 0 by symmetry). The numerator is

> e (- Baw)

1 o
= v 2(‘“1 (I — B)o)
L
‘V" ;(Uﬁ U,)

l 2
= V;(".)
= 1. (8.10)

It

(M, (I — P)M)

[Fa

**Probabilistically, P; is the conditional expectation E7( - {{y;}, ). Analytically, P is the
orthogonal projection in {#{x) onto the linear subspace consisting of functions depending only

on {@, )y
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Here we first used properties () and (c) to deduce that (v, ({ ~ P,}o.) = 0 unless
i =j =k, and then used property () to bound (a,, (/ — P)e,). 1t follows from
(8.9) and (8.10) that

1
1~ 1) < —— .
prum(l) < Vx {8.11)
and hence that 1
Tinem 2 Vx — 7 (8.12)

Note, however, that here time is measured in hits of a single site. If we measure
time in hits per site, then we conclude that

rgf_if) > x- % = x. (8.13)
This proves a lower bound (89, 90, 91) on the dynamic critical exponent z, namely
z > q/v. (Here v and v are the static critical exponents for the susceptibility
and cotrelation length, respectively. Note that by the usual siatic scaling law,
¥/v = 2—5; and for most models 3 is very close to zero. So this argument almost
makes rigorous (as & lower bound) the heuristic argument that z ~ 2)

Virtuaily the same argument applies, in fact, to any reversible single-site al-
gorithm (e.g. Metropolis). The only difference is that the property 0 < P < [ is
replaced by —I < P, < I, so the bound on the numerator is & factor of 2 larger.

Hence
£HPS)

O BT (8.14)

>
boipe

Example 2. Swendsen- Wang algorithm. Recall that the SW algorithm simulates
the joint model (6.6) by alternately applying the conditional distributions of {n}
given {s}, and {o} given {n} — that is, by alternately generating new bond
occupation variables (independent of the old ones) given the spins, and new spin
variables (independent of the old ones) given the bonds. The transition matrix
Psy = Psn-({e,n} — {o’,n'}) is therefore a product

Pow = PiondPepin (8.15)

where P, 15 the conditional expectation operator E(-|{c}),and P, is E( - Hn}).
We shall use the variational methed, with f chosen to be Lhe hond density

f=N=>3%n,. (8.16)
{is)

To lighten the notation, let us write &,, = 6,, ., for a bond b = {ij}. We then have

E(ml{c}) = n &,y (8.17)
E{mpnpl{c}) = ppwds, s, forb£ 1 (8.18)
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it follows from (8.17) that

{nult = B)mes(t = 1))

{ms E(E(nw|{e})|{n}))
(ny E(nw|{z}))

= (E(m|{o}) E(neH{o}))
= popu (Boy b0, ) - (8.19)
The corresponding truncated (connected) correlation function is cleatly
(mo(t = 0)smp(t = 1)) = popw (Baribey) s (8.20)

where {A; B) = (AB) — {A)(B}. We have thus expressed & dynamic cortelation
function of the SW algorithm in terms of a static correlation function of the Potts
model,

Now let us compute the same quantity at time lag 0: by (8.18), for b # b' we
have

{np{t = 0)np(t =0)) = popw (b, 6s,) (8.21)
and hence
{mo(t = 0);mu(t = 0)) = popw {deyi0s,) - (8.22)
On the other hand, for b = & we clearly have
(molt = 0)5ma(t = 0)) = (m) — (ms}’
= B (Sﬂ) - Pz (6¢'a)2 ' (8‘23)

Consider now the usual case in which

| p forbe B 8.24
p = {0 otherwise (8.24)

for some family of bonds H. Combining (8.20), (8.22) and (8.23) and summing

over b, &, we obtain

N(E=0)iN(t=1)) = F(E:€) (8.25)
(Nt=0);N(t=0)) = p"(€;€) —p(l - p)E) (8.26)
where £ = —~ Tycnba, < 0 is the encrgy. Hence the normalized autocorrelation

function at time lag 1 is exactly
1 = Ne=0);NE=1)) _, -(1—-p)E
v ) = =0y NGE=0) | #Cn-(-PIE’

where E = V='{£) is the mean energy and Cy = V~'(£;£) ia the specific heat
(V is the volume). At criticality, p — pou > 0 and E — E.y <0, 50

(8.27)

const

Cu

pun(l) 2 1- (8.28)
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We now remark that altheugh Psiv = Fuut Puyas 15 not self-adjoint, the modified

transilion matrix Py = Popin Paond Papn 18 self-adjoint (and positive-semidefiuite},
and A has the same autocorrelation function for both:
(N’ (P""ﬂdpﬂplﬂ)‘ N) = (N! (Plmehundem)t N) (829)
Ii follows that
pan(t) = (1 2 (1 - consl./C”)“l (8.30)
and hence
Tin 2 const x Cy . (8.31)

This proves a lower bound [63] on the dynamic critical exponent z.y1, namely
zsu- > afv. (Here a and v are the static critical exponents for the susceptibility
and correlation length, respectively.} For the two-dimensional Potts models with
g = 2,3,4, it 15 known exactly (but non-rigurously!) that a/v = 0,%,1, with
multiplicative logarithmic corrections for g = 4 [92]. The bound on z4 may be
conceivably be sharp (or sharp up to a logarithm) for g = 4 [63}.

Example 3. Berretti-Sokal algorithm for SAWs. Let us consider the observable
flw) = |w| (= N}, (8.32)

the total number of bonds in the walk. We have argued heuristically that v ~ (N},
we can now make this argument rigorous as a lower bound. Indeed, it suffices to
use (B.7): since the maximum change of |w| in a single time step is *1, it follows
that

1

(LU-P) < 5. (8.33)

On the other hand, the denominator of the Rayleigh quotient is
(£ (I=M)f) = (N*) - (N)*. (8.34)

Assuming the usual scaling behavior (7.1) for the cn, we have
i

Ny = 8.35
™ =~ 5 (8.35)
NY) = 2y +1) 8.36
vy ~ Z2 (8.36)

asymplotically as 8 T 3. = p~?, and hence

Tit,y > const x (N)%. {8.37)

A very different approach to proving lower bounds on the autocorrelation time
Tecp 15 the minimum hitting-time argument [82]. Consider a Markov chain with
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transition matrix P satisfying detailed balance for some probability measure m. If
A and 13 are subsets of the state space 5, let T4 be the minimum time for getling
from A to B with nonzero probability, i.e.

Tin = min{n: pg';) > 0 forsome z € 4, y € B} (8.38)

Then the theorem asserts that if Ty is large and this is not “justified” by the
rarity of A and/or B in the equilibrium distribution «, then the autocorrelation
time r.,;, must be large. More precisely:

Theorem 2 Consider a Markov chain with transition matriz P satisfying detailed
balance for the probability measure x. Let Ty be defined as in (8.38). Then

2(Tyn -~ 1)

p e 8.39
2 S g (x(AV=(B) (8:39)
Puoor. Let A,B C 5, and let n < Ty5. Then, by definition of T4,
(x4, P'xple) = 3, meply) = 0. {8.40)
ven
On the other hand, P1 = P1 = 1. It follows that
{xa - w(AN, P"(xy — n(B)1) )l’(w) = —-r{A)(H). (8.41)
Now since P is a self-adjoint operator, we have
1P Pt = |1ty = R, (8.42)

where R = e~'/™= is the spectral radius (= norm) of P } 1+, Hence, by the
Schwarz inequality,

|(x.-1 —=(A)L, P*(xs — 1})p(y
< R xa ~ (ANl lixs — x(B)1 |
= R w(A) (1 - (A (B)/ (1 - n(B))'?
< R"x(A)x(B)/* (8.43)

Combining (8.41) with (8.43) and taking n = T,n — 1, we atrive after a little
algebra at (8.39). O

REMARK. Using Chebyshev polynomials, a stronger bound can be proven: roughly
speaking, 7.., is bounded below by the square of the RHS of (8.39). For details,
see (82, Theorem 3.1].
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Let us apply this theorem to the BFACF algorithm for variable-lenglh fixed-
endpoint SAWs. Let w* be a fixed short walk from 0 1o z, and let w" be a quasi-
reclangular walk from 0 to = of linear size = n. Then w{w") ~ 1 and w{w") ~ g,
so that —log{x(w*)m(w")) ~ n. On the other hand — and this is the key point
— the minimum time required to get from w™ to w" (or vice versa) in the BFACF
algorithm is of order n?, since the surface area spanned by w” Uw" can change by
at most one unit in a local deformation. Applying the theorem with 4 = {w"}
and B = {w"}, we obtain

~ n?

Teap 2 sup —— — = oo (8.44)

As noted at the beginning of this lecture, it is much more difficuli to prove
upper bounds on the antocorrelation time — or even to prove that T, m <00 —
and few nontrivial results have been obtained so far.

The only general method (to my knowledge) for proving upper hounds on
the autocorrelation time is Cheeger’s inequality [78, 93, 94], the basic idea of
which is to search for “boltlenecks” in the state space. Consider first the rate of
probebility flow, in the stationary Markov chain, from a set A to its complement
A*, normalized by the invariant probabilities of 4 and Ac:

TrPr
k(4) = ceiers ™ P = Do Pxacdeis) (8.45)
T w(A)x(4) w(A) (A7) '
Now look for the worst such decomposition into A4 and A"
k= A:O(lfrl{l:U(l k(A). {8.46}

If, for some set A, the flow from A to 4" is very small compared to the invariant
probabilitics of A and A4°, then intuitively the Markov chain musi have very slow
convergence to equilibrium {the sets A and A" are “metastable™). For reversible
Markov chains a trivial variationzl argument makes this intuition rigorous: just
take f = x.,. What is much more exciting is the converse: if there does not
exist a set A for which the flow from 4 to A is unduly small, then the Markov
chain must have rapid convergence to equilibrium, in the sense that the modified
autocorrelation time 7/, is small. The precise statement is the following [78,
Theorem 2.1):

Theorem 3 Let P be a transilion probability matriz salisfying delailed balance
for =, and let k be defined as above. Then
-1 . -1

3 A g — 8.47
logT—k) = " = log(1 - &) (847)
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The proof is not difficult, but enough is enough — the interested reader can
look it up in the original paper.

Since this is a two-sided bound, we see that 7/, is finite if and only if k > 0.
So in principle Cheeger’s inequality can be used to prove exponential convergence
to equilibrinm whenever it holds. But in practice it is almost impossible to control
the infimum (8.46) over all sets A. The most iractable case seems to be when the
statc space is a iree: then A can always be chosen so that it is connected to A" by
a single bond. Using this fact, Lawler and Sokal [78] used Cheeger’s inequality to
prove
Toyp < cOnSY X {(ny {8.48)

for the Berretti-Sokal algorithm for SAWs.

A very different proof of an upper bound on 7, in the Berretti-Sokal algorithm
was given by Sokal and Thomas [11]. Their method is to study in detail the
exponential moments of the hitting times from an arbitrary walk w to the empty
walk. Using a sequence of identities, they are able to write an algebraic inequality
for such & moment in terms of itself; this inequality says roughly that the moment
is cither small or huge (where “huge” includes the possibility of +00) but cannot
lie in-between (there is a “forbidden interval”). Then, by & continuity argument,
they are able to rule out the possibility that the moment is huge. So it must be
small. The final result is

r! < const x {N)'*7, (8.49)

exp —

slightly better than the Lawler-Sokal bound.

For spin models and lattice field theories, almost nothing is known about upper
bounds on the autocorrelation time, except at high temperature. For the single-site
heat-bath dynamics, it is easy to show that 7.z, < oo (uniformly in the volume)
above the Dobrushin uniqueness temperature; indeed, this is precisely what the
standard proof of the Dobrushin uniqueness theorem [95, 96] does. One expects
the same result to hold for all temperatures above critical, but this remains an
open problem, despite recent progress by Aizenman and Holley [87].
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