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Abstract

Starting with an elementary exposition of multigrid fast
solvers and with insights into their analyses and thelr most
general algebraic applicability, detalled practical guide~
lines are then given how to obtain, stage by stage, the full
multigrid efficiency for general elliptic and non-elliptic
problems, linear as well as nonlinear, scalar or vectorial,
smooth or strongly discontinuous, with various possible sin-
gularities, boundary conditions and supplementary global con-
ditions. Quantitative insights through local mode analyses,
combined with gradual algorithm development, are emphasized
throughout, and general rules and approaches are explained
for the design of relaxation, coarsening and interpolation.
Beyond these fast-solver aspects of multigrid, advanced meth-
ods are then described, including various applications of the
full approximation scheme (FAS), local refinements and local
coordinate transformations, error estimation and grid adapta-
tion criteria, small storage algorithms, the double discreti-
zation and other techniques for high-order approximations,
algebraic multigrid (AMG), multi-level raeduction of complex-
ity for integral equations and for chains of problems, and
treatment of time-dependent, eigenvalue and optimization prob-
lems. Special chapters describe the solution of Cauchy-Rie-
mann, Stokes and incompressible and compressible Navier~Stokes

equations, with numerical results for staggersd and non-stag-
gered grida.
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a. INTRODUCTION

0.1 where and why multigrid can help

The starting point of the multigrid method (or, more generally,
the Multi-Level Adaptive Technique — MLAT), and indeed also its ultimate
upshot, is the following "gofden rufe*:

The amount vf compuiational woah should be propuativaad to the
amount vi neal physical changes in the computed sysfem. Stalling numeri-
cal processes must be wrong.

That is, whenever the computer grinds very hard for very small or
slow real physical effect, there must be a better computational way to
achieve the same goal. Common examples of such stalling are the usual
iterative processes for solving the algebraic equations arising from dis-—
cretizing partial-differential, or integro-differential, boundary-value
{steady-state) problems, in which the error has relatively small changes
from cne iteration to the next. Another example is the solution of time-
dependent problems with time-steps (dictated by stability requirements)
much smailer than the real scale of change in the sclution. Or, more
generally, the use of too-fine discretization grids, where in large parts
of the computational domain the meshsize and/or the timestep are much
smaller than the real acale of solution'changes. Etc,

If you have such a problem, multi-level technigues may help. The
trouble is usually related to some "Qtiffness“ in your problem; i.e., to
the existence of several solution components with different scales, which
conflict with each other. For example, smooth components, which are ef-
ficiently approximated on coarse grids but are slow to converge in fine-
grid processes, conflict witp high-frequency components which must be
approximated on fine grids. By employing interactively several scales
of discretization, multilevel technigues resolve such conflicts, avoid

stalling and do away with the computaticnal waste.

In fully developed MLAT processes the amount of computations shouid
be determined only by the amount of real physical information.

The main development of multilevel techniques has so far been li-
mited to their role as fast solvers of the algebraic equations arising
in discretizing boundary-value problems (steady-state problems or impli=-
cit steps in evolution problems}. The multigrid solution of such prob-
lems usually requires just few (four to ten) work units, where a work
unit is the amount of computational work involved in express<iag the al-
gebraic equations (see Sec. 7.3). This efficiency is obtained for all
problems on which sufficient raaearch.has been made, from simple model
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problems to complicated nonlinear systems on general domains, including
diffusion problems with strongly discontinuous coefficients, integral
equations, minimization problems with constraints; from regular elliptic
to sinqular-perturbation and non-elliptic boundary-value problems. Due
to the iterative nature of the method, nonlinear problems require no more
work than the corresponding linearized problems. Linearization is thus
neither needed nor usually recommended (see Sec. B.3). Problems with
global constraints are solved as fast as the corresponding unconstrained
difference equations, using a technique of enforcing the constraints only
at the coarse-grid stages of the algorithm {Sec. 5.6). Few work units
are also all the work required in calculating each eigenfunction of dis-
cretized eigenproblems {(Sec. 8.3.1). Moreover, all multigrid processes
can fully be parallelized and vectorized. A model multigrid program on
the Cyber 205 solves 3 million equations per second [B2S5].

Beyond the fast sclvers, multilevel techniques can be very useful
in other ways related to stiffness. They can provide very efficient grid-
adaptation procedures for problems (either boundary-value or evolution
problems) in which different scales of discretization are needed in dif-
ferent parts of the domain (see Sec. %). They can give new dimension of
efficiency to stiff evolution problems (Sec. 16}. And they can resolve
the conflict between higher accuracy and stability in cases of non-ellip-
tic and singular perturbation boundary-value problems (Sec. 10.2). In
addition, multi-level techniques can enormously reduce the amount of dis-
crete relations employed in solving chains of similar boundary-value pro-
blems {(as in processes of continuation, and in optimization problems:
see Secs. 15, 13}, or in solving integral equations {see Sec. 8.6). They
can also be used to vastly cut the required computer storage (Sec. 8.7).

All these topics are now under active research.

Multilevel processes can also cut, sometimes by several orders of
magqnitude, the computer resources needed to solve some Bange systems which
dee not eviacrate from pantial-diffenential on integrnal equations. The
common feature in those systems is that they involve many unknowns related
in a low-dimensional space; i.e., each unknown u is defined at a point

Pom oKy ea.xy) of a low-dimensional space (4 isPusually 2 or 3}, and
the equations are given in terms of these coordinates x, . Moreover,
the coupling between two values up and u0 generally becomes weaker

or smoother as the distance between P and Q increases, except perhaps
for a small pumber of particular pairs (P,Q) . Examples are: the equa-
tions of multivariate interpolation of scattered data [B33], [M1]; geo-
detic problems of finding the locations of many stations that best fit a

large set of local observations [M2]; problems in transportation, economy
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{ve], and queuing theory [K3]; statistical problems on lattices, arising
in statistical mechanics (e.g. Ising model) and in "gauge" theories of
elementary particles; and various systems of tomography, image processing,
picture reconstruction and pattern recognition (N1l], [T1], {Gl}. There

is in fact strong evidence that the human vision processes themselves are
multilevelled 1C2], [wS], (T4]. 1In several of these areas multigrid re-

search has just recently started.

0.2 Purpose of this Guide

The opening chapter of this Guide i3 dedicated to numerical analy-
sts who have no previous acguaintance with multigrid methods. It also
gives some references to other introductory material. {Secs. 1.1 and
1.7 in that chapter may interest veteran multigridders, tco.}

The main parts of this Guide are chiefly intended for people with
some multigrid knowledge, or even experience. In fact, I was mainly
motivated by the following situation, so often encountered in the last
few years: A good numerical analyst tries a multigrid solver on a new
problem, He knows the basics, he has seen it implemented on another pro-
blem, so he has no trouble writing the program. He gets results, showing
a certain rate of convergence, perhaps improving a former rate obtained
with a one-grid program. Now he is confronted with the guestion: Is
this the real multigrid efficiency? or is it many times slower, due to
some conceptual error or programming bug? The algorithm has many parts
and aspects: relaxation sweeps and coarge-to-fine and fine-to-coarse
transfers at interior points and at points near boundaries; relaxation
and transfers of the boundary conditions themselves: treatment of boun-
dary and interior singularities and/or discontinuities:; choosing the
coarse-grid variables and defining its equations; the method of solving
on the coarsest grid; the general flow of the algorithm; etc. A single
error (a wrong scheme or a bug) in any of these parts may degrade the
whole performance very much, but is still likely to give an improvemeént
over a one-grid method, misleading the analyst to believe he has done a
good job. How can an error be suapected and detected? How can one dis-
tinguish between various possible troubles? And what improved techni-

ques are available?

The key to a fully successful code is to know in advance what
efficiency is ideally obtainable, and then to construct the code gra-
dually in a way which ensures approaching that ideal, telling us at each
stage which process may be responsible for a slowdown. Tt is important

to work in that spirit: Do not just observe what efficiency is obtained
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by a given multigrid algorithm, but ask yourself what is the (deal effi-
ciency and fdind out how to obtain it. To guide inexperienced multigr;-
dders in that spirit is the main purpose of this Guide.

We believe that any discrete sys;em derived from a continuQus pro-
blem is solvable "to the level of truncation errors" in just few "work
units" (see Sec. 7.3). To obtain this performance, the first crucial
step is to construct a relaxation scheme with a high "smoothing rate”
(see Sec. 3). Then the interior inter-grid transfers and coarse-grid
operator should be designed (Sec. 4), and full numerical experiments can
be started with cycling algorithms, aiming at obtaining the interior rate
{Secs. 5, 6). Finally, "Pull Multi-Grid" (FMG) algorithms can then be
implemented, and "solvability in just few work units" can be tested
{Sec. 7}. These stages of development are cutlined in Part I below,
pointing out many possibilities and technical points, together with theo-
retical tools needed for quantitative insights into the main processes.

The quantitative aspect in theee theoretical tools is important,
since we want to distinguish between the efficiency of several candidate
multigrid algorithms, all of which may be "asymptotically optimal" {(i.e.,
Solving the problem in a uniformly bounded number of woxrk units), but
some of which may atill be several orders of magnitude faster than others.
Except for some model problems, most present-day rigorous mathematical
thecries of multigrid algorithms do not give us accurate enough insights
(see Sec. 1l4), hence the present guide will emphasize the role of "local
mode analyses". These analyses (see Secs. 2.1, 3.1, 4.1, 7.4, 7.5} neg-
lect some of the less work-consuming processes S0 as to obtain a clear
and precise picture of the efficiency of the more important processes.
The predictions so obtained can be made accurate enough toc serve in pro-
gram optimization and debugging. Experience has taught us that careful
incorporation of such theoretical studies is essential for producing
reliable programs which fully utilize the potential of the method.

Part II of this Guide summarizes more advanced multigrid techni-
ques and insights. Mainly, it is intended to show how to use the multi-
level techniques far beyond their more familiar capacity as fast linear
algebraic solvers. See the survey in Sec. 0.1 and the list of contents.

In Part IIT we bring applications to fluid dynamics. Whereas in
Part I the information about technique for all problems is ordered acco-
rding to their common stages of development, in Part TII we study speci=-
fic problems, separately from each other. But the order is again accor-
ding to a certain line of development, namely, starting from simple pro-
blems and gradually learning our way to more complicated ones. The em-
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phasis is on systems of differential equations; scalar problems are not

separately treated.

This Guide can be viewed as an extension of an earlier Guide ([B27},
with numerous updates, few new sectjons (Secs. 3.8, 5.7), a new chapter
(Chapter 1} and a whole new part (Part III}. It is not intended just for
teaching, but also for organizing and unifying the material. 1t is also
used as an opportunity to mention some advances which have not appeared
in the literature before. In particular, [B27] already included some new
relaxation schemes such as "Box Gausg-Seidel" (Sec. 3.4) and relaxation
with only sub-principal terms (Sec. 10.3); the general rule of block re-
laxation {Sec. 3.3); an analysis of the orders of interpolatiun and resi-
dual transfers which should be used in solving sysfems of differential
equations (Secs. 4.3, 7.1); the multigrid treatment of global constraints
{Sec. 5.6); an application of FAS to obtain much more efficient discre-
tization to integral equations, leading sometimes to sclutions in  O(n)
operations, where n is the number of discrete unknowns {(Sec. 8.6); some
innovations in higher-order techniques (Se¢. 10.2); unified switching and
adaptation criteria (Sec. 9.6); multi-level approach to optimization
{Sec. 13}); and the Algebraic Multi-Grid (AMG) method (Sec. 13.1). Resu-
ltg from a recent work, still unpublished, on non-elliptic and singular
perturbation problems [Bl7] are also mentioned, including a summary of
stability requirements (Sec. 2.l); the double-discretization scheme (Sec.
i0.2); the two-level FMG mode analysis; which tends to replace the usual
two-level mode analysis (Secs. 7.4, 7.5}; the F cycle (a hybrid of V
and W cycles; Sec. 6.2). (The main.topic from [B17] hardly mentioned
here is the multigrid treatment of discontinuities, in which research is
currently underway. But see Secs. 2.2 and 8.5.) The discussions on the
real role of relaxation (Sec. 12}, on the general approach to coarsening
questions (Sec. 11), and on “algebraization" and "dealgebraization"
trends in multigrid development {5ec. 13} were added as general new view-
points, related to each other, somewhat philosophical, but certainly use-
ful.

This new version of the Guide includes in addition some remarks
about the "principal linearization" used in relaxation {usually meaning
no linearization at all -- see Sec, 3}.4); the general algebraic property
of slowly converging relaxation schemes (Sec., 1.1 ; the superfluity of
“perfect smoothers” for non-elliptic or slightly elliptic systems (Secs.
3.3, 3.6): the principle of relaxing general PDE operators in terms of
the factors of their subprincipal-part determinant (Sec. 3.7); some new
debugging devices (e.g. Secs. 4, 5.1); stabilizing coarsening by added
global constraints (Sec. 5,6); the treatment of structural singularities
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such as reentrant corners (Secs, 5.7, 9.6); and new numerical results for
the Stokes and compressible and incompressible Naview-Stokes equations,

including results for non-staggered grids (Secs. 18.6, 19.5, 20.5).

. .

1. ELEMENTARY ACQUAINTANCE WITH MULTIGRID

The following few pages would acquaint you with the conceptual
basis of all multigrid solvers, with elerentary mode-analysis and with

an example of a simple algorithm together with its two-page Fortran code
and output. ’

For a more detailed introduction to multigrid technigues, through
a comprehengive treatment of some medel problems by a variety of multi-
grid algorithms, mode analyses and numerical experiments, see [54]. The
latter appears in a book [(H4) which alse includes a previous version of
the present Guide [B27], a complete (as of 1982} multigrid bibliography.
and many other multigrid papers. Additional material, and in fact
summaries of all new multigrid papers, appear guarterly in the MULTIGRID
NEWSLETTER, obtainable in North and South America from its Fditor (Steve
McCormick, Department of Mathematics, Colorado State University, Fort
Collins, CO 80523, U.5.A.) and in other countries from the Managing Edi-
tor (Kurt Brand, GHMD/FLT, Postfach 1240, D-5205 St. Augustin 1, Federal
Republic of Germany). Periodically, it publishes a complete list of all
past papers. Also available is a set of vVideoed multigrid lectures [B33}.

1.1 Properties of slowly converging errors

The origin of multi-level (multigrid) fast solvers is a certain
insight concerning the nature of the algebraic errors that become domi-
nant when conventional iterative schemes are slow to converge. Let us
first present this insight in its most general algebraic setting, where
a matrix equation Ax = b 1is being solved for any {possibly rectangular)
matrix A . '

For any approximate solution % , denote by e = x - % the error
vector and by r = Ae = b - AX the vector of residuals. The commen
feature of all iterative schemes is that at each step some corrections
to % are calculated based on the magnitude of certain residuals. As a
result, convergence must be slow if the individual residuals do not show
the true magnitude of the errors, i.e., if r is in some sense small
compared with e . The converse is also true: 1f convergence of a
suitable relaxation scheme is slow, residuals must in some sense be

small compared with e .

To see this more concretely, consider for example Kaczmarz relaxa~
tion applied to the above matrix equation and converging to a solution
®x . Denoting by a; the i-th row of A , the Kaczmarz step correspon-
ding to that row is to replace % by X+ (ri/aiaflaf , thereby forcing

ry to zero. A full Kaczmarz sweep is the employment of such a step for



each row of A , in the natural ordering. (We take this scheme as our
example because it applies to the most general matrix: It converges
whenever a solution exists [T2].} Let

2

E = eTe = I e}
i

2 T
i and R = E £y / aa;

be square norms for errors and residuals, respectively, evidently scaled
so that they are comparable. One can then prove the following result
[B26, Theorem 3.4):

THEOREM 1.1 A Kaczmaaz sweep Aeduces E at feast by max(TDRo.lel)

whene Ry and Ry anre the values of R before and aften the sweep,

respectively, and

Yo = (eyo) ey, 7t N 22
T T T T
Y_ m?x jEilaiajl /aza; ., v, - m:x jfilaiajl / aga;

. The theorem in essence says that sfow coavergence can occur onfy
when R L8 smalf compared with E (Observe that in case A arises
from the discretization of differential equations, Yy are completely
local gquantities, independent of the size of A . The above values of
Yo and Y, are close to the best possible ones.} Similar theorems
{with suitably modified E, R and Yi' hold for all familiar relaxation
schemes, such as Gausg-Seidal, Jacobi, SOR, and block schemes (line rela-

xation, etc. See [B26]).

Since E and R were scaled to be comparable, it is generally
only for special types of error components that the slow convergence
condition

R << E {1.1})

can be satiafied. The deeper (1.l) is satisfied, the more special must
be the error, and hence the fewer is the number of parameters needed to
approximate it. Thus, broadly speaking, aefaxation efficiently neduces
the infoamativn content of £the earor and quickfy makes it approximable
by far fewer vaniables. This can be shown to be true even for ﬁonlineer

systems.

When the matrix eguation Ax = b is a discretization of a diffe-
rential system Lu = f on some grid, condition (1.1l), rewritten in the
form f[aef << |A]lel , can be interpreted as saying that the error e
approximates a continuous function v satisfying |Lv| << |L]lv] , in
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some corresponding norms. In case L 1is a uniformly elliptic operator,
this implies that e is a smooth functioen. (In case L 1is not elliptic,
a certain smoothness along characteristics is at least implied.) Hence,
nelaxation efficiently reduces non-smooth ernnon compenents, thus making
the ennon approximable on a coarsen gaid (where solution is much cheaper).
A precise measure for this efficiency is discussed next.

1,2 Error smoothing and its analysis: Example

For clarity, consider a aimple example. Suppose the partial dif-
ferential equation
a azu(x,y) +c azulx.y)
2 2
x 3y

Lu{x,y)

= fix,y) , {a,c » 0} (1.2}

is to be solved with some suitable boundary conditions. Denoting by uh
and fh approximations tc u and f , respectively, on a grid with
meshsize h , the usual second-order discretization of (1.2} is

h _.h _h h Cauh h
hoh - . Yae1,872% 8% .8 Yy g+17%Y% 8% %, 8-1 h
L™ ta +c = f . {1.3)
a,8 hz 5! o, B
where
ug,ﬁ = uP(an,Bn) , f:'s - fftah.sn) i «,B integers

{(In the multigrid context it ia important to define the difference equa-
tions in this divided form, without, for example, multiplying throughout
by n?
Given an approx}mation 9 to uh , a simple example of a relaxation

, in order to get the proper relative scale at different grids.)

gcheme to improve it is the following.

Gauss-Seidel Refaxation. The points (a,B) of the grid are scan-
ned one by one in some prescribed order; e.g., lexicographic order. At
each point the value ﬁu, : w,p + Such that
Eq. (1.3) at that point is satjisfied. <That is, Uy, satisfies

is yeplaced by a new value, u

a,8*a-1,8 , o Ya,8r17 8% 81 | (b
hZ h2 a,B *

ua+l,B_2u

a (1.4)

where the new values iu-l g’ ﬁu g-1 are used since, in the lexicogra-
¢ r

phic order, by the time (a,B8) 18 scanned new values have already rep-

laced old ones at (o-1,8) and ({(a,B-1) .

A complete pass, scanning in this manner all the gridpoints, is
called a (Gauss~Seidel laxicographic) xzelaxation sweep. The new appro-
ximation U does not satisfy {(1.3), and further relaxation sweeps may

ry T
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be required to improve it. An important quantity therefore is the con-
vergence facter, w  say, which may be defined by

G150/ 1v], where veu'-TF, v=u"-3T, (1.5

f-] being any suitable discrete norm. For the Gauss-Seidel scheme,
with the possible exception of its first few sweeps, u = 1 - O(hz)

: -2 .
This means that Ofh ) relaxation sweeps are needed to reduce the
error order of magnitude.

Iin multigrid methods, howaver, the role of relaxation is not to
reduce the error, but to smooth it out so that it becomes well approxi-
mable on a coarser grid. This relaxation can do very effectively.
indeed, subtracting (1.3} from (1.4}, the relation
2v

alv -2V v B) + clv =0 (1.6)
L

a1, 8" V0, 8 Va1 w841 Va8 Va, 8-1)

shows that Gq R is a weighted average of neighboring values (of both v
- r -
and v¥), so that, if the old error v is not smooth, the new error v

must be much smoother.

To analyze the smoothing effect of a relaxation sweep quantitati-
vely, we take advantage of its fecal nature (points several meshsizes apart
affecting each other exponentially little). It allows us, for the pur-
pose of studying the smoothing well in the interior, to regard the grid
as embedded in a rectangular domain. We can then expand both v and

v in Pourier series

i(ﬂlﬂ+828) - .~ i(Blu+828)
va,ﬁ = Ingg y va'as T Age . (1.7}
where 8 = (01,62) and the summations are over a subset of the square
el = max(|ﬂ1|,!82|) ¢ m . Substituting (1.7) into (1.6} yields
iﬂl 192 -iB1 -iBZ -
{ae +ce Thg + {ae +ce -2a‘2c).1\e =0 . (1.8}

Hence, the ampfification factor of the 8 component due to one relaxa—

tion sweep is

if iA
1 1 2
ay = - _ ae +ce
piny R: _lﬁl _192 . (1.9
= 2a+2c-ae -ce
Observe that wu(n) -~ 1 as 8 »+ (0,0). In domains of diameter O(l) the

lowest non-trivial Fourier components have |§| = 0{h) , for which
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w(g) =1 - O(hz) , showing why convergence factors are that bad. Here,
however, we are only interested in the smoothing effect, i.e., in the
amplification factors of those components not approximable on a coarser
grid. These are the components for which (h/H)® ¢ [6] ¢ m , where H
is the meshsize of the next coarser grid. We usually assume H/h =2,
because it is the most convenient, and as effective as any other mesh-
size ratio [cf. Sec. 4.2}. The smoothing factet is thus defined to be

n o= uig) . {1.10)

max
n/2$|§|sn
It essentially gives the relaxation convergence factor for those compo-
nents which need to converge through relaxation; others will converge

through their approximation on the coarser grid.

Consider first the case a = c¢ {Poisson equation). A simple cal-
culation shows that p = pir/2, arcces 4/5) = .5 . This is a very satis-
factory rate; it implies that three aefaxation sweeps reduce the high-
frequency enncr-components by afmost an crden of magnitude, Similar

rates are obtained for general a and c , provided a/c is of moderate

size.
The rate of smoothing is less remarkable in the degenerate case
a << ¢ {or c << a) . For instance
m _ a2+c2 b
u(I.O) = P
a“ +{c+2a}
which approaches 1 as a + 0 . Thus, for problems with such a degene-

racy, Gauss-Seidel relaxation is not a suitable smoothing scheme. But

other schemes exist. For example,

line Refaxation. TInstead of treating each grid point (o,B} sepa-
rately, one takes simultanecusly a vertical line of points at a time,
i.e., the set of ali points (a,8) with the same o . ALl the values
Eu,ﬁ on such a line are simultaneously replaced by new values Gu,ﬁ which
simultaneously satisfy all the Egs. (1.3} on that line. (This is easy
and inexpensive to do, since the system of equations to be solved for
each line is a tridiagonal, diagonally dominant system.) As a result,
we get the same relation as (1.4} above, except that Ea,8+l is replaced

by 1

i . Hence, instead of (1.3) we now obtain
a,B+1

_ a
uig) = —IF . (1.11)

2 (a+c-C coOS 62)—39

from which one can derive the smoothing factor
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a

o= max{S—H.szia} ’ {L.12)

which is very satisfactory, even in the degenerate case a << C

This situation is very general. HNamely, for any stable discreti-
zation of a well-posed differential boundary-value problem there exists
a relaxation scheme which very efficiently reduces non-smooth error com-
ponents (see Secs. 3 and 5.3). Moreover, the smoothing facter (1.10)
for any candidate relaxation scheme is usually easy to calculate (e.d..
by a standard Fortran routine called SMORATE ([M3]), even for nonlinear
equations or equations with non-constant coefficients, by local lineari-
zation and coefficients freeze (see Sec. 3.1). This gives us a general
tool for optimizing the relaxation scheme and predict its efficiency.

It is the first example of the focal mede analysis, extensively used in
multigrid analysis (see Secs. 3.1, 4.1, 7.4 and 7.5}.

1.3 Coarse grid correction

We have seen that relaxation sweeps very quickly reduce all high-
frequency components of the error. Its smoother part should then be re-
duced by being approximated on a coarser grid, a grid with meshsize
H = 2h , say. Generally, for any linear fine-grid eguation Lhuh = fh
(for the nonlinea; casi see Sec. B8.1), and any approximate solution h .

u

the error vh =u - satisfies

et = M, where AL L {1.13)

; : : H .
It can therefore be approximated by the coarse-grid function v which

satisfies

(1.14)

where ¥ is some coarse-grid approximation to Lh

(e.g., a finite-
difference approximation on grid H to the same differential operator
approximated by Lh). and Iﬁ is a fine-to-coarse transfer operator,
called resdidual wedighting or restniction. That is, Iﬁrh is a coarse-—
grid function whose value at each point is a certain weighted average
of values of rh at neighboring fine-grid points. (See much more on
this process of "coarsening™ in Secs. 4 and 11, and on the treatment of
boundary conditions and global conditions in Secs. 5.4, 5.5 and 5.6.)

Having obtained an approximate solution VH to Egq. (1.14) {in a

way to be discussed below), we use it as a correction to the fine-grid

solution. Namely, we replace

~h ~ ~
RTINS A (1.15)
where IE is a coarse-to-fine inteapefation {(also called profuigafion).
That is, at each fine-grid point the value of IEVH {designed to appro-

ximate the error vh) is interpolated from values of GH at neighboring
coarse-grid points. Linear interpolation can be used in most cases.
{More on interpolation orders, see in Sec., 4.3.) The whole process of
calculating I::rh ., solving (1.14)} and interpolating the correction
{1.15} is called a cvarse-grid correction,

1.4 Multigrid cycle

To efficiently get an approximate solution to the coarse-grid equa-
tion (1.14), we employ the above sclution process recursively; i.e.,
(1.14) is itself solved by relaxation sweeps combined with a still-
coarser-grid corrections. We thuys have a sequence of grids with mesh-

sizes hy; > hy > ... > h, . where usually h = 2zh, The grid-h,
equation is generally written as
Lkuk = fk f {1.186)

where all the Lk approximate each other (e.g., they are all finite-
difference approximations to the same differential operator}, and unless
k is the finest level (k = M) , equation (l1.16) is of the form (1.14};

uk-1

i.e., is always designed to be the coarse correction to Gk (the

current approximation on the next finer grid), and hence

gl xt'l(fk-r.k'ﬁ") ) (1.17)

(Superscripts and subscripts L are now used instead of ht in the

notation of Sec. 1.3. Also, uk'1 is used instead of v2h for the pur-
pose of uniform expressions at all levels.)

The exact algorithm for improving a given approximate solution Ek

to {1.16) is usually the muftigrid cycfe (MGC)

B Mok, 6,65 (1.18)

defined recursively as followsi

If k=1, solve (1.16) by Gaussian elinmination or by several

relaxation sweeps (either is wusually cheap, since the grid is extremely

s FO

wy

s T
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coarse. Por additional remarks concerning the coarsest-qrid solution,
see Sec. 6.3). Otherwise do the following 4 steps:

A. Perform v relaxation sweeps on (l.16), resulting in a new approxi-
mation ﬁk
~k—1

B. Starting with u = 0 , make Yy succesgive cycles of the type

~ k-1 k- -
Ty - moetk-1, 8, -0k )

C. Calculate

=k -k k ~k-
ut o= oun o+ I U 1 . (1.19)

~D. Finally, perform v
with 3% and yielding the final U° of (1.18).
The sweep counts vy and v, are usually either 0, 1 or 2, with

voE ooty usually being 2 or 3. (See more about this in Secs. 4.1

and 6.1.) The cycle count vy is usually either 1 or 2. The cycle with

r = 1 1is called a V cycfe, or V(vl,u2) , in view of the shape of its

flowchart {see Fig. 1.1). For a similar reason the cycle with y = 2 |is

called a W cyele, or w(vl,uzl R {See more about different cycles and
alternative switching criteria in Sec. 6.2.)

The v sweeps performed in each V cycle on any grid hk are
expected to reduce error components with wave-length between th and
4h,  at least by the factor Y , where © is the smoothing factor
{(1.10). Since all grids are so traversed, the cycle should teduce afl
ertcr componrents at Leasl by the facton ﬁv . Experience and more adva-
nced theory show that for regular elliptic problems this is indeed the
case, provided the boundary conditions are properly relaxed and correct
inter-grid transfers are used. Thus, } - can serve as an excellent pre-
dictor of the multigrid performance one should be able fo obtain.

1.5 Model pragram and output

To give a more concerte idea about multigrid algorithms and their
performance, and to introduce the reader to standard multigrid program-

ming techniques, a simple Fortran program is presented here in full to-

gether with its output. The program solves a Dirichlet problem for the
Poisson equal ian on a rectangle by employing NCYC times the Vv (NU1,NU2)
cycle shown in Fig. 1.1. Playing with the program, modifying aguations

etc., can help establish full understanding of various conceptual and
technical aspects.

2 additional relaxation sweeps on (1.16), starting
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Meshsize
hy

h,

Flgure 1.1: Multigrid cycle Vv 1)
stands for v, relazation sweeps on the meshaize shoun to the left. (On the
@ coarsest grid vy + i3 Fweeps are urually performed or the equalions are solved
directly.)
ir the fine-to-coarse (k + 1 to ki transfer JF iv defined by (1.17) and u* iz
trivially initialized [u* — 0).
A is the coarse-to-fine (k —~ 1 to k) interpolation of correction (1.19).

[

The data for the problem are shown in the first two lines of the

program, and its two functiona: The differential eguation is Au =
Fix,y) , with u = Gi{x,y) given on the boundary. The functicn GIx,y}
- : . : M .

also serves as the first approximation for u throughout the finest
grid. The coarsest grid has NX1 x NYl intervals of length H1 each.
Subsequent grids are defined as straight refinements, with meshsizes
Wy = 217Kyl . There are M grids; hy is thus the neshsize on which
the problem is solved, coarser grids being just used for obtaining the
fast convergence.

The same 5-point approximation to the Laplace operatorlt(1.3) with

. k- .

a=c = 1) is used on all grids. The residual transfer I, ig the
trivial one (injection), the It-l interpolation is linear. TFor each
4) . For handling these

. ~k 2.k -1
grid we store both u and hkf (k. = 1,...,"
k

; il 2
arrays uniformly, the arrays for u and hkf
Uk+M

’

are called Uk an«d

respectively, (k = l,.0.,M)

Note the key role of the GRDFN and KEY routines. The first is
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used to define an m = n array Uk ; i.e., to allocate for it space in %LLILLTIPL CRLCEL {K,! K, ¥F) Define the M ~ N
the general vector @ (where IQ points to the next available location}, Eiiitgé5¥£/ﬂiﬁ(2&),1&!(2[),JFX(2C},E(:C) array Uk
and to store its parameters. To subsequently use that array g* . the HET(K)=1¢
PR
E(K)=h1
CALL KEY (k,IST,m,n,h) ety
ELL
retrieves the grid parameters {dimension m x n and meshsize h) and SLEFCUTIME BEY (E,IST,M,K,HPE) Set IST so that
sets the vector IST{i) so that U:. = Q(IST(i}+j) . This makes it easy CCMPCR/CRI/NED (20), INF {20}, ¥ (20) ,F (20) R i, Jre IS +i)
to write the same routine for all grids (e.g., PUTZ, RELAX, INTADD, El&ﬁ:i:ﬁt 151 (2C0) and output the

RESCAL} or even all arrays le.g., PUTF). N=JFX (K]

i i M
1S=NET (K)-H-] dimension x N

o

gy T

After each relaxation sweep on any grid hk , the program prints CC 1 1=1,¢ and meshsize h
. . 15=1s +
out a line showing the level number k , the L2 norm of the ("dynamic") 1 151(1)-12
residuals, and a count of the accumulated relaxation work, where a sweep Ft.=h {K)
on the finest grid is taken as the work unit. EﬁELLh
SLEFCUTINE FUIF (¥ ,F,RF) Put function Fix,y)
CCMECH C(lECCC),ISﬂ(ECQ) times hNH into
FFCCREM CHCLEN R CMIL FEY (K,IST,II,dJ,F)
E2=H**NF array U
FATEFLAL C,E Data co 1 1=1,11
TATE hk]/S/,NYl/Z/,E]/]./,b/E/.NUJ/I/,FUZ/?/,FCYC/3/ . . ¢ 1 J=1,J3
pC 1 k=1,V befine grids r=(I-1}*H
EZ=2%% (K-1) Y={J-1}*b
CALL CFLFL (K,bPx1*K2+1,MY1*KZ+]1,Fl/K2) CUIET{I)+T)=F(k,Y)}*H2
1 CrLL CFEFL(F+N,NX1‘KZ+1,FY1‘52+].Fl/F?) EME

=0, .
CiLL FURF (! ,C,C) Load data
CELL FLIF (2*F,F,2)
CC &5 1C=1,hCY¥YC
L[C 3 K¥=1,¥ v cycle
E=14m-KE
IF (K.KE.M} CALILI FUTEZ(K)
CC 2 1k=),LUl
¢ CRLL RELAY (R, k4M, WL, M)
3 1F {K.CT.]) CELL PEESCPL(K,F+M K+M-1})
DC 5 K=1,¥
I[C 4 IF=1,h0D2
CRLL FELAX (K, ¥K+# LU, M}
1F {(K.L1.F} CPLLI INIACL (K,K+})
SICE
ENC

LEL R

FUMCTICh E(X,Y)
FSIh (X+2.%Y)
RETLFN

EBL

FLTCIICH € (X,%)
C=CCE(2-"K+Y)
FEILELY

ERLC

¢ FCEMRT(!

SLEFCLUTIME ELTZ(K)
CCRMLh C(YEC00) ,IST(2C0)
CHLL KEY(K,1ST,11,J3.%)
cC 1 1=),11

Lo 1 J=1,J3
C{IS1(I)+2)=0.

FtC

SLEFCUTINE FELAX(K,KREE,WL,F}
CCMMCR C(1BCCG),T51(2CC) IRFF (20T}
CALL KEY (K,IS517,11,3d,F)

CPLL BEY(KPKEZ,IRKS,II,JJ,E)
I1=11-1

J1=33-1

EFF=0.

LC Y 1=2,11

YF=IFHE(I)

I¢=1I511(1)

IM=IE1(1~1)

TE=IST(I41)

CC ) J=z,Jd1

A=C (IR+J)=Q(IC+I+1)}-C(IC+I=1}=C(IM+I}-C(TIF+4])

EFF=EFF+ (A+4.°C (IC+J))**"2
ClIC+I)=-.25%¢

EFI=8CE1 (LFF}) /B

Wil U+d . o % (K=P)

PF1M Z b, EFE, WL

EMC

A Gauss-Seidel rela-
xation sweep and

printout of residual

P

LEVEL', 12, *RESICLAL BCEMw',1FEIC.2, "WCER=",(FF 7.2}
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SLLICUTIVE TMTIFCT (KC,FF)
CCMMCE C(IEFCCC),IETC{ZCC),ISTF(200)
CALL REY(FC,I21C,1TC,JIC,FC)

Linear interpelation

and correction

CPLL ¥EY(FF,IS1F, 1TF,JJE EF) [alRARTLI I]]:_lukil
LC 1 1C=2,11C K KF
IF=2*1C~1 where u = U

JE =1 k-1 KC
TEC=IETF (IF) v =V

IFM=TCTF{I¥-1)

TCC=IETCH{EC)

ICr=TENC(IC-1)

LC 1 2¢=2,30JC

JE=JF+2

pe S {C(TCCHICI+C (TCC+IC-131
Br=oS*(C(TCH+ICI+C (TCr43C-1))
CIIFC+IF) = C{TEC4JF)+C{ICCHIC)
CHATEMIF) = C{TETAJF)4.S4 (CLICCHIC)+C(ICH4ICY)
CAIECHIF-1)=C{TECHTF-1)+p
CAIFr+JF-1) = C{IFR4IF-1)+.E*{F+Al}
FETLER

END

—

SIEICLTIME FESCRL(KE EFE,FFQ) Residual injection
COMMON ((JECTC) TUF(200), TEE1200)  JRC(200) gkl | k=l gk, ook,
CALL FEY(EEF ,JUE ,11F,JJF ,¥F} k k

CPLL FEY(KFE,ITH,11E,JJF,FF) " ~k
CHPLL FEY(ETC,I1FC,11C,30C  EC) where o= v
TI1CI=11C-1 fk - h-2UKRF
JICY=JaC -1 k
CC ] 1¢=2,11C1 k-1 -2 _KRC
LCE=TRC(IC) £ LWL
1F=2*1C-1
JF=1
IFF=1IFFI(IF)
TEL=TUF({IE)
IFF=ILE(TIF-1)
IFE=ILF(1F+])
D¢ 1 JC=2,33C1
JF=JF 42
£aC (IFCHJE+1)+Q (IFC4JF—-1)4C {TEF+JF) +C (IFE+JF)
1 C(ICE4JC) =A% ( (TFF4JF) -S44.%C (1FC+JF) )
RFILEN
EAE

H

The output of this program is shown on the next page. It exhibits
an asymptotic convergence factor of about .08 per cycle, which is just
slightly better than the predicted 1 = 53 = 12

local mede analysis, described in Sec.

{The two-level
4.1, predicts the obserwved factor
exactly.}) This means a convergence factor of 08" = .53

= per relaxation
work unit.

The same algorithm achieves the very same efficiency on gene-
ral non-rectanqular domains =-=- with a more complicated program, of course.

A collection of multigrid programs, with varying degrees of simplicity
vs. generality, is available [M3],
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CYCLEV Cutput

LEVEL € FESICUPL TCRW= 1,.€24F (1 weer=  1.0CC cycle 1
LEVEL § FESTICUAL BCPMe )1.561F CI VOFF= 1.2°C
LEVEL 4 PESIIUAL YCERM= 1.422F C] _VCF?' 1.212
LEVEL 2 FECITLAL ¥CFMs 1,.141F (! WCFR=  1.22
LEVEL 7 FESICUAL BCEM= 7.717E CC wCEFe 1,322
LEVEL 1 FECICUPT FCEM= 3.027E CC LCFF= 1,323
LEVEL 1 RESTCUAL NCFM= 1.C42FE-01 VCFE= 1,328
LEVEL 1 FESICCAL NCEM= 6.51CF-03 WCEE=  1.22°%
LEVEL 2 FESICUAL WCR¥= 2,32:F CC wCFEs  1.32€
LEVEL 2 RESICUAL KCRM= 3. E61F-C] LCFF= 1,342
LEVEL 13 FESICUAL ECER= 4,C€1E CC WCFEF= 1 ,25F
LEVEL 3 FESICUM UCF¥= €,%5¢F-01 WCFF= 1,272
LEVEL 4 FESICURL RCFPe 5,3€%E (O UCFP= 1,427
LEVEL 14 FESICUAL BCRM= 7.€1€E-C] VEFY=e  1,4°8¢
LEVEL & FICICUML MCREM= 6.CEZE (O WCFF= 1.74¢
LEVEL £ FESTCUPL BCFM= 7.%80ZE-01 WCEK= 1,06¢¢
LEVEL € FESITLAL MCF¥= 6,446F LC WCRF= 2.6°9
LEVEL € BESILLFL PCRE= 7.426E-01 WCFF= 31.7CC
LEVEL & FECILUAL FCRM= &.CEEE-O! WCEF= 4,509 cycle 2
LEVEL 5 FESICUAL BCRM= €.174E-01 WCFk= 5,740
LEVED 4 RESICUAL KCRk= 5.1P{E-0] WCR¥= 5,212
LEVEL 3 FESITUAL NCRM= 3,551F-01 wCFk= 5.327
LEVEL I RESILUAL RCRM= 1,7%59F-01 WCFk= 5,221
LEVEL 1 FESICUAL MCFM= 3,767E-02 WCE¥F= 5,222
LEVEL ] RESTEUAL KCRM= 9.532E-C3 WCFk= 5,222
LEVEL 1 RESICUAL NCRM= 5,04€E-04 WCFEK= 5.332
LFVEL 2 FESILUAL RCPM= £,C2FE-02 WCEF=  5.23F
LEVEL 2 FFEICUAL MCFI'= 1.B7SE-0Z WCEkx 5,242
LEVFL 3 FESICCAL NCER= 1,.24€E-0] WCRP= 5,357
LEVEL 3 EFSICUAL MCFM= 3,1ZCE-02 WCFF= E.273
LEVEL 4 PESITURL KNCRM= 2.(SZE-0C] W(FK= £.47€
LEVEL 4 FECICURL NCRM= 4,.C]14E-0Z KCpre 5,4°°
LEVEL S FESILUAL KCFM= 2.5ZEF-01 WCFF= E©.74F
LEVEL £ FESICURL NCRM= 4.119F-02 WCEK=  5.9°F
LEVEL € RESITURL NCRM= 2.794E-C] VCFk= 6.9SEF
LEVEL € PESICUAL FCPM= 4.C71E-CZ VCP¥=e 7.°°8
LEVEL 6 FECICURL KCRM= 3.48CE-0:Z WCERk= E.0CE cycle 3
LEVEL 5 FESTCUAL MCR¥= 3,75°E-G2 WCPK= 0,748
LEVEL 4 PESICUAL NCEM= 2,729E-02 WCFK+  9.211
LEVEL 3 RESICLAL NCR¥= 1.ESCE-OZ wWCrE= ©9.202¢
LEVEL 2 FESICLAL MCR¥= 9.27FE-C2 WCFr= ©,370
LEVEL 1 RESICURL FCRM= 3,332E-07 WCPE=  9.22]
LEVEL 1 RESICUAL KCRM= 4,252E-0C wCFF= 9,322
LEVEL 1 RESITCLAL NCRM= 2. €EJE-OC WCrE= ©,.232
LEVEL 2 RESICUPL FCER= 2. 74ZFE-C3 WCFE= 9,227
LEVETL 2 RESICLAL KCEM= 5. EE9F-04 WCF¥=s ©.34]
LEVEL 3 RESICUAL MCRM= 6,55EE-C3 WCRF=  9.2%€
LEVEL 3 RESITUAL NCFM= 1.S528E-03 WeEK= ©.272
LEVEL 4 FESICUAL NCF¥= ).CACE-OZ WCFF=  9.425
LEVEL 4 FESIFUAL KCRM= 2.1€4£-03 wWCFKk= 9,497
LEVEL £ FFEICURL NCFM= 1.,Z€3F-0% WCFFk= 9.747
LEVEI & - FESIUUAL RCRM=T 2.331F-C2 WCRE= @, CC7
LEVEL 6 RESICUAL NCRb= 1,42CE-0Z WCFE= 10,077
LEVEL € PESICUML MCRM= 3.(FCE-OZ WCTE= 11.°07
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1.6 Full multigrid (FMG) algorithm

The multigrid cycles described above can be applied to any first
approximation given on the finest gfid. In a full multigrid (FMG) algo-
rithm, the first approximation is obtained by interpolation from a solu-
tion on the next coarser grid, which has previously been calculated by a
similar FMG algorithm. With such a first approximation, and provided
that the interpolation correctly corresponds to the error norm used, one
multigrid cycle should suffice to solve the fine-grid equations to the
level of truncation errors (see Sec. 7). A typical FMG algorithm, with
one V cycle per refinement, is shown in Fig. 1.2.

The FMG algorithms are less sensitive than the multigrid cycles.
That is, in many irregular cases the asymptotic convergence factor of
the cycles is not good, but the FMG algorithm with cone cycle per refine-
ment still guarantees solution to the level of truncation errors. In
fact, even this guarantee is not necessary: From differences between
the final solutions at different meshsizes (e.g., differences between
the solutions at the doubly-circled stages in Fig. 1.2), one can directly
calculate the rate of convergence to the differential solution, which is
all that really matters.

1.7 General warnings. Boundary conditions. Nonlinearity

Attempts to extend existing multigrid software often fail. For
example, almost everyone who tries to extend the program of Sec. 1.5
from Dirichlet to Neumann boundary conditions, first obtains a much
slower solver. Some would then hastily announce that the method is
inherentlyvslower for general non-Dirichlet boundary conditions. Others,
realizing the conceptual generality of the basic multigrid approach,
would ask themselves what caused the slowness and how to correct it.
They will eventually discover that various additional processes should
be done in case of non-Dirichlet conditions, such as relaxation sweeps
over these conditions and transfers of their residuals to coarser grids,
concurrently with the corresponding interior processes. It will take
some more effort to realize that the best relaxation of boundary condi-
tions in multigrid solvers is often guite markedly different from the
scheme cne would use in relaxation solvers. Ewventually, when everything
is done correctly, the algorithm will .regain the efficiency it showed in
the Mirichlet case. Indeed, with proper treatment, the multigrid effi-
ciency should never depend on boundary conditions, only on the interior
equations (and in fact only on the interior smoothing cates, hence only
on the jactvss of the subprincipal deteaminant of the interior dperator
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Meshsize

h, (v)
hg= h, /2 () (2
hs=h,/4 ;

h,,_,:zh“ (vo)

P @ @

Figure 1.2: FMQ algorithm with one V(vy,14) eyele per level

The grids arc piciured apride down rlative ta Fig. L1 (both ways are common in
the mulhigrid literature).

& is the solution interpolation lo 8 new grid.
l i# the interpolation of corrections (1.10).

/ ir the fine-to-coarse (k+1 {o k) trenafer: f* is defined by (1.17) and u* is set
to ),

@ stands for v, relazatian swecpr. On the conrsent grid v = vy +1y and somewhat
larger v, are wwxally uecd, or the equations src solved directiy.

©ahum the stage in the algorithm where the final solution is obtained for the
correapunding meshoize.

see Sec. 3.7).

Imagine now somecne trying to extend the simplesat program and
ite a multigrid solver for the steady-state compressible Navier-sStokes
Euler equations. Here he has a multi{tude of new features: non-Dirich-
t boundary conditions is just one of them, and by no means the most dif-
cult one. Others are: non-symmetry; nonlinearity; anisotropicity; non-
lipticity, imn fact a challenging wix of PDE types; boundary singulari-
es (e.g., trailing edges); discontinujties (boundary layers, shocks);

-
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global conditions (Kutta condition, total mass, etc.); unbounded domains;
complex geometries; three dimensions; not to mention physical instabili-
ties and turbulence.

Each and every one of these features requires a thorough understa-
nding as to what it implies in terms of each multligrid process. Mistrea-
ting just one of them may cause the solution time to increase very signi-
ficantly, sometimes by orders of magnitude. Since convergence will often
still be cobtained, due to the corrective nature of the fine-grid relaxa-
tion, one may be misled to believe that nothing is wrong. Even if he sus-
pects errors, he is unlikely to find them all, because they confusingly
interact with each other, an impossible network of conceptual mistakes
with programming bugs.

As stated in the Introduction, we believe that every problem should
be solvable in just few work units. But only a systematic development is
likely to produce this top performance. Each feature should first be se-
parately studied in the framework of as simple a problem as possible.

The solver should then be constructed step by step, adding one feature at
a time, making sure that full efficiency is always maintained. This

Guide may help in the process.

It may be useful to add here a preliminary remark about nonlinea-
rity. The multigrid processes are not inherently linear. The basic idea
described in Sec. 1.1, namely, the relations between slow convergence,
smallness of residuals and error smoothness, has nothing to do with
linearity. Multiqrid can thus be applied directly to nonfinear preblems,
as efficiently as to the corresponding linearized problems [see Sec. 8).
Hence repeated linearizations are neither required nor adviced: they are
especially wasteful in case the nonlinear problem is autonomous f{(as is
usual in fluid dynamics), because the linearized problems are not auto-
nomous. {See more detailed arguments in Sec. 8.3.) Moreover, the multi-
grid version developed for nonlinear cases, called FAS, is useful in many
other ways. In particular it gives a convenient way to creat non-uniform
adaptable discretization patterns, based on the interaction between the
levels and therefore very flexible, allowing fast local refinements and
local coordinate transformations, with equations being still solved in
the usual multigrid efficiency (see Sec. 9}. Using FAS, one can integ-
rate into a single FMC process various other processes, guch as continua-
tion, design and optimization, solution to eigenvalue problems and to

inverse problems, grid adaptation, etc.
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PART 1.  STAGES ¥ DEVELIPILHIS FAST SOLVERS

The intention of this part is to organize existing multigrid app-
roaches in an order which corresponds to actual stages in developing
fast multigrid solvers. Each section {(Secs. 2 through 7) represents a
separate stage. To get an overview of these stages, the reader may
first go through the opening remark of all the sections, skipping the
subsections. The actual seguence of development may correspond to the
actual order of the sections; but Secs. 5, 6, and 7.4 represent tHree
independent stages, which can be taken in any order following Sec. 4.
In fact, an increasing current tendency is to replace the usual two-
level mode analysis (Sec. 4) by the two-level FMG mode analysis {Sec.
7.4). Generally, one can skip a stage, risking a lesser control of
potential mistakes. Even when one does, the information and advice con-

tained in the corresponding subsections are still important.

This part emphasizes the {{near solver: relaxation of nonlinear
equations is described, but the Full Approximation Scheme (FAS) used in
inter-grid transfers of nonlinear solvers is deferred to the next part
(Sec. 8).

2. STABLE DISCRETIZATION

The formulation of good discretization schemes is of course the
first step in any numerical sclution of continuous equations. For multi-
grid solutions some additional considerations enter. First, discrete
eguations should be written for general meshsizes h , including large
ones {to be used on coarse grids). Also, the multigrid processes offer

several simplifications of the discretization procedures.

For example, only uniform-grid discretization is often needed.
Non-uniform discretization can be effected through multigrid interactions
between uniform grids (see Sec. 9). In fact, if the basic grids are non-
uniform, various structural and algorithmic complications are introduced,
in multiqrid as well as, and even more than, in unigrid processes. The
aniform discretization can be made either with finite element or finite
difference formulations. For finite elements, it is preferable to use
either piecewise uniform partitions as in [B2] and [B?, Sec. 7.3], or
uniform partitions modified at special parts (e.g., at boundaries) as in
[Bl11, Fig. 2}, and produce local refinements by the multigrid process

(Sec. 9]. When general non-uniform partitions must be used, algebraie
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multigrid solvers (see Sec. 13.1} are recommended: Their set-up proce-
ssing (coarse-levels assembly} is much more costly, but it is still
small compared with the very expensive processing required for assemb-
ling the (finest-level} equations.

Ancther simplificatiorn is that one has to write low-order (first
or second order) discretization only. Higher-order schemes can later be
superposed for little extra programming effort and computer time (Sec.
10). The low order makes it easier to write stable equations, easier to
devise and analyze relaxation schemes, and cheaper to operate them.
Furthermore, designing stable discretization with efficient relaxation
is only required in terms of the (sub)principal part of the operator
{see Sec. 2.1}.

Still another simplification is the easier implementation and more
flexible control of gfobal constraints, by effecting them only at the
coarsest levels of the multigrid processing (with suitable inter-grid
transfers. See Sec. 5.6). This makes it possible to free local diffe-
rencing from complicated forms aimed at precise conservation of global
quantities (such as total kinetic energy and square vorticity, as in
[A3]), to add suitable contrels to ill-posed problems, etc.

Low order finite elements on uniform grids yield kinds of dif-
ference equations. The description below will therefore be in terms of
finite difference formulations anly. It should be emphasized, however,
that variational formulations, where appropriate, automatically yield
good prescriptions for the main multigrid processes. See [B7, App. A.5],

[N3] and {Bll]. This is especially useful in some complicated situations,

as in [Al]. We return to this issue in Secs. 4.5, 4.6 and 11.

To be solvable by a fast multigrid algorithm, the discretization
of a boundary-value problem should be suitably stable. More precisely,
the type of stability determines the kind of multigrid algorithm that
can be efficient. The simplest differencing of regular elliptic equa-
tions yield equations which are stable in every respect, so the reader
interested in only such problems can skip the rest of this section. But
remember :

Unstable {or very inaccurate) discretization must lead to slow
multigrid convergence {unless special technigues are adopted to the case
or algebraic multigrid is used). It is indeed an important advantage of
multigrid solvers that bad discretization cannot be passed unnoticed; it
must show up as slow algebraic convergence.
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2.1 Interior stability measures: h-ellipticity

Numerical stability is a fvcal property, i.e., a property signifi-
cant cnly for non-smooth components of the solution (componunts that ’
change significantly over a meshsize), whereas the smooth-component stu-
bility depends, by consistency, on the diffexcentiat system, not on its
discretization. Indeed, in multigrid solvers, stability of the discrete
operator is needed only in the focal process of relaxation {cf. Sec.
10.2). Moreover, what counts is not really the stability of the static
difference operator itself, but the overall efficiency with which the
dynamic process of relaxation smoothes the differential error (cf. Scc.
12}: numerical stability of the operator is just a necessary condition
for achieving that smoothing.

Because of the local character of the required stability (corres-
ponding to the local task of relaxation}, it is easy to get a very good
guantitative idea about it, for any given difference operator Lh ., by
local mode analysis, analogous to the Von-Neumann stability analysis for

time-dependent problems. It turns out, however, that for steady-state
problems, especially non-elliptjc or singular perturbation ones, the

distinction between stable and unstable discrete operators is not enough.

More important is the measure of stability. When that measure, for a
given meshsize, is low, the scheme is still formally stable, but its
actual behavior can be intolerably'bad {see example in [Bl7, Sec. 3]).

Briefly, the basic relavant measure of stability of am interior
{not at boundaries) linear difference operator Lh with constant coef-
ficients is its h-ellipticity measure Eh(Lh)_, defined for example by

e = min (TR /2 ILM (2.1
prs |9 &w
where the complex function ﬂh(g) is the "symbol” of Lh , 1.e.,
phaigrx/n zh(g,elﬂ-zfﬂ 58 m (8),....8g) L Brx/h = Byx /By 4 L.l +

BaXq/By - el = max(lell,....|ﬁd|) ; 4 is the dimension; h. 1is the
meshsize in direction x_, ; and |Lh| is any measure of the size of
TR e.g., |Lh| = maxlﬂh(g)l . The constant 0 < @ < 1 is in fact
arbitrary, but for convenient multigrid applications a natural choice is
the meshsize ratio, hence usually § = % . The range fn < |¢| <7 is
then the range of “"high frequency” components on grid h , i.e., compo-
nents exp(ig-i/g) which on the next coarser grid, with meshsize h/p
coincide (alias) with lower components.

’

N In case of systems of squations, Lh and Ehte) are matrices and
(T (8)| should then be understocd as a measure of the non-singularity
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of L {B) (e.g., its smallest eigenvalue, or its determinant). See
more details and explanations in [Bl12, Sec. 3]}, [(Bl7, Sec. 3.1]. In

fact, good discretization schemes can generally be arrived at by requi-

h

ring det L to be a good discretization for det L , the determinant

of the given differential operator: See the examples in Secs. 17.2,
18.2, 19.2 and 20.2.

Tn case the differential operator L , and hence also Lh , have
variable coefficients, Lh is called h-elliptic if Eh(Lh) = 0(1}) for

each combination of .coefficients appearing in the domain. If L is

nonlinear, Lh is called h=elliptic if its linearizations, around any

approximate solution encountered in the calculations, are all h-elliptic.

A major simplification in selecting the discretization scheme for
complicated systems is the fact that, being interested in local proper-
ties only, we can confine our considerations to those terms which are
locally important. In the discretized and linearized operator Lh , the

locally important terms, called the h-principal terms are simply those

with large coefficients (relative to other coefficients if any). 1In
case of a system, the h-principal terms are those contributing to the
h-principal terms of det Lh . Other terms are not important in relaxa-
tion; namely, they need not satisfy any stability conditions, they can
actually be transferred to the right-hand aide of the relaxed equations,
and they need not even be updated each sweep {only each multigrid cycle;
cf. Sec. 10.3).

The h-principal terms all come from discretizing subprincipal terms

of L . These are defined as the principal terms (the terms contributing
to the highest order derivatives in the determinant of the linearized
operator) plus the principal terms of the reduced operator (the operator
without singular perturbation terms). Thus, £r discretizing any diffe-
nential openatenr L , we car confine oun atfention to Lfs subprincipal
pat¢{. See the examples in Secs. 19.1 and 20.1.

Reqular discretizations of elliptic systems should, and usually do
have good {i.e., 0O{(l}) h-ellipticity measures. (But see a counter-
example in Src. 17.2.) Singular perturbation or non-elliptic systems
can also have such good measures, e.g., by using artificial viscosity or
by upwind (upstream} differencing. (Note that a reqular elliptic system
with lower-order terms may be a singular-perturbation problem on a suf-
ficiently coarse grid.} TIf, however, characteristic or subcharacteristic
directions (i.e., characteristic directions of the reduced equations, in
case of sinqular perturbation problems) coincide with grid directions,

upwind differencing schemes are only semi h-elliptic. They have, that
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is, bad h-ellipticity measure Eh , but they still have a good semi h-
ellipticity measure in the characteristic direction. This measure is
defined as follows.

Let § < {1,...,d} be a subset of grid directions. The measure
of semi h-ellipticity in directions § , or briefly S-h-ellipticity, of

a difference operator Lh is

in TR 7 1Rl {2.2)

Eg(Lh) = m
pre|Bigem

where 18|, = maxjes|6j| . Full h-ellipticity is the special case

6 = (1,....d} . 1f S, &, then clearly EI ¢ E! |, hence s -h-ellip-
2<%, s, ¥ s, 1

ticity entails Sz-h-ellipticity.

In case (sub)characteristics are aligned with grid directions,
full h-ellipticity is not needed for stability. The corresponding S-h-
ellipticity is enough; it allows large local oscillations perpendicular
to the characteristics, but those oscillations are also allowed by the
differential equations.

Fully h-elliptic approximations can be constructed even for non-
elliptic or semi-elliptic differential equations by using isotropic
artificial viscosity. In various cases, however, semi h-elliptic appro-
ximations are preferable, since they entail much less cross-stream
smearing. These are mainly cases of strong alignment, that is, cases

where (sub)characteristic lines are non-locally (i.e., for a length of
many meshsizes) aligned with a gridline, and where this non-local align-
meht occurs either for .many gridlines, or even for one gridline if that
line is adjacent to a boundary layer or a similar layer of sharp change
in the solution. (For a method to obtain strong alignments and thus

avoid smearing -- see Sec. 9.3.}

A convenient way of constructing h-elliptic and semi h-elliptic
operators is by term-by-term R-elliptic or semi R-elliptic approximations
[BlG, Sec. 5.2}, [Bl19, Sec. 3.6]. Another, more physical way is to
reqard the given boundary-value problem as a limit of an elliptic prob-
lem (usually this is physically so anyway), and enlarge the elliptic
singular perturbation to serve as artificial-viscosity terms [B171,
{B16]. When solving a steady-state probleﬁ of originally time-derendent
equations, the artificial elliptic terms should cénform tn the original
time-dependent problem, i.e,, with those terms that problem should still
be well posed. This requirement often determines the sign of the arti-
ficial terms. Such physical artificial viscosity terms ensure that com-

puted solutions will exhibit (as h + 0) only those discontinuities
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allowed physically. (Hence, with this approach, explicit entropy con-
ditions are not needed.) A proper amount of anisotropic artificial visco-

sity gives the correct upstréam differencing whenever desired.

The optimal amount of artificial viscosity (either isotropic or
anisotrooic¢) is mainly determined not by stability considerations but
by the smoothing properties of relaxation. Below a certain level of
viscosity, more costly, distributive relaxation will have to be used.
Increasing the artificial viscosity slightly beyond the minimum required
for convergence of the simplest scheme makes the relaxation ordering-
free {see Sec. 3.6 and [Bl7, Sec. 5.7], [Bl2Z, Sec. 4.2}),which is desi-
rable, except perhaps near discontinuities. Considerably larger artifi-
cial viscosity makes the algebraic smoothing-faster, but impedes the .
differential smoothing {(cE. Sec. 12}.

Interior difference equations which are not even semi h-elliptic

should be used with care. Their soclutions may show large numerical

oscillations (giving nice solutions only in the average), and their fast
multigrid solvera must have more complicated fine-to-coarse interactions
{see for example Sec. 4.2.2). Some quasi-elliptic equations, i.e., cases
where Eh(g) / |th
9] # 0 , ¢an be solved without much trouble. All that is needed is to
average out the bad components (see for example Secs. 18.5, 19.5, 20.6}.

does vanish for some |8 = 7 , but not for other

2.2 Boundaries, discontinuities

We have so far discussed the stability conditions related to the
intenicn difference equations, away from boundaries. To gain overall
stability some additional conditions should be placed at the boundaries.
These can be énalyzed by mode analysis in case the boundaries are para-
1lel to grid directions (cf. Sec. 7.5). But more general boundaries
are difficult to analyze. Usually, however, h-elliptic approximations
consistent with a well-posed problem and employihg low-order approxima-
tions to boundary conditions are stable. The order can then be raised
in a stable way by one of the methods of Sec. 10. At any rate, the boun-
dary stability is not related to the stages of developing the main (in-
terior) multigrid processes.

More critical than discretization near boundaries is the treatment
of discontinuities, whether at boundaries {e.g., boundary layers) or in
the interior (e.g., shocks). The basic rule, in multigrid as in unigrid
processes, is to try not to straddle the discontinuity by any difference
operator J[in relaxation as well as in residual transfers. And the rule

also applies to the interpolation operators). More precisely, the rule

-29-

is not to difference any guantity which is discontinuous in the interval
of differencing. This can fully be achieved onlv in cases where the
location of the discontinuity is known or traced {at such discontinui-
ties the above rule overrides upstream differencing if they happen to
conflict), or when the discontinuity is more or less parallel to grid
directions (so that upstreah differencing will automatically satisfy the
rule). Captured discontinuities which are not in grid directions must
perhaps be smeared: a multigrid way to get high accuracy then is by local
refinements (see Sec. 9). Generally, multigrid procedures for disconti-
nuities are now under active investigation (see [Bl7, Sec. 4] and a
remark in Sec. 8.5 bhelow).

3. INTERIOR RELAXATION AND SMOOTHING FACTORS

The crucial step in developing multigrid solvers is the design of
interior relaxation schemes with high error-smoothing rates. Namely, the
crucial guestion is how to reduce non-smooth error components for as
little computational work as possible, neglecting interactions with boun-
daries, This is the crucial question, from the point of view of sclu-
tion efficiency, since reducing 4mooih error components will require less
computational work (being done on coarser grids}, and since reducing non-
smooth error components neat boundardies will require much less work be-
cause it involves local work only near the boundary {which is a lower-
dimensional manifold). Alsc, relaxation is the most problem-dependent
part of the algorithm -- other parts are usually quite standard. (The
relaxation of boundary conditions is discussed in Sec. 5.3.)

3.1 Local analysis of smoothing

To reduce non-smocth erroy compbnents is basically a focalf task;
it can be done in a certain naighborhood independently of other parts of
the domain. This is why it can efficiently be performed through relaxa-
tion, which is basically a local process (the information propagates
just few meshsizes per sweep), Hence also, the efficiency of this pro-
cess can accurately be measured by local mode analysis.

That is, one can assume the problem to be in an unbounded domain,

with constant {(frozen) coefficlents, in which case the algebraic error

o . 5P (where u' is the exact solution to the discrete equations and

I is the computed approximation) is a combination of Fourier compo-
nents exp(if-x/h) . For each guch Pourier compcnent and any proposed

relaxation scheme one can eaaily calculate the amplification factor

s T

s o
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u{8) , defined as the factor by which the amplitude of that component is
multiplied as a result of a relaxation sweep (see simple examples in Sec.
1.2 above and in [84, Sec. 3.2]). The smoothing factor ¥ of the rela-
xation scheme, defined by

b= max  |u(8)}
s e {3.1)

can then easily be computed {usually by a standard computer routine,
such as the SMORATE routine in [M3]). This is indeed the measure we
need: 1 is the worst (largest} factor by which all high-frequency
error components are reduced per sweep, where we define the frequency to

be high if the component is not visible (aliases with a lower component)
on the next coarser grid (grid 2Zh).

In case of a system of q grid equations in g unknown grid func-
tions f{i.e,, q unknowns and q algebraic equations are defined per
mesh cell), each Fourier amplitude is a g-vector, hence u(8) is a
q x q amplification mataix. 1y is still defined as in (3.;), except

that |n[g}| 18 replaced by p{p(8)) , where p{y) is the spectral
radius of i .

For Lh with non-constant coefficients, defined by (3.1) de-
pends on the location. 1In case of nonlinear L' , the analysis is made
for the linearized operator, hence u depends also on the solution
around which linearization is made. The quality of relaxation is then
determined by the worst U , i.e., the maximum of 1§ over all possible

. h .
coefficients of L for any solution which may evolve in the calcula-

f=20 = |

tions. (One may disregard u on 3mall regions: See Sec., 3.3.}

A major simplification in calculating u for complicated systems
is to look at subprincipal terms only (see Secs. 2.1 and 3.4 and examp-
les in Secs. 1%9.2 and 20.2).

Some relaxation schemes do not transform each Fourier component of
the error to a multiple of itself. Instead, they couple several (¢

say) Fourier components at a time (even in the infinite domain}. For
axample, if relaxation is performed in red-black (checker-board) ordering
(cf. Sec. 3.6}, the 8 component is coupled to the 8 + (m,...,m) com--
nanent. Instead of the g x q amplification matrix _u(B) we then have
the (q®) <« (q?) matrix uiﬂl.-.-,gal , describing the ;ransformation

Of the ; y-vector amplitudes corresponding to the coupled components
87,....,27 . bpefinition (3.1) is extended to such cases by defining

o= maxtetceet, L, eh el eV Y (3.2
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|3 .
where the max is taken over all coupled R-tuples (gl,....g y , C 18
an & x & matrix of g x @ blocks Cij such that Cij = 0 for

i#3.Cy =1, (the axg identity matrix) if |8 » /2 , and

Cii = 0 otherwise. v is the number of sweeps performed on the finest
grid per multigrid cycle; only in the simple case {2 = 1) u does not
depend on v . Examples with & > 1 see in [Bl4, Sec. 3.31, (L2, Sec.

2.3.11.

The smoothing factor is the first and simplest quantitative predi-
ctor of the ohtainabfe multigrid efficiency: ¥ ter G:) is an appro-
ximation to the asymptotic convergence factor obtainable per multigrid
cycle. Usually this prediction is more accurate than needed. There
are still more accurate predictérs {see Sec. 4.1). But fhe main impet-
tance of u 44 that {t separates the design of the intendon nelaxation
from alf othen algonithmic guestions. Morgover, it scts an {deal figune
against which the penformance of the fuft algonithm can Later be judaed

(see Secs. 4, 5).

The analysis of relaxation within multigrid is thus much easier
than the analysis of relaxation as an independent iterative solver.
The latter is not a local process, and its speed depends on smooth com-
ponents, which are badly approximated by mode analysis, due to bounda-
ries and variable coefficients. For multigrid purposes, however, where-
ver the equations {or their linearized version) do not change too much
within few meshsizes, the smoothing factor can be used as a standard
measure of performance. A general routine for calculating ¥, called
SMORATE, is available [M3].

3.2 Work, robustness and other considerations

In comparing several candidate relaxation schemes we should of
course take into account not only their smoothing factors, but also the
amount of work per sweep. The aim is gererally to have the best high-
frequency convergence rate per operation, i.e.,, the largest walloq(l/ﬁ),
where Y is the number of operations per gridpoint per sweep. But
other considerations should enter as well: The rate should be robust,
that is, u should not depend too sensitively on problem parameters or
on a precise choice of varicus relaxation parameters. Also, between two

schemes with similar values of wollog(l/ﬁl but with very different

w, , the simpler scheme (where wg, is smaller) should be preferred,

0
because very small factors u cannot fully be obtained in practice
{owing to the inability of the coarse-grid correction to obtain such

small factors for the smooth components, and owing to interactions with
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boundaries). Moreover, large values of w leave us with less flexibi-

0
lity as to the amount of relaxation work to be performed per cycle.
very small § may in fact be below what we need in the Full Multigrid

(FMG) algorithm (see Sec. T}.

An important consideration, sometimes overlooked, is that each
relaxation sweep should of course be stable. The most familiar schemes
ar¢ stable, but distributive schemes (Sec. 3.4) for example, can be un-
stable exactly in cases showing the best U . A trivial example: gatis~
fy each difference equation in its turn by changing its fatest unknown
{in the sweeping ordering) instead of its usual corresponding unknown.

0 will then vanish, but the process will be unstable. Stability analy-

sis can in each case be performed as Von-Neumann analysis for time depen-
dent problems, taking the main relaxation marching direction as the time-
like direction.

also, do not forget that relaxation has a certain effect on smooth
{low frequency} components, too. Usually this effect is slow: u(8) is
close to 1 for small |8| . But sometimes schemes which show spectacu-
larly small values of ¥ also show either bad divergence tlutey| > 13
or fast convergence (|p{8}| << 1) for fow frequencies. This for example
may happen in relaxing hyperbolic (relative to some time-like direction)
equations using upstream differencing and marching with the stream (the
time-like) direction. Schemes with bad divergence should clearly be

rejected {see an example in Sec. 20.3.4, the super-fast smoothing
case). Those with fast convergence may also have some disadvantage (in
case high-order corrections, as in Sec. 10.2, are desired; see for
example [Bl7, Sec. 2.21).

It is therefore advisable to add to the program of calculating W
also a routine for checking the stability of the scheme examined, and to
calculate, together with (3.1}, also the value of max|ﬂ|‘"|u(g)| . It
is also useful to calculate weighted mean squares of u(p) for high-
frequency B8's . Such quantities predict the error decrease in a given
humber of multigridded relaxation sweeps for a given initial error [Bl3,
Sec. 4.5]. Some of these measures are supplied by SMORATE ([M3].

The value of local mode analysis becomes dubious at places of
strong discontinuities, e.g., where the coefficients of the differential
equation change their order of magnitude discontinucusly (or within few
meshsizes). This usually happens along manifolds of lower dimensionality,
hence more computational work per gridpeint can there be afforded, hence
an accurate measure of efficiency is not a0 needed, But some basic rules,
outlined below, must still be followed. One can also employ local R-E
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analysis (cf. Sec. 1.1, and more details in [B26}), which yields good

quantitative information even ipn strongly discontinuous cases.

3.3 Bleck relaxation rule. Semi smoothing

The most basic rule in devising relaxation schemes is that a toca-
ey stnongfy coupivd block of urknowns which &3 focabty decoupled from ¢
lon weakfy coupfed with) the coansen-grid vaniables shoubd be e faxed
simultaneousfy. The reason ig that a point-by-point relaxation smocthes
only along the strongest couplings whereas block relaxation also
smoothes along second-strongest couplings {providing the strongest ones
are included in the blocks. See for example the case a << C in Sec.
1.2, and a more general analyais in [B26, Sec. 3.5 and Sec. 4.6]).

This rule is of course important whether or not the equations are

continuous. In case of persigtent S,- h-ellipticity (i.e., a diffe-
rence operator with good Sl-h-ellipticity throughout a substantial sub-
domain, but without uniformly goocd Sz—h-ellipticity measure for any

8, # 5,) , the rule implies either the use of block relaxation in sui-

e

table directions {line relaxation, plane relaxation, etc.}, or the use
of suitable "semi coarsening" ({see belowl, or both.

Generally, for any set S of grid directions {usually
s e {1,2,...,d} , but sometimes including a special bisecting direction
could be advantageous), a relaxation scheme is called an S-block relaxa-
tion if it relaxes gimultaneoualy all (or many contiguous) equations
defined on the same S-subspace, (Two points (xl,...,xd) and
(yl,...,yd) are in the same S-gubspace if x, = y. for all j £ s .)
For example, the line relaxatiop in Sec. 1.2 is a y-block (vertical
line) relaxation.

Semi coarsening, or more specifically S-coarsening, means that .
Hj = Zhj for j € 8§ and H, = h. otherwise, where Hj and h, are b
the meshsizes of the coarse grid and the fine grid, respectively, in the
xj direction (j = l,...,d4) ., 1In such a case we need to smooth the
error only in directions 5 . The definition of the smcothing factor
should accordingly be modified, We generalize (3.1) to any coarsening
situation by defining

Vo= max{pi{u(e)) s 8] ¢ n , max 8.0, / h, 3 ©} . (3.3)
lcjcd ] ]

Similarly we generalize (3.2) by defining C;; = Iq if maxiﬁ%]H./hj 3
1, and cii = 0 otherwise. The S-smoothing factor is defined as (3.3),

or the generalized (3.2), for §-coarsening. (A way for sometimes defi-
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ning an improved G , by allowing for example 0 in (3.3) to be repla-
ced by any smaller positive number, is explained in Sec. 12.)

If point (not block) relaxation is to be used, then S-h-ellipticity
is a necessary and sufficient condition for the existence of relaxation
schemes with goed (i.e., bounded away from 1) S-smoothing factors. This
is an easy generalization of a theorem proved in [Bl2, Sec. 4.2]. The
more general situation, with bfock relaxation, is summarized by the
following theorem:

THEOREM 3.1 Llet S and S’ be two sets of dinections: 5,8' <
{1,...,8} . A aecessary and sufficient condition for the existence of
an S-bfock refavation scheme with good §'-smoothing rates {& that the

di{screte openatun AL uniformly coupled in S' modubo § : that &,

e, oM = min 1theyl 7 |TPen | = o) . (3.4)
! ﬂ/2$|g|s.‘n -

A=t . for jE€S
|

h .
ES'.S is called the measure of uniform coupling in §' modulo S.
The theorem states, in other words, that the S'-smoothing factors, pro-
11 .
duced from L by any sudtable S-block relaxation, are bounded away from

1 by a gquantity which depends only on E;. S(Lh) .
r

In this context, the role of block relaxation can sometimes be
played by simple point relaxation. This is when the relaxation marching
direction conforms with the downstream time-like direction of a hyperbo-
lic-like system, so that a relaxation sweep nearly so0fves the equations
{especially when upstream differencing is used). The role of block re-
laxation can also be played, more automatically and in more situations,
by ILU smoothers (see Sec. 3.B).

variable coefficients. When the coefficients of Lh {or of its

linearization, in case it is nonlinear) are not constant, a pexfect

smoother is a relaxation scheme whose Formal U {calculated at each
point by assuming the coefficients there to extend as constant coeffi-
cients throughout) is good at all points. Such a perfect smoother can
sometimes require guite costly block relaxation {e.g., plane relaxation)
in several directions, because of varying semi-h-ellipticity directions.
It is therefore important to realize that such peafect smeothers ane net
neatty weeded because acci{dentaf semi h-ellipticity need not be taken
into account. Explanation:

First, the above block-relaxation rule itself suggests that the
formal W may be allowed to be bad [close to 1) at some isolated points.
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The multigrid convergence rates will atill be good. More importantly,
however, consider the common case of a (nearly} non-elliptic differen-
tial opeqator whose [sub)characteristic directions continuously vary
over the domain, so that in some particular small region they happen to
approach some grid directions. As a result, in that particular region
the discretization may be semi h-elliptic, smoothing there will be bad,
hence the asymptotic multigrid convergence will slow down. Notice,
however, that the components slow to converge are very special ones:
They are necessarily high-frequency characteristic components in that
particular region; i.e., components smooth in the {sub)characteristic
directions but not smooth in all directions. Such components exist an
the grid onfy when (sub)characteristic directions appreoach grid direc-
tions. Elsewhere, such components are not represented at all by the
finite-difference solution; they are truncated. Hence, if one is inte-
rested in solving the discrete equations only to the level of truncation
errors (and hence eventually uses an FMG algorithm -- cf. Sec. 7). such
components can be ignored: Their slow algebraic convergence in regions
of accidental semi h-ellipticity does not matter, because similar com-

ponents are not approximated at all in other regions.

only in cases of strong alignment {(see Sec. 2.1) the correspeonding

block relaxation must be used. But it may be confined to the region of
strong alingment. If, for example, the strong alignment is due to grid
alignment of boundary layers, it is encugh to perform line {or plane)
relaxation only at the very lines adjacent to such boundaries {and some-
times not even there -- see [B17, Sec., 3.3]), with just point relaxation
elsewhere. If the alignment is strong because it occurs throughout a
major subdomain, line {or plane} relaxation of only that gpecial direc-
tion is needed there. Alternating-directicn block schemes may be needed
only if errors far below truncation errors are for some reason desired.

A general way to avoid any need for block relaxation, even when
solving far below truncation errors, is to use semi coarsening, as men-
tioned above. 1In case of variable coefficients, causing variable coar-
sening directions, this leads to AMG processes (see Sec. 13.1).

3.4 Distributive, weighted, collective and box Gauss—Seidel. Princi=-

pal linearization

To obtain efficient smoothing, a selection should be made from an
abundance of available relaxation schemes. The choice depends on expe-
rience and on some physical insight, with » calculations serving for

final guantitative judgement. We l1ist here some important types of
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schemes. Each of those can be operated pointwise or blockwise (see Sec.
3.3) and in different orderings (see Sec. 3.6 below). Some simple sche-
mes are described in more detail in [S54). We first describe the succe-
ssive displacement species, then we mention their simultanecus-displace-
ment counter-parts (Sec. 3.5). 1In case of equations with many or comp-
licated linear or nonlinear lower-order terms, it may pay to apply any
of these schemes with the scaled principal terms only (see Sec. 10.3}.
In case of complicated systems, see the general approach in Sec. 3.7.

The most basic scheme is the Gauss-Seidel (GS) scheme, in which
all the discrete equations are scanned one by one in some prescribed
order. Each of them in its turn is satisfied by changing the value of
one corresponding discrete unknown. This is easy to do if the problem
is linear and if there is a natural one-to-one correspondence between
equations and unknowns (if, e.g., the matrix of coefficiencts is defi-
nite). In case the problem is nonlinear, each discrete equation may be
a nonlinear eguation in terms of the corresponding unknown. It is then
usually best to make just one Newton step toward solving each eqyation
inlits turn. This Gauss~-Seidel-Newton {GSN) scheme is not related to
any gfebaf linearization of the system of eguations, it just linearizes

one discrete equation in terms of one discrete unknown, yielding usually
a very simple scheme which does not require any storage other than the
storage of the (approximate) solution.

Principal linearization. Moreover, it is actually encugh to relax

an equation through an approximate linearization of its h-paincipal
terms, corresponding to the (sub)principal terms of the differential
operator {see Sec. 2.1}. Thus, for example, if the equation is

wiu + uu 4+ .., and the current approximation just before relaxing at
some point is U , then the relaxation at that point can simply be the
same as if relaxing the eguation udu + ﬁux 4 ... + A full linearization
would in addition include the term (u-U)U, , but on the scale of the
grid, hence in relaxation, that term is negligible. This “"principal
linearization® is as good as full lineanization for punposes of relaxa-
tion, at least as long as differenceas of U at adjacent gridpoints are
small compared with U itself. Note that for guasi-linear equations,
which include almost all practical equations, the principal linearization
involves no fLinearization at all, just triviafly aretarding the Lowen-
onder denivatives in each Lfeam, as in tha above example.

When relaxation is used as the prime solver, much may be gained by
Successive Over Relaxation (SOR), in which the GS correction calculated
for each unknown is multiplied by a relaxation parameter w . The situa-
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tion is different when relaxation is used only as a smoother in multi-
grid sclvers. The best smoothing (lowest B) is usually obtained for
the natural value «w = 1 , so that G5 is not only cheaper (per sweep),
but also at least as effective {per sweep) as 5S50R. Lower I may be
obtained by other parametrizations (e.g., the distributive G5 described
below), but for regular second-order elliptic equations this gain hardly

ry T

justifies the extra work involved:; Simple GS is probably the best known
smoother (especially with red-black ordering -- see Sec. 3.6).

1f block relaxation is required (cf. Sec. 3.3), block GS can be
used. This means that the blocks are scanned one by one, the eguations
of each block are simultanecusly satisfied by changing the corresponding
block of unknowns. In the two-dimepsional plane (x,y) , if the blocks
are lines parallel to x (lines with constant y}, the relaxation is
called x-line GS, or xLGS. Similarly yLGS5 is defined (see example in
Sec. 1.2). .

Wwhen there is no natural one-to-one correspondence between disc-
rete equations and unknowns {the matrix is not approximately definite; h
e.g., non-elliptic and singular perturbation equations, or elliptic F
systems which are not strongly elliptic (B1%, Sec. 3.6]), simple GS
should be replaced either by Distributive Gauss-Seidel (DGS) or by Wei-

ghted Gauss-Seidel schemes, In DGS, with each discrete equation we
associate a "ghost" unknown, with some prescription beiny selected for
the dependence of regular unknowns on ghost unknowns. Usually, each [
regular unknown is written as a prescribed linear combination of neigh-
boring ghost unknowns. Then, as in GS, the equations are scanned one by
one, each being satisfied by changing the corresponding ghost unknown.
This means in practice that a certain pattern of changes is distributed
to several neighboring regular unknowns (hence the denomination “distri-
butive” GS); the ghost unknowns do not explicitly appear, nor stored in ¥.
any way, they just serve for the description of DGS. (In fact their

values are never known -- only changes in their values are calculated to

induce changes in the regular unknowns.) In case of block (e.g., line)

DGS relaxation, a block of ghost unknowns is simultaneously changed to
simultanecusly satisfy the corresponding block of equations. In two di-
mensions we thus have xLDGS and yLDGS schemes. A special case of DGS is i
the Kaczmarz relaxation (see Seg, l1.l}. Other examples are described

in detail in Secs. 17.3, 18.3, 19.3 and 20.3. The smoothing analysis of
DGS schemes is best executad in terms of the ghost unknowns; see Sec.
3.17.

In Weighted GS (WGS) achemes, with each discrete unknown we asso-

ciated a ghost equation, which is a preassigned linear combination of L
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neighboring equations, and we perform GS in terms of the ghost equations.
Taking work into account, WGS is usually inferjor to DGS, since each
equation is calculated geveral times per sweep, unless the ghost equa-
tions explicitly replace the original equations -- which is just a li-
near transformation of the discrete system of equations. It pays to
transform the system (as against performing DGS) only if the resulting
system is not more complicated than the original, which is seldom the
case: A transformation that yields a simpler system could usually be
done already in terms of the differential equationg, giving a simpler
differential system, (Fxceptions are cases where the simplifying trans-
formation gives a worsc system for discretization: e.g., a system not in
conservation form as in [Bl6, Sec. 2.1]). Te relax in that case in con-
vprvation form, a combination of WGS with the DGS scheme of [Bl6, Sec.
4.1} is indeed needed.)

For systems of equations {g > 1) , simple GS is appropriate only
in case the system is strongly elliptic [B19, Sec. 3.6]. Otherwise col-
lective G5 or DGS schemes should be employed. Collective Gauss-Seidel

(CGS) is perfcormed when the grid is not staggered, i.e., all the g grid
equations and g unknown functions are defined on the same gridpoints:
The grid points are scanned one by one, at each point we change simul-
taneocusly ("collectively") its g unknowns so as to simultaneously
satisfy its g eguations. In case of a staggered grid one can divide
the domain into (usually overlapping) small boxes. The boxes are scanned,
for each one we change simultaneously all unknowns interior to it so as
to simultaneously satisfy all equations interior to it. This is called
Box G5 (BGS. See relevant remarks in Sec. 5.6). DG5S schemes are gene-
rally more efficient for staggered grids than BGS (except sometimes in
very coarse grids; cf. Sec. 6.3), because they do not couple the equa-

tions (see Sec. 3.7}).

For nonfireat equations, all these methods can be used, but ing-
tead of fully satisfying an eguation {or a collective of g equations,
or a box of equations), only one Newton step (or just principal lineari-
zation) is made in terms of the corresponding (regular or ghost) unknown
{or collective of gq unknowns, or box of unknowns). For semi h-elliptic
cases, block CGS (e.g. line CGS, meaning simultaneous solution of all
equations on a line through changing all that line's unknowns}, or block
pG$, or block PGS, may be performed (after principal linearization, if
needed) .

Higher-order equations are sometimes most efficiently relaxed by

writing them as systems of lower order equations. For example, the bi-
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harmonic can be written as a palr of Poisson eguations, Relaxing this
system involves less work {per complete sweep) and yields better smoo-
thing (per sweep} than relaxing the biharmonie. But special care should
be taken in relaxing the boundary conditions for this system (see Sec.
5.3}).

3.5 Simultaneous displacement {Jacobi) schemes

The G5 schemes described above are successive-displacemenl schemes:
The new value of an unknown (or block of unknowns) replaces the old one
as soon as it is calculated, and is immediately used in relaxing the
next equations. 1In Adimuftaneous dispfacement schemes new values replace
old ones only at the end of the sweep, after all of them have been cal-
culated; hence each of them is calculated explicitly in terms of old
values only. Corresponding to each of the schemes above we have a si-
multaneous-displacement scheme, called: Jacobi-relaxation, Jacobi-New-
ton, distributive Jacobi, weighted Jacobi, collective Jacobi, box Jacobi,
line Jacobi, line distributive Jacobi, etg, -- corresponding to G5, GSN,
bDGS, WGS, CGS, BGS, line GS, line DGS, etc., respectively. '

Unlike GS, Jacobi schemes often require under-relaxation (w < 1)

in order to provide good smoothing. But with relaxation as a smoother
{not an independent solver), good and optimal values of w are indepen-
dent of the domain, and can easily be calculated by local mode analysis.

Distributive and weighted Jacobi (under-}relaxation amounts actua-
1lly tc the same thing. An example of an optimized weighted Jacobi scheme
is analyzed in [B7?, Sec. 3.3].

All -experience so far shows that Jacobi schemes are inferior to
the corresponding GS schemes. They not only require more work (for
operating the relaxation parameter} and more storage {for storing the
new values separately), but thelr smoothing factors are in fact worse.
For the 5-point Poisson equation, for example, Jacobi under-relaxation

(w .8) yields . = .6 , while GS gives i1 = .5 and .25 for

1e2§§;2:iphic and red-black orderings, respectively. The situation is
similar in all cases soc far examined. The advantage of simultaneous-
displacement schemes is in their being more amecnable to certain rigorous
analyses (but there seems to be no practical value to this -- see Sec. 14)
and their vectorizability and parallelizability t(but red-black G5 and

simjilar schemes are also fully parallelizable -- see Sec. 3.6}.
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3.6 Relaxation ordering. Vector and parallel processing

For successive-displacement schemes, the order in which the equa-
tions (or blocks of equations) are relaxed has an important effect on
the smoothing factors. The main orderings used are the usual lexicogra-
phic (LEX) order (in which the equation at grid point (iy.....14) is
relaxed before (jl,...,jd) if iy = 3y for 1 £ k < £ and il < dghe
and related orders (LEX order for some permutation of the coordinates,
some of them possibly reversed); symmetric relaxation {lexicographic
sweep followed by a sweep jn the reverged order); red-black (RB) orde-
ring (in which all "red" gridpoints are relaxed before all "black" ones,
where the coloring is similar to that of a checkerboard, namely a point
(il,...,id) is red if i1 + ...+ i is odd, and black if it is even);

d
and more general pattern relaxation {similar to RB, but with different

coloring and possibly more colors). For difference equations involving
more than nearest neighbors, RB schemes still depend on the ordering of
points within each color. If such points are displaced simultaneously,
the scheme is called Jacobi-RB; similarly LEX-RB, etc. The performance
{i.e., smoothing per operation) of Jacobi-RB is more like GS schemes
than like Jacobi, and like them it dces not generally require under-
relaxation.

Each of these orderings has its block-relaxation versions. xLGS
{or xLDGS) can be done lexicographically forward (increasing Yy} or
backward (decreasing y), or symmetrically (forward alternating with
backward). Or, corresponding to RB, we can first relax the even lines,
then the odd lines. This is called zebra xLGS (or x-zebra) relaxation.
similarly, yLGS (or yLDGS) can be done upward, downward, symmetrically
or zebra. Particularly robust schemes are the Altermating-Direction
Zebra (ADZ = x-zebra alternating with y-zebra) and Alternating~-Direction
Symmetric LGS (ADS = symmetric xLGS alternating with symmetric yLGS).
Many more block GS schemes are similarly defined in higher dimensions.
The choice of blocks is governed by the rule in Sec. 3.3. Concerning
the choice of ordering we have the following remarks.

1t has been found that GS with RB ordering is the best for the 5-
point Poisson equation [F2]. Similarly, DGS with RB ordering within
each of its passes (called briefly Distributive RB, or DRB) is the best
for many syétems, such as Cauchy-Riemann and compressible and incompre-
ssible Mavier-Stokes equations (see Secs. 17.3, 18.3, 19.3 and 20.3).
For S-point Poisson, RB-GS provides ﬁl = .25 , EZ = .25 and E3 = ,32
{cf. Eq. (3.2)), as against § = .5 for LEX-GS. Moreover, RB-GS can be
executed with only four operations per grid point, whereas lexicographic
GS requires five. Similar comparisons hold for the more complicated
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elliptic systems.

tn addition, the mentioned RB schemes (more precisely Jacobi-RE)
and similar pattern relaxation schemes are fully vectorizable and para-

llelizable: All the equations of the same color can be relaxed in para-
llel, thus taking full advantage of computers having vector or parallel
processing capabilities. The zebra schemes are similarly parallelizable.
(See more about parallelization of all multigrid processes in [Bl4].)

For non-elliptic equations or for elliptic equations with large
non-isotropic lower-order terms (singular perturbation problems, in
particular), the first approach ([B6), [S21, [B7], [BLO]) was to employ
"downstream" ordering, in which the equation at a point A is relaxed

before (or simultaneocusly with) that at point B if the solution at 8
depends more heavily on the solution at A than vice-versa (e.g., if
the fluid flows, or the convection transports, from A to B). This
provides very good smoothing factors (better than those for regular
elliptic problems). If different "downstream" directions exist at dif-
ferent parts of the domain, this may require a sequence of several rela-
xation sweeps in several directicns. If for example line relaxation is
also required, ADS relaxation may be needed, i.e., four passes over the
domain. Each pass may be effective in only part of the domain, but the
combined sweep will give excellent smoothing everywhere, for any combi=
nation of semi h-elliptic approximations in two dimensions {and alsc in
three dimensions, if the grid is coarsened in only two directions (cf.
Sec. 4.2.1)). In some particular cases (when the reduced equation is
hyperbolic in some time-like direction, and upstream differencing is
employed) such schemes yield not only great smoothing but also great
convergence, making coarse-grid corrections superfluous.

our preference today, however, is away from these downstream mar-
ching schemes. First, because they are not so good for vector and para—
ilel processing. Also, because in cases where several downstream direc-
tions are required, the programming is complicated and the multi-direc-
tion procedure is not fully efficient, since it reguires several passes
over the grid where one or two {efficient} passes ig all that would be
needed at each multigrid stage. Hence ordering-free schemes were deve-
loped, with which good smocothing is obtained for any ordering, including
RB and/or zebra {the block-relaxation rules should still be kept). Such
ordering-free schemes are obtained either by distributive relaxation
[Bl0, Sec. 6], or by using slightly more artificial viscosity than that
required for upstream-differencing (Bl2, Sec. 4.3], [B17, Secs. 5.7, 6.3,
7.21. Actually, even these devices (distributive relaxation and/or inc-
reased artificial viscosity) are not usually needed, unless one wants a

g W
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“perfect smoother" in order to reduce algebraic errors far helow trun-
cation errors: 1If all that matters is the fast approximation of the
diffenentiaf (not the discrete) solution and an FMG algorithm is emp-
loyed, then the simplest direction-free schemes, such as RB, can do
{B17]). Morenver, the tendency of downstream marching schemes to yield
fast converavncr (not just fast smoothing) may sometimes be disadvan-
tageous (see Sec. 3.2).

3.7 Principle of relaxing general PDE systems

To obtain a good smoother (i.e., a good combinaticon of discretiza-
tion and relaxation, yielding good differentiaf smoothing, as defined in
sec. 12) for a gyiven system of g partial differential equations Lu =
f , it is important to understand in advance what smoothing rates are
obtainable. The guiding principle here is the following.

The smoothing tate §or a given PDE cperaten L can be as good as
the smoothing nates obtaimable foar the factons of the subprincipal pant
cf det L .

To explain this, we first show how a smoother for I can be cons-
tructed in terms of a smoother for the scalar operator det L . One way
to do it is through distributive relaxation (cf. Sec. 3.4). Such a rela-
xation is defined by considering the vector of unknown functions u (or
their discrete counterparts) to depend affinely on a "ghost" vector of
functions w , i.e., u = Mw + u0 , where M is a g * q differentjal
(or finite-difference) operator, and the vector uo is immaterial
{since we are interested in changes in w , through which changes in u
are defined: w itself is not explicitly present). In terms of w we
then devise a suitable relaxation for the operator LM . It is easy to
see that the smoothing rate of this relaxation in w will automatically

be taken over by the resulting distributive relaxation in u .

one particular choice is to take M to be the transposed matrix
of cofactors of L , in which case LM equals det L times the (g = q)
identity operator. One can thus devise for each component of w any
relaxation suitable for det L ; the corresponding distributive relaxa-

tion for u will have the same smoothing rate.

as mentioned earlier {Sec. 2.1), the only part of L which really
participate in devising the smoother is the subprincipatl part of the
linearized operator; the smoothing rates obtained for L are the same as
for that part. Thus, for the discussion here, we may think of 1 as
having subprincipal terms only. 1In that case we can often factor det L

into simpler factors. Typically, in many physical problems, the Factors
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are either the Laplacian A or the convection-diffusion operator
A + a-3 . Smoothing rates for the latter are discussed for example in
{8171, [KR2] and [S54}.

One general way to devise the relaxation of L in terms of the
factorization of det L is to correspondingly factorize L itself,
using the following theorem,

THEOREM 3.7 1If det L = 1112 , whexe each Ei i4 a |scakan) differnen-
tial operaton, then one can factorize the g = q operator L into
L = L;L, , where L; are g *xq matrix operatens, such Lhat det L, =

The proof, for which we thank Anthony Joseph, is based on Theorem
S on page 393 in [L4]. A nice example is the factorization of the elas-
ticity operator
( uA+Aaxx Aaxy ) ~ ( ax By ) ( Ay 0 ) ( Bx BY )
Aaxy uA+AaxY By -3, 0 i By -,

which is indeed useful for its relaxation (through the schéme of Sec.
17.3), especially in case u << » , where simpler schemes fail.

To relax the factorized system L L,u = f , cne can simply intro-
duce the auxiliary vector of unknown functions v = Lzu and alternating
relax the two systems: L,v = f and Lyu=v . The combined smoothing
rate is no worse than the worst of the rates of the two systems. (If
these two rates are very different, the system with the slower rate can
be relaxed more times.) Special care should of course be exceraized in

relaxing near and on boundaries (see Sec. 5.3).

In many cases there is a simpler distributive relaxation which
meets the goal of the above guiding principle. It is not necessary that
LM be diagonal as in the general approach above; it is enough to get
LM to be triangular. Moreover, if the operators on one of the columns
of M all have a common divisor, that divisor can be omitted. In this
way one can often have each term on the diagonal of LM to be just one
separate factor of det L [some factors possibly appearing in more than
one diagonal term}, in which case no auxiliary functions (such as v
above) are needed. The relaxation schemes in Secs. 17-20 are all of
this kind. Also, instead of distributive relaxation one can obtain the
same goal by weighted relaxation schemes. The important -upshot in any
case is that fhe goal is known &in advance, s¢ de wet settle fon any sub-
stantiaflu 3fowen nates., Note that the above smocthing discussion assu-

mes frozen cperators, hence may not apply to cocarse grids.
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3.8 ILU smoothers

The above list of relaxation schemes, although including some of
the most efficient smoothers, does not exhaust all possibilities. Of
special interest is the use of incomplete LU decomposition (ILU), and
reiated schemes, as smoothers. Such smoothers, first introduced in
[W21, have been shown to be very robustly efficient for a wide range of
5-point and 9-point difference equations. For an extensive treatment,
see [K2] and the more recent [S$9].

The basic ILU process can be described as a Gaussian elimination
truncated so as to preserve a certain pattern of sparsity, simply by
ignoring (i.e., replacing immediately by zerc) any term produced by the
elimination process at any matrix position designed to remain zero {e.g.,
any matrix position which is originally inherent zero)}. In case of non-
linear eguations one can apply this process with the principal lineari-
zation (see Sec. 3.4).

The robustness of the ILU smoother can be explained by its ability
in many cases to automatically produce an approximation to desired block
relaxations in varying grid directions. If for example the system cont-
ains any sequence of unknowns each of which is strongly coupled only to
its predecessor and successor in the sequence, and if the ILU ordering
of unknowns conform with the ordering of that sequence {i.e., it gives
that seqguence upon omitting all other unknowns), then, ignoring weak
couplings, the equations of the seqguence appear to the ILU process as a
separate tridiagonal system, which it automatically solve simultaneously
(since Gaussian elimination for a tridiagonal system does not produce
new non-zero terms). This is exactly what the block relaxation rule
(Sec. 3.3) requires. Provided the weak couplings do not somehow accumu-
late and spoil this picture. There are special situations where that
may happen. Indeed, for some special anisotropic equations there are
some very special high-frequency error components which are even consi-
derably magnified by the simple ILU process. More advanced "block ILU®
(see [K2, Sec. 3.2.3]) should then be used.

One can produce systems where various sequences of strong coup-
lings are so ordered as to contradict any ordering chosen for the ILU
process. But this rarely happens in practice; especially in two dimen-
sions, such systems are artificial. Thus, using ILU we need to worry
much less about all directions of relaxation required for a perfect
smoother. (But such a perfect smoother is usually needed only for sol-
ving far below truncation errors; see Sec. 3.3.) A careful comparison,
in which the total amount of operations in an FMG algorithm is counted

taking into account the ILU set-up operations, shows ILU schemes to be
quite comparable to suitable GS schemes [T5]. In many cases, however,
ILU requires much more storage: One needs to store all the non-zero
matrix elements, whereas the G5 schemes often require storing just the
approximate solution itself (e.g., when the problem, whether linear or
not, is autonomous, as in all fluid dynamics cases). Also, G5 schemes

(in red-black ordering) are much faster on vector machines.

Both an advantage and a disadvantage is the fact that ILU is a
"package deal", automatic prescription: It tells you exactly what to
do in complicated situations, near boundaries for example; but it does
not allow you to change the scheme to deal with special needs, such as
local relaxation near re-entrant corners and other singularities [B24],
other special local treatments, separate smoothing of coupled differen-
tial equations, etc. One can however combine ILU smoothers with sophis-
ticated distributive schemes. For example, within the distributive
relaxation described in Sec. 19.3 for the Navier-Stokes equations, one
can use ILU for relaxing each set of momentum equations ((19.4b) for
one j) in terms of the corresponding velocity function u;

oy
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4. INTERIOR TWO~LEVEL CYCLES

Having computed the smoothing factor u , one should expect the
asymptotic convergence factor per multigrid cycle to approach The
where v is the number of relaxation sweeps (on the fine grid h) per
cycle. This ideal figure does not take into account the exact nature
of the inter-grid transfers. The next task then is to design those
transfers so as to approach the ideal figure. To separate their design
from questions related to boundary conditions (which are taken up at the
next chapter), we still think in terms of fully-periodic or infinite-
space problems: we still, that is, restrict our attention to {nteriocn
processes, hecause it is there that most of the computaticnal work is
invested. Furthermore, we simplify the multigrid situation at this
stage by restricting our attention to two grids only, the finest griac

h = (hl""’hd) and the next coarser grid H = (H Hd) , where

1:---:
usually H = 2h . That is, we assume in our analysis that the grid-H

equations are solved (exactly} each time the algorithm gets to that grid,
without analyzing how that solution is obtained, hence without inveolving

grids coarmer than H in the analysis.

These assumptions indeed simplify our studies very much. First,
the error can be expanded in a Fourier integral (or series) and the tran-
sformations of the amplitudes of different Fourier components by multi-
grid operations can be calculated. Indeed, for linear systems with con-
stant coefficients only few Fourier components at a time are coupled by
these two-level interior processes, hence transformations of Fourier
amplitudes are expressed as small matrices (Sec. 4.1). In case of non-
constant corfficients, we usually freeze them at some values (treated
then as parameters of the analysis). In case of nonlinear equations,
their Newton linearization is analyzed (although no such linearization
is needed in the actual processes; see Sec. 8.3). The parameters of the

analysis then depend on the solutions around which linearization is made.

This freezing of coefficients is reasonable as long as the real
coefficients do not change too drastically over a meshsize. Where they
do, we can sometimes model them as changing periodically, again making
mode analysis with small matrices possible [B19, Sec. 4.71).

When mode analysis becomes too difficult or dubious, or if nne

simply wishes to skip it, experiments with periodic_boundary conditions

can be us~d instead. One can in fact do such experiments even when mode
analysis ¢4 available, and comparte the analysis with the experiments.
This is an accurate debugging technique, completely separating away

issues related to boundary conditiong. Moreover, such periodic-boundary-
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condition program could serve as an excellen: preliminary stage in deve-
loping your real multigrid program. For this preliminary program, the
various advices given in Sec. 5.1 concerning the full program could be
used, including in particular the use of muftigrid program to simulate

a fwo-qrid algoerithm, and the trick of near-linearization of non-linear
equations.

Some warnings, however, concerning this use of periodic boundary
conditions: First, relaxation should better be restricted to simulta-
neous-displacement {Jacobi, red-black Jacobi, zebra Jacobl, etc.} sche-
mes, to avoid the special neon-smoothness created along the starting
line {or termination line) of the relaxation sweep. (This non-smooth-
ness would be particularly bad if downstream ordering were used. !}
Second, periodic boundary conditions often require additional global
conditions to be added so as to make the problem well posed. In some
cases these extra conditions are easy to implement,.involving for exam-
ple just an adjustment of the solution average by adding a constant.
(Multigrid treatment of global conditions is discussed in Sec. 5.6.)
Other cases, especially nonlinear ones, are less straighforward. A full
section could, and perhaps will, in fact be written about the art of
using periodic problems. It is also important to realize that interior
studies in general have more limited value for non-elliptic problems,
where the interplay with boundaries ig more essential (see end of Sec.
4.1).

one should alsc make sure that at this stage {whether mode analy-
sis or periodic numerical experiments are used) both grid h and grid
i are fine enough, and grid-H equations are solved accurately enough
{without taking into account the work this accurate solution requires),
in order to separate away questions related to coarser grids {see Sec.
6.3). Do not forget, however, in the process of optimizing the grid-H
operator LH , that this is a modeling for a multigrid solution, hence
your model must be recursible: The N equatiocns should have the same
general form as the original h equations, with the same range of pos-

sible parameters.

In addition to the relaxation scheme, studied above, the main
issues to be studied at this interior-two-level stage are when to awitch
{under what criteria, or after how many relaxation sweeps) from grid h
to grid H ; what should be the coarse-grid variables; and the type {in

the interior) of three multigrid operators: The fine-to-coarse transfer

of residuals I: , the coarse grid operator LH , and the coarse-to-fine
interpolation of corrections Ih These issues are one-by-one discu-

H -
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ssed in the subsections below. They are later reviewed again, from a
more general perspective, in Sec. 1l. Relevant to these issues are

also Secs. 8.5 and 10.2 (nonlinear problems and higher-order techniques}.

4.1 Two-level cycling analysis. Switching criteria

Details of the two-level mode analysis are described in [B19,
Secs. 4.6-4.8] and in (sS4, Secs, 3.3-3.,5, 7, 8, 9}. The former also
discusses modifications of the analysis to account for the fact that in
practice the grid-H equations are only approximately solved, modifica-
tion For the case of equations with highly oscillatory coefficients,
and ways to make precise comparisons between mode analysis and numerical
experiments (for debugging purposes). The main things to know are the
following.

on grid 2h the Fourier mode exp{if-x/h} aliases (coincides
with) the mode explig'+x/h) if lej—aii =Qorm for j=1,...,d.
Hence each set of so aliasing components usgually includes 24 compo-

nents (gl,...,gz } , called harmonics of each other. They are coupled

to each other by the two-level processes. (The special sets with less
than 29 different components 4o not require special analysis, since
they are limits of regular sets.)

We define the two-level cycle as follows: Make vy relaxation
sweeps on grid h , then transfer the residual problem to grid H and
solve it there exactly, then interpolate that grid-H solution to grid h
and add it as a correction to the former grid-h solution, then make v,

more relaxation sweeps on grid h ., It is easy to see that in the infi-
nite space, if L ’ L . Ig and IE are all constant operators, and

if the error in the solution before such a cycle has the form
ZjAjexp(igj-g/g) , where the sum is over a set of Zd harmonics, then
the error after the cycle will have a similar form, and the new Aj's
will bu linear combinations of the old ones. If we deal with a system
of g grid equations then each amplitude A is a g-vector, hence the
overall transformation of the Zd amplitudes by the two-level cycle is
a (qu) x (2dq) matrix M , which can be denoted M(&} where 8 |is
the lowest harmonic ([|8| ¢ m/2)

This matrix M(8) is called the two-level amplification matrix.

The easiest and most modular program for calculating it is to write a
different routine for the general matrix-element of each of the five

involved processes: relaxation , Lh, Ig LH and I: .

have dimensicons (qu) x (qu)

Their respec-

tive matrices gh f th N ¥H N iH and EE
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(qu) % (qu} . q % (2dq) , g9 * g and (2dq} x q , respectively, and
each of their elements is a function of 4 . Then program
viho Y1 yh yH -l yHYH  vh V2
mepy = 3 P - I AR TR 8T ¢ (4.1)

The main performance measure of the two-level cycle is the two-
level asymptotic convergence factor (per cycle)

A= . max p(M(8)) . (4.2)
|g|ens2

Note that X depends on the sum v = vyt vy but not on the separate
values of Vi and Vg o» Iin fact, when many cycles are performed the
separate values are immaterial. Various other performance measures can
similarly be defined. (See [S4, Secs, 3.4-3.5), where the notation

Mih and D(Mih] is used for our M and & , respectively. Additional
two-level measures will be discussed in Sec. 7.4.)

Using the two-level analysis we try to (roughly) optimize the, in-
volved processes; namely, the objective is to maximize w—llogtl/i) ’
where w = A(vw0+wi+w2) ¢ W is the work in one relaxation sweep, "
is the work of calculating and transferring the residuals, w, is the
work of the IE interpolation, and & is a factor through which the
work on coarser grids is taken into account. For our objective here
the value of A is really immaterial, but to have a-definite value in
later uses we cbserve that for V cycles we can assume similar opera-
tions on each of the grids, hence A = (1-51 cee Bd)—l , where p. =
hy/i; (usually Ej = .5) while for W cycles A = (L-23, ... pq)7}%
To avoid the laborious count of cperations and the arbitrary assignment
of proper weights to different arithmetic and non-arithmetic operations
{which are really machine-dependent), one can use the work of a standard
relaxation sweep as the work unit, In complicated problems, where cal-
culating Lh outweights interpolations, one can then neglect w, and

a

take wy; =1 for full residual weighting and w, = 2" for residuoal

injection. The convergence factor per work unit is then denoted by
° -
= 1% | As above (sec. 3.2}, jn addition to the goal of minimizing

[~

u we should take robustnesa and nimpiicity into account.

H H

One can also partly separata the study of I, + L and 1% from

H
that of relaxation by the Coarse-Grid Correction (CGC) mode analysis, as
in [B?, Sec. A.l]. But this is not simpler than the full two-level ana-

lysis, especially since relaxation schemes have already heen selected in
the previous stage. We use a CGC analysis in Sec. 4.3 below.

e

gy ’
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The ideal factor 1 = i’ 1is not always obtainable. If u° is
too small we will get % > p” , because of significant high-frequency
ampl itudes gennrated from low ones by interpolation or by RB-type rela-
xation {see Sec. 4.3). Even when obtainable, too small values of X
will require tvo precise interpolations, hence too much investment in
Wy and Wy o and will at a later stage be frustrated by other inter=-
actions (boundaries and non-constant coefficients). Also, such small
%* will not usually be needed in the final FMG algorithm (see Secs. 7.2-
7.3). Hence, the optimal cycle always employs a small v , typically
v £ 3 .

In regular elliptic problems v = 1 4is too small to be optimal
{unless the sweep includes several passes, as in symmetric and alterna-
ting-direction schemes), since the overhead of W,y and Wa weights
too much against it. Hence usually the optimal number is v = 2 for
very efficient smoothers {v £ .3 or so), and v = 3 otherwise. A
small change in v does not disturb the overall efficiency very much .
Considerably larger v are leas efficient, because they bring the pro-
cess into the range of larger feeding from low to high frequencies,
while not much more is gained in reducing the overhead (already at

voE3, W bWy is quite small compared with vwo).

A possible approach is accommodative: do not fix v in advance,
but continue relaxation as long as it exhibits the fast convergence of
high frequencies, e.g., as long as the cenvergence factor {some norm of
the residuals divided by the same norm a sweep earlier) is smaller than
the smoothing factor i . For non-scalar (g > 1) systems, such a cri-
terion can separately be applied to each equation, possibly regulting in
more passes for part of the equations. Simifarly it may separately be
applied at different subdomains (since smoothing is a local process),

possibly giving partial relaxation sweeps.

In case of non-elliptic and singular perturbation problems there

are some particular smooth error components (smooth characteristic com-
ponents of the differential operator or the reduced differential opera-
tor) for which LH is a bad approximation to Lh , hence A cannot be
much smaller than .5 , no matter how small [° is [BLl7, Sec. 5.11, [B3],
But for 'exactly the same components and the same reason, Lh itself is
not a good approximation to the differential operator L . Hence, exac-
tly for these components, we do not reed much algebraic convergence
(convergence to the discrete solution), since the discrete solution it-
self is far from the differential solutian. Hence, for such cases the

asymptotic convergence factor X is not really the measure we need. The
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one we need is obtained by the two-level FMG analysis (see Sec. 7.4).
Moreover, for non-elliptic or singqular perturbation problems the usual
assumption that high-frequency components are local does not hold. It
is violated by high-frequency characteristic components in cases of
strong alignment (Sec. 2.1). The interior mode analysis should then be
supplemented with a half-space analysis {Sec. 7.5).

4.2 cChoice of coarge grid

when the find-grid, with meshsize h = (h
choice of a coarse~grid, with meshsize H = (Hl....,
ghtforward: Take every other line (every cother hyperplane, for d > 2)
of the fine grid in each direction. The coarsening ratio Hj/hj =2 s
usually optimal: it is the smallest recursively convenient number, and it

1,....hd) , is given, the
Hd) , is often strai-

is already big enough to make the coarser-grids work guite small rela-
tive to the fine-grid work; larger Hj/hj will not save significantly
more work, but will significantly degrade the smoothing factors (see Eq.
(3.3)}. The smaller ratio H/h = 2" may be as efficient {(trading lar-
ger A for smaller v), and it is recursively convenient in some two-
dimensional problems with rotatable operators; see [S4, Sec. 2.5], (Rl].

Wwhen the fine-grid discretizations are done in terms of "cells”
with the discrete variables defined at certain cell positions (e.g., cell
centers, or centers of vertfcal cell boundaries, etc.), and especially
when the grid is staggered (different grid functions are defined at dif-
ferent cell positions), it is more convenient to coarsen in terms of the
cells: Take every Zd fine cells as a coarse cell, and then place
coarse-grid variables at coarse-cell positions analogous to their posi-
tioning in the fine cells. The coarse grid points then are not a subset
of the fine grid pcints. See examples in Secs. 17.4, 18.4 and another
approach in [D1]. ’

In some cases the "fine-grid" is not a well-organized grid at all;
e.g., a general finite-element triangulation, not based on any grid 1li-
nes. Then one can still construct the coarse grid as a uniform grid,
placed over the domain with no particular relation to the fine grid.
Another approach is to base the choice of coarse-grid variables on purely
algebraic considerations {Sec. 13.1). Mode analysis is of course not

very suitable for analyzing such situations.

4.2.1 Semi coarserning. Semi coarsening, or more specifically S-coarse
ning, is the technique of using grid H which is coarser than h in
only a partial set § of coordinates; i.e., H, = 2hj for j € 8 and

Hj = hj for ¢ 5. _Thia means gomewhat more work on coarse grids; but
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either this or block relaxation are needed in some cases -- see the rule
in Sec. 3.3. Semi coarsening is sometimes preferable to block relaxa-
tion. For example, in three-dimensional problems where there are two
fixed coordinates with stronger couplings, full coarsening would require
plane relaxation, which is inconvenient. (Solving these plane equations
approximately by one multigrid cycle, if done simultanecusly at all pla-
nes, will look very much like semi coarsening.)} Also, exactly in those
cases, semi coarsening involves relatively small work on coarser grids,
since two coordinates are still coarsened, hence the total number of
points on all coarser grids is at most one third the number of points on
the finest grid.

Sometimes, a combination of block relaxation and semi coarsening
may be the best. For example, the eguation aU x + bU +cu, with
a << b << ¢, discretized on a cubic grid (h = hy =h) . will best be
solved by z-line relaxation and y-z semi coarsening. Generally, rough
calculations of S~smgothing factors (Sec. 3.3) immediately show what

procedures can be taken.

In some cases block relaxation is of course preferable to semi
coarsening, For example, when directions of strong alignment are diffe-
rent at different subdomainas. To change accordingly the directions of
semi coarsening would be much messier than changing block directions.
(But note that strong alignment, as defined in Sec. 3.3, can rarely at
all change directions.)

4.2.2 wModified coarse-grid functions. When a difference operator L

is given which has no geod h-ellipticity or semi-h-ellipticity measure,
then no relaxation can be efficient in reducing all high-frequency error
components. To reduce all components efficiently we will then apply mo-
dified coarse-grid correction functions.

Suppose for example that the slow components (i.e., the components
for which relaxation is inefficient) are all clustered around some known
modes w (X} o (3 = 1,...,3) . This means that the error vh = "h uh
can be ertten as vh(x) = I v](x)wj(x) ., where vg are smooth functions.
It is then these smooth functions which we try to approximate by coarse-
grid functions vgh . See {Bl5, Sec. 3.2] and (B2l]. Sometimes, each of
these functions can most efficiently be approximated on a different (e.qg.,
differently rotated) grid.

4.3 orders of interpolations and residual transfers

The most important aspect of the cocarse-to-fine correction inter-

polation I: and the residual transfer Iﬁ is their orders, defined as
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follows: The order of I: is m if the interpolation of the low-
frequency Fourier component exp(if*x/h) , with amplitude 1 on the
coarse grid H , creates on the fine grid h, high-frequency components.
(the harmonics of the low frequency) with amplitudes o(ls|™ . It also
reproduces the § component itself on grid h with an amplitude

1+ O(IQIm) . The order of the fine-to-coarse transfer Ig is said to
be m , and its secondary order m , if a high-frequency harmonic with
amplitude 1 on grid h contributes O(Iglm) to the amplitude of the
corresponding low frequency 8 when transferred to grid H , while_ a
low frequency with amplitude 1 on grid h contributes 1 + O(lﬂ|m

to its grid~B amplitude. Thus, linear and bilinear interpolations have
order 2 , while cubic interpolatiop is fourth order. Residual transfer
by injection (Ig = 1) has order 0 and infinite secondary order,
whereas the usual full-weighting residual transfer (Eq. (4.6) below} is

of order 2 and secondary order 3 .

what orders should be used in the multigrid cycle? This depends
on the orders of derivatives appearing in our equations. Suppose we
have a system of q differential equations in g unknown functions,
and let mij be the highest order of differentiation (or differencing)
of the j-th unknown in the i-th equation, (i,j = l1,...,4) . We assume,
and this is usually the case, that the g unknown functions are inter-
polated independently of each other and that the residuals of each of
the q grid equations are transferred separately from the others. De-
note by mJ the order of IE used in interpolating the j-th correction
(correction to the j-th unknown fupction) and by my and m‘1 the order
and secondary order, respectiveiy, of the Ig ugsed in transferring the

i-th residual (residuals of the i-th equation).

What mj P omy and ﬁx (i, = 1,...,q) should be used? Exami-
ning orders of magnitude in the CGC mode-analysis operator {the operator
in brackets in (4.1)), under the assumption that all rnJ > 0 , we find
the following basic rules and chsarvations:

{A) The high-frequency harmonics of the lowest frequencies (those

with |B] = O{h)}, are amplified by the CGC operator by a factor with a
i+m] mx

spectral radius 1 + O ( £h 3 )

i,]

cation of high-frequencies, we should have

Hence, to avoid large magnifi-

m, o+ m) oz om, . 4.3

preferably even m, + md > mij . On the other hand, larger values

-

ry 3

%
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(mi*mJ > my +1) would not significantly further reduce the spectral
radius, hence they are asymptoficaffy {when many cycles are made) not
needed.

(B} Every high-frequency harmonic {before the CGC cycle) contribu-
tes to the corresponding low-freguency (after the cycle) through a

1

m,-m, .
g *x q transformation matrix '(LH)F B , where Bij =0o(h * 'hH

This
is usually not important asymptotically (for many cycles), but if enly
une cyele L5 perfowmed (as in FMG algorithms) that transformation may

cause large errors unless

m, 3 m.lj . i4.4)

For relaxatinon schemes with interactions between high and low frequencies

{e.q., BB schemes), this transformation may also cause asymplofic degra-

rkj
kj) , where Ofh } is the size of the

high-frequency errors in the k-th function generated by relaxation from

dation unless m, > F_im,.-r
i ki

an ©O(1l} low-frequency error in the j-th function. RB and zebra schemes

for gq =1 give Ty = My o hence the rule reguires my > o0, ie.,

full weighting {see Sec. 4.4}. This requirement can however be slackened

by a more precise look at the nature of these particular schemes {allo-
wing the use of simpler transfers such as the "half injection" ey

h
or "half weighting"; see [FZ, Sec., 2], [54, Sec. 8.1]).

(C) The low-frequency error components themselves are reduced by a

factor ©(h™ , where W = min(E,El,...,ﬁ ,ml,...,mq) and p is the

lowest of the approximation orders on levels h and B . Hence m must
be positive, which is indeed the case for any consistent differencing and

interpolation schemes. Larger values of @ may of course give better
cycle pertormance, Our experience indicates that m = 2 gives conside-
rably better 5 than m=1 . Since this is a low-freguency matter,
hence non-local, higher m may be effective only if they are carefully
matched by corresponding high-order approximations and interpolations at
beundaries. But one usually does not have to go into the trouble of

W > 2 . Rather, employ more cycles with v £ 3 ({see Sec. 4.1). As a
result the factor 0(h™) will usually be dominated by §" in determi-

ning A

(D) We also note that every low-frequency error component (before
the CGC cycle) contributes to every one of its harmonics (after the
cycle) through a q = g transformation matrix D , where Djj = o(h™)
and for 1 # 3} Dij has higher orders in h . ‘'his tells us something
about the ranne where relaxation should be efficient {see Sec. 12}.
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4.4 Variable operators. Full weightings

The above mode-analysis rules are insufficient in case Lh is
highly-varying, i.e., its coefficients substantially change between two
neighboring gridpoints. For such Lh the residuals after relaxation
are also highly varying, hence to represent them correctly on grid H
full nesidual weighting should be used, i.e., Iﬁ should satisfy, for

any residual function rh '

(B, ... Hy) EH(I:rh)(xH) S T U L L (4.5)
x X
where xh are the fine-grid points and xH are the coarse-grid points.
In other words, full weighting "preserves integrals". (Throughout this
discussion it is assumed that the difference equations on all grids are
written in their divided form, analogous to the differential equations.
1f, however, they are multiplied through by factors which depend on the
meshsize, then one should not forget to have those factors in (4.5},
too.) One can regard full weighting as a scheme in which each residual
rh(xh) on the fine grid is being distributed to several coarse grid
points, with weights whose sum is o = hy ... By / (Hy ... Hy) . Hence
each residual M oisa weighted average of its transferred values on
grid H , times @7 . This weighted average represents a certain inter-
polation, f: say. Thus every full weighting IE is the adgoint (or,
in matrix terminology, the tkifgeﬂae) of an interpolation IH '

7 . We denote this by Ig =ply - The normal (9-point symmetric) full

times

weighting, defined by

-a-I|v,]|
(Iﬁhrh)(xzh) = T 2 ] rh(x2h + (ulhl,...,vdhd)) , (4.8)
max}vj|<1

is for example the adjoint of bilinear interpolation, times ZFd

The requirement (4.3) is equivalent, in terms of the Fourier ana-

lysis, to the requirement that IE has a positive order (see Sec. 4.3).

Such full welghtings should perhaps be used in almost any case.
Only in some particular cases non-full weightings happen to be asympto-
tically somewhat better. An example is injection in case of the stan-
dard S-point Poisson operator, which yields lower Y as well as lower
Wy than the full weighting {4.6) {(see [B19, Sec. 4.8]). But even in
those cases, for the purpose of Full Multigrid (FMG) algorithms (sece
Sec, 7), full weightings may be preferable. (See rule (4.4) above and

[s4, Sec. 13.6].)
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4.5 Coarse-grid operator. Variational and Galerkin coarsening

The coarse grid operator LH should be a proper homogenization
of the fine-grid operator Lh . In smooth problems this is easily ob-
h and tt
problems this is effectively obtained by a suitable FAS averaging of

tained by good discretizations of both L In nonlinear

the fine-grid sofution (see I in Sec. 8.5).

sometimes one needs to derive LH from Lh , not from the diffe-
rential operator L , either because L is not available or because one
wants an automatic program, for some geseral class of Lh , or without
having to treat separately boundary conditions and whatever other fea-
tures of the differential problem. That is, one wants to regard the
fine grid equations simply as a matrix eguation

R (4.7)

where the underlines signify matrix notation: EP is an nf P mat-

rix, where nh is the number of unknowns on grid h . The geometry of

the grids is only used to construct the inter-grid transfers IE and

I: . (A multigrid treatment without any geometrical structures is dis-
cussed in Sec. 13.1.}
In case Eh is symmetric, a general way to derive L% is to re-
h

gard (4.7) as the equivalent problem of finding u which minimizes
the functional

Phy = 3Rt - M (4.8)

where stars stand for transposing. Given now an approximate solution

Eh , with a (smooth) error v oa gp - Ep which is to be approximated by
the coarse-grid correction ibg? , the equationa for !F are fully spe-

H
cified by requiring it to yield a correction which reduces ¢" as far

as possible, i.e., gH should minimize Oh(§h+laga) ., This immediately
gives the coarse grid equations

H_H H, h h h

Ly = Lot - B (4.9
where
H _  h*
=1y {4.10)
and
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W _ _Hh_h
L= L LI (4.11}
Equation (4.9) has the general form (1.14). The specific prescription

(4.10)-(4.11) is called variational ccarsending, since it results from
the variational formulation of the problem. It is automatically deter-
mined as soon as the interpolation operator I
by {4.10) is automatically *full® in the sense of Sec. 4.4. (By (4.11},
the coarse grid equations (4.9) are not basically changed if iﬁ is
multiplied by any scalar, such as & in Sec. 4.4.)

h . H .
g 18 selected. I, given

In case Eh is not sxmmetric, (4.10) is not always advisable (see
Sec. 4.6}, but (4.11) can generally be used. This LH is called the
Gateahin operatora, since it is equivalent to requiring the coarse-grid
correction to be a projection, i.e., requiring the residuals of the <¢or-
rected soluticn (3h+IEvH) to vanish when transferred back to the

coarse grid:
H,ch o h_H. .
) ST PRI TTL IHVH)) = 0

The reason Galerkin operators and variational coarsening are not
always advisable is the amount of work involved in the construction
(4.11}, which could be considerably larger than the entire solution work
(e.g., when solving by the algorithm in Fig. 1.2). Alsc, once construc-
ted, the Galerkin operator is often much more complicated than the simp-
ler LY derived directly from L (e.g., 9-point instead of 5-point
formulae), and requires much larger storage for storing all its coeffi-
cients, whereas the simpler LH may reguire no storage (e.g., whenever
L is autonomous, whether linear or not; this includes all fluid dynamic
equations, if they are not linearized). See more about this issue in
Sec, 1ll.

4.6 Strongly discontinuous, strongly asymmetric operators

As long as the fine-grid operator does not vary drastically, the

above rules for Ig ' LH and I: work fine. A more difficult case is

that of a strong discontinuity in Lt , i.e., where its coefficients
change their ordenr of magnitude within a meshsize. Orders of interpcla-
tions are not so important then; rather, special forms should be used
which take into account the particular nature of the discontinuity. The
rule is first to analyze the behavior, near the discontinuity, of the
error which is inefficiently reduced by relaxation. This error is app-
roximately a solution to tha homogeneous equations, (If it is not, then
it has large residuals and therefore there locally exists a relaxaticn

rg Wl
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scheme for which it will be reduced efficiently; cf. Sec. l1.1). Hence
its general behavior is like that of solutions to the homogeneous dif-
ferential equations. The interpolation I: of corrections should take
this behavior into account. For example, if we have a diffusion prob-
lem V(avu) = F , near a strong discontinuity of the diffusion coeffi-
cient a(x) the derivatives of the solution to the homogeneous equation
are not continuous; instead, aVYu is continuous there, and this can be
used to desiqgn good interpolation schemes [Al]. In case of singular
perturbation or non-elliptic problems, selutions to the homocgenecus
equations are continuous along (sub)characteristics, hence interpolation
should be as much as possible in the characteristic directions. This is
possible exactly where it is most important, namely, cases of intended
strong alignment (cf. Sec. 2.1). Thus, for example, avoid interpolating
across a boundary layer which is intended to be sharply reproduced.

It is less clear how to generally design the residual transfers
IE and the coarse grid operators LH near a strong discontinuity. In
the symmetric case the variational rules (4.10}-(4.11) are most robust
[Al], eventhough expensive. For cases which are not essentially symmet-
ric the Galerkin operator (4.11} can still be used, but instead of (4.13)

one should take

Eﬁ - iﬁ‘ : (4.12)
- ht

where In is an interpolation appropriate in the above sense for L .

the adjoint of Lh . See [D4].

For non-elliptic and singular perturbation problems, the conside-
rations and experiments in (Bl7] indicate that improved results are
obtained by a Full residual weighting in which residuals, on being tran-
sferred from a fine gridpoint to a different point {or points} on the
coarse grid, are transferred roughly in the downstream direction. As for
correction interpolation for such problems, however, it seems that the
symmetric schemes are preferable to schemes with upstream bias. Coarse-
grid operators identical with the fine-grid ones {hence much cheaper
than (4.11)) were used, with excellent FMG results {even where the agsym-

ptotic rates were slow}.

A general perspective on these gquestions of coarsening a problem

{designing Tu . ! , IE) is given in Sec. 11 below.
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5. BOUNDARY CONDITIONS AND TWO-LEVEL CYCLING

The theoretical two-level mode analysis described above (Sec.
4.1), and/or the numerical experiments with periodic boundary.conditions
{Sec. 4}, give us the ideal convergence factor per cvcle {x} , or per
work-unit (:) . Thege are the {nterion convergence jactorns, obtained
in the absence of boundary Interference. The next stage is to construct
an actual multigrid program for an actual, bounded domain, and in parti-
cular to decide on the special treatment the various processes. should
take at points near or on boundaries. The goal is to attain or approach
the interior convergence factors. For elliptic problems this is gene-
rally possible, since smoothing away from the boundary is decoupled from
the boundary and since the boundary neighborhood itself is a lower-dimen-
gional set of grid points, hence we can allow there more work (per point)
than in the interior, without changing the total work by much. The com-
parison to the interior factors is a very important toel in debugging
the program or finding conceptual mistakes, especially mistakes in trea-
ting boundary conditicons or interior eguations at points adjacent to
boundaries. On the other hand, approaching the interigr factors is not
aff-important; in fact, optimal performance of the full multigrid (¥MG)
algorithm may well be obtained without it, especially in non-elliptic or
small-ellipticity problems (see end of Sec. 4.1).

In secs. 5.2-5.5 below we mention some rules related to the multi-
grid processes near or on boundaries. The general remarks of Sec. 11
and the curved-boundary treatment in Sec, 9.3 are also relevant here.

In addition to boundary conditions, some problems have global con-
ditions. These should alsc be incorporated at this stage. Their multi-

grid implementation is discussed in Sec. 5.6.

5.1 Simplifications and debugging

It is advaisable to start with a program for rectangular domains

whose boundaries coincide with grid lines at all levels. This will make
the programming much easier {the program in Sec. 1.5 can serve as a
model), and will separate away various difficulties related to more gene-
ral domains. In fact, the first stage in constructing such a program
could be the case of periodic boundary conditions (separating away boun-
dary considerations altogether} discussed in Sec. 4.

Having made rectangular models work satisfactorily, one can then
proceed to other domains. At this point one has to decide whether to

write a general-domain or a specific-domain program. Experience shows
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general-domain multigrid programs to be considerably less efficient
(typically requiring twice the CPU time). One can model one's general-
domain program after MGOl [54, Sec. 10]), or after MUGPACK, or actually
use the MUGPACK or GRIDPACK software [M3]. But the efficiency of this
software, too, is still considerably below the efficiency of specific-
domain programs (where the efficiency of rectangular domains can be
approached). The reason is the many checks that should be made to dis-
tinguish between various possible positions of gridpoints with regard
to the boundary, especially in interpolation routines, where two grids
are simultanecusly invelved.

It ig advisable to start programming cycling algorithms, before
proceeding to the additional questions related to the full multigrid
(FMG) algorithm (taken up in Se¢. 7). Cycling algorithms start with
some arbitrary approximation on the finest grid and reduce its error by
cycling between that grid and coarser grids. At this stage, one can
avoid the questicn of what cycle to use: For debugging purposes it is
best to start with comparing the theoretical two-level asymptotic can-
vergence factor (X} with the experimental one by an algorithm which
simulates a two-level algorithm. This is done by returning from the
next coarser grid H back to the finest grid h only when the H

equations have been solved to a very good accuracy (e.g., by taking
large Yy or very small § in the cycles of Sec. 6.2). In this way we
still separate away guestions particular to too-coarse grids or related
to three or more levels (delaying them to Sec. 6}.

another major simplification is to experiment first with particu-
larly convenient known solutions. Even for complicated nonlinear sys-

tems, one can engineer the tested problem so that it has a knownr solu-
tion u . This is done simply by planting suitable right-hand sides,
both for the interior differential eguations and for the boundary condi-
tions. (Even if the original problem is homogeneous, the program should
anyway be written for geneaal right-hand sides, because right-hand sides
on coarsen grids are obtained from finer grids residuals.)

For many nonlinear problems it is especially useful to experiment
with solutions of the foxrm u = ug + nu , where Uy is a constant {or a

constant vector, if u is a vector of functions), and n << 1 is emplo-
yed in the first experiments. Taking u, as the first approximation for
a cyecling algorithm, the behavior of the solution process should almost
identically {identically in the limit n + 0} be the same as for a linear
problem with constant coefficients. For such problems precise comparison
can be made with mode analysis. The comparison can. be pushed to be even

more precise by choosing u, to be a particular Fourier component.

.nuity on the boundary, such as a boundary layer thinner than the mesh-
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Afterwards, n can gradually be increased to study the effect of nonli-

nearity. This effect is in this way easily and precisely separated b

away from other effects, including effects which are often confused
with nonlinearity because they appear in nonlinear terms; e.g., convec-
tion, whose magnitude in fluid problems depend on the solution itself.
{(For the algorithm used in the nonlinear cases --= se€ sec. 8.)

Debugging of multigrid programs can generally benefit from rela-
tions between the levels. Most bugs and conceptual errors immediately
show as irregular behavior in the standard multigrid output [1isting the
history of the dynamic residual norms for every relaxation sweep on
every level, as in Sec. 1.5). A preliminary error-detection table,
based on that output, is provided in [B%, Lecture 18). Troubfes nelfated
to treatment of boundaries affen ashow in-the §olluwing way: The first
couple of cycles exhibit the expected (interior) convergence factor,

g T

since the relative weight of errors near the boundaries is small. Later,
however, the errors near the boundaries start %o dominate and the conver-
gence factor degrades. The coarser is the basic (finest) grid, the
sooner this degradation appears.

5.2 Interpolation near boundaries and singularities

The coarse-to-fine interpolation of corrections IEVH should use

the boundary conditions on VH even when they are not explicitly shown
on the grid {sometimes they are oply implicit in the program). Other-
wise extrapolation formulae would be needed for I: , giving slower asy-
mptotic convergence factors [Ol]. Exception is the case of disconti-

ry T

size in which case boundary data should n¢f be used {see Sec. 4.86).

Near boundary singularities, such as reentrant corners, the inter-
polation can be improved by using the asymptotic behavior, whenever
known. That is, if the correction vh to be interpolated from the
coarser grid is expected to be of the form vh = whw , where ¢ 1is a
known singular function and wh is smooth, then polynomial interpola-
tion should be used to interpolate wh . hot vh .  But such improvements
are hardly needed (see Sec. 5.7}.

5.3 Relaxation of boundary conditions

Except for some simple Dirichlet problems, discrete boundary condi-

ry

tions should generally be relaxed and transferred to the coarser grid in
the same way interior difference equations do. It is important to notice

that the boundary relaxation may spoil very much the smoothness of inte-
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rier residuals near the boundary. Indeed, for a smooth error function,
the interior residuals formed near the boundary by relaxing the boundary
conditions are O(hl-m) times the typical magnitude of other interior
residuals, where m 1is the order of the interior differential equation

and ¢ is the order of the boundary condition {usually 2 < m).

one way around this difficulty is immediately realized by loocking
at the one-dimensional case. It is clear in that case that boundary
conditions need not be relaxed at all. Their errors are not functions
that can be smoothed out in any way; they are just isolated values,
which can always very well be represented on the coarser grid. Analo-
gously in higher dimensional cases, the role of relaxation should not be
to impose the boundary conditions, but only to amooth their error afong
the boundary. Instead of Gauss-Seidel-type relaxation for the boundary
condition Bu = g , say, one can make a Gauss-Seidel relaxation of the
equation AsBu = Asg ., where AS is an approximation to the Laplace
operator along the boundary; e.g., in two-dimensional problems,
As = az/as2 , where s is the boundary arclength.

In practice this means that, instead of satisfying the given con-
dition at each boundary point, we only change its error to be equal to
an average of the errors at neighboring boundary pointa. This increases
the above ¢ by 2 , making the perturbation to the interior smoothness
negligible. 1In case the boundary shoothinq factor is not as good as the
interior one, a couple of boundary sweeps may be performed per each in-
terior one.

Another way around the above difficulty is to ignore it and rely

on more precise residual transfers (Sec. 5.4).

5.4 Residual transfers near boundaries

Relaxation seldom leaves quite smooth residuals near the bounda-
ries, where the normal succession of relaxation steps breaks off (in
lexicographic schemes, for example}. And this is especially so when
relaxation of boundary conditions is not done in the above {Sec. 5.3)
manner. Thus, in many cases it is important that each individual fine-
grid residual is correctly represented on the coarse grid. This is what
we called fuff residual weighting. The full weighting near boundaries,
and also near interfaces, is considerably more complicated than the in-
terior full weiqghting (described in Sec., 4,4). This is because the
influence of the residuval on the solution depends on its distance from
the boundary; e.g., in Dirichlet problems for m-order elliptic equations
the influence is proportional to the (m/2)-th power of the distance.
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Thus the weight used in transferring a residual from a fire-grid point
to a coarse-grid point depends on the distance of both points from the

boundary. WNear boundary corners the dependence is even more involved.

Hence, near boundaries the interior full-weighting rule (4.5) is
modified to the requirement that

e ol oot = 1P eMeteMen® (5.1)
xH xh
is satisfied for any given rh(x) , where [ f(xH)WH(xH) and

b f(xhlwh(xh) are discrete approximations, on grids H and h respec-
tively, to the integral [fdx for any function £ , and where G(£)

has the behavior of the Green function near the boundary. ‘That is, for
two neighboring El and £2 , the ratio G(El) / G{&z) roughly gives
the ratio between the solutions of Lulx) = 6E1(x) and Luix} = GEZ(x) ,
with homogenecus boundary conditions. Usually one can take G(£) = at .,

£
where 4 is the distance of the point £ from the boundary, and

£
a=m=-£ -1, where & 1is the order of the highest normal derivative
in the neighboring boundary condition.

Relation (5.1) need not of course be kept very precisely. Resi-
dual weightings Ig that deviate from it by 20% may easily still show
the same convergence rates. Another way of deriving residual weighting
near boundaries is by variational rules, like {4.10) in essentially-
symmetric cases. And still other ways exist. Tt may all seem complica-
ted, but, as explained in Sec, 11, it is in principle no more complicated
than discretizing the original differential equations near the bounda-

ries,

5.5 Transfer of boundary residuals

Residuals are defined and are transferred (with some averaging) to
the coarser grid H , not only with respect to the interior equations,
but also with respect to the boundary conditions. 1In order to do it in
the right scale, the di{vided form of the boundary conditions (the form
analogous to the differential conditions, without multiplying through by
a power of h) should be used to calculate residuals, average them and
transfer. For this purpose a clear conceptual separation should be made
between boundary conditions and neighboring interier equations. Incorpo-
rating the former into the latter is often convenient to do, but it may
eagily lead to wrong transfers. (To do it right, one should assume the
given boundary .condition is incorporated on the finest grid, while the

corresponding homogeneous condition is incorporated on all coarser qrids.
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Even when correctly done, however, this is equivalent to {mposding the
boundary condition at relaxation, which, as explained in Sec. 5.3, will
sometimes result in large neighboring residuals and hence slower conver-

gence, unless more precise residual weighting is used.)

In symmetric problems cne can consistently use the variational
relation (4.10) without ever distinguishing between interior equations
and boundary conditions, provided good interpolation Ig is defined.
For some classes of problems this interpolation may be based on the dif-

ference equations, interior and boundary alike [D1].

5.6 Treatment and use of global constraints

in addition to boundary conditions many problems also specify some
global conditions, such as integral relations, etc. For eyxample, the
pressure p(x) in incompressible Navier-Stokea equations is determined
only up to an additive constant; for its unique determination one should
add an integral condition like

[pix}dx = 0 ’ (5.2)

{integrating over the entire flow field), or a pointwise condition such
as

p(io) =0 . (5.3)

Both conditions are in Fact "global" in the sense we like to consider
here, even though {5.3) does not lock so global: One should generally
consider as global any single discrete condition which has a large global
effect on the solution. Boundary conditions in one-dimensional problems
are also of this type (cf. Sec. 5.3). The normalization condition

{u,u) = 1 in eigenproblems is a nonlinear condition of this type. In
that case, unlike (5.2} or (5.3), together with the global condition
there also comes a global unknown, the eigenvalue. This is often the
case. The one-dimensional boundary conditions are associated with un-
known boundary values, which should be considered as global unknowns.

A very useful device is indeed to add global consinaints to a prob-
tem to make it beiter posed, frecing as many global parameters. For
example, a physical contipuation parameter Y for solving a nonlinear
problem (cf. Sec. B.3.2) may be a bad parameter near some “limit points”;
i.e., with y fixed the problem is ill-posed (or nearly ill-posed, hence
not approximable on coarse grids). By converting Y into an unkpown and
adding instead another global characterization of golutions {(e.g., the
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arclength along the continuation path, as in (Kl}), the problem is made
well posed (and, in particular, coarse grid well approximate fine-grid
errors). Or one can free some accuracy parameters (e.g., allow a small
constant error to be added to all equations) and add some known global
information {e.g., total mass, or energy, or vorticity, when solving a
time-step problem as part of a long-range evolution where such quanti-
ties must be strictly conserved), A particularly useful device is to
free such accuracy parameters only on coarser grids, using global cons-
traints only for coordinating solutions on those grids with the current
fine-grid solution. In this way for example the above bad physical para-
meter Y can still be fixed on the finest grid. Such a device is impor-
tant in controlling highly indafinite problem. Still another example of
an added constraint with an added parameter (a} appears in Sec. 5.7.

An important advantage of multigrid processing is the easy and
natural way with which such global conditicons and global unknowns can
be handled. To be sure, it is often done in a wrong way: For example,
misgquided by the practice in relaxation solvers, one would tend to treat
{5.3) at the relaxation phase. Imposing such a pointwise global condi-
tion just by changing p at xg is really harmful te the multigrid

sglution, since it frustrates the error-smoothing processes near Xy

Géobat conditions need noi be #neated at alf on the fine grid.
There can be no error-smoothing related to such single conditions. All
one has to do is to transfer the residuwal of the condition to serve as
the right-hand side for a similar condition on the next coarser grid.
In case of a nonlinear condition, FAS should be used (Sec. 8.3). A con-
dition like (uh,uh) = bh , for example, will be transferred to the con-
dition (u“,uﬂ) = bH , Wwhere

bH = bh + (Izuh

,Iﬁuh) - (uh,uh) ' (5.4)
which is a special case of (8.5}, The global nature of a condition like
{(5.3) becomes increasingly transparent as it is transferred to coarser
grids by proper approximations,

The global condition must of course be operated in solving the
coarsest-grid problem (cf. Sec. 6,3). Sometimes it should be operated
on seveaat of the coarsest grids, For example, approximations to a con-
dition like (w,u) = b , whera w iB a given weight function which chan=-
ges signs in the domain, must parhaps be operated on a grid fine enough
to resolve these sign changes (or at least crudely simulate them).
Similarly, the condition (u“,u“) - bH .should be operated on a grid fine
enough to crudely resclve the sign changes in the solution u

o

EL]
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when a global condition {4 treated in relaxation (on a coarse but
not the coarsest grid, for example) this should be done in a global way.
For example, the condition should be satisfied (at the end of each sweep,
say) by adding a constant (or a smooth function) to the entire solution,
or by multiplying the entire solution by a constant {or a smocth func-
tion), so that the error-smoothing process is not frustrated.

There are sometimes conditions which are neither completely glebal
not quite local, but have some intermediate acale. For example, some-
times, when one global control would not do, several constraints are
added, each controlling the solution on one subdomain. Any such condi-
tion should not be treated in relaxation wherever the meshsize is small
compared with the scale of the condition.

In some relaxation schemes, the global condition seems to be needed
in the local rriaxation. For example, in the BGS schemes (Sec. 3.4) one
solves in small boxes little problems similar to the given boundary-
value problem. For the solution in the bex to be uniquely determined,

a condition like the global condition is needed there. In solving dis-
crete incompressible Navier-Stokes equations in a small local box, for
example, a pressure condition similar to (5.2) or (5.3) is needed. The
best then is to use in each box a "no change” kind of condition. That
is, to require, for example, that some discrete approximation to fp(x)dx
{integration being over the small box) retains its value from before the
relaxation step.

5.7 Structural singularities. Reentrant corners. Local relaxation

Structural singularities are singularities in the problem other
than those caused simply by singular forcing terms {singular right-hand
gides in either the differential equations or the boundary condition).
Boundary reentrant corners and singularities in the (left-hand side}
differential operators are structural singularities. such singularities
cause the asymptotic multigrid convergence factor to degrade ({although
it is still bounded away from 1 independently of the meshsize). The
reason is that the arror components slow to converge in relaxation, which
are approximate solution to the homogeneocus differential eguations {cf.
Sec. 4.6), have a singular behavior arcund the structural singularity,
therefore they are not well approximated by a coarse-grid correction, un-
less this singular behavior is taken into account in formulating IE .
tMoana IE (see Secs. 5.2 and 4.6).

It is easy to overcome this difficulty in several other, perhaps
simpler, ways. First, the degradation of the asymptotic factors may not
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be a two-level feature at all, appearing only because errors of the
above type accumulate by cascading through many levels. Indeed, the
degradation almost disappeared (in cases of reentrant corners studied

in [B24]) when W cycles replaced V cycles. Secondly, even with V
cycles, the degraded asymptotic factors little affect the ability of the
FMG algorithm to solve the problem to within truncation errors by just
one cycle per level. This is explained by the fact that the same singu-
larity causing the degraded convergence also causes large truncation
errors, in exactly the same components which are slow to converge. Thus,
exactly these components need not converge much in order to be approxi-
mated below truncation error. Numerical experiment with reentrant cor-
ners ([0l], [B24]} show this to be true, unless the number of levels is
vary large indeed (as only in cases where local refinements are nsed) .

Finally, a general way to deal with structural singularities, so
that even the many-levels-V-cycle convergence factors are not degraded
at all, is by focaf nefaxation sweeps, i.e., special relaxation passes
over a small number of points near the singularity. Experiments with
reentrant corners [B24] show that just one such pass over a small number
(typically less than 13%) of points before each full sweep is enough to
completely restore the interior {i.e., regular) convergence factors.

Another question of course is how to obtain small truncation errors
{i.e., good approximation to the differential golution) near structural
{and other) singularities. Two general ways are local refinements and
subtraction of the singularity. The former is a very general approach,
discussed in Sec. 9; the latter can be used when the singular behavior
of the solution wu is known and.simple. For example, near a reentrant
corner u = ay + w , where ¢ is a known singular function (e.q.,

y = r¥sin v8 in case of Polsson equation and a corner of r/y radians),
& is an unknown constant, and w is an unknown non-singular function.
The procedure then is to rewrite the problem in terms of w . In the
new problem a will appear as a global unknown, and a new constraint
should be added to express the requirement that w is smooth at the
singularity. This constraint is *global®, since it controls the size of
o , S0 its treatment, and the determination of a , should fcllow the
rules in Sec. 5.6. When the singularity is subtracted off like this,

the degraded convergence factor discussed above should disappear.
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6. MANY-LEVEL CYCLES

Having obtained satisfactorily performing two-level cycling algo-
rithms, one needs next to turn on the complete sequence of grids, using
now the two-level technigques in recursion. The new algorithmic gues-
tions which arise are discussed below. Some of them could theoretically
be investigated by three-level mode analysis, but this trouble is nei-
ther needed nor normally taken.

6.1 Multigrid cycles. Initial and terminal relaxation

For any grid h , finest or intermediate, a multigrid h-cycle can
recursively be defined as followa: Make vy relaxation sweeps on grid
h , then transfer the residual problem to the next coarser grid H
(= 2h} and solve it there approximately, using y H-cycles (unless H
is the coarsest grid), then interpolate the grid-H solution and add it
as a correction to the grid-h solution, and finally make v, more sweeps
on grid h . On the coarsest grid the problem is solved either directly

or by Vg relaxation sweeps (cf. Sec. 6.3).

In two-level cycles only the sum v = vyt vy matters of course.
When h is an intermediate grid the separate values of v, and va do
make some difference, although not a big one. In regular elliptic sol-
vers experience shows that v, = [v/2] is probably the best prescrip-
tion (see for example [S4, Tables 3.3]). 1In double-discretization sche-
mes (Sec. 10.2) it is important to use vy, = 0 . In “accommodative"

algorithms (see Secs. 4.1, 6.2} the values of vy and vary and

v
2
they are determined internally.
Note alsc that the several passes of a complex relaxation sweep
{such as ADZ) can be divided between the initial and the terminal stages

‘of the cycle [54, Sec. 8.2].-

6.2 Switching criteria. Types of cycles

The criteria when to switch from a fine grid h to the next coar-~
ser grid H « 2h were examined in a previcus stage (Sec. 4.1}. These
same criteria can be used recursively, l.e., not only when h is the
finest grid. We need in addition some criteria for switching from any
grid H back to the next finer grid h . Two kinds of switches are
used: FPixed and accommodative.

Fixed algorithms switch from H back to . h after a preassigned
number y of H-cycles. The h-cycle is recursively defined to be of the
type C(vl,\lz)Y s if all the H-cycles are of this same type. It is defi~

L3
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ned to be of type F(vl,uz) if Yy =2 and the first H-cycle is an

F(ul,vz) cycle itself while the second H-cycle is a Clvy,v J1 cycle.

2
See flowcharts and operation counts in [Bl7, Sec. 6.1]. The cycle
C(ul,vzl1 is also called a V cycle and denoted Viv,,v,) ; see Fig.

1.1. The cycle C(vl,uzi2 is also called a W cycle and denoted

e T -

w(vl,vz) . . :

The W cycles are the safest, because the l-grid problem is al-
ways sclved to a much better accuracy than the accuracy of the h-cycle,
hence they perform practically as well as an exact soluticn of the H
problem. Larger values of Yy are not normally used, except for simu- I
lating two-level algorithms (see Sec. 5.1). F cycles are somewhat less
expensive than W cycles in oné-dimensional problems with many levels,
and also in higher dimensions when semi coarsening is used, but other-
wise they perform practically the same. V cycles may save censiderable
fraction {1/3, in two-dimensional problems) of the work. They are safe
to use when the two-level convergence factor X is small (e.g.,
¢ .15 , a8 in regular elliptic cases}, in which case the convergence
per V cycle will be close to X . If X = .5 , on the other hand, a .
V c¢ycle may not even attain that factor, because the coarse grid eqda—

e T .

tions themselves will only be salved crudely, the error thus cascading

through the levels. This situatlon ariges in cases of severe singulari- !
ties (cf. Sec, %.7) or in non-elliﬁtic and singular perturbation prob-
lems. 1In the latter cases, for example, the artificial viscosity on

grid kh is k times larger than on grid h , hence visiting grid kh
only once per cycle would give an asymptotic convergence factor no better
than 1 - 1/k {Bl?, Sec. 5.1}, &Since on the coarsest grid k = O(h-l) .
the asymptotic factor will be 1 -~ O(h) , which is very éoor indeed. In
this situation W cycles are absolutely necessary for good asymptotic
factors., V cycles may however gtill work quite gatisfactorily in FMG
algorithms ({(see Sec. 7.4 below and the numerical experiments in [Bl7,
Sec. 7.11).

Accommodative algorithms switch from grid H back to grid h when

a certain norm of the residuals on grid H drops below some factor n
times the latest value of the corresponding norm on grid h . The para~
meter 1N is not a sensitive one, A good general prescription seems to [
-d
2

be n=1.1X%X. If % is not approximately known, take n = . a

value related to exchange-rate considerations (cf. Sec. 9.6).

Generally, accommocdative algorithms may be troublesome at program

development stages, since they may cause more complex interactions bet-
ween the internal checks and the real guestions one likes to examine. ;3
Their flexibility may prevent us from seeing some of the troubles, and f'

e
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they are not suitable for precise comparisons. In the production stages,
accommodative algorithms have the disadvantage that they require the
extra work of calculating the residual norms. On the other hand, acco-
mmodative algorithms are more robust. Also, in complicated rroblems
{which is where this robustness is needed), the residual norm calculation
is inexpensive relatively to other calculations, assuming dynamic resi-
duvals {calculated anyway in the relaxation process) are used.

6.3 Coarsest grids. Inhomogeneous and indefinite cperators

when the multigrid h-cycle performs considerably pocrer than expec-
ted, it is first important to distinguish between fine-grid and coarse-
grid troubles. This distinction is easy to make, by simulating two-level
algorithms {taking large y or small n) and examining whether this im-
proves the convergence factor (per h-cycle), and how much this iﬁprove-
ment depends on the size of h . Also examine whether reasonable conver-
gence is obtained on your coarsest grid. If not, or if the trouble is

confined to coarse h , the following remarks may be relevant.

Inhomogeneous operators are the main source for the special troub-

les appearing only on sufficiently coarse grids. On such grids, lower
order terms of the operator start to affect, or even dominate, the smoo-
thing and convergence factors. If we have neglected them in deaigning
the fine-grid relaxation, we shonld now take them into account.

A typical example is the equation -4u + gu = f with purely Neu-
mann boundary conditions. If o is positive but small, the smoothing
factor of a GS relaxation is essentially the same as for Poisson equa-
tion, but the convergence factor 1s roughly 4/(4+h20) , which may be
very slow even on the coarsest grid. Hence the coarsest-grid equations
should be solved either directly (e.g., by elimination, which is inexpen-
sive since the coarsest grid canm contain just few points), or by relaxa-
tion, where after each sweep a suitable constant is subtracted from the
approximate solution [Al, Sec. 4]. If o = 0 everywheré except in some
small subdomain, that constant subtraction should be employed on all
grids which are not fine enough to resolve that small subdomain.

Indefinite case. If ¢ is negative, the situation is much worse,
whatever the boundary conditions: For the coarse grid to approximate
the slowly converging fine-grid component, its meshsize must be fine
enough: For large |o| , the coarsest meshsize must satisfy H =
O(Rgl/p(—u;-‘5!p+1)/p) where R is the radius of the domain and p is
the approximation order. In many cases this H is smaller than the

finest affordable meshsize. To use coarser H , a global constraint
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should be added (cf. Sec. 5.6). When Iolﬂz x 0{1) , different inter-
grid transfers should be employed (cf. Sec. 4.2.2 and 13211):

In designing the relaxation achemes for complex systems of equa-
tions, e.g. in fluid dynamics, we can take only subprincipal terms into
account (Secs. 2.1, 3.1), On very coarse grids, however, this is no
longer fully justified, and the smoothing factors may deteriorate. We
may then have to use either more sweeps (by increasing v and/or Y .
or by using accommodatjive algorithms), or more sophisticated relaxation.
In solving Navier-Stokes equations, for example, improved results were
obtained by using the high-speed DGS scheme (see Sec. 19.3) on all finer
grids, while employing BGS (see Sec. 3.4) on the two coarsest grids.

Even for homogeneous operators, convergence of h-cycles can some-
times be slower on very coarse grids, because the convergence factor ¥
cannot be smaller than O(h™) ; see (C) in Sec. 4.3. In such cases one
can make more h-cycles, by increasing Yy or switching accommodatively,
which is inexpensive since h 1is coarse.

Sometimes troubles seen on coarse grids are only indications of
bad procedures at some special, restricted regions, such as boundaries
(see Sec. 5.1), or they may signal the need to operate some global con-
ditions, which are not enforced on finer grids (see Sec., 5.6).

Of special concern is the coarsest grid itself. Relaxation there
should be converging, not just amoothing as on other grids. Various
conditions not enforced on finer grids must be enforced on the coarsest
one, calling for special procedures., If nothing better is known, one
can always use either a direct solver or a slow but safe iterative pro-
cess such as Kaczmarz relaxation (cf. Sec. 1.1); on the coarsest grid
they are affordable. Finally note that the coarsest grid cannot effi-
ciently contribute to convergence if all its points happen to lie too
cloge (much closer than a meshaize) to boundaries with Dirichlet boundary
conditions,
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7. PULL MULTI-GRID (FMG) ALGORITHMS

The cycling algorithms developed in the previous stages are easily
converted into full multigrid (FMG) programs. The main difference is

: h
that instead of starting with an arbitrary approximation (e.g., uy = 0)
on the finest grid, the first approximation ug ig obtained by an inter-

polation n: ‘from a coarse-grid (approximate) solution ot Namely,

“E = nguH , where H = 2h and where uH has been calculated by a simi~-
lar FMG process with H as its finest level. The full algorithm can be
either "fixed" (as for example in Fig. 1.2 above), or "accommodative"
{as in [B8, Sec. 1.3}, (B2, Fig. 1], [Bll, Sec. 3.6 and Fig. 1}, [B19,

Sec. 2.2}). Both versions are available in the model program FMGl [M3].

FMG algorithms are in a sense ¢asier to program than cycling algo-
rithms. Their main deriving routine is some lines longer, they may ine-
lude an additional interpolation routine (Ig)', and they involve several
more algorithmic questions (dealt with in the following subsections) --
but on the other hand they are much more foxgivimg. Their basic perfor-
mance, which is to solve all problems to the level of truncation errors
in just one or twe cycles (see Sec. 7.3}, is undisturbed by various
little mistakes (conceptual mistakes or even programming bugs, egpecially
in treating boundaries) which may degrade very much the asymptotic con-
vergence of cycling algorithms. These mistakes may still be important
in other situations, hence it is safer to detect them by perfecting the
multigrid cycling (as in Secs. 4, 5 and 6) before turning FMG on. But
it is important to understand all those cases in which, for good reascns,
the FMG results are absolutely satisfactory despite the necessarily bad
asymptotic convergence factors. Examples are numerous; some are empha-
sized in Secs. 3.3, 5.7, 7.4, 7.5 and 18,6. In many of these cases the
analyses of FMG described in Secs. 7.4 and 7.5 can be useful.

It is also worth mentioning at this point that the FMG algorithm
can incorporate into it continuation processes (see Sec. 8.3.2), grid
adaptation processes (see Sec. %.6), and, generally speaking, any process
aimed at solving original "outer" problems (see Sec. 13).

7.1 order of the FMG interpolation

The FMG interpolation operator n: is not necessarily the same as

the correction interpolation operator Ih used in the multigrid correc-
tion cycles. Often the order of IE should be higher than the order of
I: , since the first approximation is smoother than the corrections: In
the right-hand side of the latter (i.e., in the residuals) the amplitude
of high-frequency components is usually comparabie to that of low-fre-
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quency components.

The optimal order of ng depends on the purpose of calculations.
1f ane desires ultimately to get the algebraic error (i.e., the errors
in solving the difference equations) to be very small (far below trunca-
tion errors), then IH should exploit all the smoothness of uh in
order not to produce unnecessary high-frequency algebraic errors. {High-

frequency errors are the most expensive to liguidate in the multigrid

. ] b
cycling, since they are processed on the finest grid.) In fact, "in such ¢
a case the first few correction interpclations IE should also be of

suitable high orders. The precise rules for scalar elliptic equations
are given in (B7, App. A.2]. Note that these rules assume that the order
of smoothness is known in advance.

Usually, however, the smoothness order is not known in advance.
More importantly, we are not interested in solving to arbitrarily small
algebraic errors; we like them only to be smaller than the truncation
errors. The optimal order depends then on the norm by which we measure
errors. Suppose we solve a g * q system of differential eguations, and
assume our error norm includes difference-quotients up to order &, in
the j-th unknown function (1 & i ¢ q) . Then the order #) of the
first interpolation of that- functien should not he less than P + 2. .,

e

A5 .
where p is the order of approximation. Otherwise, the O(hm EJ) high-
frequency errors produced by interpolation would be much larger then the
o(hP) (low-frequency) truncation errors.

In case of egquations with strongly discontinuous coefficients, the
higher-order interpolation- Ia should be of a different form, taking
into account the different sense of smoothness in the solutions (cf. Sec.
4.6. A higher-order interpolation of this sort is presented in [Al, Eq.
(5.12)1). The remarks of Sec. 5.2 apply here as well.

in some programs, especially general-domain programs, the higher-
order interpolation nH turned out to cost more CPU time than the rest
of the algorithm [01)}. An interpolation of an order smaller than indi-
cated above may then be more practical. In case of rotatable differen-
tial operators, simpler higher-order interpolations can be used, based
on the equations themselves [H3], {F3, Sec. 3].

7.2 Optimal switching to a new grid

In designing the FMG algorithm one should decide how well the equa-
tions on level H = 2h should be golved before the solution is interpo-
lated for the first time to grid h and the h-cycles start. The optimal
point to switch is when the work of h-cycles becomes as efficient as the

et
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work of H~cycles in reducing the differential error (the difference bet-
ween the differential solution u and our current computed solutions,

S or ug = HEGH] . This happens when the afgebxaic error on grid H ,
namely el - Hu“ - Gﬂll, is about 279 times the algebraic¢ error on
s 3} ] . N -
grid h , e = ||uh - uh1|. where d is the dimension, u® is the exact
h

solution of the H-equations and u  is the exact solution of the h-
equations. This is because h-cycles are about 29 times as expensive

as H-cycles. The switching point el w Z_deh ie roughly egquivalent to
H -
M wps?, 2- -2 s 2%, 7.1)
H H . . . :
where E = |[u’ - ul| is the truncation error on grid H and p is the

order of approximation {see [B15, Sec. 5.2] and also [F3, App. A}).

In practice the values of eH and EH are of course not known,
but we can derive from (7.1) the algebraic reduction needed on level H
before switching. Wamely, denoting by eg the walue of eH when H-
cycles are started and by ee its value at the switching peoint (7.1},
and assuming that the switching from the 2H-cycles to the H-cycles
has been made when a relation similar to (7.I) was reached on level 2H

"

we find [Bl5, Secc. 5.2) that the algebraic reduction on grid H is

roughly

eE / 9“ =] 2_p—d (7.2)
This can be obtained by about

(p+d) / log,(1/%} ) (7.3

H-cycles, where & is the convergence factor per cycles (Sec. 4.1). The
switch (7.2) can also be used in an accommodative algorithm, replacing
eg/eg by the corresponding ratio of residuvals, which of course can be

measured. The number of H-cycles usuvally turns out to be 1 or 2

7.3 Total computational work. Termination criteria

Suppose that on the finest grid h we wish to obtain an algebraic
error smaller than a specified facter « times the truncation error:
el € ag" . Suppose also that the switch from level H = 2h is made
roughly when (7.1) is met; i.e,, when el w 2pBEh . Then the algebraic
error reduction required on grid h is roughly a; =~ n(l—Z_dl/(Zp-ll

The number of work unita to obtain such a reduction 1ls about
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°
log EL / log % , where 1 1is the interior convergence factor per work
1 1]
unit (see Sec. 4.1) and is usually just modestly larger than the inte-
rior smoothing factor ﬁ . Counting also the work for the reductiocn
(7.2} on coarser grids, we find that the total number of work units theo-

retically required by the Full MultiGrid algorithm is about

aP_
{log —————%3— + Jgﬂl log 2} / log % . {7.4)
a(l-2 ™) 271 u

The actual total number of work units is usually larger than (7.4), be-
cause of the need to make infegraf numbers of relaxation sweeps and
coarse grid correctionms, Typically one V or W cycle for each level,
with v = 2 or 3, ylelds el considerably below E:h

The observation that in FMG algorithms one cycle on each level is
néeded, and is also basically encugh to reduce the algebraic errors to
the level of truncation errors {(even though sometimes two shorter cycles
may be more efficient), can heuristically be understood as follows. The
first approximation on grid h , obtained by interpolating the grid-2h
solution, necessarily contains two types of errors: (A) High-frequency
errors, i.e., errors having oscillations invisible and hence unapproxi-
mable on the coarser grid. (B} Aliasing errors, i.e., smooth errors
introduced by high-frequency data because on the coarse grid high-fre-
quency data is mistaken for smooth data. Relaxation on grid h can be
efficient in removing the high-frequency errors (because of their local
nature: At each point they are essentially determined by the neighbo-
ring residuals). Having removed the high-frequency errors we have also
removed the high-frequency data from the tesiduaf problem, hence we can
then go back to grid 2h with the residual problem to remove the alia-
sing errors (which are smooth errors, hence not determined by neighbo-
ring residuals, hence inefficiently treated by relaxation).

The algorithm may indeed be terminated after a fixed number of

cycles on the finest grid b . This number is roughly log éL / log % ’
1

and in practice it is one or two. Or else, especially if an estimate
for * is not known, termination can be done when a certain norm of the
residuals on grid h becomes smaller than a corresponding norm of
h -lTZh
h

at! =~ a(2P-1} {see Sec. 8.4).

One should of course check numerically, using a problem with a
known solution or a solution computed on a finer grid, that with these
termination procedures e ¢ ug!' is-indeed obtained. Better still, one

can observe the behavior of e as function of h . This can approxi-
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mately be done even in (the real, production) runs where the seclution is
wet known (see Sec. 1.6. And see more on this in Sec. 13). Quite often
these checks reveal mistakes in the d{iscretdizaticn schemes, not just in

the multigrid algorithm.

7.4 Two-level FMG mode analysis

Instead of developing full multigrid (FMG) programs from the cyc-
ling programs, including boundary conditions, one can first develop the
FMG algorithm still within the framework of two-level mode analysis
{immediately following the stage of Sec. 4). This may again serve to
separate away guestions related to boundary conditions (questions discu-
ssed in Sec. 5), and questions related to many levels and to very coarse
grids (Sec. 6) from the particular gquestions of the FMG algorithm (Secs.
7.1-7.3). The latter can then be examined in the interior, without boun-
dary interference (or also with ideal boundaries -- see Sec. 7.5), and
the performance figures so calculated can serve as ideals against which
the actual program can be developed and debugged. Such an analysis is
particularly useful in casea the usual two-level analysis {that of Sec.
4.1 above} is too pessimistic because of the existence of different com-
ponents with markedly different convergence properties. For example, in
case of nearly non-elliptic or nearly semi-alliptic problems there are
smooth characteristic components which converge slower than others, since
for such components LH is not a very good approximation to Lh . But
exactly for the same components and for the same reason, Lh itself is
not a good approximation te L , hence these components do not need much
algebraic convergence, and the fact that they have slow asymptotic rates
does not matter [Bl7, Seca. 5.1, 5.2]. What we need then is an analysis
which does not tell us the worst asympiolic rate, but tells us, separa-
tely in each mode, how well we solve the problem by an FMG algorithm
with a given number of prescribed cycles.

To analyze the FMG solution of Lu = f , where L isa g=xg
system and has constant coefficients (or frozen local values, in case
the original L was variable), we first analyze a single component
u(g} = exp{ig-x/h}) . We calculate the corresponding £ , and hence also
the solution uH = u (a) to the coarse-grid equation it - &= IHf R
where 1" is the local averaging used in our discretization for trans-
fering a continuum function to grid H . The interpolaticon of W to

h H

the fine grid gives an approximation h = I made up of Zd Fourier

components (the harmonics of 8 , i.e. all components 8' such that
B' =8+ (vy,e.aaugdn, V4 integer and -7 < 05 £ 1) . To the set of

24 amplitudes we then apply the usual {cycling) two-level mode analysis
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{Sec. 4.1}; i.e., using {4.1) we calculate the qu x qu matrix M(8)
describing the transformation of these 2d amplitudes by one cycle.

The result of applying k such cycles on grid h we denote by u?(g} =
M(g)kuglg) Having calculated ua(gl we can then examine its qualities
by several measures.

One measure is how well below truncation errors u: is. This is
measured for example by

Il @) - uterll
max —'-———h—' (7.5}
falen |lug) - u' ()|}
where uh(g) is the exact solution of the grid h eguations, and -]
is any norm under which we want to guarantee convergence. Note that u?
is made of Zd components, while uh and u are made of only one of

those; the norms can be taken anyway.

Another, perhaps more direct and important measure, is how well we
have solved the differential equations. That is, we directly measure

”u: - u|| , thus evaluating not only the performance of our fast solver,
but also the quality of our discretization scheme itself: We evaluate
the total guality of our procedures in solving the differential eguations
at a given amount of work. In measuring the error ||uh - u|| we should
of course give smaller weights to hlgh frequency 8's; we cannot and need
not solve for them as accurately as for low frequencies. Thus, if we
aim at an approximation order P good measures of performance are

max {|ull(8) - we@|i/ 18|® , (7.86)
|a]«m .
or
~2py . h AL
flﬂlﬂr 8| " Plug(8) - uigil“agp (7.7

etc. Several such measurea can easily be produced, approximately, by
the program that calculates ui{ﬂ) . The program is an easy eXtension
of the usual (cyeling) two-level mode-analyais program.

All the issues examined by the two-level cycling analysis {relaxa-
tion, the number v = vl + v, of sweeps per cycle, and the interior
operators Ig ' ! and Ih ~- ges Sec. 4) can further {(more accurately)
be optimized by the FMG mode analysis. In addition we can examine by
this analysis the effect {in the interior) of various I interpolation
procedures, various values of ¥y o1 Vg and k , and, most importantly,

various interior discretization pyocedures. An important advantage is

e

e

L]
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that this analysis can be used even in cases where no afgebraic conver-
gence is desired or obtained {cf. Sec. 10.2}.

Moreovaer, the predictions of the FMG-mode anafysis are more rebus-
tBy held than those of the cycling mede analysis when reaf boundaries
are added. For example, take a problem with singularities in the boun-
dary, such as reentrant corners. The effect of such singularities (simi-
lar to the effect of singular perturbations mentioned above} is to make
the asymptotic convergence factors per cycle worse than predicted by the
interior cycling mode analysis. But this occurs for particular compo-
nents with large truncation errors (see 5ec. 5.7), so that predictions
like (7.5) are likely to be roughly held up.

A very simple example of two-level FMG mode analysis for a singular
perturbation eguation is given in ([B17. Sec. 5.,2]. A similar analysis

holds for semi-elliptic cases.

7.5 Hal f-space FMG mode analysis. First differential approximations

Another advantage of the two-level FMG mode analysis is the possi-
bility to make it also near a piece of boundary, modelled by a grid
hyperplane, so that the entire domain is modelled by a half space. This
is particularly important in non-elliptic or singular perturbation pro-
blems, where the high-frequencies far in the interior can still strongly
be affected by the boundary.

A simple example is given in [B17, Sec. 5.3] for a singular per-
turbation equation. 1Its upshot is that both the algebraic error lafter
a cne-cycfe two-level FMG algorithm) and the truncation error increase
as functions of the distance from the boundary, both eventually becoming
as large as the solution itself; but at points where the truncation
orror is still small (compared with the solution}, the algebraic error
is smaller yet: the latter is at most a quarter the size of the former.
(Again, a similar analysis can be made, with very similar results, for
semi-elliptic eguations.) Intexdion analysis could not of course desc-
ribe this situation, and its relevance in such cases is therefore ques-
tionable.

Those examples in [B17] illustrate another technigue which can be
used whenever one wants to focus one's analysis on Amnoth components.
One can then simplify the analysis very much by using the first-differen-
tial approuximation (the first terms in a Taylor expansion) of the diffe-
rence operators, instead of the difference operators themselves. For
example, the first differential approximation to the 5-point Laplacian

is the differential operator 3 + 2

2
X% 9y + 17 h (axxxx+3yyyy) .  The ana-
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lysis proceeds in the continuous domain, without mentioning grids except
through the quantity h appearing in the operators.
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PART T1.  ADVANCED TECHNIQUES AND INSIGHTS

Having completed the above stages of developing the basic multi-
grid solver, one can start introducing various important improvements.
Some possibilities are outlined in the following sections, followed by
comments of more "philosophical® nature, which can however be readily
useful to the practitioner. We then close with general remarks on multi-
grid applications to chains of problems and to evolution problems .

8. FULL APPROXIMATION SCHEME (FAS) AND APPLICATIONS

The Full Approximation Scheme (or Full Approximation Storage - FAS)
is a widely used version of multigrid inter-grid transfers, explained for
example in [(B6, Sec. 4.3.1), (B7, Sec. 5], (B8, Sec. 1.2], [BlQ, Sec.
2.1), [Bl4, Sec. 2.3]. It has mainly been ugsed in solving nonlinear pro-
blems, but it has so many other applications that it should perhaps be
used in most advanced programs. The scheme, its programming, and several
of its applications are sketched below. Another, perhaps the most impor-
tant application of FAS is described in Sec. 9. and yet another one in
Sec. 15.

8.1 From CS to FAS

Congider first a linear problem Lhuh

with some approximate sclution uh obtained, say, after several relaxa-
tion sweeps. Now we like to use coarser grids in order to supply fast

- fh on a certain grid h ,

approximations to smooth errors. Thug, it is the corrections v =
uh - ﬁh which we try to approximate on the next coarser grid H = 2h
In the simpler multigrid programs, such as in Sec. 1.5, the coarse-grid

unknown function is indeed v , intended to approximate the correction
vh . This multigrid version is therefore called the Correction Scheme
{CS). Since thh = rh , where

P (8.1)

is the fine-grid residual, the CS coarse-grid equations are

H H H_h (8.2}

where ¥ approximates Lh on the coarse grid. Once (8.2} has been

H

approximately solved, its approximate solution v is interpolated to
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the fine grid and serves as a correction to the fine-grid solutiocn:
~h h~H

~h
g = 9 F TGV - (8.3)

In the Pull Approximation Scheme (FAS) we perform exactly the same steps,

but in terms of another coarse-grid variable. Instead of vH we use
hu + v {8.4)

as the coarse-grid unknown fupction, where fﬁ is some fine-to-coarse
trangfer which need not be similar to Ig in (8.2). (They are in prin-
ciple defined on different spaces.) This coarse-grid variable ﬁ“ app-
roximates iguh , the full intended solution represented on the coarse
grid, hence the same "Full Approximation Scheme”. The FAS coarse—-grid
equations, derived from (8.2} and (8.4), are

HaH H
LoG" = B {8.5a)

where

ja:]

: H h

_ _H,3H~h
= LUEEY + T (3.5L)

Having obtained an approximate solution GH to (B.5), the approximate
coarse-grid correction is of course Vo = W - 1950 | hence the Fas

) h
interpolation back to the fipe grid, equivalent to (8.3), is

~h  _ wh _ . ho~H _ tHeh

YWEW u o+ IH(u - Ihu ) . ) (8.6)
To use directly

~h h~H

Uypw = IgY (B.6")

would be worse, of course, since it would introduce the interpolation
errors of the f£ull golution uH instead of the interpolation errors of
only the correction A {but see end of Sec. 8.5). DNotice that igﬁh
in (8,6) and in (8.5b) must be identically the same: A common program-
ming mistake is to have a #light difference between the two. This dif-
ference may dominate the calculated correction function and hinder con-
vergence. Also it is important to start with identically the same

igﬁh as the first approximation in solving (8.5).

Note: The FAS equations (8.5) are a model for each interior dif-

g —
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ferential equation ot boundany condition appearing in the problem: each
of them is transferred, separately, by this prescription. Other side
conditions, global constraints, etc., are trangferred in exactly the
same way. See for example Eg. (5.4). In case a double discretization
is employed on all levels {see Sec. 10.2), two functions EH should be
calculated, one for each coarse-grid operator I [B17, Sec. 2.1}.

For linear problems, the FAS steps (B.5-6) are fully equivalent to
the €S steps (8.2-3)., Indeed, the safest way to construct a correct FAS
program is to start with a linear subcase, write first a C$S program,
then convert it to FAS and check that, at each iteration, the FAS results
on the finest grid are identically the same as the C5 results, except for
round-off errors. Common mistakes in implementing FAS, especially in
treating boundary conditions, are thus easily detected. The conversion
of a CS program to FAS can be done by a trivial addition of three routi-
nes (B9, Lecure 12]. It can bhe done either for a cycling program or for
an FMG program. The simplest examples are the cycling program FASCC and
the program FMGl [M3].

8.2 FAS: dual point of view

Ta see why FAS is preferable to CS in many gituations, we rewrite
{8.5), using {8.1), in the form

H~B H 2h

Lu = § + Th (8.7)
where
2h _ _H 2H~h H, h~h
T, =D (Tpuy - Ih(L u ) (8.8)
H H. h 2h .
and £ = Ihf . Observe that (8.7) without the Th term is the ori-

ginal coarse-grid eguation {with the particular discretization £ =
H.h ~H : ~H~h ~H
Ihf } , and that u approximates IhuNEW , and at convergence u =

AH h H . . : :
Ihu . Hence 1, 1is the fine—-to-coarse defect correction, a correction

to the coarse-grid eguation designed to make its solution coincide with
the fine-grid solution.

We can now reverse our point of view of the entire multigrid pro-
cess: Instead of regarding the coarse grid as a device for accelerating
convergence on the fine grid, we can view the fine grid as a device for
calculating the correction Tﬁ to the coarse-grid equations. Since
this correction depends on the non-smooth components of the solution, we

obtain it by interpolating the soluticn to the fine grid and correcting
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its non-smooth components by relaxation. Having obtained the correction
Tﬁ by such a "visit" to grid h , we continue the solution process on
grid H . Later we may "#evisit" grid h , in order to update Tg - In
such a case the interpclation (8.6} should better be used if we do not
want to lose the non-smooth components of the solution already obtained
by relaxation in previous visits. This entire process will then yield a
solution on grid h , which we can improve by inserting into it visits
to grid h/2 . Etc.

Since &F is just an improvement to ¥ , we can omit the ~ ,

and just understand that the meaning of uH changes as soon as an app-
roximation Gh exists on the next finer grid h .

This point of view, and the fact that the full fine grid solution
is represented on all coarser grids, open up many algorithmic possibili-
ties, as we shall see below.

8.3 Nonlinear problems

The Correction Scheme is not applicable to nonlinear problems,
since the correction equation thh = rh i3 valid only for linear Lt
In case Lh is nonlinear, the correction equation can instead be written
in the form

Pt - hah = N (8.9}
Transferring this equation to the coarse grid (replacing Lh by L ,

by igﬁh , v by v! and & by I:rh) we get the FAS equations

(8.5). Thus, one important advantage of FAS over CS is its direct app-
licability to nonlinear problems. (This is a general property of defect-
correction schemes -- see for example (L1], [s3]1.)

The €S scheme can of course be applied to the Newton linearization
of Lh around the current approximation Gh . But FAS is usually pre-
ferable, because:

{i} No global linearization is needed. The only linearization is
the local one used in relaxation, and even this is seldom needed (see
Sec. 3.4). Hence, no extra storage for coefficients of the linearized
equation is required.

(ii) The programming is very convenient since the FAS equations
(8.5} are exactly the same as the original discrete equations, except
for a different right-hand side. Hence only one relaxation routine, one
residual transfer routine, one boundary relaxation routine, etc., are

ever needed in the program.
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(iii} In the linearized problems, where sight is lost of the ori-
ginal problem, it is much more difficult to employ the most efficient
multigrid approaches: One tends to solve far below truncation errors
and therefore taylor unnecessarily complicated and less vectorizable
"perfect smoothers” (cf. Sec. 31.3), getting into unnecessary troubles
connected with small ellipticity (cf. Secs. 7.4-5) or boundary singula-
rity (Sec. 5.7). More impertantly, one cannot then integrate the FMG
algorithm with various processes outside the solver, such as continua-
tion (see Sec. 8.3.2), grid adaptation (Sec. %.6), and others (Sec. 13).

{(iv) The FAS multigrid rate of convergence is not constrained by
the convergence rate of Newton iterations. It ig still mainly determined

. by the interior smoothing rate. Solving the nonlinear problem is no more
expensive than solving, just once, the corresponding linearized problem.
(In many cases, though, Newton convergence rate is fast enough to impose
no real constraint to an FMG algorithm.)

(v) FAS is useful in various other ways. Particularly important
for nonlinear problems are its applications in solving chains of problems
{Sec. 15}, near discontinuities (Sec. 8.5) and in automatic local refine-
ment procedures (Sec. 9).

On the other hand, Newton linearization may still be preferred in
those cases where it is an essential part of the discretization process,
as in some finite-element formulations. This, however, may make such
formulations less attractive in multigrid environments.

Although not employed in the FAS multigrid processing, we still
use Newton linearizations in the local mode analysdis, to estimate smoo-
thing and convergence factors {Secs. 3, 4). BSee also Sec. 5.1 for a de-
bugging technigque related to nonlinear problems.

Examples: Various nonlinear problems have been solved by FAS,
including transonic flow problems ([S2], [J1], [M4]; steady-state compre-
ssible and incompressible Navier-Stokes equations (Secs. 19 and 20); the
Bratu equation Au + Ae” = 0 (see Sec. 8.3.2); and complementary prob-
lems arising from free boundary problems. A simple example of the latter
is to calculate the nonnegative function u which minimizes the Dirich-
let integral [(¥u¢Vu + 2fu)dx . Without the u 3 0 congtraint the
problem is of course equivalent to a problem with the Poisson equation
-Au = £ , But the nonnegativity constraint introduces nonlinearity.
Using a FAS-FMG algorithm this nonlinear problem is solved with essen-
tially the same amount of work as Poisson problems [Bl8].

8.3.1 Eigenvalue problems can simply be regarded as nonlinear problems.

They are nonlinear since the unknown eigenvalue lj multiplies the

~B5~

corresponding unknown eigenfunction uj . Also, to fix the eigenfunctions

nonlinear orthonormality conditions (ui ,ujJ = dij are added as global
constraints. The solution algorithm proceeds as a usual FAS - FMG multi-
grid, with the global constraints treated basically as ih Sec., 5.6. The
e1genvalues are updated once per cycle, together with a more precise
determination of the individual eigenfunctions within the space spanned
by them, by a Rayleigh-Ritz process. Experiments for model problems [B20]
show that an FMG algorithm with one V({2,1) cycle on each level gives

a discrete eigenfunction with algebraic errors much smaller than trun-

cation errors. Similar work is needed for each additional eigenfunction.

8.3.2 Continuation (embedding) techniques. Nonlinear problems usually

have many discrete solutions, and the desired one is obtained only if
we start from a close enough first approximation. A common way to ob-

tain a good first approximation, or generally to trace branches of solu-

tions, is by contdisnuatien {also called *embedding" or “Davidenko method”):

The problem, including its discretization and ita approximate solution
is written as depending ©On some parameter

YO‘Y‘T.
such that for Yo the problem is easily sclvable (e.g., it is linear),
while for vy, 1t is the problem we really need to solve. We advance y
from vy to Y, in steps &y small enough to ensure that the solution
to the y problem can serve ag a good first approximation in soclving
the y+ 48y problem. Sometimes Yy 1is a physical parameter; scmetimes
the solutions are better defined in terms of a non-physical parameter,
such as the arclength of the solutions path [K1}; cf. Sec. 5.6.

As for the relation between multigrid and continuation, several
situations arise. Sometimes, the FMG algorithm is a good continuatioen
process by itself. In particular, in non-elliptic and singular pertur-
bation problems where relaxation adds O(h) artificial viscosity, the
FMG algorithm starts from highly viscous solutions (since h is large}
and gradually eliminates viscosity as it proceeds to finer grids. This
is a natural continuation path gince problems with large viscasity terms
are well~defined and easier to solve. This continuation is carried even
much further when the FMG algorithm is continued to include focaf refine-
ments around thin viscous layers (see Sec. 9).

Sometimes, however, an explicit continuation over the problem path
Yos Yev, should be made, elither because the intermediate problems are
interesting themselves, or because they are necessary for reaching, or

even defining, the desired v' golution., When the intermediate problems

eyt
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are not of interest, they can of course be solved to a lower accuracy,
using coarser arids only. The grids cannot all be too coarse, however:
the meshsize h must participate in the continuation process if com-
ponents of wavelengths comparable to b  are needed to keep the solutions
in the "attractinn reagion" of the desired sclutlon path.

Even whon components with O(ﬁ) wavelengths are needed in the
~ontinuation process, in each &y step they do not usually change much.
we can therefemre employ the "frozen 1 ° techniques described below {Sec.
15 ), and perform most of the &y steps using, on most parts of the
domain, very coarse grids, with only few “yisits" to grid h : Such a
continuation process will often require less computational work than

the final step of solving (to a better accuracy) the v problem.
*

A favorite example where these techniques are put to test is the
Bratu problem Au + %el = 0 in the unit sguare, with u = 0 on the
boundary. 1In collaboration with Klaus stueben we have solved the problem
using FAS, freeing 3 and adding the value u(p) , where P is the cen-
ter of the square, as a global constraint, treated basically as in Sec.
5.6. 1In this formulation, the multigrid solver had no problem going
around the "limit point” (*turning point") of the golution curve (e.g.,
the curve of u(P) as function of » , which is not a unigue functicn) .-
It gave solutions at the same efficiency as corresponding algorithms for
Poisson equations. In fact, we could solve by one-cycle FMG algorithm to
the level of truncation errors, even problems on the upper branch of the
solution curve, and even without continuation at all. The only region
where more lengthy calculations were needed was a region where the disc-
rete solution bifurcated, a phenomenon the algorithm was not designed to
deal with efficiently. See more details in [S4, Sec. 5.5.1]1. A further
work along these lines, also to other problems, is reported in [S5).

8.4 Estimating truncation errors. T extrapolation

As with other defect-correction schemes, the defect can serve also

as an error estimator. That is, rﬁ

truncation ertor TH {on the coarse grid H), defined by

is an approximation to the local

M dtEty - fow {(8.10)

. ; : : M
where u is the true differential solution and IH and I} are two

continuum-to-H transfer operators, defined as follows. IH is the opera-
tor used in our grid-H discretization for fH = IHf , and it represents

. : . H
the sense in which we want uH to approximate u : We want u

-87- .

to actually approximate iHu . The injection (i“u)(x“l = uixt) is

usually meant, but other local averagings are sensible too.

Kote the analogy between (8.10) and (8.8). +H  is the correction

to grid-H right-hand side that would make the grid-H solution coincide
with the true differential sclution i“u , while 1:
that would make it, at convergence, coincide with the fine-arid solution

0 h
Ih 0. It is hence clear that at convergence

is the correction

o oT 4T , {B.11}

h -
where T is the fine-grid local truncation error, defined with Ih
such that iH = Aﬁ ih. The sign = means equality up to a higher order

in h . Relation {(8.11) means, more precisely, that if 1h + r“ were

used to correct the H-équations, then u! would be a higher-

order approximation to iHu: namely, uH —iHu would equal e wh .
AH _ H h hh _ b R

where L'w = I 1 and L'w =T -

h
Relation {8.11) can be used to inexpensively raise thn approxima=
tion order. If the local approximation order (order of consistency) at
the point x is p , i.e., if Th(x] e c(x)hFP  where ciéx) 1is inde-
pendent of h , then TH(x) w 2P cixt hP , hence TE{K] o (2P -1} ¢ {x)hP
and hence TH(X) = 2P (2P -1)_1 T:(x} . To raise the approximation

order all we have then to do is to change the grid-H equations (8.5) by
writing them as in (8.7} and multiplying TE by the fixed factor

2P 2P -1)"1 . This operation is called I extrapolation. It resembles
richardson extrapolation, but it can profitably be done even in cases
the latter cannot {e.g., 1ln cases p = p{x) is not constant), because
it extrapolates the eguation, not the solution. The 1 extrapolation
can be shown to be a special case of the higher-order technlques of
Sec. 10.2 below, but it is especially simple and inexpensive., It costs
only one multiplication on the coaxrser grid. It is probably best to
use it in an FMG algorithm with Wiv,0) cycles, since a terminal relax~
ation with the lower order discretizaticn would impair the approxima-
tion (even though its order would remain higher). BAn option for
~xtrapolation exists in the model program FMG1 [M37.

H
h
alsc called the relative logal truncation error —- the local truncakion

pecause of the analogy to the local truncation errors, 1 is

orror of qrid H relative to grid h . 1t is a by-product of the FAS
processinag which can be used to estimate the true local truncation
erTrors: e (2P -11—1 TE . Hence it can be used in FMG stopping

criteria (see Sec. 7.3} and in grid adaptation criteria {Secs. 7.5, 15).



8.5 FAS interpolations and transfers

H
The c¢onsideration in determining the residual transfer Ih , the
. h .
correction interpolation IE and the FMG interpolation I[H in FAS

are basically the same as in CS, but there are some additional possibi-

lities and we should also specify now the FAS solution transfer iﬁ

For linear problems the choice cof ig

all choices will give identically the same results. The solution ef-

does not matter of course;

ficiency of many nonlinear problems is also insensitive to the exact
choice of ig . The choice does matter only where the problem coef-
ficients drastically vary over a meshsize. By the "problem coefficients”
we mean those of the linearized problem. In practice, using FAS , we

do not linearize the problem, but the transferred solution ig ol impli-
citly determines the problem coefficients on the coarse grid H — de-
termining the coefficients may in fact be regarded as the purpoée of

this transfer (although, unlike the CS5 situation, the coefficients can
ehange on grid H , with the changing approximation}. When the problem
coefficients are highly variable, it is important to have each coarse-
grid coefficient a suitable average of nelghboring values of the cor-
responding fine-grid coefficients. The coarse-grid problem, in other
words, should be a proper "homogenization" of the fine-grid problem.

Sueh homogenization is usually obtained by using full weighting for ig

{as for P in Egs. (4.5) - (4.6)).

h

In some, very special situations the dominant soluticn-dependent
term in the coefficients may have the form g{u} , where g 1is a
sensitive function; large changes in g are caused by more-or-less
normal changes in u over a meshsize. 1In such a case the weighting iz
should have the special form

~ . - :H ~
i e . g7 g™ (8.12)

where ig is a normal full weighting, such as (4.6}, g(ﬁh) is a grid-
function such that (g(ﬁh))(xhl = g(ﬁh[xhl} for every fine-ygrid point
", and 9-1 is the inverse function of g ; that is, g-1(g(u]).= a
for any value o If several sensitive functions such as g appear
in the coefficients, several ig may correspondingly have to be used.

{So far we have not seen a practical problem where this was required.)

An important possibility offered by FAS is the interpolation near
an interibr discontinuity, such as a shock or an interface. The grid-H
solution, introducing smooth changes to the grid-h solution, may change

the location of such a discontinuity, moving it a meshsize or two. Near
the discontinuity the correction e - GH—‘ﬂ:hh will then be highly
non-smooth; it will lock like a pulse function., Interpolating 1t as a
correction to the fine grid will introduce there unintended high oscil-
lations, To avoid this, the FAS iInterpolation (8.6) should be replaced
by {8.6') near the discentinuity. This is easy to implement, by adopting
the following, more general rule.

H s H~h

Use (&.6) everywhere except neax points where U - Ia" iy com-
parable to Ul , where (8.6') should be used.
8.6 Application to integral equations
When the integral eguation
J-Kix,yl uly) dy = f(x,u(x)) (8.13)

is discretized im a usual way on a grid with n = ot points, the
unknowns are all connected to each other; the matrix of the (linearized)
discrete system is full. & solution by elimination would require O{n')
operations. An FMG solution would require 0(n) operations, since each
relaxation sweep costs O(n?) operations. In case (8,13) is ncnlinear

in uw , FAS5-FMG would be used. Uaing the FAS structure, even for linear
problems, we can cften reduce thig operation count very much, by gxploit—
ing smoothness properties of K,

In most physical applicaticns Ki(x,y) has a singularity at y=x
So usually K{x,y) becomes either smaller or smocther as the distance
ly-xl = (15 v, - xp2
fact related: The former is obtained from the latter by differentiations
of (8.13) with respect to x= Ix,, ..

increases. "Smaller" and "smoother" are in

.,xd} (possibly replacing the in-
tegral equation by an integro-differential equation}. 1In either case,
one can obtain practically the same accuracy in the numerical integra-
tion using meshsizes that increase with |y - x|, cutting enormously the
work invelved in relaxation, Usually wuily) is much less smooth than
Ki{x,y) for large |y=-x| . The integration with increasing meshsizes

cannot then use point values of Eh , but should use local averages of

Gh , taken over boxes whose siza jncreases with |y - x| Exactly such
averages are supplied by the sequence of coarser grids in the FAS
structure. The FAS solution transfers ig should of course represent
full weighting. One can increass the accuracy of integration by using,
in addition to the full-weighting averages, higher local moments, repre-

sented on additional coarser grids.

o -— ..

ey ——
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8.7 small storage algorithms

various effective methods for vastly reducing the storage require-
ment of the multigrid algorithm, without using external storage, can be
based on the Full Approximation Scheme. One simple method [B10, §2.2]
18 to use the fact that a problem whose finest arid is h can satis-
factorily be solved by an FMG algorithm with only one h-cycle ({see Sec,

7.3}. This means that only one visit is needed to grid h , including
the FMG interpolation H,: , a couple of relaxation sweeps, and the re-
siduals and solution transfers I: and iﬁ , back to grid H . All

these operations can be made "wave-like" by just one pass over grid h,
requiring no more than few columns at a time kept in memory. (When the
operations of one relaxation sweep have bean completed up to a certain

column, the operations of the next sweep can immediately be completed

on the mext column, etc.] This visit is enocugh to supply the corrected
right-hand side B oon grid H (cf. Sec. g8.2), hence enough to cal-
culate afl , without any storade allocated to grid h , except for the

few mentioned continuously shifted columns.

GH is as precise as The usual terminal sweeps of the h-

ﬁh
NEW
cycle are only done if we need the solution on grid h . their role is

to smooth the interpolation errors, not to aeduce the error. Moreover,
suppose that what we really need from our caleulations is some functional
of the solution, ¢({u} say, so we would like to calculate @hlG:Fw}.

A1l we have to do is to calculate, incidentally to transferring the solu-

tion @l back to grid H , the values of both P ana efrlaM .
Then, having later chtained ﬁH , we can calculate

Wt - WPt s ehah - Pl (8.14)
which is practically as accurate as @h[ﬁ:Ew] , since aft - Iﬂ ﬁh is

small and smooth.

This simple procedure reduces the required stcrage typically by
the Ffactor Zd , without increasing the computational work. Other pro-
~edures can reduce the storage much farther by avoiding the storage of

coarser grids too, except for a certain (nkhk) *(nkhk] box on each

grid hk =2kh . The hk box is shifted within the hk-1 bex to supply
-1
the "h corrections. The amount of work increases since on "re-
k h
visiting" the hk box we need to reproduce its own rhk corrections.
k+1

This can br done only in the interior of the box, distance O(hkllogrh
from the boundary of the box, where ¢ =O(hp} ig the desired accuracy
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on the finest grid, because closer to that boundary the h, ., high-
frequency errors are larger than the desired accuracy. Hence we must
have n_ 3 0{|log €]) . The overall reguired storage can therefore be
reduced to 0(|log s]dkloq h]) (not just O(|log h|)} as mistakenly
calculated in [B7, Sec. 7.5]1). Such procedures are called segmental
refinement technigues.

Another small-storage multigrid algorithm, not based on FAS, is
described in [H1]. It is a region dissection procedure, particularly
suited for elongated domains.

9. LOCAL REFINEMENTS AND GRID ADAPTATION

Non-uniform resolution is needed in many. perhaps most, practical
problems. Increasingly finer grids are needed near singularities, near
non-smooth boundaries, at boundary layers, around captured shocks, etc.,
etc. Increasingly coarser grids are needed for exterior problems on un-
bounded domains. The multi-level FAS approach gives a convenient way to
éreate non-uniform adaptable structures which are very flexible, allo-
wing fast local refinements and local coordinate transformation, and
whose equations are still solved with the usual multigrid efficiency.
Morsover, the grid adaptation can naturally be governed by guantities
supplied by the FAS multigrid processing, and it can naturally be integ-
rated with the FMG algorithm to give increasingly better approximations
to the true differentiaf solution, at a fast, nearly optimal rate.

These techniques, outlined below, are described in more detail in [B7,
Secs. 7, 8, 9], (BB, Secs. 2, 3, 4] or [Bl0, Secs. 3, 4]. An application
to three-dimensional transonic flows is described in {B23].

Another highly flexible discretization using a multigrid solver is
described in [B2]. It is based on a finite element approach, which ma-
kes the program simpler, especially for complicated structures, but the
execution is less efficient. The technigues outlined below are also

applicable to finite element formulations as in [Bl11l], [BY9, Lecture 41.

9.1 Non-uniformity organized by uniform grids

Our non-uniform discretization grows from the simple observation
that the various grids (levels) used in usual multigrid algorithms need
not all extend over the same domain. The domain covered by any grid may
be only a proper part of the domains covered by coarser grids. Each
grid h can be extended only over those subdomains where the desired

meshsize is roughly less than 2h . 1In such a structure, the effective
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meshsize at each neighborhood will be that of the finest grid covering
it: see Fig. 9.1l.

A C
i
I
D
B
E B
FIGURE 9.1: A piece o4 non-undform gaid [A) and the undifoam Levels it
<4 made ef (B, C, D, E}. The heavy fine shows a piece of the boundary,

with a neentrant conner calfing for the Local refinemenis paoduced by
the Local patches {C, D, El.
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This struckture is very flexible, since local grid refinements (or
coarsening) is done in terms of extending (or contracting) uniform grids,
which is relatively easy and inexpensive to implement. A scheme named
GRIDPACK [M3) has been developed for constructing, extending and con-
tracting general uniform grids, together with many service routines for
such grids, including efficient sweeping aids, interpclations, displays,
treatment of boundaries and boundary data, etc, It is fully described
in [B30]). One of its advantages is the efficient storage: The amount
of logical information (pointers) describing a uniform grid is propor-
tional to the number of &txings of points (contiguous sets of gridpo:nts
on the same gridline), and is therefore usually small compared with the
number of points on the grid. Similarly, the amount of logical opera-
tions for sweeping over & grid is only proportional to the number of
strings. Changing & grid ls inexpensive too. One can easily add finer

levels, or extend existing ones, thus effecting any desired refinements.

Moreover, this structure will at the same time provide a very ef-
ficient solution process to its difference equations, by using its levels

also as iln a multigrid solver. For this purpose the Full Approximation
Scheme musSt be used, because in parts of the domain not covered by the
finer grid h , the coarser grid H=2h must certainly show the full
solution, not just a correction, Indeed, the FAS approach naturally fit

here: We use on grid H the equations PRATLL H

Lhuh

where f is given

by (8.5b) wherever is well defined (i.e., in the interior of grid
h), and EH =fH otherwise. In other words (cf. Eqs. 8.7-8), the fine-

to-ccarse correction is simply cancelled wherever it is not defined.

H
Th
Applying an FMG algorithm with these structures and egquations, we will
get a solution that in each subdomain will satisfy its finest-grid equa-

tions, while at interior boundarjes (of fine levels not covering the

entire domain) the solution will automatically be as interpolated from the

coarser grid. Note that the coarse-grid solution is influenced by the
finer grid even at regions not covered by the latter, since the coarse-
grid equations are modified in the refined region.

In other words, a patech of the next finer level h <can be thrown
an any part of a given grid H = 2h, correcting there the latter's
equations to the finer-grid accurracy. Moreover, several such patches
may be thrown on the same grid. Some or all of the patches may later
be discarded, but we can still retain their Tg corrections in the grid-
H equations.

An important advantage is that difference eguations are in this

way defined on uniform grids only. Such difference equations on equi-

R
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e



—94-

distant points are simple, inexpensive and satandard, even for high~order
approximations, whereas on general grids their weights would have to be
calculated by lengthy calculations separately for each point. Relaxa-
tion sweeps are also made on uniform grids only. This simplifies the

sweeping and is particularly useful for line relaxation schemes.

9.2 Anisotrapic refinements

It is sometimes desired to have a grid which resolves a certain
thin layer, such as a boundary layer. Very fine meshsizes are then nee-
ded in one direction, namely, across the layer, to resolve its thin
width. Even when the required meshsize is extremely small, not many
gridpoints are needed, since the layer is comparably thin, provided, of
course, that fine meshsizes are used only in that one direction. We need

therefore a structure for meshsizes which get finer in one direction only.

In case the thin layer is along coordinate hyperplane [xj =
const.} , this is easily done by semi refinements: Some levels H are

refined by the next level h only in the Jj coordinate, hj = Hj/z
whereas hi = Hy for i # j . See Fig. 9.2. 1In fact, different patches
may have different refinement directions. Thus, the set of all grids is
arranged logically in a free, each grid having a unique next-coarser
grid, but possibly severaf next-finer grids, instead of the former li-~
near ordering. All these grids are still uniform, and can still easily

be handled by GRIDPACK.

Note that the next-finer grids of a given grid H may geometrica-

1ly have some gverlap. All that is needed in such cases is to set prio-
H
h
grid H . Such priority relations are simply set by the order in which

rity relations, to tell which correction t applies at each point of

the corrections are transferred to grid H .

In case the thin layer is not along coordinate lines, the methods

of the following sections could be used.

9.3 Local coordinate transformations

Another dimension of flexibility and versatility can be added to
the above system by allowing each of the local patches to have its own
set of lecal coardinates.

Near a boundary or an interface, for example, the most effective
discretization is made in terms of coordinates in which the boundary {or
interface} is a coordinate line. 1In such coordinates it is much easier
to formulate high-order approximations near and on the boundary, and to

introduce meshsizes which are much smaller across than along the boun-
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dary layer {(Sec. 9.2); etc. 1In the interior, local patches of coordina-
tes aligned with characteristic directions (along streamlines, for ins-
tance) can greatly reduce the cross-stream numerical viscosity (cf. Sec.

2.1), thus yield superior approximations to non-elliptic eguations.

Each set of coordinates will generally be used with more than one
grid, so that (i) local refinements, isotropic or anisoctropic, in the
manner described above, can be made within each set of coordinates; and
{ii) the multigrid processing retains its full efficiency by keeping the
meshsize ratioc between any grid and its next-coarser one properly bounded.

FIGURE 9.2: A piece of non-unifcam, beundany-Layer type grid [A] and
the unifenm nectangular subgrids {t is made of [B, C, D, El. The mesh-
tize in the Local patches (¢, D, El is halved hexizonfally only.
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Since local refinement can be made within each set of coordinates,
the only purpose of the coordirate transformation is to provide the grid
with the desired orientation, i.e., to have a given manifold (such as a
piece of the boundary) coincide with a grid hyperplane. Since, further-
more, this needs to be done only lecally, it can be obtained by a simple
and standard transformation. For example, in two-dimensional problems,

let a curve be given in the general parametric form
X = xo(s}, y = yo(s), (Sl‘5¢52) {93.1)
where 5 1is the arclength, i.e.,
vigyd 1052 = 9.2
xp(8)° + ygis) 1. { )

To get a coordinate system (r,s) in which this curve coincides
with the grid line (r=0), we use the standard transformation

x(r,s) = xO(s) - rya(s), yir,s) = yo(s) + txb(s) . (9.3}

Locally, near r =0, this transformation is isometric (simple rotation}.

The main advantage of this transformation is that it is fully
characterized by the single-variable functions xo(a). yo(s). These
functions, together with x5(s), yé(s) and g(s} = xg5/yy = —ya/xé can
be stored as one-dimensional arrays, in terms of which efficient inter-
polation routines from (x,y} grids to {r,s) grids, and vice versa,
can be programmed once for all. The difference eguations in (r,s) co-
ordinates are also simple to write in terms of these stored arrays, since,
by (9.2-3),

xl Y'
3 ooy 2 6 3 3 e xr 9 3 4
x Yoir *Tergas ' 3y X0 ur * Térg 98 ° 19.4)

A different kind of multi-level procedure using a combination of
cartesian grids and grids curved along poundaries is described in [S4,
§11]. The main difference is that all levels, from cecarsest to finest,
are used there both for the cartesian and for the curved grids, and at
each level the relaxation includes interpolations between the two types
of grids, while the present approach is to regard the curved grids as
a finer level which correct the finest cartesian grid near the boundary -
The present approach is perhaps more economic and flexible, but it re=-

-G} -

quires a {crude) approximation to the boundary conditions to be given

on the cartesian grids, toco.

9.4 Sets of rotated cartesian grids

Anolher variant of this procedure is required in case the loca-
tion of the thin layer (interface, shock, etc.) is not fully defined.
For this purpose, each level will be a set of rotated cartesian grids,
possibly overlapping. The finer the level, the finer (richer) is alsc
the set of rotations. See Fig. 9,3. The self-adaptive criteria (see
Sec. 9.5) can be employed to decide where to refine the set of rotations
(together with refining the meshsize in one direction). Hence the scheme
can capture discontinuities (thin layers}, without defining ‘them as such.

The stronger the discontinuity, the better its resolution.

Since only rotated cartesian grids are needed in this scheme, the
finite difference eguations are as simple as ever. Hence this method is
sometimes preferable even in cases where the location of the thin layer
is known.

9.5 Self-adaptive technigues

The flexible organiiation and solution process, described above,
facilitate the implementation of variable mesh-size h(x) and the em-
ployment of high and variable approximation order p(x). How, then, are
mesh-sizes and approximation-orders to be chosen? Should boundary layers,
for example, be resolved by the grid? What is their proper resolution?
Should high-order approximations be used at such layers? How does one de-
tect such layers automatically? In this section we survey a general mul-
tigrid framework for automatic selection of hix}, p(x) and other dis-
cretization parameters in a (nearly) optimal way. This system automati-
cally resolves or avoids from resolving thin layers, depending on the
goal of the computations, which can be stated through a simple function.
{For more details see [B7, §8)], (B8, §3]).

As our directive for sensible discretization we consider the pro-
blem of minimizing a certain error estimator E subject to a given a-
mount of solution work W (or minimizing W for a given E. Actually,
the control quantity will be neither E nor W, but their rate of ex-
change). This optimization problem should of course be taken guite loose-
ly, singe full optimization would reguire too much control work and would
thus defeat its own purpose.

The error estimator E has generally the form

s =

g =
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Fig. 9.3A. ({Caption on the following page}.

-99

%
A
3

i\\

L~

\\

/
X V4

A

N

FIGURE 9. 3: Gaid onientation around an {nternior fthin tayer, The Lwe

coarscat fevefs (A) have the usual onientation 0 . The next fevel [B]
has 3 ordenfations: 0, % and -;_’ (the Caten {4 nat applied here).

The mext fevel [not shown) would have 7 orienfations: 0, t% , :% ,

z{f . ete. The successorns (nefinements) af a gnid will always have
either tihe same onlentation ox one 04 the two closest ones le.q., each
succerson of the %fok(enxed gnid in B wilf have onientation I . % on

In
?) .



-100-

E=f cixit(x}ax , {9.5)
Q
where Th(x) is the local truncation error (cf. (8.10)) at - x . G(x}

» 0 is the error-weighting function. It should in principle be imposed
by the user, thus defining his goal in solving the problem. In practice
G(x) serves as a convenient control. It is only the relative orders of
magnitude of G(x) at different points x that really matter, and
therefore it can be chosen by some simple rules. For example, if it is
desired to compute f-order derivatives of the solution up to the boundary
then G(x)} = dg-l-l , where dx is the diatance of x from the boundary,
and m is the order of the differential equation.

The work functional W is roughly given by

W “’—(P"‘—’d’ dax , ) (9.86)
Q@ hix)

d

where d is the dimension and h° is therefore the number of grid-

ceell
1 d
‘pic grids.) w = w(p) is the solution work per grid-point. In multigrid

paincs per unit volume. (Replace hd by h in case of anisotro-
processing, this work depends mainly on the approximation order (consis-
tency order} pi{x) . If the high-order technigues of Sec. 10 are used
then usually w{p) ~ w,p , although sometimes wip) = 0(93) for unusua-
1ly high p (see Sec. 10.1}).

Treating h(x) as a continuous variable, the Euler equations of
minimizing (9.5) for fixed (9.6) can be written as
ar | =d-1 -
S = id wip) h o, 9.7)
where A is a constant {the Lagrange multiplier), representing the mar-
ginal rate of exchanging optimal accuracy for work: A = -dE/dW .

In principle, once ) ia specified, equation (2.7) determines,
for each x € {9 , the local optimal valuea of h{x} , provided the trun-
cation function Th(x) is fully known. In some problems the main beha-
vior of Th(x) near singularities or in singular layers is known in
advance by some asymptotic analysis so that approximate formulae for
hi(x) can apriori be derived from (9.7). (Near source-type singularity
(9.7} should be modified for that purpose, since th has an essential
and singular sign reversal at the source [B24].} More generally, how-
ever, equation (9.7) is coupled with, and should therefore be solved
together with, the given differential equations. Except that (9.7) is
solved to a cruder approximation. This is done in the following way:
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In the FAS solution process we readily obtain the quantity r:
By (8.11} and (9.5), the guantity ~AE(x) = G(x)!g(x) can serve as an
estimate for the decrease in E per unit volume owing to the refinement
from H to h in the vicinity of x . By (9.6}, this refinement re-
quires the additional work (per unit volume} AW = w(p)h_dtl-zd) . The
local rate of exchanging accuracy for work is Q = -AE/a8W . IE Q is
much larger than the control parameter X , we say that the transition
from H to h was highly profitable, and it pays to make a further such
step, from h to h/2 . So we will next establish grid h/2 in the
neighborhood of x , as in any other neighborhood where there are points
with Q »>> )

The computer work invested in the test is negligible compared with
the solution work itself, since { 4is calculated by just a couple of
cperations per point on the coarser grid H once per cycle.

A similar test can be used to decide on'chanqing the local appro-
ximation order pix} , with Tg being replaced by the pl-to-p0 defect-
correction {10.1) and correspondingly &W = (w(pl)-w(pol)h-d . or, if
we treat p as a constant over the domain, but we like to optimize that
constant, we can measure AE globally; i.e., measure directly the change
in some quantity of interest {(e.q., some functional of the sclution we

are most interested in), due to the transition from Py to Py - Cor-
respondingly, global AW will ba ysed, Whether locally or globally,
the order will be increased beyond Py if -AE/4W >> X . Other discre-

tization parameters, such as the computational boundaries {when the phy-
sical domain is unbounded), or refinements in grid orientations (see

Sec. 9.4), can be decided by similar tests all based on comparing some
~AE/AW  to thé exchange-rate paramster A . How to control A and coor-
dinate it with the solution algorithm is discussed in the next section.

9.6 Exchange rate algorithmg. A-FMG

Near a severe singularity many levels of increasingly finer grids
on increasingly narrower subdomains may be needed, and formed by the
above criteria. If the usual FMG algorithm were applied to these levels,
too much work would be spent, since too many pasges on coarser grids
would be made. Only when all grids cover the same domain is it true
that the coarse-grid work is small compared to the next~finer grid work,
since the latter deals with about Zd as many points. This is no lon-
ger so when local refinements are used: Finer grids may include fess
points than some coarser grida. The amount of work in a usual FMG algo-
rithm would therefcre be much greater than proporticnal to the total

e

g -
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number of yridpoints: (9.6} would not hold.

A better procedure is to decrease the accuracy-to-work exchange
rate A in a gradual sequence Al > lz > ... , and to use the solution
_y as the first approximation to the solution on the

obtained for A,
grids formed for Aj . In the absence of singularities, and for unifor-
mly p-order approximations, this process with the ratio Aj/k._l = o7pd
would yield the regular FMG algorithm, so generally it is called A-FMG.
It was tested [B24] for the Poisson equation Au = f , with severe sin-
qularity in f (e.g., f = 33 , where r is the distance to a cer-
tain boundary point), or with 27 reentrant corner. The ratio

Aj/lj—l = 1/16 was used, and for each ) the collection of local re-
finements was determined by (9.7}, using the roughly known behavior of
rh as function of the distance from the singularity. The 5-point Lap-
lacian was employed, with red-black Gauss-Seidel relaxation. 1In the re-
entrant corner case, it was essential to use the local relaxation tech-
nigque (Sec. 5.7). Results were invariably excellent: Algebraic errors
IlTiA - uAll smaller than the truncation errors ||uA - u|| were obtained
by one VI(l,1) cycle per X . More importantly, the differential ernon
E = HEA - uf] as function of the total work W (measured as the total
number of points traversed in all the relaxation sweeps)] behaves the same
a5 4{n regufan cases: In regular problems with second-order approxima-
tions on two-dimensional uniform grids E = O(hz) = O(W—l) ., ané the
above experiments indeed clearly yield E = OGW-I) , for several orders
of increase in W . This confirms the validity not only of the A-FMG
algorithm, but also of the adaptation criterion (9.6). Had we used only
uniform grids, the singularity would severely cripple E(W) ; e.g., in
the reentrant corner case it would yield E = O(h) = o(W™ %)

Switching criteria based on the exchange rate A could also be
used {n the muftigrid cycfes themsefves., Typically, the algorithm would
continue relaxing on a given grid wherever Qix} = ~G{x)Ar{x)}/AW > a;}
where -Ar(x} is the local decrease in the residual |ri{x){ per grid-
point per sweep and AW is the corresponding work. Wherever Qix) <
a;} but ~Gix) | R{x) | /0W > ay} , a switch vould be made to the next coa-
rser grid. The local relaxation mentioned above (and in Sec. 5.7),

could be effected by applying such criteria locally.

Ultimately, such exchange-rate criteria unify all the multigrid
switching and adaptation criteria, integrating them intec one algorithm,
in which ) 1is gradually decreased. The process can be continued inde-
finitely, with increasingly finer levels created, giobally and locally,

in an almost optimal way., It can be terminated when either E or
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W or ) reach preassigned limits. The above technpiques of anisotro-
pic grids, local transformation= and rotations, and adaptation of approx-

imation orders canm all be integrated into such an exchange-rate algor-
ithm.

10. HIGHER-ORDER TECHNIQUES

A sound way of constructing high-order approximaticns to a given
differential problem LU = F, is first to construct a multigrid program
with a low approximation orxder, and then convert it into a high-order
program. The lower order is easier to develop and is also useful as a
component in the higher-order program. Such programs are usually more
efficient than programs which use high-order difference operators through-
out. We mostly recommend the method of Sec. 10.2 below, especially for
non-elliptic and singular perturbation problems.

10.1 Fine-grid defect corrections. Pseudospectral methods

Given a program for solving the (linear or nonlinear) low-order

{order po) discrete system Lguh = fh, an obvious multigrid appreach
for raising the approximation order is by high-order "deferred” (or "de-
fect") corrections introduced once per cycle on the currently-finest
grid [B10, §3.4). That is, we add to f" the correction

h

{x h
91,0

haP My, (10.1)

IR S O A
where L? is éhe higher-order operator, its approximation order {con-
sistency order) being Py > Pgyr and ﬁh is the current approximate sclu-
tion. A similar correction is of course introduced to the discrete boun-
dary conditinns, too. To save h-cycles one should employ an FMG algor-
ithm (Sec. 7}, and use corrections like (10.1) at all the FMG stages
{i.e., for every currently-finest grid). The total amount of work is
then still basically given by (7.4). Note that that work is proportiocnal
to the approximation order Py - However, this count does not take into
account the calculation of (10.1) once per cycle. For lower p; this
extra work may be less than the other work within the cycle (a couple

of sweeps on each level), but for high Py it beccmes dominant and makes
the amount of work per cycle proportional to Py (assuming spectral-type
mrthods cannot be used and the complexity of calculating LT is thus
proportional to pl), hence the total work is in principle 0(pi). Fur-
thermore, for hiaher p, we have in principle to use higher computer
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precision, making the work of each arithmetic operation (in calculaging
(10.1)) again proportional to p, . bringing the total work to O(pl).

This can be reduced to just O(pi) by a method of ¢ompound deferred coa-
agctions, i.e., taking py = pl/2 and solving for Lg by deferred cor-—
rections to a system of order po/l , and B0 on recursively. In the
normally used range of Py - however, the work of even the uncompounded
deferred correction is often still dominated by relaxation and hence
still proportional to P, -

This technique can in parficular be applied to pseudospectral app-

roximations L? , i.e., approximations attaining very high order {propeor=-
tional to 1/h}) through a discrete spectral (Fourier, or Chebyshev, etc.)
representation of the solution, using fast numerical transformers (e.g.,
FFT -~ the fast Fourier transform) to obtain that representation and to
calculate from it the approximate derivatives at gridpoints (cf. e.g.
[G3]}. Using resonably high order in Lg (e.g., py = 4 , itself calcu-
lated by deferred corrections to a second-order operator) one can attain
the spectral approximation order with just few applications of the spec-

tral operator. (Other spectral multigrid methods are described in [B35]
{s@], [zll, [zk].)

The deferred correction technique {suggested by L. Fox) is a spe-
cial case of the concept of defect correctiona (see {Lil, [(s3), (A2]).
An important advantage of such a technique is that the higher~order
operator L? (and the corresponding higher order boundary conditions)
need not be stable. This gives much freedom in the relatively difficult
task of calculating L? . Thig freedom is especially welcome in non-
elliptic and singular perturbation cases, where convenient central app-
roximations are unstable.

The reason L? nead not be stable is that the convergence of the
defect correction iterations, to the solution corresponding to L? . is
fast only in the smooth components (for which Lg is8 a good approxima-
tion to L?) and is very slow in the high-frequency components. Since
instability is a property of high-frequencies, it can creep in only very
slowly. The growth of unstable wodes within the few cycles made is not
too damaging.

The whole purpose of defect correctiona is in fact to correct low-
frequency components; only for such components higher-order approxima-
tion, such as L? , are much better than lower-order approximations like
Lﬁ . Recognizing this and the fact that in multigrid processea low fre-
quencies are converged via the coarse-grid corrections, we see that the
main effect of the defect corrections can be obtained by applying them
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only at the stage of transferring residuals to the coarser gr:ids. This
would save about two work-units per cycle, and would give better approxi-
mations in case L? is unstable. This idea, from a different point of
view, is described in the next section.

10.2 pouble discretization: High-order residual transfers

On any given grid participating in multigrid interactions, discrete
approximations to the continuous operator L are used in two different
processes: ih relaxation sweeps, and in calculating residuals transfer—
red to coarser grids. The two discretization schemes need not be the
same [Bl%, Sec. 3.11]. The discretization Lg employed in the re-
laxation sweeps must be stable {(see Sec. 12), but its accuracy may be
lower than the one we wish to generate. The discretization LT_ used
in calculating the transferred residuals determines the accuracy of gur
numerical sclution, but it need not be stable. This "double discretiza-
tion" scheme is especially useful in dealing with non-elliptic and sin-
gular perturbation problems: One can use the most convenient {(but some-
times unstable} central differencing for L?, and add artificial vis-
cosities (see Sec. 2.1} only to L,. This will ensure stable solutions

which still have the accuracy of the central differencing.

Note that such a multigrid pFPCESS will not converge to zero resi-
duals, since it uses two conflic&ing difference schemes. The very point
is, indeed, that the solution prﬁduced may be a better approximation to
the dijfenential solution than can be produced by either scheme. '

The lack of algebraic convergence makes the usual two-level mode
analysis irrelevant for double djiscretization schemes. Instead they can
be analyzed by the two-level FMG mode analysis (Sec. 7.4).

Double discretization schemes can of course similarly be applied
to boundary conditions; e.g., to Neumann conditions: Simple first-order

schemes can be used in relaxation, while second-order Neumann conditions
{which are sometimes complicated and may sometimes be unstable) can be
used to transfer boundary-condjtion residuals to coarser grids.

The double discretization scheme need not be confined to the cur-
rently finest level; it can alsc be used on coarser levels. This will
give better coarse-grid corrections, and hence faster algebraic conver-

gence. (In non-elliptic and singular perturbation cases the algebraic
convergence is usually determined by the quality of the coarse-grid cor-
rection {Bl7, §5.1).) It is also more convenient to program, since the
same residual transfer routine, pased on L?, ig used on all levels.

ey

oy -

-y -



-106-

Moreover, if only LE is used on coarser levels, the gain in approxima-
tion order per cycle cannct be more than 1% hence the final approxi-
0’ where T,
of relaxation [Bl7, §2.2}. Such a restriction dees not exist if L? is

used for rrsidual transfers on all levels. The approximation order Py

mation order cannot exceed Zpo + r is the convergence order

can then br attained, perhaps even in one cycle, no matter how high 91
is. 1In particular, pseudo-spectral approxiamtions can be used in Ll'
vielding very high approximation orders in few cycles.

In ~rder to obtain the high approximation orders several rules
sheuld be observed: Suitable interpolation orders and residual-trans-
fer orders should be employed. The right orders can be derived by crude
mode analysis, as in Sec. 4.3, but with particular attention to boundary
{see in particular rule (C) in Sec. 4.3). FMG algorithms with Wi{v,0}
cycles should be used (see Sec. 6.2), to ensure accurate enough solution
Oof the course-grid equations and to avoid degradation of the approxima-
tion by terminal relaxation. Also, when double discretization is used
on all levels together with the Full Approximation Scheme (see Sec. B),
notice that two different right-hand sides should be used on coarser
grids, one for relaxation and a different one for residual transfers
(817, §2.1].

In case L? is a better approximation than Lg not only for
smooth components but also in the high-frequency range, the method of
fine-grid defect corrections (Sec. 10.1} will eventually give smaller
errors than the coarse-grid defect correction described here. But the
gain will hardly justify the extra work involved in calculating (10.1)
separately from the calculation of residuvals. In problems where L?

is unstable, the present method is both faster and more accurate.

bDouble discretization schemes have already been used successfully
in various cases, including fourth and sixth order approximations to
Poisson equation [Sl]; second-order approximations to simple singular
perturbation problems {B17, &7}, [B3, §7}; and second~order approxima-
tions to incompressible Navier-Stokes equations with high Reynolds num-—
bers. Alsc, the A extrapolation {Sec. 8.4) can be viewed as a special
poLh_Lzh)“zpo

case, where Lh = (2 =13

1
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1.3 Relaxation with only subprincipal terms

A particularly useful application of the above techniques is to
wploy a simple relaxation operater L, where non-principai terms are
rglected; more precisely, to employ the simplest stable L, which
yproximate the subprincipal terms of the differential operator {see
:c. 2.1). Other terms need to be approximated only in L? . For some
luid-dynamics systems this procedure can save a substantial amount of
srk. The techniques of either Sec, 10.1 or 10.2 can be used with this
slaxation: more work is saved by the latter, but the former is safer.

1 very coarse grids this type of relaxation may give worse performance.
. such cases use more sweeps or reintroduce the neglected non-principal

2rms.

1. COARSENING GUIDED BY DISCRETIZATION

The term "coarsening" is used here for the entire process of trans-
srring a residual problem thh - rh from a fine grid h to the next

sarser grid H (= 2h) This includes the formulation of the coarse-

rid problem LHVH = I: rh, where the coarse-grid cperator LH and

he fine-to-coarse transfer Iﬁ should be determined both in the inter-
5r and near boundaries, and similar equations should be transferred

5>r the boundary conditions themselves, and for any other side conditions

he problem may have.

Any sufficiently general method of coarsening implies a discreti-
ation method, in the following sense: If the differential problem
u = f is discretized by any method, g¢iving the problem Lhuh = ' on
rid h, and if this problem is then successively coarsened to
2hu2h - f2h' thu4h - f4h

ame coarsening method, then in the limit (for a sufficiently coarse grid)

, ete., by successive applications of the

e obtain a discretization of Lu = F which éces not depend on the ori-
h . h h
Lu

inal discretization = F'', but only on the method of coarsening.

he limit discretization, in this sense, is the fixed point of the coars-

ning methed. (In practice the limit is almost Fully established after
ust a couple of coarsening levels).

This gquite trivial cbservation has important implications. It
mplies that coarsehihg is at least as rich and difficult as discretiza-
ion. Tt implies that controversies and competing techniques will cmerge
oncerning coarsening similar to the ones in the field of discretization.
ndead such competitions have already surfaced. For example, the compe-

ition between finite-difference and finite-element methods, a dispute
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which in fact consists of several separate issues: The variational deri-
vation of discrete equations (or coarse-grid equations) vs. direct dif-
ferencing; the interpolation issue {(finite-elementers insist on using the
same interpolation — the same."element" - as used in deriving the dis-
crete equations, while finite-differencers allowing more freedom in in-
terpolation, sometimes gaining higher accuracy in some error norms); the
issue of general triangulation vs. uniform grids; and the issue of com-
pactness of high-order approximations. These issues should not be con-
fused with each other:
even without the use of elements [(F4, §20.5].

variational derivation is possible and natural
Uniform grids can be used
with finite-element solutions, too, changing the elements only near boun-
daries, a structure much more sfficient computationally, especially in
conjunction with multigrid methods [Bl1l]. High-érder compact operators
arise quite naturally in the finite-element method, but such operators
can also be derived by finite-difference approaches, such as the opera-

tor compact implicit method [Cl] and also the Hodie method {L3].

All these and other issues arise aam well with regard to coarsen-
ing, and the competing approaches are generally successful in coarsening
crerever they are successful as discretization orocedures — which ig
usually in problems where they are more natural. Variational approaches
{ (N2}, [B7, App. A.5], [H2])) are natural for self-adjoint problems, and
provided the most robust and automatic coarsening procedures for such
problems [al}, ([Dl], although they can be replaced by much less expensive
procedures {analogous to direct differencing) if the self-adjoint problem
is not paxticularly complicated (cf. Secs. 4.5-4.6)}. In singular pertur-
bation problems, such as those arising in fluid dynamics, discretization
as well as coarsening are most successfully guided by physical understan-

ding (artificial viscosity, upstream differencing, etc.). And so on.

The attempt to devise general fine-to-coarse transfers, good for
all problems, is as hopeless {or as hopeful) as the attempt to have gene-
ral, completely problem-independent discretization procedures.

But if this argument tells us how complicated coarsening can be,
it also shows a general way to handle this difficulty. Namely: the
coarsening method can always be guided by the discretization scheme.

Indeed, conversely to the statement above (that ever} coarsening
implies discretization), one can say that every discretization scheme
can be used to derive a coarsening procedure. This is done by imitation
or analogy: Think about discreiizing the problem Lv = r on the
coarse grid H ; then replace the cperations done on the continuous do-

main by analogous operations done on the fine-grid h ; €.9., replace
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inteqrations by analogous summations (or by integrations by elements, in

h . . L
case Vv is given in terms of finite elements). Galerkin discretization
schemes, for example, are easily translated in this way into analogous

coarsening formulae of the type (4.11) [N2, Sec. 3}.

A coarsening procedure analogous to the finest-grid discretization

scheme is called compatible coarsening. It is not necessary to use com-

patible ccarsening, but it almost always makes a good sense to do so. In
case the discretization scheme is a bad one, this would give a bad coars-
ening and hence slow asymptotic convergence rates of the multigfid cycling.
But experience with several such cases (e.g., boundary singularities im-
properly treated) show that, if compatible coarsening is used, this slow-
ness does not matter, because the source of slowness [(bad discretization}
is also, and for the same components, a source for larger truncation er-
rors, hence an FMG algorithm (with the same discretization scheme on all
currently-finest levels) still solves befow tauncation errgrs in the usual

number of cycles (one or two, depending on the interior processes). More-

over, the glower asgmptoiic rates can in this way serve as a detector for

the bad discretization, which otherwise may be passed unnoticed.

Compatible coarsening makes sense also from the point of view of
computer resources and programming effort. For example, if a great gen-
erality and simplicity of programming is obtained by a discretization
scheme (e.g., finite elements) which on the other hand spends a lot of
computer time and storage to assemble the discrete equaticns and store
them, the coarsening procedure can do the same since the time and stor-

age it spends will be smaller than those already spent on the fine grid,

There are some special cases in which compatible discretizations
are not gquite available. Thege are cases where the discretization scheme
is not general enough, because it specifically uses features of the fin-
est grid not present on coarser ones. It uses for example a finest grid
exactly laid so that its lines coincide with special lines of the problem,
such as boundaries or lines of strong discontinuities (as in (Al]). 1In
such situations compatible discretization is not well defined. To define
it we must think in terms of & more general discretization scheme. (A-
gain, the coarsening process serves to detect a certain flaw in discre-

tization: In this case the flaw is the lack of generality.)

When double discretization is used (Sec. 10.2), compatible coars-~

ening means the use of such a double discretization on coarser levels,

too (as indeed recommended in Sec. 10.2).

fr—
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12. REAL ROLE OF RELAXATION

The role of relaxation in multigrid processes has often been sta-
ted: It is to smaooth the exnon; i.e., to reduce that part of the error
{the "high-frequency” part) which cannot be well approximated on the next
coarser grid. Some elaboration and clarification of this statement is
important.

What is the "error" we want to smooth? It is usually thought of

h between our calcu-

as the afgebraic error, i.e., the difference uh -4
lated solution Bh and the discrete solution uh (the exact solution to
the discrete equations). However, in view of the double discretization
scheme (%ec. 10.2), where uh is not well~defined, it becomes clegr that
what relaxation should really do ie to smooth the diffenential error, i.e.,
the difference u - ﬁh, where u 1is the solution to the given differen-
tial equations. In fact, this is the true role of relaxation even when
double discretization is net used, if what we want to approximate is u,
not uh: It is the smoothness of u - it which permits its efficient re-

duction via the coarser grid.

Thus, the important measure of relaxation efficiency is not the

algebraic smoothing factor W, but the differential smoothing factor,

the factor by which the high-frequency part of u - Gh is reduced per
sweep. This is not usually recognized because the latter factor is not
conskant: It approximately equals T when the high-frequencies in

u - Gh are large compared with these in u = uh (where uh is the local
solution to the discrete equations employed in relaxation], but below .
this level 7 may mislead, and when i is closer to u than to u

in their non-smcoth components, the differential factor may even be larg-
nr than 1. For example, in solving a singular perturbation problem
with strong alignment (see Sec. 2.1}, we can reduce the algebraic smooth-
ing factors of point Gauss-Seidel relaxation by taking a larger artifi-
cial viscosity and, more importantly, by taking it {sof&opicaffy, instead
of anisotropically. This would not however improve the overall perfor-
mance of our double-discretization FMG algorithm (see the experiments in

(Bl7, §71), since it would not reduce the diffenentiaf smoothing factors.

The differential smoothing is the purpose of relaxation not only
on the finest grid hs. On any grid h, it's relaxation reduces {fA
range of high frequencies in the error u = Gh', where we interpret

changes in ﬁh as changes in Eh' via the interpolation relations.

We can here also elaborate on what are those "high-4rcquency com-
ponents™ (of the differential error} that should be converged by relaxa-
tion on grid h. Generally speaking we say that these are the components
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algebraic smoothing factor i, but the differential smoothing factor.

the factor by which the high-frequency part of u - Gh is reduced per
sweep. This is not usually recognized because the latter factor is noet
constant: It approximately equals I when the high-frequencies in

u - Gh are large compared with those in u - uh (where " is the local
solution to the discrete equations employed in relaxation), but below
this level U may mislead, and when 4P ie closer to u than to v

in their non-smooth components, the differential factor may even be larg-
er than 1. For example, in solving a singular perturbation problem

with strong alignment {see Sec. 2.l), we can reduce the algebraic smcoth-
ing factors of point Gauss-Seidel relaxation by taking a larger artifi-
cial viscosity and, more importantly, by taking it {sotxopicafly, instead
of anisotropically. This would not however improve the overall perfor-
mance of our double-discretization FMG algorithm (see the experiments in

(B17, 571), since it would not reduce the differcntial smoothing factors.

The differential smoothing is the purpose of relaxation net only
on the Finest grid ha. On any grid h, it's relaxation reduces ity
range of high frequencies in the error u - ﬁh*, where we interprert

. ~ : -h . . . .
changes in uh as changes in u * wvia the interpolation relations.

We can here also elaborate on what are those “high-{tequency com-
ponents" (of the differential error} that should be converged by relaxa~-
tion on griéd h. Generally speaking we say that these are the cbmponents



~111-

“invisible” on the next coarser grid H , i.e., Fourier components
exp (i x/h} which on grid H coincide with lower components, that is to
say components with 7 < max|Bj|Hj/hj . max|aj[ <7 (cf. Eq. {3.3)}.

More precisely we should include in the "high-frequency" range all those
components that are not efficiently reduced by relaxation on the other
grids, which can for example be any range of the form

{(81,...,Bd)}: ajhj/ﬁj < aj £ “j for at least one j! (12.1)
where each @ is fixed {assuming H_./h, is the same for all levels),

0 < oy ¢ m™ . That is, we can allow some of the highest frequency compo-
nents on any intermediate level not to converge efficiently by relaxation
at that level (uj < m) , as long as those components efficiently con-
verge by the next-finer-level relaxation. This may leave the highest
frequencies on the finest grid uncontrolled, but they are unimportant
and can be eliminated by averaging the final results. Examples where
this further understanding of mode analysis is relevant are mentioned in
Sec. 18.6 and in ([Bl17, Sec. 5.7].

The range of frequencies to be reduced by relaxation can also be
modified by modified coarse-grid functions of the type mentioned in Sec.
4.2.2. 1In such cases relaxation may not reduce some high-frequency
error components; but the unreduced components are very special ones,
hence they are described by few parameters. This is a general property
of relaxation (see Sec. l.l). Very generally we can thus say that the
role of relaxation is to reduce the infoamatfion conteni of the error, so
that it becomes approximable by a lower dimensicnal approximation space.

Another important peint to clarify is that relaxation should be
efficient only as long as the high-frequency error compenents have rela-
tively large amplitudes: When the high-frequency errors are too small
compared with the low-frequency ones, relaxation cannot usually be effi-
cient because of certain feeding from Eow to high components., Such feed-
ing is caused by interaction with boundaries, and by non-constant coef-
ficients, and by the high-frequency harmonics generated when the low-fre-
quency error is corrected via the coarse-grid cycle (see observation (D}
in Sec. 4.3)., Sometimes such feeding is even caused by the interior re-
laxation itself; e.g., red~black relaxation of an order-m differential
equation produces o™ high-frequency errors from ©(l) low-freguency
errors. When the size of high-freguency amplitudes approaches the size
fed from low frequencies, relaxation should be stopped; this is the point
where the coarse-grid correction should be mads. If relaxation is stopped
in time, then the range of strong interactiona with low-frequencies is
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not entered. It is also only then that the multigrid convergence rates can

accurately be deduced from the smoothing-rate analyses.

Finally, even though smoothing is the main role of relaxation, we
should not forget its influence on other components. Some relaxation

schemes with extremely good smoothing factors are either unstable or they

cauge large amplification of some low-frequency errors (see Sec. 3.2).

We can thus say in summary that the ncfe of relaxation &y to 4e-
duce farge ampfitudes ¢f ceatadin [usually high-frequeney) compunents o}
the difperential erncvrn, whife avediding from sdignificantly amplifjying ils
other components,

Stability of the difference equations used in relaxation is only
a tool in performing this role, not an end by itself,

13. DEALGEBRAIZATION OF MULTIGRID

An interesting line in the development of multigrid can be viewed

as a gradual "dealgébraization“, a gradual liberation from algebraic con-

cepts, and the development of methods that increasingly exploit the un-

derlying differentiaf nature of the problems. We'd like to briefly trace

this line here, so as to bring out some concepts useful in practical im-
plementations,

As the first step of dealgebraization we can regard the replace-
ment of "accleration” by “amoothing". The early two-grid and multi-grid
approach viewed coarse-grid corrections mainly as a tool for accelera-—
ting the basic iterative procesas - the fine-grid relaxation. Only later
it became clear that the only role of relaxation is to smooth the error.
[cf. Sec. 12, where a further "dealgebraization" of the smoothing con-
cept is described.) This slight shift in understanding revolutionized
the multigrid practice: It made it clear that the fine-grid process is
basically local, hence analyzabla by local mode analysis. This under-
standing, together with that ana;yﬁis, produced the truly efficient

multigrid cycles, in which very few sweeps are made on each grid before

switching to coarser ones, and in which the fine-to-coarse meshsize ratio

assumes the (practically) optimal value of 1:2,

The next dealgebraization steps are related to the Erivial under-
standing that we are not primarily interested in solving the algebraic
equations (obtaining w )}, but we are interested in approximating the
differential solution wu. First, this implies that we have to solve the
algebraic equations only “"to the.level of truncaticn errors", i.e., only

Eacis
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- h
to the point that our calculated solution 5P satisfies AT (R

ilu = u'll; further raductien of " - n¥ is meaningless.

This implies that the asymptotic convergence rate of the multi-
grid cycle is not important by itself. What sounts is the amount of
work we need in an FMG algorithm in order to reduce the error from its

gl

oringinal value on grid 2h, which is approximately ||n2hu
|iu2h- ull, to the desired level ||uh -u|]. This is a reduction by a
factor of 2F only, which can usually be achieved in one cycle. (The
fundamental reason for this is again non-algébtaic: gee Sec. 7.3.)
Evidently it is then more relevant to think in terms of the FMG analysis

{Sec. 7.4) than in terms of asymptotic rates.

gven the later viewpeoint, that we want to reduce the errors to
the level of truncation errors, is too algebraic-otiented. It is tied
too much to one given discretization on one given grid. The optimal mo-
ment of switching from a certain currently—finest grld H to a new,
finer grid h = #/2 is not necessarily when ”u ol m flu-ua By
Rather, it is determined by comparing H-cycles to h-cycles in their ef-
ficiency at driving ﬁh closer to u (see Sec. T.2). What really
counts is the behavior of the differential errer E = Hﬁh-uH as a
function of the total accumulated computational work W.

We want E(W) to be as fast-decreasing as possible.

From this as our objective we can derive correct switching eri-
teria, i.e. decide when to establish a new finer grid. The next step
is to realize that criteria based on E(W) can be applied Localfy, to
docide not only when to have a finer grid, but alsc whexre to have it.
This npaturally brings us to grid adaptation (Sec. 9.5}). Indeed one can
integrate the switching and self-adaption criteria (discussed in Secs.
5.2, 7.2, 9.5) into a total multi-level adaptive algorithm, where
awitching between levels and creating new, or extending existing, levels

are all governed by the same exchange-rate criteria (see Sec. 9.6).

Another step away from fixed algebraic concepts is to ollow
YQTiiPlE,Q%ﬂ‘ri'i?ﬂlifﬁ_§£hﬁﬁ2§} i.e., schemes which can be changnd
tirroughout the alasithm to preomote faster decrecasing E{W). This in-
cludes the uee of higher-order, variable-order and adiptible onler
suelemen, governed aaain by ElwW) criteria {see Saon. 9.5 anl ip1n, §83.¢,
4.3]1). Usin, different discretization schomes in relaxation and in resi-

dnal transfers (Sec. 10,2 is a further step in that direction.

By now we have gone quite far beyond the notion of maltiqrid as

dust a fast alockraie sotver, trwnrd vieuivg it as o total treatment of
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the criginal problem. This 1s proved to be a very bereficieal qencral
principle: Always think of mul tigrid in terms cof as original a problem
as possible: For exanple, instecad of using Newton iterations, employing
multigrid as a fast rsolver of the linearized problems, apply multigrid
directly to the ncn-linear problem (Sec. 8,3). Instead of solving an
eigenproblem by the inveorse power method, uvith multigrid as the frst
inverter, you can multigrid directly the original eigenvalue problem
{Sea. 8.3.1). Instead of using multigrid for solving each step in some
gurer’ iterative process — be it a continuation process, a tinc-depen-
dent pvolutinn, a pro~ess of optimizing semc parametors or =olwing an
jnvarse problem, ole. — apply it dircctly to the criginally given pro-
Filom {(¢f. Sccs. 8.3.2, 15, 16). Instead of a grid adaptation jwocess
whars the discrete problem on each grid confiquration is completely
solved {by muitigrid, say) and then used to decide on an improved grid
configuration, the whole adaptation process can be integrated into a

multigrid solver (Sec. 9.6). find H0 on.

7n illustration Lo this apnroach is the solution of ogtimization
probhlams, where the purameter to be optimized is some continuun functicn
on which the solution u  depends. This "paramctryic function” may for
cxample Lo the qha}o uf the boundary (e.g., the shape of an airplane
scction which we want to optimize in some sense), or a certala coeffi-
cient of the diffeiential eguations (e.g., in inverse problemn, where
one tries to determine this coefficlient throughovt the domain so that
the solution will best f£it some observational data;, etc. Multigridding
the original problem means that we solve it by some FMG algorithm, where
dlroady at the coarser FMG stages we treat the given optimizatien pro-
blem, by optimizing a coarser representation of the parametric function.
Oon the finer grids, incidentally to relaxing the equations, we optimize
that function locally (when this makes sense), and then we introduce
smooth corrections to the function during the coarse-grid correction
cycles. Instead of using the multigrid solver many times, we may end
up doing work only modestly laxger than just one agpplication of that

solver.

13.1 Reverse trend: Algebraic multigrid

Contrary to the above line of dealgebraization, there is a recent
trend to develop purely Algebraic Multi-Grid (AMG) algorithms. By this
we mean a multi-level algorithm without any geometry, without qrids.
An algebraic (linear or nonlinear) system of equations is given. To snlve
it fast, a sequence of increasingly "coarser” levels is created. A coars-

er level in this context is a related, but much smaller, algebraic sys-
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tem. The choice of the coarse-level vardiabfes, and of the coarse-to-
fine interpolation I: . is based not on geometric positions but on the
algebraic equations themselves: The coarse variables are chosen so that
each fine-level variable is strongly coupled to one or more of them, and
each IE coefficient can for example be chosen to be proportional to
the correspending coupling strength. The fine-to-coarse transfer and
the coarse-level matrix are then constructed by prescriptions like (4.12)
and (4.11), respectively. The theoretical background directing the
various choices is developed in (B26].

Generally, the efficiency that can be achieved by such algebraic
algorithms is below that of algorithms built to exploit the geometric
information, let alone the further efficiency obtainable by further de-
algebrajzation. On the other hand these algebraic solvers may be used
as black boxes for larger classes of problems. They may especially be
useful in cases where the geometrical information is too complicated,
such as finite-element equations based on arbitrary partitions, or va-
rious problems which are not differential in their origin but still lend
themaelves for fast multi-level solutions. Also, there are cases of
finite-difference equations on a uniform grid, in which the usual geome-
tric choice of coarse-grid variables is not goed, since too many fine-
grid variables happen to depend too weakly on the coarse-grid variables
(cf. e.g. [Al, Sec. 8]). Algebraic multigrid can then perform better.
Because of its sensitive coarsening, there is in AMG no need for special
relaxation schemes, in varying block and marching directions {(cf. Sec.
3.3); simple Gauss-Seidel is for example used for all definite problems.
Experiments on a wide range of problems, including discretization of re-
gular and degenerate second-order elliptic equations as well as problems
with no continuous origin, show that the typical multigrid convergence
rates are robustly obtained (B29], [$6]. The AMG set-up time is expen-
sive, but still comparable to the set-up time required by any Galerking
coarsening (4.1l). Work is underway to genexralize AMG to other classes
of matrices, such as those arising in discretizing systems of differen-
tial equations.
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14. PRACTICAL ROLE OF RIGOROUS ANALYSIS

A good deal of the literature on multigrid consists of articles
with 2igurous analyses of the algebraic convergence. For a growing
¢lass of problems the basic multigrid assertion is rigorously proven,
namely, that an FMG algorithm will solve the algebraic system of n
equations (n unknowns on the finest grid) to the level of truncation
errors in less than Cn computer operaticns; or at least, that Cn Log %

operations are enough to reduce the Lz norm of the error by any desired
factor €. The emphasis is on € being independent of n; it may de-
pend on various parameters of the given differential problem. This is
clearly the best one can do in terms of the order of dependence cn n,
hence the result is very satisfying.

The question discussed below is what role such rigorous analyses
can have in the paacticaf development of multigrid techniques and pro-
grams. It is ap important question for the practitioner, who may won-
der how much of those proofs he should try to understand.

The main shortcoming of the rigorous results is that they are
usually unrealistic in terms of the gize of C . In most of the proofs
C 1is not even determined. This does not change the important fact that
the best the proof could do in teyms of C is very unrealistic: 1In
most cases the provable constant is many orders of magnitude larger than
the cne ohtainable in practice. In some typical cases the riaaraus hanod
is Cw 10B . while the practical one is C wm 102 Only in the very sim-
plest situation (equations with constant coefficients in a rectangle) ocne
can obtain realistic values of C , by Fourier metheds [F51, [B7, App. Cl,
[s4, Sec. B}. Recently, some analyses have been made which obtain rea-
sonable (although still several times larger than the practical) values

of C for more general problems [B4], (V1], [B26].

What can then be the practical value of the (Cn results, espe-~
cially those where C ias unreasonably large? Usually in complexity
analyses results with undetermined corstants are sought in cases where
the size of the constants is indeed less important. A typical result

" would for example be that a solution to some problem, depending on some

parameter n, is obtained in C wnl operations. Here C may be un-
important, since changing € by orders of magnitude will only slightly
increase the range of n for which the problem is solvable. But this
spirit of undetermined constants is clearly pushed way too far when the
estimate is Cn, the typical copnstant is C = 10 and the typical value
for n is .‘LD3 to 105. Hers € Dbecomes more important than n. In

T

-
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the practical range of n, the provable Cn result ig then vastly infe-
rior to results obtained by simpler algorithms {such as banded

alimination with typically 4n2 operations; not to mention drastic im-
provements obtainable by modern sparse-matrix packages [D3)). Thus, the
values of n for which the unrealistic rigorous result can compete with
much simpler solution methods is very far out in the range of overkilling
the problem. In a sense, one proves efficiency of an algebraic solution
process by taking an extremely unreasonable algebraic problem. The ef-
ficiency is not in terms 6f solving the diven differential problem.

The usual rigorous theory, being too concerned on making C
independent of n, 1is often careless about its dependence on various
problem parameters. Thia dependence can be hair-raising indeed, some-
thing like expfexp{(...)), with as many compounded exponentials as
there are stages in the proof. Hence, a very distorted picture is in
fact supplied about the real complexity in solving the given differen-
tial problem.

The implied intention of "Cn"  thecrems with unspecified or un-
realistic C 1is sometimes understood as follows: The rigorous analysis
only tells us that a constant C exists, its actual value can then
be determined empirically. That is, if we have calculated with n = 10°
and solved the problem in lO5 operations, say, then the rigorous proof
guarantees that for n = 104 we would solve the problem in lO6 opera-
tions. This understanding is wrong: The nature of the rigorous proofs
is such that the information for n = ].D3 does not help the estimates
for n = 104. The only rigorous estimate is still Cl.O4 operations,
with the same unrealistic €. The guess that the number cf operations
for n = 10% will be 10% is purely non-rigorous. Even hcurndistically
1t does not follow in any way from the "Cn" theorem. HNothing in that
thecrem excludes, even heuristically, an operation count such as

Cn/ (1 +104C/n2), for example, with an astronomically large C.

Thus, if one literally believed these rigorous bounds, one would
not use the multigrid method in the first place. This indeed historical-
ly happened: The estimates in [Fl] are so bad (although only the sim-
plest problem is considered; cf. [®7, §10])), and those of [Bl] so much
worse [even though his conatants are undetermined), that nobody was en-
couraged to use such methods. They were considered to be merely of
asymptotic curiosity.

Several other cases from the multigrid history are knmm wvhere

wrong practical conclusions were derived from the asymptotic rigorous
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lysis. For example, non-smooth boundaries, reentrant corners in par-
vlar, gave troubles in the rigorous proofs. This led to the wrong
clusion that there are real) troubles there. The practical fact i%
t such problems are solved to within truncation errors as easily as
ular problems; even the asymptotic algebraic convergence rates in such
es can be made to attain the interior rates (see Sec. 5.7). The dif-
ulties are purely difficulties of the proof, not of the computational
cess. The proof made us too pessimistic. In other cases similar
ofs made people too optimistic, because their asymptotic relations
not show the real difficulties encountered in the real range. Some
ple did not realize, for example, the very real difficulties in sol-
g degenerate and singular perturbation equations (in particular inde-~
ite problems such as A + kzu = f , where € 1is positive but small),
ause these difficulties disappear for sufficiently small meshsizes.
such meshsizes are far too small to be used in practice.
» terrible growth of C as function of £ is not seen if all we are
arested in is that C will not depend on n.) Fedorenko had a com-
tely wrong idea about the practicaf meshsize ratios and the number
jrids to be used. He writes: "The proposed method thus consists of
d>lution with the aid of an auxiliary net; if this latter is extremely
je, the problem can also be solved on it by using a net of a particu-
type for the problem, and so on". And several similar historical
nples could be given.

It is indeed not reasonable to expect unrealistic performance es-
ates to be of practical value. In practice we are interested in un-
standing the difference between one algorithm which solves the problem
few minutes CPU time and another algorithm which solves it in a few
® minutes, or in hours. A rigorous result that tells us that the solu-
n will surely be obtained within a few weeks {(even Years) of CPU time,
not explain fhat difference. The factors important in the proof may
y remotely and non-quantitatively be related to those operating in
c“tice. Even in cases of much more reasonable C (such as (B4]), the
ative values of C in two competing approaches (e.g., V cycles vs.
ycles) does not point to their relative efficiency in practice. The
srous proof tells us more about the efficiency of the proof than
ut that of the actual algorithm. Hence, for all its pure-mathematical
erest and intelectual challenge, much of the existing rigorous app-
ch is not a practical toeof. The only role is to generally enhance ouk
fidernce in the methvd, a psycholodical role that should not be sligh-
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The purpose of the analysis should be borne in mind. We are not
trying here to prove any central mathematical idea. We at¢ engaged in
a very practical problem, namely, how to solve the equations fast. This
is in its nature as practical a problem as, say, building an airplane
or understanding nuclear fission. (In fact the only purposé of the fast
solvers is to aid solving such engineering and scientific problems.) One
would not postpone building airplanes unti) rigorous proofs of their
flight capabilities are furnished. Clinging to rigorous mathematics,
like clinging to any secure images, may have wrong contexts. Moreover,
in this business of fast solvers what one tries to apriori estimate is
nothing but the computer time {(and other computer resources), which is
after all exactly known in each particular case, even though aposterdond.
The main practical aims of thecoretical understanding should therefore
be: ' ’

(i} To give us realistic and quantitative insights to the impor-
cant factors affecting the overall efficiency. The insight should be
simple enough apd still precise enough so that one can use it to improve
our algorithms, and perhaps even to debug our programs. The insight
should of course be independent of the numerical experiments.

{ii) Even more important than guantitative performance prediction,
one urgently needs to know whether the performance (predicted or found
empirically) is as good as one could hope to get (see the situation de-
scribed in Sec. 0.2). Hence the main theoretical task is to provide us
with ideal performance figures, which the practical algorithm should then
aftempt to approach.

The local mode analysis is an axample of a theory constructed with
these aimgé in mind. This is amply emphasized throughout Part I of the
present paper. 5o is alsc the (rigorous) theory in [B26}], which wae daiga-
loped to guide multigrid algorithms in situations where mode analysis is
not available (e¢f. Sec. 13.1l). At any rate, it is strongly recommended
not to restrict oneself to numerical experiwments only, without any suppor-
ting theory. The experiments can be, and have been, quite misleading:
They may happen to show, for some particular cases, much better results
than should generally be expected. More often, they show results much
inferior to those that could be cobtained, because of some conceptual mis~
takes and/or programming bugs. "Experience has taught us that careful
incorporation of {usually non-rigorous) theoretical studies is necessary
for producing reliable programs which fully realize the potential of the
multigrid method.
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15. CHAINS OF PROBLEMS. FROZEN 1

We often need to solve not just one isolated problem but a sequence
of similar problems depending on some parameter. For example, we may be
studying the effect of changing some physical parameters on the "perfor-
mance” of a system, where the performance is measured in terms of the
solution u to a differential problem. We may want to find for what
physical parameters the performance is optimal. Or, in "inverse problems”,
we may desire to find the physical parameters for which the solution best
fit some physically observed behavior. Or we may need to solve a sequence
of problems in a continuation process (see Sec. 8.3.2). ©r, the most
familiar case, the parameter may be the time t, and each problem in

the scquence may represent the implicit equations of one time step.

The key to a highly efficient muiti-level treatment of such a se-
quence of problems is to understand the behavior of high-fregquency com-
ponents. Most often, the change in one step (i.e., the change from one
problem in the sequence to the next) is a global change, governed by glo-
bal parameters. In some problems, the relative changeé in high-frequency
compenents are therefore comparable to the relative changes in low ones.
Hence, for such problems, the absolute high-freguency changes in each
step are negligible — they are small compared to the high frequencies
themselves, and therefore small compared with the discretization errors.
In such cases one need not use the finer grids at each step; the finer
the level the more rarely it should be activated. Often this is the
situation in most parts of the domain, but in some particular parts,
such as near boundaries, significant high-frequency changes do take
place in every step, hence more refinement levels should more often bhe
activated in those parts only.

The Full Approximation Scheme (FAS) gives us a convenient struc-
ture in which to. see smooth changesd in the solution without {(locally})
activating finer grids. The way to neglect changes in wavelengths smal-~
ler than ©(h), without neglecting those components themselves, is to
freeze Tih {see Sec. 8.2), i.e,, to use on grid 2h the values of
1ﬁh calculated in a previous step and thus in the present step avoid
any visit to grid h. Once in several steps of visiting grid 2h , a visit
can be made to grid h, to update rﬁh. In visiting grid 2h changes
in T;h are made, their cumulative values since the last visit to grid
h can serve to decide when a new visit to gri@ h is needed, using ex-
change-rate criteria (see Secs. 9.5%-6 and [B1l, §3.%]). Since these
criteria can be applied locally, one can decide when and whetre to acti-
vate increasingly finer levels.

L4
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An obvious but important remark: Whether the above procedures

are used or not, and whether FAS or C§ is employed, in each step (i.e.,
for each problem in the chain}) it is normally more economic to wotk on
the conrnection problem, taking the previcus~atep solution as a first ap-
proximation. When FAS-FMG is used, this is easily done, gﬁen for non-
linear problems, as follows. First, the old values of T should be
used in the 2h-stage of the FMG algorithm (i.e., before grid h is ever
visited in the present step). Secondly, the FMG interpolation {first
interpolation to grid h in this step) should be a FAS-like interpola-
tion, using the old values of ﬁh; i.e., like Eq. (B.6), but with

h . h
possibly higher order o, replacing I, {cf. Sec. 7.1}.

golving the chain of problems we usually need to monitor certain

solution functionals. In order to caleulate such a functional & with

finest-grid accuracy even at steps not visiting the finest grid, trans=

fers as in Eg. {8.14) can be used.
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16. TIME DEPENDENT PROBLEMS

The experience with multigrid applications to evolution problems
is guite sparse, but several possibilities can already be outlined, such
as fast solvers to implicit equations, coarse-grid time steps, highly

adaptible structures, high-order techniques and global conservation faci-
lities.

One obvious application is to use fast multigrid solvers for sol-
ving the set of algebraic equations arising at each time step when im-
plicit time differencing is employed. Such differencing is normally
needed whenever the physical signal speed is considerably higher than
the speed of substantial changes in the solution. The latter speed de-
termines the size of time steps 4t we need to approximate the solution
accurately, but with such 6t and explicit differencing the numerical
signal speed will be slower than the physical one, causing numerical in-
stability. Using implicit equations and solving them by multigrid can
be viewed as a way to inexpensively obtain high signal speeds by propa-
gating information on coarse grids. 1Indeed, with multigrid solvers the
cost of an implicit time step is cowparable to that of an explicit one.

In many cases one can even do tnuch better using techniques as in
Sec. 15 above. For second-order parabolic problems, for example, sig-
nificant changes in high-frequency components, whose wavelength is ofh),
occur only in wvery particular places such as

(i) initially, for a short time interval 0« t :o(hzl;

{ii) at distance h and time interval O(hz) from points where
significant changes occur in boundary ceonditions or in forc-
ing terms (source terms) of the equatiocn.

At all other places significant high-frequency changes are in-
duced by comparably significant low-frequency changes. Hence the fro-
zen-1 technique, with a special control for time-dependent problems [Bll,
§3.9], can give us a solution with the fine-grid accuracy but where most
of the time in most of the domain we use coarse grids only. The cost
of an average step may then be far smaller than the cost of an explicit
time-step. For the heat egquation in the infinite space and steady forc-
ing terms, for example, one can show by Fourier analysis that marching
from initial state to 90% steady-state, following the solution through-
out with close to finest-grid accuracy, can in this way cost computa-
tional work equivalent to just 10 explicit time steps. (The finest grid
needs to be activated only in the first few time steps, and very rarely
later.)
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Notice that when we march (calculating smoath changes in the solu-
tion) on coarse grids we can also use large time steps with expficdit
differencing. When fully adapted grids are used there is no need for
implicit differencing, because each range of components is in effect han-
dled by a meshsize comparable to the wavelength and by a time-step corre-
sponding to the propagation speed, so that no conflict arises between
different characteristic speeds.

For problems with smaff parabolicity {e.g., parabolic singular per-
turbation to a “reduced" hyperbolic system), the above technique can be
superposed on an integrator of the reduced system {which may itself be
based on a method of characteristics).

The multi-level techniques can alsc be applied to a parabolic panrt
of the system, such as the implicit pressure equation in integrating
Navier-Stokes equaticons [B23]. Here too, the techniques of Sec. 15 can
further save a lot of fine-grid processing.

whether the fast solver is used or not, the multi-level procedures
can also give highly flexible discretization structures. Patches of
finer grids with correspondingly finer time steps can be used in any
part of the space-time domain, in a manner gimilar to Sec. 9.1. Aniso-
tropic refinements, local coordinate transformations and rotated carte-
sian grids can be used as in Secs. 9.2, 9.3 and 9.4, all controlled by
exchange-rate criteria (cf. Secs. 9.5, 9.6); but instead of criteria ba-
sed on the M of the approximate solution, criteria here will be based

h
on recently accumulated changes in Tﬁ (Bl11, Sec. 3.9].

In some problems, especially when integrating over long time pe-
riods, certain guantities, such as total mass, must strictly be conser-
ved, otherwise the physics of the system would fundamentally change.
Imposing such global constraints, with the corresponding freeing of some
accuracy parameters in the difference eguations, can easily be incorpo-
rated when a multigrid solver is used at each time step (see Sec. 5.7).

Finally, independently of the above techniques, one could use a
multigrid procedure similar to Sec. 10.2 above to efficiently increase
the approximation order of a stable discretization

L (x,8) =0, (t > 0) {16.1}

of a time-dependent system, not necessarily linear, by using coarse-grid
defect corrections. Typically Lg is a simple low-order implicit ope-

rator, allowing simple integration. One wants to use a simple (e.g..,
central in time) higher-order operator L? , which may be unstable, to
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raise the approximation order. This can be done by integrating the
defect eguation

HH _ H . h h
Lgv = ~IEyug (16.2)
and then correceing
uh - uh . I}' H
1 o HV . {(1l6.3)
vhere U may either be coarser than h  (coarse-yrid defocl currvetion]
or H = h (defect courrzaction on thoe same ygrid). If the orower ol con-

: I . .
sistcncy of L; is pj, {j=1,2), then for low-fredquency components

Toop P, P
ol -yl =om te+n Cu 02y, (16.4)
where u  is the Jdirfferential solution and t i3 the tiwe interval
orer which (16.1-3) is integrated {rom initial conditions u?(x,O) =
ug (x,0) = ulx,0).

The scheme {16.1-3) is always stable, since only the stable oper-
a;ors LE and Lg are integyrated, Notice that this is true only if
ug is integlated independently oﬁ u?. The scemingly siwilar schenie,
in which after each time step ug.,is reinitialized by being replaced
with the more accurate up . may wu;l he unstable. 0O the othery hand
it dous pay to roinitialize every O{1) time interval, short encugh
to nake the second term in (l6.4}) suwalier than the first one.

The independent integratiop of ug and VE ricguiles cxlra sto-
rage. By taking H = 2h this extra stroage becomes only a fraction of
the basic storage (nne time levzl of UB), and the compulational work
is also just a rraction more than ihe work of integrating (}6.1). These
two-level schemec can be extended to wore levels and more approximation
orders. The multigrid exploits here the fact thal the hivher-order ap-
proximwation LT is desired only for sufficiently low freyuencies; for
the highest fraguencies {where numerical instability occurs) Lh is in

0
fact a hectter approximation than L?.

e .

I

e

ey W
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PART FIE.  APPLICATIONS TO FLUID DYNANMICS

Over the past twelve years {starting with [B5]1 and [52]), but
mostly during the last six, an ever~increasing number of works have app-~
lied multigrid techniques to solve steady-atate flow problems. This in-
eludes works on transcnic potential flows, such as [Ad], {31}, [B32],
(o571, (™51, 1Ji1, [s21, (s8l, 1B23]), [C3]1, (M4}, [s7] and [wW4], the lat-
ter five treating 3-dimensional flows; works on the Stokes and incompre-
ssible Navier-Stokes equations, like [BS5}, (B13), [B19}, [bz], {Fel, [T6],

{v2y, [v3], [W21, [W3}: works on the Euler equations [Bl6], [J2], (731, [n4)

and on the compressible Navier-Stokes equations [B16]. A survey of all
this is not attempted here. Our purpose here is to trace a line of deve-
lopment which gradually leads from very simple eguations to the most com-
plicated ones, adding the difficulties step by step, but always maintai-
ning the full multigrid efficiency; i.e., insisting on sclving evenry
preblem o O(hz) accunacy in just few work units, where the work unit
is the minimal amount of computer operations needed to express a dis-
cretization of the problem on a grid with meshsize h , and where the
operations used can be fully parallelized (or vectorized) over the entire
grid. Minimal compufer stordge is also maintained, i.e., a storage just
a fraction more than needed to store the solution itself on grid h
Moreover, to show how these goals are achieved for the more complicated
systems of equations, our emphasis here is on the treatment of systems

of differential equations, although the line of development starts of
course with simple scalar eguations. In particular, the work on the
scalar convection-diffusion problem [B17] is a crucial step in that line,
as will become clear in Sec. 19.3, not to mention the extensive work on
the Poisson eguation and on more general diffusion problems.

Most works mentioned above lag far behind the i@eal performance,
for various reasons (see discussion in Sec. 1.7). To achieve the goals
stated above, many of the principles delineated in the previcus two parts
of this Guide are, and perhaps must be, used. Other principles described
above have not yet been used, but they are available, ready to be added
and enhance the power of the flow solvers presented in this part. This
includes: methods of flexible local refinements and local coordinate cur-
ving {see Sec. 9); higher-order technigues (Sec. 10t the double discreti-
zation scheme of Sec. 10.2 is already used to obtain the mentioned
O(hz} approximation in cases of inviscid or small-viscosity problems,

but still hiqher orders are obtainable, if desired, for small extra workl);
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procedures for further reducing computer storage {Sec. 8.7); the general
approach of multigridding directly the real "outer" problem (e.g.., the
optimization or design problem for which the flow equatiohs are solved;
cf. Sec. 13); and the methods for efficiently treating sequences of many

boundary~value problems and solving time-dependent problems (Secs. L5
and 16}.

The work described in this part has been done in collaboration

with Nathan Dinar and Ruth Golubev. Much of it has appeard before in
|B19] and [Bl6].
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17. CAUCHY-RIEMANN EQUATIONS

17.1 The differential problem

As a first simple excercise in multigriding a sysiem of partial

differential eguations we have studied the elliptic system

in a domain & , where u = uix,y)

and v

(17.1a)

(17.1b)

= v{x,y) are the unknown

functions, the subscripts denote partial derivatives, and Fi = Fi(x.y}

are given functions. All functions are real. The homogeneous system

F
lyticity of the complex function

The matrix-operator form of (17.1l) is

(0200

u + iv .,

=fF1)

Fy

1 5 F, 0 are the usual Cauchy-Riemann equationg, which express ana-

{17.2)

where ax and 3 are partial derivatives with respect to x and vy .

respectively. The determinant of
2 2

L is the Laplace cperator -4 =

—Bx - By . Hence (17.2) or (17.1) is a second-order elliptic system

and its solution is determined by one condition along the boundary 30

As such a boundary condition we can, for example, reguire

(u(x).v(x))n = G(x} , (x € 3g}) ,

(17.3)

where (u,v)n denotes the component of the vector (u,v) normal to the
From {17.la), {(17.3) and the diver-
gence theorem (or Stokes, or Gauss, formula) we get the "compatibility

boundary in the cutward direction.
condition™

[ Fydxdy = [ Gds .
It] an

(17.4)

If (17.4) holds then equations {17.1l)} or (17.2), with the boundary

condition (17.3), is a well-posed problem:

depends continuously on the data

Fyp e By

A unigue solution exists and
and G .
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17.2 Discrete Cauchy~Riemann equations

Suppose we first try to approximate (17.1) by the central diffe-
rence eguatjions

a3

h h h h ’
w4 (x+h,y)-u [x-h, +h) - -h h ]
riog [xchay) oy v dxyrhl oy Gych) o e,y {17.5a)
h h h h
€ (x,y+h)-u"(x,y-h) _ v (xth,yl-v (x-h,y) _ -h
o - Fy (x.y) - (17.5b) .
f
The corresponding difference operator is
h.h h.h
w3 ]
n x°x Hyly
Lt o= (17.86)
h.h h h
bydy Hxdx

where the averaging and differencing operators are defined by

h
upe (ey) = 3 [etx + 3.y) + 0tx - By,
h 1 h _h !
uy¢(X.y) =z letny + 3 +dlx,y - 3]
{17.7) :
h 1 h h '
s oyl = £ lodx + 3,¥) - ¢(x - 5711,
h Y h, _ " h
6y¢(x.y) *h [pi{x,y + 7) $ix,y - 7L,
hence .
h.h 2h h.h 2h i
- . 8l = 3
“x?x T x Fyty T %y ‘h
and
h_ _ hehy2 _, heh2 _ _ 2h .
det L = (uxéx) (uydy) A
with the symbol (see Sec. 2.1) ’
ih(el,ez) = (ainze1 + sin282) / B% . (17.8) .
) . L ~h ~ ~h ~h i
This operator is not h-elliptic, since L (w,0) = L (Q0,w} = L' {w,n) =0 N
Indeed, the homogeneous (17.5) eguations (F? z Pg = 0) have the §

oscillatory solutions

e .

h _ 1@ 118 _yyat+B
u' {ah,Bh} = C0 + C1( 117 + Czt n- o+ C3{ 1) {17.9%a)
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v (ah,8n) = Cy + Ct-1% 4 CG(-l)B + c7(—1)“+8 {17.9b)

which corresponds to nothing similar in the solution of the differential

equation. Note, however, that solutions like (17.9} vanish in the ave-
. h h h . :

rage, i.e,, Mu =M L 0 for a suitable local averaging operater

Mh , such as Mh = uiu; or Mh = (uzus)z . Hence, the solutions of
(17.5) will be good solutions in the average. Such difference operators

are called quas{ v€liptic [BD, Sec. 3.4]. See further remarks in Sec.
17.6.

Let us now construct an h-elliptic approximation " oto (17.1).

Tf the equations are tc have the form

ot - F? {17.10a)
o - Fg {17.10b)

where Di and Da are some difference approximatiocns te 3 and 3 .

* Y
then det Lh = —Dlni - DiD; should be an elliptic approximation to the
Laplace operator -A . The simplest such operator is the five-point

operator which is ohtained by taking either

pl =l s, 02-p)=a, (17.11)

1 _.F 2 _ .F i_ B 4 _.B
D=3, DY By . Dy ay ' D, = 3, (17.12}
where BF = uhah - % ahah and 8B = uhah + g ahah . Approximations like

{17.12) do not give a central approximation to (17.1), and their trunca-
tion error is therefore O{h). We thus prefer to use (17.11). This we
can do only by using staggered grids for uh and vh

The arid we use and the positionina of the discrete variables are
shown in Fig. 17.1. With this positioning we can indeed approximate
(17.1) by

ahuh + ahvh = Fh at cell centers (:) (17.13a}
¥y 1

h h hh _ _h . ) ; -

3yu - axv = F2 at interior vertices () . (17.13b}

and the symbol is that of the 5-point Laplacian, namely,
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v v-——~(?}———-v———- 0
y © ®© v O

v v v—

u ®© v @
v l v | pu— ¢ ]

FIGURE 17.1 Piscretization of Cauchy-Riemann Equations.

[=

A fypical pant of the grid 44 shown. The discrete unkncwn functions

uh and vh and their computed approximations Eh and ?h {u and v
in the figunre) axre defined at the centers of veatical and honizontal
finks, nespeetively., The finst equation [17.13a) i{a centeved at ceff
centers, where ifs right-hand side, F? 43 defined and whete (:) 44 shown
in the figure. The second equation (17.13b) (4 centered, and Fg 14 de-
fined, at the grid veatices, as shown by (:) in the figuse.

L] [
3 _ 4 02071 .2 72y
Lh(Bl,ez) = ;5 (51n - + sin ) (17.14)
This symbol vanishes only for 91 = 92 = 0 (mode 2m). Thus (17.13) is

an elliptic (even R-elliptic ~- see [BD, Sec. 3.6]) difference system.

For simplicity we consider here domains with boundaries along grid
lines. It is then simple to discretize the boundary condition (17.3).
On each boundary link (the heavy lines in Figure 17.1) the variable
(u,v)n is already defined at the center of the link, so (17.3) is dis-

cretized to

oM = 6" at midpoints of boundary links . (17.15)
Summing {17.13a) over all the cells of our domain we get the compatibi-
lity condition

£ F?(x,y) = € " ix,y) (17.18)
cell centers boundary midpooints

which is the discrete analog of (5.4},

THEQREM 17.1 1§ {17,18] hofds, then the discrete Cauchy-Riemann cqua-

tions (17.13] with the boundary cond{ticons [17.15] have a anique aclu-

ticn.
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Indeed, the total number of equations {17.13), {17.15) equals the
total number of cells and vertices in the grid. The number of discrete
unknowns is the number of links. Hence, by a well-known formula of

Euler, there is one more equation than unknowns. But the eguations are

dependent, as we saw in constructing the compatibility condition (17.16}).

Hence, if {17.16) holds, we can remove an equation and have the same

number of equations as unknowns. It is therefore enough to prove the

theorem for the homeogeneous case F? =0, Fg =0, G = 0. 1In this
case (17.13a) implies the existence of a discrete "gtream function”

wh , defined at the vertices of the grid, such that uh = 33¢h ' L.
_32¢h . The homogeneocus (17.13h) yields Ahmh = 0 , and the homogeneous

{17.15) implies that wh along the boundary vertices is constant.
Hence, by the maximum principle, wh is constant everywhere. Thus, in

the homogeneous case uh = 0 and Wbz 0 , which is what we had to show.

17.3 DGS relaxation and its smoothing rate

Most relaxation schemes are based on one-to-one correspondence
hetween equatiéns and unknowns: The basic relaxation step is to satisfy
(of over-satisfy, or under-satisfy) one of the discrete eguations by
changing the corresponding unknown (or satiafy a block of equations by
changing the corresponding block of unknowns}. Such one-to-one corres-
pondence is not always natural. In our case, it is clear already in the
differential equations {17.1) that it would be unnatural to regard
(17.1a), say, as the equation corresponding to the unknown u , and
(17.1b) as the one corresponding to Vv . The entire system corresponds
te (u,v} . In the difference eguations it would be impossible to have
even a one-to-one correspondence between pairs of equations and pairs of
unknowns, since the number of unknowns is one less than the number of
equations.

We will therefore use "distributive refaxation®, i.e., a relaxa-
tion scheme that satisfies each discrete equation in its turn by distri-
buting changes to 4evenal unknowns, in a natural manner.

To derive a natural distributive acheme we note that neither
(17.13a) nor (17.13b) are elliptic equations by themselves. It is their
combination together which is elliptic. Hence, in relaxing (17.13a),
for example, we should take (17.13b) inte account. The simplest way to
do it, which is alsc a special case of the general prescription descri-
bed in Sec. 3.1, is to relax (17.13a) in such a way that equations
{(17.13b) are not “damaged”, i.e., in a way which preserves the residuals
of (17.13b). We do this by simultaneously changing four unknowns, in
the following way:!
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Lot (Eh,?’rh}

be the current approximation to (uh,vh) . Let
{x,y) be the cell center where we next wish to relax (17.13a), and let
h h hiehy h-.h
v

L R R )

x ¥ (17.17)

be the "“dynamic residual” at (x,y) . That is, r is the residual at
(x,y) just before relaxing there. The relaxation step owf (17.13a) at

(x,y} is made up of the following four changes:

Wx + %,y) « WP+ %.y) + 8

P - By - -G -8
(17.18)
WFixy + 2) e Pia,y + %) + 6
ix,y - %) - Pix,y - %i -4
where
1 ..n
§ = 7 bry . {17.19)

It is easy to check that the distributien of changes (17.18) is such
that the residuals

h h _ sh~h birsh
£, F2 3 u o+ axv

{17.20)
at all neighboring vertices are not changed, whatever the value of 6
The choice {17.19) for the ghost wunbrown § is made so that after the
changes the residual r?(x,y) will vanish. This is in the manner of
the Gauss-Seidel relaxation, where old values are replaced by new values
30 as to satisfy one difference equation. Such schemes are therefore
called Distnibutive Gauss-S$eidet (DGS) schemes. In case k of the four
values changed in {17.18) are poundary values {k=1 near boundaries,
except near corners), then no such change should be introduced in those
values, and (17.19) is replaced by
o1 h
§=gx Py (17.21)
The relaxation of (17.13p) is made in & similar manner. If

(x,y) 1is the vertex to be relaxed, the relaxation step will include the
changes

ey _—

W

"
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"h(x,y + %) - Nh(x,y + %) + 5

Wi,y - %) c i,y - %) - 8
(17.22)

P+ Lyy « P s T -8

hx - ?.y) < Mix - h,y) + 5,

) 2
where
1. n
5 = i h r2 (17.23)

The distribution (17.22} is such that the residuals )
ved, and & in (17.23) is such that equation {17.13b) at (x,y) will
be satisfied by the changed variables.

will be preser-

The above relaxation steps can be taken in various orders. In our
programs, ecach complete relaxation sweep comprised of two passes: The
first pass relaxes equation (17.13a} by (17,18-19), letting [x,y) tra-
verse all cell centers, and the second pass gimilarly scans all the grid
vertices, relaxing (17.13b) by (17.22-23). Within each pass the best
ordering of pnints is red-black (RB), although lexicographic ordering
was used in the experiments [D2). Some operations can be saved by pas-—
sing first nn one color of cells and a matching color of vertices, then

on the other cell color, and then on the remaining vertices.

In terms of the general formulation of Sec. 3.7 the above scheme

is equivalent to introducing the ghost functions wh and wh , where

1 2
h h h ]
u 3 3 w
{ )= ( x y ) (1 ) = " (17.24}
\ v } k] -3 \ W
¥ x 2
{accidentally Mh = Lh). and relaxing the resulting system AhWQ = F? v
(i = 1,2}, Al being the S5-point Laplace operator. Hence the amoothking
factor of this relaxation is the same as that of A", that is, for
lexicographic ordering % = .5 , while in RB ordering ﬁl = 52 = .25
and 33 = .32 imf. Eq. {3.2)}).

17.4 Multigrid procedures

Assume now we have a sequence of grids (levels) with mesh-sizes

h.,...,h, h = 1 h. . The relative position of the different
! " kil L2k h (h h h h ~h =h
grids is shown in Fig. 17.2. 1Instead of Fi' FZ' G, u, v ,u, v,

r? and rg used above, the discrete functions on the k+~th level will

where
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be denoted by Fi, Fg, Gk. uk, vk, ok, wk, rg and rg, respectively.
h h
similarly, X and % will stand for u * and u "

X ¥ x y
The coarse-to-fine interpolation can be of first order, since this
is the highest order of derivatives in the Cauchy-Riemann operator {see
Sec. 4.3). An obvious way of doing such an interpolation (see Fig. 17.2}

is

Ek(x.y t % Byyy) if x is on a coarse-grid line

k+1~k
I, u (x,y) = . {17.25)
ux1k+lﬁk(x,y) otherwise ,
- k+1~k . . .
and similarly for I, v One can of course use linear interpolations
instead.

The Cauchy-Riemann problem is linear. We can therefore make
coarse-grid corrections either by the Correction Scheme (CS) or the Full-

Approximation Scheme (FAS, cf. Sec. 8). 1In the latter case we have to
k  ~k+l kK ~k+1

define the fine-to-coarse transfer of solution (Ik+lu I S )
We use the following averaging (cf. Fig. 17.2}:
k ket +1~
1, @ ey = u; 1341 (k9 {17.26a)
k okl k+1~k+
Ik+1v ix,y) = Ue ¥ ltx.y) . [(17.26B)

@ @|v ®

hkel‘ u (:) u (:) u

- ) G €

Same netations ab in Fig. 17,1, with faxgen and heavien tupe bedng nused

fon the ceaxse grdid and Ligliten type fan the fine grid.
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The number of eperationy in such an algorithm, using the Correc-
tion Scheme, is about 40n , where n is the number of unknowns on the
finest grid. Almost all these operations are either additions or
shifts (i.e., multiplications by an integer power of 2}, and the algo-
rithm is fully parallelizable.

Thene i3 a faster way of solving the discrete Cauchy-Riemann equa-
tions (17.13}: Subtracting from uh a function ug which satisfies

aiug = F? , 4 new system is obtained in which F? £ 0 The problem can
then be rewritten as a Poisson problem for the discrete stream function

wh (see Sec. 17.2). Solving that Poisscon problem by a similar FMG algo-
rithm, together with the operations of subtracting ug and constructing

uh and Wb would require about 1l7n operations {(additions and shifts

only). The main purpose of this chapter, however, was to study methods
for solving elliptic sysiems. The techniques developed for the present
simple system guided us in developing the more complicated cases descri-
bed below.

17.6 Remark on non-staggered grids

Any staggered-grid formulation can yield a non-staggered one {on
a finer grid) simply by overlaying several staggered grids, properly
shifted, on top of each other. For example, shifting equations {(17.13)
by the four shifts (0,0}, (0,h/2}, (h/2,0) and (h/2,h/2), the four
systems together are equivalent to eguations (17.5) for grid h/2 . 1In
fact, various non-staggered formulations appearing in the literature can
be shown to be such interlacing of staggered formulations. They are
wastefud in that the same accuracy is already obtained by just one of
the interlacing subgrids, for much less work.

Also, the decomposition of the grid into interlacing subgrids
locally decoupled from each other introduces a subfle kind ¢f instabifity
(typical to gquasi-elliptic operators in general): Certain high-frequency
modes {(those which look like low frequency modes on each subgrid) are
magnified in the discrete solution much beyond their size in the diffe-
rential solution. This may show as large truncation errors in higher
Sobolev norms. It can be corrected by averaging.

Such an averaging, and the multigrid solution of such a guasi-
elliptic svstem, is discussed in Sec, 18.6.
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i18. STEADY-STATE STOKES EQUATIONS

18.1 The differential problem

As a prelude to the treatment of the full Navier-Stokes eguations,

we consider now the steady-state Stokes equations in a d-dimensional
domain

Veu = Fy . (18.1a)

-4t + Vp = F , (18.1b)
where u = (ul....,ud} repregents the velocity of a fluid and » rep=-
resents the gressure, v = (31....,ad} is the gradient operator, & =
]t et 3y is the Laplace operator, and Fy and F = (Fl,...,Pd)
are given forcing functions. ({1B.1} are the equations of "creeping”
flows (vanishing Reynolds number). {18.la} is the “"continuity equation™

{usually with vanishing source term: FO 2 0), and (1B.1lb}) is the vector
of d momentum equations.

The matrix-operator form of (l18.1) is

-
@

-

L)

[~
e

[
]

-

.
-
.

L. =, . O ‘ = . (18.2)

Ud ) -4 u F

and the operétor determinant is
det L = (-A)d - (18.3)

Hence {(18.1} is a 2d-order elliptic system and will require d boundary
conditions. These are usually given by specifying the velocity on the
boundary

u(x) = G{x) , (x € 3Q) , {18.4)

where G = (Gl,...,Gd)

Equations (1B.1) with the boundary conditions {l8.4) constitute a
well-posed problem, provided the compatibility condition, obtained from
(18.1a) and the divergence theorem,

ry

s

oy

I -

-
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| £y dx = [ G-a {18.5)
Q an ~

is satisfied, where do is the boundary element multiplying an outward

normal unit vector.

18.2 Finite-~difference eguations

By arguments similar to those in Secs. 17.2 and 7.6 we find it
best to discretize (18.1) on a staggered grid (but see Sec. 18.6). Such
a grid, in the two-dimensicnal case, is shown in Fig. 18.1. 1In the
general d-dimensional case, the grid hyperplanes (planes if 4 = 3,
lines if d = 2) define cells, each cell with 24 faces., The discrete

] » O

FIGURE 16,1 Discretitation of two-dimensional Sfokes cquations

A typical paxt of the grid {8 shown. The discrete pressure Eh L6 de-
fined at cotl centers [(pl. The discrete velocity W s dedined at
cenfens of vertical Pinks l@- intendion centens; = boundary and
extenier centens), and ﬁg ia defined at centens o4 hondizontal Links
l@ and ]. Tite discrete continuity equations ane centered af cefl
centers {p). The j-ih mementum equatien is centened at {nterion vafues
4 Tn;‘ {@}. The extenion values of E}; and 'G; {at and ,

nespectiveln, but not on the boundary! ane fict<tious.
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velocity u? and its computed approximations ﬁh are defined at centers
of j-faces, i.e., faces perpendicular to the j-th coordinate. The disc-
rete pressure ph and its computed approximaticn Eh are located at
cell centers. The discrete approximation to (18.1}) can then be written

as
d
h
) B.uh = Fh at cell centers {18.6a)
=1 11 o
-Ahu? + 3?p = F? at centers of j-faces , (j =1,...,d) (18.6b)
h _ 1 1 1 . . ;
where 3j¢(5) =5 [¢i{x + 3 Ej)-¢(£ -5 Ej)] , hj is h times the unit
vector in direction xj . and the discrete aporoximation Ah to the
Laplace operator is the usual (2d+1L)-point approximation zta?)z . For
1
a point x near a boundary, however, Ahuh(x) may involve an exterior
h . ; : N .
value uj(ge) . This value is defined by guadratic extrapolation from

h e h

uj(2§—§ b, uj(g) and uﬁtﬁg) = G?(Eb) , where §b is a boundary point
on the segment (Edie)- This definition is used to eliminate the exte-
rior value from Ahuh(i) , 8o that the discrete Laplacian is modified

and includes a boundary value of u;

The matrix operator of (18.6) is

h h
0 31 Bd
h h
31 4

AL Q , (18.7)

h
Bd =4
hence det LP = (-Ah)d and its symbol is
4 8.42,4
ey = h-Zd{ z (Zsin 7}) } , (18.8)
8 521
which is positive for 0 < |8] ¢« m . The difference system (18.6) is

therefore h-elliptic {see Sec. 2.1} and even R-elliptic [Bl9, Sec. 3.6].

The boundary condition (18.4) is approximated by the above way for
treating boundary and exterior values of u? . For simplicity, consider
the case of domains whose boundary is contained in grid lines {(or grid
planes). 1In this case the veloeity normal to the boundary is conve-
niently defined at the center of boundary faces, and the discrete analog

to (18.5) is naturally written as
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h . h
Fplx) = LGy (18.9)

1%

where 2 runs over all cell centers, Yy runs over all centers of boun-
dary faces, and G:(zl is the (given) normal velocity at Y -

THEOREM 18.1 The discnete Stokes equations [18.61, witk extenivn and
boundary values deteamined by the boundary conditions as abeove, have a
unigue solution, upto an additive constant in ph , 4§ and only if (18.9]
is satisfied.

The proof is simple. The number of e&quations is the same as the
number of unknowns, since for each interior ub(il there corresponds an
equation (18.6b) at x , and for each unknown ph(z) there corresponds
an equation (l8.6a} at y . The pressure values ph are determined
only upto an additive constant, but, on the other hand, the equations
are dependent; summing (18.6a) over all cell centers we get (18.9).

That is to say, if (18.9) is not satisfied we get a contradiction. If
{18.9) {4 satisfied, it is enough to show that in the homogeneous case

(11

(F0 0, Eh =0, gh s 0} , the only solution is the trivial one

(" : 0, pP = constant). Indeed, if #" 2 0 it is easy to see from

{18.6b) that

d .
0= ¢ Zi[—ahu?(x) + 3% P
j=1 = b = 1=
d .
~2.3,.h h 2
= I £ u] - ul
iL h 2[uj(ﬁ) uj(x)l
d 3 5..h h h h,. 3 nh
+ L RTFEI[u () - ub(z)lu(x) + E,p (x) I BLuI(X)
j=1 ER R = AR TS T I

where the point x in Zi runs over all interior positions of u?

(points (:) in Fig. 18.1); the pa;r {x,y} in tg runs over all pairs
of neighboring interior positions of u? ; the pair [(x,z} in £g runs
over all pairs of neighboring positions u? , with x being an interior
position ((:) in Fig. 18.1), and 2z being a boundary or exterior posi-

tion ([} im Fig. 18.1); and x in I, runs over all cell centers (p
in Fig. 18.1). The term with Z, vanishes by (l8.6a), since Fg =0 .

In the Z% term, by the way exterior values are defined, we get (for

a" = o) u?(z) - Zu?(gy - 3 u?(g) , where y is the interior neighbor

of x oppesite 2z . Hence,
4 . .

jpgb _ G h 2 3[4 h, .2 h,.2 _1 h n ]} -
j£1{£5[uj(§) “j‘l)] + I3 uj(g) + ujlzl 3 uj(g)u (y) 0

where LJ runs as £] except for terms added to Ij . This form is
5 2 k] |
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h

20 . By {l8.6b) p~ = const.

positive definite, hence u?

18.3 Distributive relaxation

Designing the relaxation scheme for {18.7) by the general approach

h . .
of Sec. 3.7, note that L is almost triangular. To triangularize it,

it is enough to transform its first column by multiplying Lh on the
right with

=A Q *++ 0
h
-3 1
¢} 1
M = O 1. (18.10)
o O
d
(The first column of Mh could be obtained as the cofactors of the
first row of LD , divided by their maximal common divisor (—Ah)d_l )

This distribution operator Mh implies the following relaxation scheme.

First, for each 1 ¢ j € d , the j-th momentum equation (18.6b) is
relaxed by scanning, in some prescribed order (RB ordering is best), all
the interior j-face centers, changing at each such point x the curreat
value ﬁ?(g) so as to satisfy the momentum equation at x . Then, the
continuity equation {18.6a) is relaxed by scanning the cell centers (pre-
ferably in RB ordering), introducing at each such center x the fol-
lowing changes:

~h 1 ~h 1 :
Bixe oy cWarzhp 6, =L (i8.11a)
~h 1 ~h 1 .
uj(§ -z hj) + uj(§ -3 gj) -8, (3 =1,.-..,4d) « (18.11b)
~Nn ]
57 (x) B0 + 3 s . (18.11c)
ERE W B x + by - L, =10, {18.11d)
h ~h
Bx - ny) < Bx -y - Ls, g=1...9, (18.11e)
whare
h _h n/h _ 3 .neh
6 = 33 ¥pix) = EE(FO - I Bjuj) {18.12)
i=1 pbefore the changes

so that after these changes at X the new residual rg(E) vanishes.

e

e T

e

"



near a boundary, are shown in Fig. 18.2. Observe that near the boundary,
unlike the situation away from it, the relaxation of the continuity equa-

tion at a point does introduce slight changes in neighboring momentum
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The relaxation of the continuity equation, and its modification these slight changes do not cause later {when the momentum equationshare
relaxed} significant "feed-back", i.e., too large changes back in L

because near the boundary feed-back changes are partly “absorbed” by the

boundary.
h

residuals, as if locally contradicting the triangularity of M . But The smoothing factor is the same as for GS relaxation for AU

i.e., the same as for Ah . Hence, in two dimensions, for lexicographic

ordering n = .5 and for RB ordering, if used in all 3 passes,

ﬁl =, = .25 and ;‘;3 = .32 {cf. Eq. (3.2)). For d =3 and lexico-
N graphic ordering uo= 563
“n
18.4 Multi-grid procedures
+8 For multi-grid processing of Stokes équations we use a sequence
; : 21
_li 3 *_48 " _ll ) of grids {levels) with meshsizes hl""'hM , where h, ., = =5 hk , and
h h h where the grid lines (or grid planes) of level k are every other grid
3 line (plane) of level k + 1 . Hence, each cell of level k is the
B union of 23 cells of level k + 1 . In two dimensions (d = 2) the
8 confiquration is shown in Fig. 19.3. Instead of Eh, gh, ph, Eh, u?
“h and a? used in Secs. 18.2-3 and in Eq. {17.7), the discrete functions
ang operators on the k-th level are now denoted by EF, gk. pk, rk, u?
{a) ' and 3§ , respectively.
0
.3 ] .
h h
+3 ——+ 8
3 38 3 28 8
== -8 = + - +55 +8 -
R h h
I 20 | 29
{b) {e)
FIGURE 18.7 Continuity-equation nelaxation step in two-dimensional
Stokes cquations
ta) The cef? at the cenfet of the figure {3 retaxed by 9 simuftaneous
changes. The ampunt of change is disptayed at the position 04 the
chanqed vateabfe lef. Fig. 18.1%. 5 =h lix1/a , whee ehix) i
the dunamic residual at the refaved eetd. . . . . .
(5] Confiquration of changes in a boundany cell. §=h rg(i)/g FIGURE 18.3 A coanse-grid cefl divided into fine-grid cefls

le)d

Configuration o4 charnges {n a coinen cell. & =nh rg(ij/z . Same notation as in Fig. T8.1 &is used, with keavy type fur the ceanse
grdd and Light tupe for the 4<ne grid.
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We have solved Stokes eguations both with the Correction Scheme
(CS) and with the Full-Approximation Scheme (FAS), getting of course
identical results. We describe here the procedures in terms of FAS,
since CS is not extendible to the nonlinear Navier-Stokes equations.

Coarse-to-fine interpolations, In the FMG algorithm, to obtain
residuals smaller than their truncation errors, the first coarse-to-fine
interpolation has to be of order at least four for the velocities and at
least three for the pressure (see Sec. 7.1}). The design of such inter-
polations is straight-forward, although it turns out somewhat cumbersome
near boundaries. The coarse-to-fine interpolation of corrections has to

be of orders at least two for the velocities and one for the pressure
(see Sec. 4.3). We used bilinear (i.e., order two) interpolations for
both.

The fine-to-coarse transfers are made by averaging. For the FAS

transfer of ut*l we can use the same averaging as for r¥+1 .
{j = 1,...,4} , which can be either the minimal-operation tranafer

k _k+l k+1 1::? k+l k+1

Ik+lrj =y e "j vee Mg rj . (3 =1,...,4) (18.13)
ar the full weighting

k k+1 k+1 k+1 k+l k+l .

= = eae . B.1
Ik+lrj uj My cee by rj f {j 1, ,d} (1 4)

where the hat in {(18.13) indicates the term to be skipped in the sequence.

The residual-weighting (18.13) is less expensive than (18.14), especially
since it requires calculating only one half of the fine-grid residuals,
But (18.14) is more reliable in the nonlinear case and near boundaries,
since it is "full" (see Sec. 4.4).

The FAS transfer of ﬁk+1

the transfer of the continuity-eguation residuals

can be made with the same weighting as

k _k+1l _ k¢l k+1 k+l

k+lr0 =u cee Mg 0 N {19.15}

I

which is both simplest and full. In fact, if the minimal-operations
transfer (18.13} is used for the velocities E§+1 , then (18.15) need
not really be calculated: If the FAS continuity equation on level k

is written in the form

s .
£ 25k = f’n‘ (18.16a)
j=1 1]
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£ - Lt :
{where fo = F, on the currently finest level 1), it is easy to see
that (18.1%) is equivalent to
k _ k+l k+1l _k+1
fo = My ces ¥y fO B (k < &) , (1B.16b)
k+1

which does not depend on 1

The compatibility condition (18.9) is automatically cobtained (up to
round-off errors) on all levels provided it holds on the finest one.
This results directly from (18.15).

18.5 Numerical results

Our early (1978) experiments with the above procedures, in various
cycling and FMG algqorithms, on two-dimensional rectangular domains
(chosen only for programming simplicity), are described in [Bi9] and in
more details in [D2]. The program itself i3 available [M3]. The expe-
riments were not optimal because we have used lexicographic instead of
RB ordering in relaxation (RB wasused in our recent experiments with non-
staggered grids; see Sec. 18.6). ‘The asymptotic convergence rates were
20% slower than those predicted by the smoothing rate 1 , but not more
than 6% slower than predicted by the two-level analysis. The fact that
the smoothing rate is not fully expleoited indicates that better conver-
gence rates may be obtainable with better inter-grid transfers, but
this does not seem to worth the extra work: The obtained rates are
good enough to give a solution below truncation errcrs by an FMG algo-
rithm with one vi{2,1) cycle per level (cf. Fig. 1.2}. With RB rela-
xation, v(l,1) should already suffice (see Sec. 18.6).

18.6 Non-staggered gridsg. Recent results

Having received complaints about the inconvenience of staggered
grids despite their advantages {see Sec. 17.6), we have recently experi-
mented with Stokes f(and Navier-Stokes) solvers on conventional, non-
staggered grids, where all unknowns are defined at the same gridpoints.
The approach is to use a quasi-elliptic approximation, but to properly
average the results. Thus, ah in (18.6) or {18.7} has throughout been

changed into the (long) central differencing aih = u?a? , replacing
(18.8} by
oard B.y27d-1,d
thg) = n 2d{€(25in -f) } {r sinzej} . (18.17)
1 1

This symbol vanishes for scme |g| = 1 , showing Lt to be only gquasi-

- e

ey - .

gy -

s
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elliptie. More precisely, there are the high-frequency components

( i ) = ( ' ) gtirx/h (8, = 0 or m , lejed 5 o] = ™) (18.18)
u 0

which satisfy the homogeneous difference equations. These components
by themselves do not really matterx more than adding a constant to the
pressure: They do not affect a?hph , nor any other term in the dif~
ference equatinns. But other components, in the neighbcrhoed of (1B.18),
do matter for the solution. They thus constitute high-frequency compo-
nents which are not locally controlled. They will give rise to a subtle
kind of instability (see Sec. 17.6), and they will not efficiently be
reduced by relaxation, hence will be slow to converge in conventional
multigrid algorithms. (Fast convergence can still be obtained by modi-
fied coarse-grid functions or by AMS algorithms; see Secs. 4.2.2 and
13.1.1}

Bath troubles {instability and slow smoothing) are closely related
and easily cured by the same simple device: The bhad components can be
eliminated by avetraging the pressune, i.e., replacing

h h, 2-.h

AR I - (18.19)
This operation need to be done only on the final result. Similar bad
convergence of some high-frequency components of an {nteamediate level
does not matter, since those components are efficiently reduced by the
next-finer-level relaxation {cf. Sec. 12}.

To test this approach, without any interference of questions rela-
ted to boundary conditions, we have studied the two-dimensional (4 = 2)
case, on the square [|x|,[y| < 7}, with periodic boundary conditiona.
With such boundary conditions, uj and p are determined only up toan
additive constant each. We have used distributive Gauss-Seidel relaxa-
tion based on the distribution operator

¢
O I S L (18.20)
- 0
(cf. (18.10})!, with RR ordering in each of its 3 passes (corresponding
to the 3 diffreential equations). Inter-grid transfers were standard:

Full weighting (4.6), bilinear interpolation of corrections and cubic
FMG interpolation of the first approximation. The coarse-grid operator

is the same non-staggered, central Stokes operator as employed on the
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finest grid.

The compatibility condition, analogous to (18.5), seems at first
to cause some troubles. 1In the discrete approximation it breaks up into
4 different conditions, each obtained by summing the discrete continuity
equation on one of the four ataggered subgrids into which that egquation
ig¢ decoupled. Even if we take the trouble to satisfy these four condi-
tions on the finest grid, they will not be satisfied on coarser grids,
unless the coarse-grid equations are adjusted, e.qg. by adding 4 suitable
constants to FE , one constant on each subgrid. Actually, all this is
not needed. The said adjustment is below the level of the coarse-grid
truncation, hence it does not improve the gquality of the coarse-grid
contribution to the fine-grid convergence. The fine-grid compatibility
condition is itself similarly unimportant, unless cne wants to solve the
algebraic system below truncation errors. We simply ignore this condi-

tien at all levels.

Two additional compatibility conditions emerge because of our
periodic boundary conditions, each obtained by summing one of the momen-
tum equations over the grid. 1In the differential equations chosen by
us these conditions are automatically eatisfied, since we calculate a
right-hand side F from a known solution (so that we know the exact
differential solution and can compare our results with it}. For reasons
similar to the above, we ignored satisfying these compatibility condi-
tions, too, in our discrete approximations, whether fine cr coarse.

Components in the neighbonhood of (18.18), eventually afmest eli-
minated by (18.19)}, are still present, even though their influence on
the residuals-must i{nit{zfly be very small. Hence, asymptotically
{after many cycles) we must get slow convergence. Indeed, on large
N x N grids we have obtained asymptotic convergence factors of about
1-1608"2
those components are not important and convergence factors are excelent;

per either v{l,1} or w(l,1} cycle. Initially, however,

e.g., in the experiments of table 18.1 the average convergence factor
for the first five cycles was always better than .2 per V{1.1) cvcle.

The main point of course i{s that the convergence rate of high-
frequency components ia immaterial by itself, since we do not need to
converge them much to get below their large truncation errors. What
does then matter is how many cycles per level an FMG algorithm needs in
order to solve the problem to below truncation. Typical results are
summarized in Table 1B.l. They show that convengence weff below frun-
cation eancrs (4 afneady obtained for an algonithm with enlu 3.6 RWYS

7(relaxation work units). Being based on the RB relaxation, the algo-



rithm is fully vectorizable.
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FMG Algorithm Results
~h
: type ¥ cycles - ~ le-p I,

gF:z of per |u'uh"cn lv-vhllu without with
s1 cycle level averaging averaging

loxlé v 1 L0259 0379 .4589 .1984

2 .0217 0224 . 3306 1671

3 0209 0213 . 3247 1662

W I L0236 .0356 4400 .1873

2 .0219 0219 . 3287 .1666

3 .0211 .0216 L3275 1662

32x32 v .D056 0107 .1216 .0821

0044 .0069 0774 .0556

.0043 .0068 .0627 L0541

w .0047 .0090 .1248 .0813

.0045 L0069 .0789 .0564

.0043 L0068 L0630 .0543

64x64 v 1 .0019 00136 0345 0172

2 .0020 .029 .0180 L0141

3 .0020 .0028 L0154 0141

W 1 .0020 L0032 0367 .0187

2 .0020 .0029 .0184 .0143

3 0020 .0028 .0154 L0141

TABLE 18.1 Stohes sofutions on non-staggered grdid

Resufts are shown fon an FMG sofution of a problem whose exact dijfenen-

tial solution 4is

and F beding calculated accordingly.
obtained by averaging F,
48 obtained by the algorithm explained in the text,
1.4, 1.6; the v-cycle

The undeteamined additive cons-

~h ~h

solution (TD,¥ |
with refaxaticn counts Vi
algonithm {s exactly that of Fig.

tants in Gh, h

and Eh

and F on

2 "1

{see Secs.
1.2},
were of counse propealy sublracted off.

u=Vv=pwgin{co(x+2y)} , the aight-hand sides Fy

3 and EP‘ on atl fevefs are
h x h squares. The approximate
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19. STEADY-STATE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

19.1 The differential problem

Using the notation of Sec. 18.1, the steady-state incompressible
Navier-Stokes equations in d dimensions can be written in the form

9w o= By (19.1a)
Q+yp=F . (19.1b}
where
Q:-lﬂ+u-v=.—lﬁ+g 2 (19.2)
Ro+ ¥ R je1 33 )

R being the Reynolds number; i.e., R-l is a scaled viscositywover=-
density coefficient.

30 that u is 0(1)

(It is assumed that time and distance are scaled
and domain dimensions are 0(l).) The principal
part of this gystem is the Stokes system (18.1) (rescaling p +« Rp),
hence for R ¢ 0(l) the solution processes of Sec. 18 are directly
applicable here (using FAS of course to deal with the nonlinearity).
But we will be interested in solving alsoc for large R , hence we will

look at the corresponding subpaincipat operaton (cf. Sec. 2.1}

3, Q
(1%.3)

Observe indeed that (19.3) is not the full Newton linearization for (19.1);

d-1

‘only subprincipal terms are kept, Since det L = -AQ , (19.1} 1is

again an elliptic system of order 2d and therefore requires d boun-
dary conditions. Usually the velocities u are given on the boundary

as in (18.4), leading again to the computability condition (18.5),

For R + o , det L + -a(u.p3972
subcharacteristics (characteristic lines of the reduced egquation), and
in the limit only one condition is needed all along the boundary, plus

, hence the streamlines are the

@ - 1 conditions at points where the flow enter the domain (because
u*¥ is a streamwise derivative which, with the singular perturbation
—% & , permits discontinuity only at the exit end of each streamline).
Typically, for R + = , the wvelocities u are given at entrance points,
and either the normal velocity oy the pressure at other boundary points.

ey -

w2 .

e
wy = .
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For theoretical investigations of this system, see for example [T3].

19.2 Staggered finite-difference approximations

The discretization is carried out on the same staggered grid as
before (Fig. 18.1), using the difference equations

d

b ahuh = FE at cell centers {15.4a)
jop bod
Ohu? + 3?Dh = F? at j-~face centers (3 =1,...,4) {19.4b)
where Qh is some difference approximation to Q . (Non-staggered grids
are discussed in Sec. 1%9.6.) Since det Lh = -ﬁh(Qh)ddl , it is clear

that LD has good h-ellipticity measure if and only if Qh does. Hence,
all we have to construct is a good approximation to Q ., For small to
moderate hR|u| {i.e., hR|u| not much larger than 1) this can be done
by central differencing. But for larger hRJu| upstream differencing

or explicit artificial viscosity terms should be used.

The artificial viscosity terms may be anisotropic, so that the
total (physical and artificial) viscosity has the form -tiﬁih(nz)z
For stability of the simplest DGS schemes (Sec. 19.3), Bi(x) 3
.5 maxlui(y)l is needed, where the maximum is taken over all vy
neighboring x . Upstream differencing is the same as Ei = .5|ui|.
For large R , sharp cross-stream changes {large solution changes per
crogs-stream meshsize} can travel with the stream, and one may like
to avoid smearing them by using no cross-stream artificial viscosity.
This is only possible by sfrong alignament (cf. Sec. 2.1), i.e., by
using a grid {scometimes through the method of Sec. 9.3) such that one
of its principal directions is (nearly) aligned with the stream
throughout a large subdomain. One can then use Ei = 0(hlu|) (nece-
ssary for stability) in the stream direction, together with zero (or
small} cross-stream artificial viscosity.

In three-dimensional problems it may sometimes be difficult and
unnecessary to have the flow (nearly} aligned with one grid direction,
but a grid can be used so that each streamline (nearly) stay in one qrid
plane. We call this plane alignment. In this case only sharp changes
perpendicular to these planes are resolvable. For that purpose, zero

artificial viscosity perpendicular to the planes should be used.

Another, more special case of strong alignment may arise neat

boundarics. MNamely, to obtain sharp numerical boundary layers on grids
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which do not resclve the physical boundary layer, the Qh operators
near the boundary should be constructed so that tangential components of
th do not straddle the boundary layer, i.e., do not include boundary
values. This "alignment” of Qh can be done without aligning the grid.

The artificial viscosity may introduce O(h) error, but such
errors can be eliminated by omitting the artificial terms from the resi-~
duals calculated for the transfer to the next coarser grid (cf. Sec.
10.2); except that the rule of not straddling the boundary layer should
still be kept by those residuals, toco.

For a full discussion of the discretization and multigrid proce-
dures for the convection-diffusion operator Q , see {B17].

In case the boundary-layer interaction is important {e.g., in the
driven cavity problem, where this {nteraction determines the entire flow),
the boundary layer should be resolved. One can use then anisotropic
local refinements (see Sec. 9.2), with local coordinate transformations
in case the boundary is not along grid directions (Sec. 9.3).

19.3 Distributive relaxation

Generalizing the scheme in Sec. 18.3 to any operator Qh

tion is guided by the distribution operator

, relaxa-

- 0 ... 0

1
[V _ O (19.5)

and thus proceeds as follows:

The j~th momentum equation (19.4b) is relaxed by changing ﬁh only,
in any order and manner suitable for the operator Qh . Thus, for]
hR|G) ¢ 0(1) the best perhaps is the red-black (RB) Gauss-Seidel scheme:
Gj is changed at each point so as to satisfy {19.4b) at that point, the
red points being scanned first, the black next. For hr|d] >> 1 this
retaxation is still one of the best, except for cases of intended strong
alignment described above (Sec. 19.2). 1In those cases, block relaxation
must be used, but only in the specific strong-alignment direction, in its
specific subdomain. This means streamwise line relaxation, except for
plane relaxation in cases of plane alignment. And to obtain sharp nume-
rical boundary layers one should relax in blocks (i.e., simultaneously,

in one or several blocks) exactly those equations where the special Qh
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was constructed for that end (cf. Sec. 19.2). In many cases, the block
relaxation can be replaced by a suitable downstream or ILU scheme (cf.
Sec. 3.3). And in case of plane alignment the plane relaxation could be
replaced by point relaxation if the grid is not coarsened in the direc-
tion perpendicular to the planes {(cf. Secs, 4.2.1 and 3.3). Complicated
alternating-direction line relaxation schemes are needed only if a fast
solution is desired with errors far below truhcation errors. A simple
RB scheme, fully parallelizable and vectorizable, can thus most often be
used.

Having relaxed in this way one pass per each mémentum equation
(3 = 1,+..,4), we then make a pasa of relaxation for the continuity
equation {19.4a), by scanning the ceffs one by one, preferably in red-
black ordering. At each cell the distributive relaxation step resulting
from (19.5) is a generalization of Fig. 1B.2 above: Dencting by xh the
characteristic function of the relaxed cell (i.e., xh = 1 at that cell
center, and xh = 0 at all other cell centers), the relaxation step

changes all functions ﬁg and ﬁh by the prescription

ﬁh ~h h h

i + uj - Ghaj R (3 = 1,...,4} {19.6a}
g « 30 + sha™" . (19.6b)

where & 1is still given by (18.12).

The smoothing factor p is the slowest among the factors obtained
for the triangular operator

-ab o] an
h
o @
= | ) O . {19.7)
0 O Q"

Hence W = max (38,79 , where 7% is the smoothing factor of RB relaxa-
tion for Ah , and EQ is the smoothing factor of the relaxation of
Qhﬂ? . Hence iA = .25 if one or two sweeps are performed per cycle,
while EA = .32 in case of three sweeps per cycle. If down-stream
relaxation is used for the momentum equations (hence for Qh), one can
obtain 12 ¢ 5% and hence G = 3% . As discussed above, however, espe-
cially in cases of widely varying stream directions, it is not important
to obtain perfect smoothing by relaxing in all these directions. The

relaxation rules specified above, deviating from aimple (RB) point rela-
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xation only in some cases of strong alignment, ensure fast reduction

of all high-frequency components, except for nearly characteristic co-
mponents which anyway have large truncation errors almost everywhere

in the flow field {(cf. Sec. 3.3). For this to hold the total vxsc051ty
coefficients Ei (see Sec. 19.2) should be slightly larger than the
minimum, e.g. Ei = .7|ui| i
as in upstream differencing, some highest frequencies are not reduced
(unleass downstream relaxation ordering is everywhere ensured): but this
is not important from the point of view of diffenential smoothing (cf.
Sec. 12), which will in fact be damaged if B, is increased too much
(B 27|y | is still good). In any case, the distribution matrix
(19 5) reduces the problem of relaxing the Navier-Stokes system into
consideration concerning the relaxation of the scalar convection-dif-
fusion operator Q° (which is in detail studied in [B171)-

19.4 Multigrid procedures and numerical results

The grids, their relative poeitions and the interpolation proce-
dures between them are generally the same as for the Stokes equations
(Sec. 18.4). Because of the nonlinearity, FAS is of course used (see
Sec. 8), and the full weighting (18.14) is preferred over (18.13) in
the fine-to-coarse transfers of both the velocities and the momentum
residual functions.

For R > 0(h"Y) , the momentum residuals themselves can be caleu-
lated in two ways, using eithey the same o{h) approximation Qh
used in relaxation (see Sec. 19.2), or the O(h ) central approxima-
tion to QB (i.e., Qh with zero artificial viscosityl}. ‘The latter
is the "double-discretization"” scheme (see Sec. 10.2) which exploits
the fact that Qh is a better approximation for the high-frequency
components, hence in relaxation, while Qf is a better {(higher) app-
roximation for the low-frequency components which converge through the
interaction with the coarse grid. QE should, however, respect inten-
ded discontinuities (boundary layers) in the same way that Qh does,
even if it means ©(h) local truncation errors; the global discreti-
zation errors (e.g., the Ll-norms of u—ﬁh P v-vh and p-p ) will
still be O(h )

For large hR it is also advisable to use W cycles or accome-
dative algorithms (see Sec. 6.2). On very coarse grids, where velocity
changes per meshsize are comparable to the velocity itself, BGS relaxa-
tion (see Sec. 3.4 and the end of Sec. 5.6) is safer than the DGS rela-

In case the minimum B, = .5ju;| is used,

e

e

ey
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xation described above.

our old (1978) numerical results are reported in [D2], with two
examples in (B19]. They clearly show convergence to below truncation
errors in an FMG algorithm with one accomodative cycle per level,
making only two relaxation sweeps on the finest grid. At the time we
were worried about asymptotic convergence rates, but we should not;
see end of 5rc. 4.1, Recent, improved experiments feature the double
discretization, BG5S relaxation on very coarse grids, and W cycles.
The results will be tabulated in a separate report.

19.5 BResults for non-staggered grids

The non-staqggered approach to the Stokes equations (Sec. 18.6)
can also be used for the Navier-Stokes equations, On a non-staggered
grid the short-central difference pperator a? in (19.4) should
throughout be replaced by the long-central a%h. Hence, a? should be
replaced by G%h in the distribution operater (19.5), too (yielding mh
as in (18.20) with ah replaced by Qh). As in Stokes eguations, error
companents around (18.18) are not efficiently reduced by relaxation;
but in the Navier-Stokes case, non-linear interactions can actually
amplify these components. Therefore, the pressure averaging (18.19)
must now be applied not only to the final results but also to any
pressure corrections, just beforé it is interpclated to a finer grid.

This approach was tested with RB ordering, full residual weighting
(4.6), bilinear interpolation of corrections, W(Z,0) cycles and an FMG
algorithm with bicubic interpotation of solutions. For clarity, the
table below shows results for the case of perlodic boundary conditions
with the smooth non-aligned solution w = v =P = 1 + .2 sin(cos(x+2y))
and R=~. Compatibility conditions were ignored (see Sec. 18.6). but the
correct averages of u,v and p were enforced, so as to make the periodic

problem well posed. Double discretization was used, with Ei=8|ui\ in

relaxation and ﬁ:=E,1ui| in residual transfers. The table shows the
error 1| u=a [+ | Tv-3" 1 #1108 i 4 -

: (r,8,) {1.,1.) (.7,.7) {1.,0}
qrid\\\\ ¢ cycles 1 2 1 2 1
16 x 16 L1602 .11 L1233
32 x 32 .080% L0583 L0309
64 x Hd .0420 L0416 .0298 L0291 L0067
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20. COMPRESSIBLE NAVIER-STOKES AND EULER EQUATIONS

The steady-state Buler equations of inviscid flows will be trea-
ted here as a special, limit case of the full steady-state Compressible
Navier-Stokes (CNS) equations. Some terms can be dropped in the invis-
cid limit, but there is no essential difference between the numerical
solution of inviscid flows and that of slightly viscous flows, because
O{h) artificial viscosity should anyway be used in relaxation, and it
should closely resemble the physical viscosity tc ensure that only phy-
sical discontinuities are admitted at h =~ 0 . The double-discretiza-~
tion scheme {Sec. 10.2) will be used: in the present context this simply
means that the artificial viscosity, when needed, is employed only in
the relaxation operators, not in the difference operators by which resi-
duals are calculated in the fine-to-coarse transfers. The latter can
generally use simple central diffcerencing, but both types of operators
should respect, as much as possible, the flow discontinuities. The
multigrid processes will first be described in terms of the simpler
guasi-linear form of the eguations, discretized on a staggered grid,
and then their modification to the conservation form and to non-stagge-
red diseretization will be discussed.

20.1 The differential equations

20.1.1 Consgervation laws and simplification. The time-dependent Comp-

ressible Navier-Stokes [CNS) equations in d dimensions may be written

in conservation form as

d
2—2+ I3.F, =1 (20.1)
j=l 11
where 3, = 2 and
3 ax.
2
puy pujul + le fl
W = . F = . ;_:
L h| pujud + Tia £a
. £
o Du] o
e eu. + iuiTij - Kaje EE
d
= = - - + R .
i3 T34 u(aiuj + ajui) ksij kilakuk pﬁi] r {(20.2)
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p  being the fluid density, u = (ul,...,ud) the velocity vector, e

the total energy per unit velume, € the specific internal energy, p
the pressure, A and u the viscosity cqefficients, and x the coe-
fficient of heat conductivity. (20.1) is a system of d + 2 equations:
the first d equations are the d momentum equations, next is the
continuity (mass conservation) equation, and the last is the energy
equation. The d + 2 basic unknowns may be considered to be u , p
and ¢ , in terms of which e is given by ’

2 a
e = p(e + 32—) . 9= _Elui . (20.3)
i=

and p by the equation of state

P=ple,n . : (20.4)

For a perfect gas, for example, the equation of state is p = (y-l)ep ,
where vy 1is the ratio of specific heats. Generally, P, = ap/%c  and
p, = apjap are positive. The coefficients X , 4 and «k are given
functions, usually, of ¢ (or functiona of the fluid temperature,
which in turn is a function qf € ). We will treat these coefficients
as constants, since they change slowly. The whole discussion below

will remain precigely valid as long as any change in any of these coe-

fficients over a meshsize is small compared with the coefficient itself.

In most aerodynamical applications the right-hand side f wvani-
shes, but there are other applications where the external body force
{£y7...+£4) . or the mass source fp . or the energy source f_ do not
vanish. A general f is asaumed here, mainly because many of the nu-
merical experiments are set to have known specified solutions by pre-

arranging f accordingly.
The steady-atate CNS equations are given by

d
L 3.F. = §£ (20.5)

j=1 11 =
together with (20.3) and (20.4). It will be convenient below to subs-
titute (20.3) into equationa (20.5), but to treat (20.4) as an additio-
nal equation and p as an additional unknown. Allowing (20.4) not to
be satisfied until convergence will substantially simplify the solution
process, and more than justify the additional storage needed for p
Thus we will have a system of n = d + 3 differential equations in
n  unknown functions. The n-vector U = (ul,...,ud,p,s,p) will serve
as gur vector of unknowns.
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Simplified equations, but not in conservatiocn form, are obtained as

follows. The i-th momentum equation is simplified by subtracting from
it u; times the continuity equation. Then the energy eguation is

simplified by subtracting from it uy times the i-th (simplified) mo-
mentum equation for i = 1,...,d , and e/p times the continuity egua=-

tion. The resulting system is

] E_ujajui + ;ajTij = fi (1.= l,...,4) (20.6a)
] ]
. .} o= 20.6b)
gal (puj) f‘J ¢
- = 20.6
1] ;ujajs ;3j(xaje) + .E tijaiuj fE { c}
] ] i3
P = ple,p) {20.6d)

Ghich, in view of (20.2}, is a system of n equations for the n un-
knowns 0O . In terms of this simpler system we will now study the
principal and the inviscid subprincipal parts. This will tell us what
boundary conditions are appropriate and which terms are locally domi-
nant, which is important for designing the relaxation scheme and the
form of the artificial viscosity terms.

20.1.2 The principal part of (20.6), i.e., the part of the linearized

operator which contributes to the highest-order terms of its determi-
nant, is the operator

-uA—Aall e —Aald 0 Q 0
L, = “A%a1 R tkATMgy O °o 0 (20.7)
0 ‘e o u'? 0 o
0 ses i} 0 ~h 0//
0 e 0 0 0 1
where aij = aiaj P A = 311 LR add . -y = “131 + e+ udad and
¥ =214 pu. Itcan be shown by dimensional analyeis that on a small

enough scale the behavior of solutions to the original system depends
only on L_ . Thus, on a sufficiently small scale, viscosity is the
main mechanism that determines velocities, convection determines den-
sity, diffusion determines the internal energy, and they are all loca-

-

gy

s -—
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1ly independent. It also follows from {(20.7) that the full CNS system
requires d boundary coniditions for the velocities ({usually u is gi-
ven} and one for € (usually given in the form of boundary temperature
or temperature gradlent) on all boundaries, and an additional condition
for p (or for pl} at one end of each streamline.

20.1.1 Elliptic singular perturbation. Since u-¥ is a factor of

det LP' the steady-state CNS system is not elliptic: The streamlines

are its characteristic lines (the only characteristics, as long as the

flow is viscous). This means that an addition of artificial h-ellipti-
city will be needed in local numerical processes, unless the grid exac-
tly aligns with the stream. Therefore, and for uniform treatment of
all artificial terms in the inviscid limit, we will regard already the
CNS diffenential system as a limit, v ~» 0 say, of an elliptic system,
obtained by adding a singdlar-perturbation term to the continuity equa-
tion (20.6b), rewriting it (times p) as

d
jEl[oaj(ouj) - 3j(uajo)] = £, . (20.8)
v should be positive for the additional term to be compatible (i.e.,
give a well-posed problem together) with the time-dependent system
(20.1), so as to make the limits v + 0 and t + = interchangeable.
With v > 0 , the additional term indeed represents a physical effect,
namely, static molecular diffusion, which could normally be neglected.

The system (20.6) with (20.8) replacing (20.6b) is called the
augmented CNS {ACNS} sysfem. fts principal-part determinant is
rvud a+2 , 50 it i3 indeed elliptic It requires the same d + 1 bou-
ndary conditions {on u and ¢} as before, plus a boundary condition
on p f{or p}, on all boundaries. But the sign of v ensures that
the latter condition will affect the solution in the limit v + 0 only
at points where the flow entens the domain. At non-entry boundaries,
an artificial boundary layer (discontinuity in the 1limit) would be for-
med; but it can be avoided by using the original continuity equation
(20.6b) as the extra boundary condition at such points. If a{f boun-
daries are such, however, we will have only gnadient conditions on 0
along the boundaries, hence we will need an extra integral condition to
uniquely determine the solution to the ACNS system, and also, in the
limit, to the CNS system. This condition is usually the fetal mass,
or some equivalent datum. Indeed, if the flow nowhere enters the do-

main, rigid walls are all around, then the total mass is determined
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only by the initial conditions, and therefore should be added as an

extra condition to the steady-state equations.

20.1.4 Inviseid {Euler) and subprincipal cperators. The inviscid case
{Buler equations) is the system (20.6) with vanishing vigcosities and
heat conduction: A = u =k = 0 , More precisely, the flow is inviscid
{free of viscous and heat-conduction effects) where 1} , u and « are
small compared with pitq , where L is a typical length of change of
u and ¢ . Usually there will be come particular narrow subdomains,

such as boundary layers, where £ will be just small enough to make
the flow viscous. Thus, viscosity effects can seldom be completely
neglected. Anyway, wherever the flow is inviscid, the scale where vis—
cosity dominates is much smaller than the scale of changes in the flow,
which will later also be the scale of our grid h . So we like to iso-
late the terms which dominate the flow in that intermediate scale (small
gcale in terms of the flow geometry, but large enough to neglect visco-
sity and heat conduction). These are the sub-principatl terms, defined
as all the terms that are either principal or become principal when

A, 4 and x , or some of them, vanish. They form the following sub-
princdpal opcraton Ly

ou-xall e “X3qy4 0 0 3
S e Q Xy 0 o 34 |, (20.9)
2
P 31 .- P 3y Qv Q 0
pBl v pad o OK 0
0 LR 0 P, -P, 1
where generally
Q, = -V (a¥)} + pu-¥ . (20.10)

This is the operator that should be kept in mind in the focal proces-
sing, such as relaxation, and in the choice of discretization to be
used with relaxation. The coefficients u , 0 and p appearing in
LS are actually the values of some solution around which the flow is
examined through principal linearization (see Sec. 31.4); they will al-
ways be derived from the current approximate solution T  (see Sec.
20.3.5). It can always be assumed that the current approximation is
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close enough to the solution, by employing continuation if necessary
(see Sec. 8.3.2). The determinant of Ls , developed by its last row,
is

_ d-1 = 2
det L = Q]_| (Q‘Qv(Qu-lA) - {p prK + ppaqu)A} . (20.11)

The neduced (prdincipal] operatoa L. is defined as Lg for

A=p=kK=vy=20, i.e,, the principal part of the inviscid limit.
Qq 0 0 3

d {20.12)

2

det 1= od(a? - p%a?s) = s nun? - 2?1, {20.13)

where a = (po+p_2ppe)5 is the speed of sound. (In the time-dependent
inviscid case the operator in brackets in {20.13) is replaced by

[(g% + 5-2)2 - a%a1, showing that a is the speed relative to the flow

at which small disturbances would be propagated.) The ratio M = g/a

= (g-g)*la is called the Mach number. Where M < 1 the flow is called

subsondic, where M > 1 it is called supersondic, and the line where

M =1 is the sonic £ine. we can see from {(21.13) that the steady-
state inviscid supersonic equations are hyperbolic, regarding the
stream direction u as the time-like direction, with three families
of characteristic lines and three characteristic speeds: q , |a-g|
and |a+g| . The steady-state inviscid subsonic equations are neither
hyperbolic nor elliptic, and have only one family of characteristic
lines, namely, the streamlines. In either case the eguations are of
order 4 + 2 , hence require d + 2 boundary conditions per stream-
line. The only restriction on theae imposed by (20.13) is that, in
the subsonic case, at least one condition should be given all along
the boundary (on both sides of each streamline). Actually the situa-
tion is more complicated since the flow can be partly subsonic and
partly supersonic and, more importantly, acceptable solutions of the
invigcid equations are only those obtainable as limits of solutions of
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the viscous equations. This latter requirement determines which of
the boundary conditions of the full CNS equations will affect the in-
viscid flow away from the boundary, and which will be ignored in the
inviscid limit; creating a discontinuity (boundary layer). It alsoc
determines what type of discontinuities (shocks) are permissible in
the interior. The derived rules for permissible discontinuities are

sometimes expressed as "entropy conditions".

Our approach here to the inviscid case will generally be to imi-
tate the physics. Instead of deriving entropy conditions and then im-
posing them numerically, and instead of getting fully into the gues-
tion of correct boundary conditions, we will locally (i.e., in relaxa-
tion) use a numerical scheme which contain artificial viscosity exactly
analogous to the physical viscosity, thus ensuring correct selection of
discontinuities. Our local processes need artificial viscosity anyway,
to eliminate high-frequency errors.

The reguired magnitude of the artificial viscosity coefficients
can be seen from det L. . They should be as effective on the scale
of the meshsize h as other terms, hence, regarding each differentia-
tion symbol as O(h—l) , the coefficients (i,p,v,«) should be chosen
so0 as to make the order of det Ls homogeneous ip h . It is easy to
see that this is obtained if and only if the artificial A,u o,
and x are all O(hp|31) , in which case det Ls is homogeneously of

order W 9% |

20.1.5 Incompressible and small Mach limits. The incompressible limit

is the case of vanishingly small 3p/8p . or indefinitely large P, -
The main operator in this case is the cofactor of ?p in (20.9) (redu-
cing by one the number of equations, corresponding to the fact that »p
is no longer unknown). The resulting system is reducible: the momen-
tum and continuity eguations form a separate system of equations for

u and p , easily simplified to (19.3) above. An exactly analogous
situation ariges if Be ¢ instead of Py - is large, and, more genera-
1ly, whenever the Mach number is small. Thus, if one develops a multi-
grid solver for cases which include regions with small Mach, its disc-
retization and relaxation should be efficient in the incompressible
limit {19.3).

iy —— g

o —— ..
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20.2 Stable staggered discretization

20.2.1 Discretization of the subprincipal part. The stable discreti-

zation constructed here is for use in relaxation processes, and will
thus (see Sec. 2.1) be based on considerations concerning the subprin-
cipal operator (20.9) with the coefficients u , 0 . P . P, P rega-
rded as fixed. For all admissible valnes of these coefficients, the
discretization and relaxation processes should be uniformly effective.
In particular, they should accomodate the incompressible limit (cf.
Sec, 20.1.5). We will therefore use a staggered grid as in Secs. 18.2
and 19.2 (non-staggered grids are discussed in Sec. 20.6}, with ph ’
&P ana ph {the discrete approximations to o ., € and p) defined
at

h h
= . . 20.14
Xy X * (klhl,.. ,kdhd) {cell centers} (20 )
h . .
and uy {approximating ui) at
WHed ol sn, (i-face center) , (20.15)
k k —-i
where k = {kl,....kd) are vectors of integers, hlx---xhd is the
size of the grid-h cells, bi - higi , and e, is the i-th coor-
dinate unit vector. In two dimensions {& = 2) the ataggering id de-

picted in Fig. 20.1.

Uz Uz
Uy Pep Uy PE.D Uy
Uz uz
U prep U PP u
Uz Ua
FIGURE 70.1 Grid 3f&ggening fon compnressible Mavien-Stokes discneti-

rafoen
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With this staggering (20.9) can indeed be approximated by repla-
cing 3, by its shoat central analog a? B

Me(x) = [4(x + .5h,) - olx ~ 5001 / b

it = i = M| i
h h h :

replacing aij by 3ij = alaj , and each Q, by a proper approxima-
tion Qu . Calling the resulting operator L5 , we find, similar to
(20.11),

h_ , ha-1l, hh h _1.h 2 _h h, ,h
get Ls = (@D fg o t ) - AeT) = (e p,3, *+ PP.Q)8 1, (20.15)

where Ah = Ea?j is the usual (2d+l)-point discrete Laplacian. Thus,
the approximation is h-elliptic provided Qn . Qt and Q: are h-

elliptic.

The approximation of these diffusion-convection operators is
generally similar to that of Qh in Sec. 1%.2, with p/u replacing
R , with ofhpjul} replacing o(hlu|) , and with some modifications
in case of shocks. Such modifications, introduced of course in the
conservative formulation (see Sec. 20.6), have been atudied for the
nonlinear convection-diffusion equation ~-~edu + al(uz) + azu = f , but
are not yet implemented in the CNS programs. The main emerging rule,
as with boundary layers, is to avoid differencing across discontinui-
ties: The stronger the shock the more precisely rotated and upwinded
is the calculation of fluxes, SO the more weakly it straddles the
shock. Where boundary layer and shocks are noi present, we will thus
approximate any Q. at any gridpoint x by

h d/ h o h. . .h, , zh,  zh2h

Qu(x) = jﬁl(—aj(uj(x)aj) + p (x)uj(x]aj ) A (20.186)
where Eh(x) and ﬁ?(x) are central averages of ph and u? , res-~
pectively, over points nearest to x . and

al(x) = maxla,B8h oPlalll - (20.17)
3 3 3

The max in {20.17) is taken in principle over all values of hj . ph
and ub in some neighborhood of x . Usually any neighboring values,
not negessarily exactly maximal ones, can be taken, except near a
stagnation point, where M nearly vanishes. £ 1is an 0(1) parameter;
g = % normally gives upstream differencing, but slightly larger values
(3 = .6 or .7} may give hetter results (cf. [B1l7]).
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20.2.2 The full quasi-linear discretization. Guided by the above dis-

cretization scheme for the sub-principal part, the discrete approxima-
tion to the full CNS system (20.6) on the staggered grid {20.14)-
{20.15) will be written as

hh _t.sh h_ .hh_ ch hoi .
Qluf - X gaijuj L at i, (i=1,...,4) (20.182)
h h h2 . .hh_ .k h
gge + (0 § aqul = £ at  x; (20.18b)
hh  h,..hh__h h _ .h h
Qre + p § Bjuj - B {u) = fE at Xy (20.18c)
" - g™ =0 at x: , (20.18d)

where all QZ ‘are defined by (20.16)}-(20.17) and Bh(gﬁ) is the sim-
plest central approximation to

= 2
B(u) = uifj(aiuj + ajui)ajui + A(i au” . (20.19)

The exact form of Bh is not important since it is neither a principail
nor a subprincipal term. gﬁ - (f?,...,fg,fg,fz) are acme local avera-
ges of £ ; injection £ = f {s usually used, except in some cases
where this fails to give good enough approximations on the finest grid
(relative to the grid-2h solution, whose right-hand side is

2h _ . 2h.h
£ =10,

The scheme (20.18) will be used in the relaxation processes.

The same scheme, but without the artificial viscosity terms (“2 =
in (20.16)), will be used to calculate residuals transferred to coarse
grids, thus making the overall approximation O(hz)-

In the invisedd case (A,p,« << phlu|} the term with X in
{20.18a) and the term BP(u") in (20.18c) may be omitted. They do
not contribute to the h-ellipticity of the system. The resulting
scheme is nothing but Euler egquations with a simple form of artificial
viscosity, derived from the viscous (Navier-Stokes} equations.

20.2.3 Boundary conditiong. At this stage of development, to separa-

te away various algorithmic questions (cf. Sec. 4), the numerical ex-
periments were conducted with known smooth solutions U , employing
first periodic boundary conditions and then Dirichlet conditions in two
dimenaions (d = 2). 1In the periodic case no boundaries are actually
present; gridpoint (xl,xz) is simply identified with gridpoint
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{xy+2m,x,+27) . This enables us later to check that no slow-down is
caused by boundary conditions. The Dirichlet case at this stage is

the square domain ([|x[,|y| « 7} , with u , p and € given on its
boundary. The staggered grid is square and is placed so that the boun-
dary of the domain coincides with cell boundaries; i.e., hl = h2 = h =

21/8  and xE = (h/2,h/2) (see {20.14)}.

Moreover, to simplify the code development, the Dirichlet boun-
dary conditions are at this stage placed not exactly on the boundary
but in their natural staggered-grid positions. For example, p and ¢
are specified at the cell centers immediately outside the boundary,
i.e., on the lines {|x|,]y|] = 2r + h/2} This is easy to do at this
stage since the numerical tests are made with known solutions U ,

whose values are in particular known on that staggered boundary. Ulti-

~mately, these staggered-boundary conditions will be obtained by (quad-

ratic) extrapolation from the real houndary conditions as well as in-
terior values; the present type of conditions is only employed in order
to separate away questions as to exactly when and how this extrapola-
tion should be made.

In the inviscid case some of the above conditions are redundant,
but the code can handle this automatically (cf. Sec. 20.1.4}.

20.3 Distributed relaxation for the gsimplified system

20.3.1 General approcach to relaxation design. Since the problem at

hand is not elliptic, one should not attempt obtaining "perfect smoo-
thers" (see Secs. 3.3, 7 and end of‘Sec. 4.1). B8So the guestion is how
to use the usual measure of relaxaticon performance, namely, the smoo-
thing factor W, in selecting the relaxation scheme. We do it by
dividing the relaxation design ipto the following three stages.

(A) First, a pointwdise {not-block) and direction-free relaxation,
with low {per operation, of course, and with the other considera-
tions of Sec. 3.2) is constructed for the fullv h-elliptic operator
LE obtained from L when sufficiently large and {sofropic artifi-

cial viscosity terms are used. This means replacing {(20.17) by
u? = max(a,8o" max h,|uf|l , (20.20)
L

and choosing B just large enough toc make excellent 3 obtainable
independently of relaxation marching directions. It means that B

ey
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should be appreciably larger than the minimal value g = .5 needed
for stability of simple relaxation schemes. For example one can take
for this purpose B = 1 ; any larger value of B will not substantia-
1ly change the smonthing factors, and will especially not change the
comparison between different relaxation schemes.

{B) Having designed the relaxation scheme, it is then actually
used with the anisctropic artificial viscesities (20.17), rather than
(20.20}, MNote that if the flow is not {nearly) aligned with the grid,
there is no fundamental difference between the two. If the flow i4
aligned with the grid, there is one kind of high-frequency error com-
ponents V which are not deflated in the anisctropic as in the isot-
ropic case because LhV is much more closely singular than Lgv
These are the "characteristic components”, i.e. high-frequency compo-
nents which are smooth in the flow direction. When the flow is not

aligned with the grid, neither scheme approximate these components well.

I1f there is alignment, only the anisotropic scheme approximates them
well, but exactly for this scheme and these components the pointwise
relaxation is not effective. (The effectiveness of relaxation in the
isotropic case is obtained for a characteristic component at the price
of not really approximating its amplitude in the differentiaf solution,
which makes the Fast convergence for this component meaningless; cf.
Sec. 12). It is meaningful to get good smoothing for the characteris-
tic components only if the alignment is staong (i.e., intended and con-
sistent; see Sec. 3.3}, and exactly then it is pessible to do that,

via block relaxation.

Thus, the pointwise nelaxation scheme, designed in teams of the
isotnopic antifjicial viscosities (20.20}, 44 actually used with the an-
isotrnopic viscosilfies {20.17), and it is modified Lo the conresponding
block scheme in case of stnong alignment. "Corresponding” means that
the same distribution matrix Mh , and a similar relaxation crdering,
are maintained while the "ghost functions® w, (see Sec. 3.7) are
relaxed in blocks instead of pointwise, where the blocks are in the

specific strong-alignment direction.

(C}y To this basic relaxation schéme, several improvements can be
added. First, the value of & can be lowered, either experimentally,
or theoretically through the modified smoothing range (12.1). (As
explained there (following Eg. (12.1}), if B8 is lowered to near its
minimal stable value (f = .5) , the fipal result may be improved by

averaging. Also note that near 8 = .5 , downstream relaxation orde-
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ring may become badly divergent for some special smooth component
which may not show up in one experiment but badly affect another; see
Sec. 20.3.4). Then the equations may more precisely be rotated and
upwinded near strong shocks, doublé discretization schemes maf be in-
troduced (see Sec. 10.2), etc.

In the two latter stages, (B) and {C), efficiency should of
course mainly be measured not in terms of asyrptotic factors., but in
terms of FMG performance, whether experimentally (see Sec. 1.6) or
theoretically (see Secs. 7.4,7.5).

20.3.2 Possible relaxation scheme for inviscid flow. 1In the inviscid

case the principal difference operator is LB {cf. {20.12)), and the
usual distribution operator (cf. Secs. 3.7 and 19.3) would be

h_h
1 -9,%

.

O

h 1 -3Noh
r
O 1 -p Ah

Ah

' {20.21a)

"
& o

1 -p

o - 0 o o @’

where the last column is made of the cofactors of the last row in L? R
divided by their common factor (QB)Z , Since

h -
% 0 0 0

h
L - % 0 0 0 (20.21b)

2 2 h

o al . 4] ad QO Q 0

h
pB, T P4 Q, 0
h,2 2.2,h

0 0 e, P, (00) -pTa"h

the relaxation process is essentially decoupled inta relaxing the convec-

tion operator Qg and, separately, the potential-flow operator Lgot-=
(QE)2 - ozaZAh . The former has been discussed in Sec. 19.3; the
latter is currently under renewed study via numerical experiments with

potential flows (see remarks in Sec. 21).
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Fon Pow Mach numberns the potential operator is nicely elliptic
and the performance of the solver is essentially the same as in the

incompressible limit (see Secs. 20.1.5, 19).

In the transonic and supersonic case, Lhot is not elliptiec, so
the approach outlined above (Sec. 20.3.1) is applied. Taking larger
artificial viscosities shows, however, that the present approach is
not optimal. This is easy to see by observing the limit case of large

artificial viscosities, where L ~ (Ahlz , i.e., the relaxed opera-

tor is essentially the biharmonigp;perator, for which Gauss-Seidel
smoothing is relatively slow: U= .80 , Better smoothing schemes for
Aﬁ exist (see [B7, Sec. 6.2]), but they are mgre complicated, and not
fully effective, too. The best scheme for Ah igs obtained by writing
it as a system of two Poisson equations, each relaxed by red-black
Gauss-Seidel, yielding ;1 = ;2 = ,25 ({cf. Eq. (3.2)), with oper;tion
count considerably smaller than for Gauss-Seidel relaxation of Ah
This reqguires the introduction of an auxiliary function and some spe-
cial care near boundaries, and is much less convenient in case of the

actual operator Lh , especially in the present framework of the

overall distributegpzelnxation. We therefore avoid this trouble by
choosing another distribution operator , where care is taken not

to distribute as far as to create the need to relax the &quare of Qg
Moreover, the new approach, to be described next, is applicable to the
general CNS system, whereas {20.21) applies to the inviscid limit only,

since it assumes 0u = Qlc = Qv

20.3.3 Distributed collective Gauss-Seidel. In view of the subprin-
cipal operator L2 {cf. (20.9)), the digtribution operator

h
1 =3

. o 5

h
o - 1 “33 {20.22)
5

yields
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h_3,h
ah-3aY, o 0 0 0
O hoo.h
Liuf = Q%9 0 0 0 . (20.23)
2.h 2.h h 2,h
oa) n%ay @ o 028
h h h __,h
pal pad 0 QK pa
740 z.h ; . ho_
Aoy Mg Py Pe 93

with few operations expended on distribution (relative to those expen-
ded on calculating residuals) the relaxation is thus decoupled "geogra-
phically”": each of the d + 1 uniform grids composing our staggered
grid {cf. {20.14)-(20.15)) is separately relaxed (in terms of the ghost
functions; see Sec. 3.7). The relaxation for each i-face-centers grid
is a simple Gauss-Seidel with the cperator QE - Xa?i ; which actually
behaves better (has stronger h-ellipticity) than the convection-diffu-
sion operator Q The relaxation of the cell-.centers grid is a re-
laxation on the 3 x 3 system

S S O
S (20.24)
h

We could relax this system itself by distributed relazation. But this
would yield in the inviscid case the relaxation of Sec. 20.3.2, which
we have rejected, and in the viscous case would be worse yet (requi-

ring higher order distribution, because Q\‘| # Q. #£0Q Instead,

3)
we relax {20.2.4) by collective Gauss-Seidel (CGS); ET;., all the
three equations defined at each cell center are relaxed simultaneously.
This means a solution of a 3 x 3 linear system, with two convenient
zeros already in it, which can be done in 13 operations, a small num-
ber compared with the work of calculating the 3 residuals at each cell
center,

20.3.4 Relaxation ordering and smoothing rates. The relaxation of
Sec. 20.3.3 is examined through the approach of Sec. 20.3.1, i.e., by

calculating smoothing factors |, for the {actropic artificial visco-
sity (20.20)., Direction-free rcbust schemes are sought. For such
schemes U always improves {decreases} with increased physical vis~-
cosities (u,X,x,v) . (The only case in which U <{rcreases with in-

[ o

i -

-
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creased viscosities is the special case of large Mach numbers and down=
stream relaxation, a case which is not direction-free and which is
also ruled out below for other reasons.) Hence, examined here is main-

ly the inviscid case u = X=x=v=20,

By (20.23), the relaxation can be performed as 4 + 1 separate
passes, d of them with the operator Qg , and one with the system
(20.24). Hence u =
relaxing Qg and n' is the smoothing factor in the collective rela-
xation of (20.24). BRoth depend on the order in which the correspeonding
passes are made, on the value of B in (20.20), and on the direction

of u , and L' also depends on the Mach number M . This dependence

max(ﬁo.ﬁ') , where EQ {s the smoothing factor of

is shown in Table 20.1. Notice that, except for RB(2) , 0= U’ 3 GQ '

Q (assuming the same ordering is uged in

and in most cases 1 ® u' & D
all passes). This results from the fact that 03 is a divisor of the

detarminant of {20.24).

The table shows it very efficient to use red-black (RB) ordering
in all passes. First, because of its usual advantage of being vectori-
zable (cf. Sec. 3.6). Secondly, for sufficiently large 8 {and hence
also for viscous flows), RB smoothing rates are superior to all others.
Only when & approaches its minimal value (¢.3., for B < 1), down-
stream ordering (e.g., lexicographic ordering in case all u, 2 0)
shows better smoothing rates; but this is not direction-free: it is
complicated to maintain downstream ordering in case the flow directions
{i.e., the signs of ul,...,ud) change with locaticn. Also, the compo-
nents for which RB is not so good at smaller B8 are exactly the cha-
racteristic components one needs not care about {see Sec. 20.3.1).

Moreaver, the main advantage of the downstream relaxation is
shown as super-fast smoothing in case of small 8 and large M : in-
deed, 7 +0 as B + .5 and M + = . But this small i shows only
the behavior of high-frequency components; there are fow-fregquency
ones for which exactly this relaxation badly diverges: the amplifica-
Lt ,u)/q . This

tion is about 2°'M for a component (8,,9,) ™ 27y
does not happen when the slower schemes are used, such as RB, or even
the downstream ordering with larger B (B8 3 .8 , say): For these la-
ter schemes some low-freguency components may still diverge, but the
divergence is slow and easily corrected by the multigrid coarse-grid

corrections.

Table 20.1 also shows aymmetric ondending (SGS) to yield a very

afficient smoother. The bad behavior of fow freguencies for large M
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(uyruy) = (1,1} (“1‘“2) = (0.1)
Relaxation

ordering “ B 2.0 1.0 0.5 2.0 1.0 0.5

RB(1) * .27 .33 1.00 .27 .31 .50

0.0~0.1 27 .43 1.00 .27 .31 .50
1.0-5.0 | .40-.41 .46-.48 1.00 .27-.29 .33~.36 .50-.55

RB(2) * .39 .50 1.00 .36 .39 .42

0.0-0.1 .27 .65 1.00 .27 .31 .50
1.0-5.0].33-.35 .41-.42 1.90 .27-.29 .33-.39 .50-.55

Lex+ * .38 .25 0 .46 .42 .47
0.0-1.0 | .44-.50 .42-.50 .42-.50 | .48-.50 .47-.50 ,49-.50

2.0 .41 .35 .24 .47 .45 .48

5.0 .39 .29 .056 .46 .44 .50

Lex- * .63 .75 1.00 .58 .66 .72
0.0-5.90 .63 .75-.76 1.00 .58 .66-.67 .84-.86

Lex+- * .54 .63 1.00 .58 .66 .72
0.0-5.0 | .54-.55 .63-.64 1.00 .58 .66-.67 .B4-.86

SGS * .48 .42 4] .50 .49 .49

0.0-0.1 .50 .50 .50 .50 .50 .50

1.0 .51 .54 .60 .51 .54 .60
5.0 .49 .46 .24 .50 .51 .53

TABLE 70.1 Smoothing factons for two-dimensdonal Eufen equafions

T = max(n2,0'}. In the nows whene * stands for M, 59 is displayed:

in the othens ' &5 displaged. RB(L) {4 aed-black ordening with i sweeps
pen cyele lﬁi dendved by Eq. [3.2)). Lex+ is fexdcographic orndendng,

Lex— 44 the nevensed Lexicographie, Lex+— {4 fexicographic with only the

v coondinatz revensed, and SGS Ls Symmetnic GS (a Lext pats alteanating
with a Lex— one, u cafculated pen pass).
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and B ~ .5 is still theoretically present here, although more weakly.
one can eliminate this trouble simply by switching to larger 8 {e.qg..,
f = 1) wherever M is large and the relaxation marching happens to be
downstream. In fact, there is no reason to use the same B at the

same location in all passes, especially as still another value (3 = 0)

is used for fine-to-coarse residual transfers.

20.3.5 Summary: relaxation of the full system. The scheme outlined

above for the subprincipal part Lz eagily translates to the following

relaxation procedure for the full quasi-linear system {20.18). We de-
note by - (E“.Eh.?h.ﬁh; the dynamic approximation to the solution
U= {u,p.e.p} , i.e., the approximation stored there just prior to any

described relaxation step, while Uh = (g?,ph,eh.ph) will denote the

exact solution of the stable difference equations (20.18).
= (r?,...,rg,rh,rz,rh) will denote the dynamic residuals, i.e. the
left-hand sides of (20.18) applied to ﬁh instead of Uh and subtra-
cted from the right-hand sides. Thus, at each step of each relaxation

pass T and rh change.

The relaxation steps are first described for the case where there
is no strong alignment between the grid and the flow direction.

A relaxation sweep consists of 4 + 1 passes. The recommended
ordering within each pass is either the red-black ordering (which we
used throughout our numerical experiments so far} or the symmetric
lexicographic (5GS).

First, one pass is made for each momentum equation. The i-th
aquation at the point xz’l is relaxed by the replacements

i {20.25a)

~h _~h _ 7.hh

Pt laiwi,k {20.25b)

where ¢? k is a function defined at all i-face centers (see (20.15}},
vanishiqg on all of them except at the relaxed point xg'l . Its value
at xa’l is determined so that

~h h h,i, _ . h h,i

Quwi,klxk ) ri(xk } {20.26)
where the coefficients of 53 are evaluated at xﬂ'i {see (20.16)),

based on ﬁh . Neglecting non-principal effects this means that after
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h, i

the changes (20.25), the i-th momentum equation (2G.18a) at K

will be satisfied.

Then, a pass is made on cell centers. The three equations defi-
ned at the cell center xﬁ are relaxed simultanecusly by replacements
of the form

W el (ial,...,d (20.27a)
~h _~h . .h _ _h

+gh - 20.27b

- Qu+l ¢k { 27b)

ghoLgh 5: {20.27c)

h.ogh, b (20.27d)

k

h ~h
where ¢k ’ Ek

(20.14)), vanishing everywhere except at the relaxed poing x: . At
h

and 52 are functions defined at cell centers {see

L their values are chosen 80 as to s§tisfy the three eguations
@0 - 52 o = Mo (20.28a)
@R - Falel) oy = xR (20.28Db)
-B,by - Beip + Ghx op () = 2Dl (20.28c)

~ e ~ . e ~h
where p , P P, s Pg and the coefficients of Qg e QL

all evaluated at xi ., based oh ﬂh .

The functions ¢2 ) ¢: ' 52 and Ez mentioned above do not
’

~h
and Qu+i are

actually appear in the program, of course. They just serve to conci-
sely describe the relaxation steps.

Instead of the separate d + 1 passes just desc¢ribed, they could
of course be merged in any desired fashion.

Tn case of strong alignmenit, i.e., if one grid direction nearly
coincides with the flow direction throughout a major subdomain, rela-
xation should be done in the corresponding blocks {lines in the align-
ment direction). 'This means that each unknown function (wh in case
of (20.25) and o7 , 3® and &M in case of (20.27)) are free (i.e.,
not fixed to be zero) not just at one gridpoint at a time, but at all
gridpoints of the relaxed block, thus giving exactly the number of )
parameters needed to simultanecusly satisfy the equations ((20.26)} or

o« s -

iy T

s W
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(20.28}) at all gridpoints of the block. In case of plane alignment
(cf. Sec. 19.2) it is advisable to coarsen the grid only in that plane
directions {(cf. Sec. 4.2.1), in which case no block relaxation will be
needed.

The tefal wertk of the relaxation sweep is only a fraction (20%
or so} larger than the work of expressing the differences equations
(20.18), or calculating their residuals, at all gridpoints.

20.4 Multigrid procedures

The grids, their relative positions and the interpclation proce-
dures between them are generally as for Stokes eguations (Sec. 18.4),
with p and e transferred similarly to p , and the residuals of the
energy and state equations transferred similarly to the residuals of
the continuity equations. Because of the nonlinearity, FAS is of
course used (see Sec. #), and the full weighting (18.14) is preferred
over (18.13}) in the fine-to-coarse transfers of both the velocity uy

and the i-th momentum residual.

An option for doubfe discretizatien {cf, Sec. 10.2) is included.
Namely, the artificial viscosity terms may be omitted in calculating
the residuals to be transferred from any grid to the next coarser one.
More generally, the artificial-viscosity coefficient B (see (20.17)),
may have different values at different stages of the algorithm.

Whatever the value of B , in any stage of the solver, the disc-
retization should also attempt not to straddle strong discontinuities,
by calculating one-sided fluxea. As mentioned above, such features
have been tested in simpler probléms, but are not yet incorporated in

our CNS system.

Note that in FAS, Dirichlet boundary conditions appear the same
on all grids, whether the grid is the currently-finest or a correcticn
grid. This can also be the case in the staggered boundary conditions
employed at this stage (see Sec. 20.2.3): The exact differential so-
lution is enforced at the staggered boundary points of the coarser,
correction gqrid H , too. On those points, the value of igﬁh is also
defined to he the exact solution, hence, for the purpose of interpola-
ting back to the finer grid (like Eq. {B.6)), the difference ﬁ“—fﬁﬁh
is define! to be zero at the staggered boundary points.

As in other non-elliptic cases, w cycles are generally prefer-

red to V cycles (see Sec. 6.2).
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21, REMARKS ON SOLVERS FOR TRANSONIC POTENTTAL EQUATIONS

21.1 Multigrid improvements

The multigrid solution of transoni¢ potential flows has been
studied by the author long ago in collaboration with Jerry South (521,
[B7, Sec. 6.5]. At that time multigrid research was less advanced,
and many of the improved'approaches described in this Guide were not
implemented. Collected below is a list of important improvements
that should be incorporated in future works.

(A} The Neumann boundary condition and the constant-potential-
jump condition in the wake should not be enforced in relaxation, only
smoothed {see Sec. 5.3). Thus, in relaxation, the potential jump at
each wake point should be just set to be the average of the jumps at
the neighboring wake points. The conditions should only be enforced
on the coarsest level. Likewise, Kutta condition should only be app-
lied at the coarsest level (cf. Sec., 5.6): the far-field conditions
on each level should accordingly be adjusted at the stage of interpc-
lating-and-adding the coarse-grid correction.

{B) Improved rates can be obtained if, before each full relaxa-
tion sweep, special local sweeps are made around singular points, such
as trailing edges {see Sec. 5.7}.

{C) Near a strong shock it may be better to use interpolation
procedures which take jumps in p into account (see See. 4.6},

{D) Instead of stretching coordinates (to cover large exterior
domaing) and other transformations, a better multigrid procedure is
to use ircreasingly coarser grids on increasingly larger domains,
possibly with local refinements, anisctropic refinements and local
coordinates (see Sec. 9). On such grids simple relaxation schemes
can be use; block relaxation is only needed in directions of strong
alignment (see Sec. 3.3},

(E) Most importantly, because of the non-elliptic nature of the
problem, perfect smoothers and good asymptotfic convergence rates
should not be attempted: much simpler and vectorizable schemes can be
used if all one attempts is to get below truncation errors {(see end
of Sec. 4.1 and Secs. 3.3, 7 and 20.3.1}). Correspondingly, the per-
formance of the algorithm should be ascertained through direct measu-
M| (see sec. 1.6) and of |FM(FM-P?RFM|
where F(¢) isa any solution functional one wants to get as the end

rements of ||3P-

result of the computations. If the norm measures discontinuous gquan-
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tities, such as velocities, it should be an L1 norm [Bl17, Sec. 4.5].

21.2 Artificial viscosity in guasi-linear formulations

The transonic potential eguation can be written in the guasi-
linear form

Twv)? - aaje =0 (21.1)
where u = V¢ This operator has appeared above in the discussion
of Euler and Navier-Stokes equations (see, e€.g.. gq. (20.13), or
(20.21)). This physical origin of the operator suggests a physical
form for the artificial viscosity which should be added to it, diffe-
rent from the Murman-Cole-type forms currently in use. Namely, the
artificial viscosity should be added to u+¥ , before it is squared,
uaing generally the form of Qg (see (20.16)-(20.17) for a = 0.
In particular, if upwinding is desired, it is the operator u-¥ that
should be upwinded, before it is squared.

This form of artificial viscosity (or upwinding) is not only
smoother and more physical, it is also more straightforward than the
usual scheme where the operator should be rotated before it is upwin-
ded. Also, the new scheme reguires no distinction between subsonic
and supersonic points. The main difference between the two schemes
is near sonic points (M~ 1), or near shock transition from'superso—
nic to subsonic. The Murman-Cole artificial viscosity vanishes there,

and may therefore give rise to non-physical solutions.

In deeply subsonic regions, where {21.1) is uniformly elliptic,
the form of the artificial viscosity does not matter of course, and
one can switch to fully central approximations. In multigrid proce-
ssing it is not important to do that, because O(hz) approximations
can be obtained, even in the supersonic regions, by omitting the arti-
ficial viscosity {or the upwinding) from the operator used in the

fine-to-coarse gesiduals transfer.

This latter operator should however respect shocks, as far as
possible. Namely, it should be written in conservation form, and the
stronger the shock, the weaker should it be straddled by flux calcu-
lations.
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