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1 Introduction

In these notes we discuss the effects of dispersion on the duration and
shape of femtosecond duration laser pulses. As the duration of the avail-
able laser pulses became shorter than a few hundreds of femtoseconds, the
corresponding bandwidth became so large such that dispersive effects, as-
sociated for example with the propagation through material media, became
important to the extent that severe pulse distortion can happen upon prop-
agation. Some clever devices have been devised, with which it is possible
to compensate for the distortion caused by dispersion, so that today pulses
as short as 6 femtoseconds can be generated!.

Consider for example a pulse with a duration of 6 femtoseconds and a
central wavelength of 620 nm. With this duration the pulse envelope covers
only three optical cycles of the carrier wave. The associated bandwidth is
larger than 65 nm, and spans most of the visible range. Such a pulse will
have its duration doubled upon propagation through 1 mm of quartz. In
order to perform experiments vsing these pulses it is necessary to propagate
them through lenses, mirrors and other optical elements so that it is esssen-
tial to know what kind of distortion shoud be expected and, better still,

'R.L. Fork, C.H. Brito Cruz, P.C. Becker and C.V. Shank, Opt. Lett. 12, 483 (1987}
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how to control and compensate it. In pulse compression systems it is also
necessary to use adequate compensation for distortion due to dispersion, if
the best short pulse for a given system is desired?.

2 Pulse propagation and dispersion

To consider the effects of dispersion on an ultrashort laser pulse it is more
convenient to represent the pulse in the frequency domain. Let us consider
a pulse described in the time domain as

e(t) = egft}ezp{jlwot — $(1)]}
with Fourier transform given as
E{w) = Eo(w)ezp|ijPo(w)].

Upon propagation through a dispersive medium the pulse will accumulate
a phase shift, which is frequency dependent, given as ®{w). This phase
shift contains the effect of the dispersive pproperties of the medium. For
example, in the case of propagation through a length of quartz, with a
refractive index n,(w), the accumeultaed phase shift will be simply &{w) =
¥ % ny(w). According to the particular dependence of $(w) on the angular
frequency, different types of pulse distortion (or even distortion correction)
cant OCCur.

2.1 Phase distortion

The accumulated phase shift can be expanded as a Taylor series

dP(w)
dw

P{w) = &fwo)+ (wo) x (w = wo) +

2w o
%d ‘I’(z )(wo} X (w—wo)? + %d ‘I’(:")(uo) x {w —wo)® +
at
%_9_(:"_)(%) X (w = wolt + 4w (1)

*See notes by A.M. Johnson on ‘Puise compression using optical fibers’ on this same
Winter College on Ultrafast Phenomena

T - 2w

(=1~ X+

T(\ﬂ’é (wo):ﬁ (wa)(w—wo) + ﬁ (w, )(w w“) .....

/]

lhocr weep pcrub. awesp

Figure 1: Group delay expansion and related distortion.

Each one of the termms represents a different effect on the pulse shape. The
first two terms on the right and side correspond, respectively, to a fixed
phase shift and to a delay in the pulse as it propagates. It is easy to show
that any linear dependence between the phase and the angular frequency
w does not imply any kind of pulse shape distortion, but only in a shift of
the time origin. The higher order terms are the ones that bring distortion
into play. It becomes easier to understand their coniribution by looking at
the corresponding Taylor expan.sion for the Group Delay, rs{w) = -d—%el:

i) = B ) s )+
3 [ [
2D ) x o - + 52D ) - )+
Frorene (2}

The first distortion contribution comes from the second term on the
rhs of equation {2). It is related to the second derivative of the phase
shift with respect to frequency, and corresponds to a dispersion of the
group delay around a central value, It causes the group delay to have
a linear sweep as a function of frequency. When its value is positive the
lower frequencies in the pulse spectrurn suffer a delay which is smaller than
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Figure 2: Group delay dispersion for quartz, BK-7 glass and air as a func-
tion of the wavelength.

the higher frequencies. The corresponding picture in the time domain is
that the lower frequencies of the pulse spectrum are advanced in time with
respect to the higher ones, so that the pulse emerges from the dispersive
medium with a frequency sweep across its time duration {frequency chirp}.
For positive valies of fj’um the lower frequencies tend to be on the leading
edge of the output pulse, while the higher frequencies tend to be on the
trailing edge.

In Figure 2 the value of the Group Delay Dispersion is compared for
quartz, BK-T glass and air. [t can be seen that, at the wavelength of
620 nm, 3 meters of propagation through air are equivalent to propagation
through 1 mm of BK-7 glass.

From equation (2) it can be seen that the next higher order distortion
has a parabolic shape. In this case, for example for a positive value of %ﬂ'
both the higher and lower frequencies of the pulse spectrum will be more
delayed than the central frequencies. This will give rise to a trailing edge
in the time protile of the propagating pulse, with an oscillatory behaviour
due to the beating between the high and low frequency components that
were delayed.

2.2 Gaussian pulse propagation

For the case of a pulse whose time profile is of a gaussian shape it is possible
to calculate in closed form the effect of a liner dispersion of the group delay

{“’T'},‘-‘-‘l). Consider a pulse described as:

e(t) = exp[—(2In 2)(%—)2] % exp(juot). {3)

Upon’ propagation trough a system with a quadratic phase distortion given
by (é—ffi—‘l), the output pulse shape can be easily calculated by taking the
Fourier transform of (3), applying the quadratic phase shift

23w}
dw?

phaseshift = ( )a % (W —w)?

and inverse Fourier transforming back into the time domain. The resuit is?

atwy]

1 t?
Cout(t) = ———gm— X exp{~——— 57— * exp{j[wot — M} (4)
1+ —u-,—[":”'l Sk 4b(1 + -—ﬂ-r—(‘—:f'm]
with:
T3

b 8in2 ()

_ e (Sely,
o(t) = — 2(“::"’ T2+ a9 — 0.5arctan —‘;‘b—-— (6}

2.2.1 Output pulse duration

Equation (4) describes a pulse which still has a gaussian shape but which
duration is now R
w)y?
(_‘(F)'!)n ]i- (7)
44

Figure 2.2.1 shows the variation of the output pulse duration with the input
pulse duration, for the case of propagation of a gaussian pulse through 10

Toue =T, x [1+

Ysee for ex. 5. De Silvestri, P. Laporta and O. Svelto, IEEE J. Quantum Electron.
QE-20, 533 {1984).
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Figure 3: Duration of the output pulse as a function of the input pulse for
propagation of a gaussian pulse through 10 mm of quartz

mm of quartz considering only the effects of the quadratic phase distortion.
It can be seen that, in this example, the distortion becomes noticeable as the
input pulse duration T, becomes shorter than 50 femtoseconds becoming
very severe for pulses sortet than about 25 femtoseconds. Notice that the
numbers chosen for this example are typical in many laboratory situations.

2.2.2 Qutput pulse frequency sweep

The output pulse described by equation (4) contains also a time depen-
dent phase erm, given by equation 6, which describes a frequency sweep
across the duration of the pulse. To obtain the instantanecus frequency we
differentiate the phase (in the time domain) to obtain:

w(t) d[“‘u‘d—t #(t}]
2 d’@‘w!

w(t} wa + T“%?—-— x
222" gp2

L. (8)
(9)

Equation (9) indicates that the instantaneous frequency of the output pulse
{equation (4)) increases linearly with time, what is called a positive fre-
quency chirp. Note that here the frequency chirp is not associated with
any increase in the bandwidth of the propagating pulse, since we assumed
only dispersive effects, This is in opposition to the situation in which an in-
tense pulse undergoes the process of Self Phase Modulation (SPM) caused
by the modulation of the refractive index and actually generates new fre-
quencies in its spectrum, increasing its own bandwidth.

The chirp acquired by the pulse due to dispersion can always be ex-
actly compensated, by propagating the pulse through a medium (or sys-
tem) which has the opposite type of phase distortion, thus regenerating
exactly the initial pulse.

2.3 Chirped pulse propagation
For a gaussian pulse which has a linear frequency sweep
t [
e(t) = expl - (210 2)(=)7] x ezps(wot + o t?)) (10)
T, 27,

the output pulse can also be calculated in closed form, following the same
steps described above. In this case a more general expression for the output
pulse duration results which is

2 ik IMDRY
Tout =T} x [(1_{%{:"))‘%)24-%]%. (11)

This equation shows that according to the relative signs of the group delay
dispersion, d—%&"—'!, and of the frequency sweep coefficient, éw, the pulse can
be made longer or shorter after propagation. When the chirp is positive,
$w > 0, as for the case of the pulse described in equation(4), propagation
through a medium with positive group delay dispersion will increase the
pulse duration. On the reverse, if the chirp is negative, the puise duration
will be shortened until it reaches a minimum duration and further prop-
agation will lead to broadening. At the point of minimum duration the
frequency sweep is nulled, and the pulse is transform limited. Figure 2.3
shows the measured pulse duration for a pulse propagating through a vari-
able path of SF10 glass. A clear minimum is noticeable, and this technique
is widely used in laboratories to identify any frequency sweep in the pulses.
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Figure 4: Measured and calculated pulse duration for chirped pulse prop-
agation through a variable length of SF10 glass.

3 Linear sweep compensation.

In the visible region of the spectrum, the compensation of chirp acquired
after propagation through material media requires the use of negative group
delay dispersion. However, most material media produce positive group
delay dispersion in this spectral range, so that it is necessary to resort
to special devices which make use of geometric dispersion® to achieve
overall negative group delay dispersion. The more important setups for this
purpose are:

¢ a diffraction grating pair;

e a prism pair.

*See the notes by O.E. Martines in this same Winter College on Ultrafast Phenomena.
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Figure 5: Grating pair in double pass configuration.

3.1 Grating pair

For a grating pair the group delay dispersion can be obtained from the
original work of Treacy®. The expression is
(d3<§(w)) _ —4wicl,
dw? 7 wddi1 - (£ — sin~)?

(12)

where c is the speed of light, d is the groove spacing of teh grating = is
the angle of incidence in the first grating and !, is the grating spacing. For
a grating with 600 lines per millimiter and incidence angle of 457, at the
wavelength of 620 nm the group delay dispersion is

4@ w)
for a single grating pair, with the grating separation expressed in centime-
ters and the group delay dispersion coefficient in fs®. Most of the times the
grating pair is used in a double pass configuration, as shown in Figure 3.1.
Comparing with Figure 2 it can be seen that this ammount of group delay
dispersion is equivalent to a negative quartz length of -3.8 cm. Figure 3.1

)y =-17T10 x I,

SE.B. Treacy, [EEE J. Quantum Electron. QE-5, 454 {1969).
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Figure 6: Group delay dipersion coefficient for a single grating pair.

shows the variation of the group delay dipersion coefficient for the gratings,
%L,“—'l , as a function of the angular frequency. The shaded area indicates
the F{NHM of a 6 fs duration pulse. It can be seen that there is a nc-
ticeable cange of this coefficient within this range, pointing out to the fact
that higher order dispersion terms become important at such short pulse
durations. Grating pairs are currently widely used in pulse compressors®

for pico and femtosecond pulse generation.

3.2 Prism pair

The prism pair, devised by R.L. Fork and O,E. Martinez at AT&T Beil
Labs, became one of the more important dispersion compensation devices .
Their most clear advaniage over the diffraction grating pair is the fact
that their insertion loss can be very low, since Brewster angle prisms caa
be frequently used. However they cannot provide as much compensation
as the grating pair. Their most important application is as intracavity
dispersion compensators in ‘colliding pulse mode locked lasers’, which after

%See notes by A.M. Johnaon in this same Winter College on Ultrafast Penomena.
TR.L. Fark, O.E. Martines and J.P. Gordon, Opt. Lett. 9, 150 (1984).
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Figure 7: Four prisms sequence used as pulse compressor.

their introduction became able to generate pulses as short as® 27 fs. Figure
3.2 shows a typical four prism configuration. The ammount of group delay
dispersion that can be contributed by the four prisms arrangement can
be adjusted in two ways: either by changing the prism spacing, {p, or by
translating one of the prisms paraliel to its base, inserting more or less glass
in the path of the propagating puise. Table 1 lists the values of the second
derivative for some typical materials and systems. The value of (%%"—1),

Table 1: Typical values for "—:%%‘51 at 620 nm.

system LRl (142)
quariz 5401 (cm)
BK-7 glass 690 ) (cm)
double grating pair (600 ipmm)  -3640/,(cm)
prism pair {quartz, 60°) 650-32{,{cm)

*1.A. Valdmanis, R.L. Fork and C.V. Shank, Opt. Lett. 10, 131 (1985).
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Figure 8: Calculated second order group delay dispersion for a double prism
pair (quartz, 50 cm spacing, 607).

for the prisms can be calculated from the propagation equations®, and is
shown in Figure 8 for the case of equilateral prisms made of quartz spaced
by 50 cm.

It should be noted that here, the slope has the opposite sign as that of
the grating pair (Figure 3.1), and in addition, there is a zero slope point in
the infrared region of the spectrum, where the cubic term will be null.

4 Cubic phase distortion

The next important term in the Group Delay series expansion is the one
related to %‘ﬂ, which is responsible for generating a parabolic sweep of
the group delay across the spectrum of the pulse (see Figure 1 and equation
(2). For a positive value of %”'l this parabolic frequency sweep tends to
cause a larger delay for the high and low frequency ends of the spectrum

of the propagating pulse, Thus the associated distortion will no longer be

?R.L. Fork, O.E. Martinez and LP. Gordon, Opt. Lett. 8, 153 (1984); O.E. Martines,
J.P. Gordon and R.L. Fork, JOSA Al, 1003 (1984); R.L. Fork, C.H. Brito Cruz, P.C.
Becker and C.V. Shank, Opt. Lett. 12, 483 (1987).
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Figure 9: Experimental scheme for measuring the frequency sweep in a
pulse.

symmetric, as for the second order term. The pulse will acquire a tail,
and beating between the high and low frequencies will cause this tail to
have fast oscillations. For the case of a negativeb %‘ﬂ the leading edge of
the pulse will have the oscillating behavior. The importance of this term
is relatively small, except in the case where the second order distortion is
completely compensated. This is exactly the case in a pulse compression
system, where usually a diffraction grating pair is used to compensate the
linear sweep acquired upon propagation through an optical fiber. When the
compressed pulse duration is below 10 fs, control of this parabolic sweep
becomes esssential for generating a clean pulse, with sharp leading and
trailing edges. For example, for a diffarction grating pair in a double pass
configuration, the value of "%[,ﬂ is 31204, fs® (@620 nm, 600 lpmm, [, in
cm), so that from equation {2} it can be found that the spread in group
delay associated with this cubic term will be of the order of 15 fs.

This spread can be measured, using an upconversicn technique in which
a short pulse with 40 fs is mixed in a nenlinear crystal with the compressed
pulse. The schematic of the measurement is shown in Figure 9. Figure 10
shows the time evolution of the frequency components of the compressed
pulse for the case where the compressor uses a double pass through a grating

13
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Figure 10: Time evolution of six frequency components of the pulse com-
pressed with a grating pair, showing the parabolic frequency sweep.

pair to compensate for the linear sweep. It can be seen that a parabolic
sweep occurs, with both the red and the blue side of the spectrum lagging
behind its central portion.

From the phase shift introduced by the grating pair one can obtain
the value of (d,T:(Fz),. Its value iz always positive, as can be noted from
the slope of the plot of (-d—%,‘—“l), shown in Figure 3.1. For material media

the value of (%:—(,"—'1),,‘ is also positive throughout te visible range of the
spectrum (Figure 2). Thus the contribution from the grating pair and that
from any material media in the path of the beam always add up, making
the distortion worse. However the prism pair can be shown to have a third
order term, [d—‘:—},ﬂ),, that can be either positive or negative, according to
the particular geometry of the setup. For example, from Figure 8 it can be
noted that the slope is opposite to that for the grating pair (Figure 3.1).
This points to the conclusion that we can use both gratings and prism pair
together, to obtain compensation both of the cubic and of the quadratic
distortion. Table 2 lists the value of the third derivative for soma systems
and materials of interest, Using the data in Table 1 and Table 2 a system

can be designed such that it will provide the desired value of "%{,‘ﬂ, and

14

Table 2: Typical values for %%!;‘ﬂ at 620 nm.

system L2 (52
quartz 240 {,{cm)
BK-7 glass 332 ly(cm)
double grating pair (600 lpmm) 3120 {,{cm)
prism pair {quartz, 60°} 277-49 [,(em)

null the value of %ﬁl, thus minimizing the distortion and, at the same
time compensating any linear sweep the input pulses might have. Thus
composite setup has been used to generate pulses with only 6 fs duration®,
The time evolution of the frequency components from the compressed pulse
obtained using this scheme is shown in Figure 11, which should be compared
to Figure 10. It can be seen that here the several frequencies line up almost
perfectly, to within the time resolution of this kind of measurement, The
corresponding interferometric autocorrelation is shown in Figure 12.

5 Conclusion

We have discussed the effects of dispersion on ultrashort laser pulses, and
shown that for the generation of clean sharp pulses dispersion control is
mandatory. Grating pairs and prism pairs are the devices of choice for
performing the phase correction. With the use of a compressor based on
a prism pair and a grating pair pulses as short as 6 fshave been demon-
strated. These pulses have opened an enormous range of applications in
the study of dynamical processes in semiconductors and other condensed
matter systems. Some of those applications are described in the following
references:

1. C.H. Brito Cruz, R.L. Fork, W.H. Knox and C.V. Shank, ‘Spectral
hole burning in large molecules probed with 10 fs optical pulses’,

‘R.L. Fork, C.H. Brito Crus, P.C. Becker and C.V. Shank, Opt. Lect. 12, 483 (1987);
C.H. Brito Cruz, R.L. Fork, P.C. Becker and C.V. Shank, Opt. Lets. 13, 123 {1988).
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Chem. Phys. Lets. 132, 341 {1986);

2, P.C. Becker, R.L. Fork, C.H. brite Cruz, J.P. Gordon and C.V, Shank,
‘Optical Stark effect in organic dyes probed with optical pulses of 6-fs
duration’, Phys. Rev. Lett. 60, 2462 (1988);

3. P.C. Becker, H.L. Fragnite, C.H. Brito Cruz, R.L. Fork, J.E. Cun-
ningham, J.E. Henry and C.V. Shank, ‘Femtosecond photon echoes
from band-to-band transitions in GaAs’, Phys. Rev. Lett. 61, 1647
{1988);

UP-CONVERTED SIGMAL

4. P.C. Becker, H.L. Fragnito, J.Y. Bigot, R.L. Fork and C.V. Shank,
‘Femtosecond photon echoes from molecules in solution’, Phys. Rev,

TIME CELAY (34 f3ec/01v) Lett. 63, 505 {1989).

, 6 Useful references for further study
Figure 11: Time evolution of the frequency components from an optimally

compressed pulse using a combination of gratings and prisms. This is a list of papers covering the subject discussed here. (The list is not
exhaustive.)
Tpw & fsec 1. E.B. Treacy, ‘Optical pulse compression with diffraction gratings’,

IEEE J. Quantum Electron. QE-5, 454 (1969).
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4, W, Dietel, E. Dopel, D. Kuhlke and B. Wilhelmi, ‘Pulses in the fem-
tosecond range from a cw dye laser in the colliding pulse mode-locking
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5.

B R ¥ =5 a5 _ )
TIME DELAY (fsecg) 5. 8. De Silvestri, P. Laporta and O. Svelto, [EEE J. Quantum Electron.
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6. W. Rudolph and B. Wilhelmi, ‘Formation of frequency chirp in ultra-

Figure 12: Measured interferometric autocorrelation for a 6fs pulse. short light pulses passing through saturable absorbers’, Opt. Com-
mun. 49, 371 {1984).
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