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Pulse Compression in Single-Mode
Fibers—Picoseconds to
Femtoseconds

A.M. JoHNsON and C.V. SHANK

1. Introduction

The compression of frequency swept (in time) or “chirped” optical pulses was
independently proposed by Gires and Tournois (1964) and Giordmaine et al.
(1968). Optical pulse compression is the optical analog of microwave pulse
compression or chirp radar developed by Klauder et al. (1960). The compres-
ston is accomplished in two steps. First, an optical frequency sweep is impressed
on the pulse. The next step is the compensation of this frequency sweep by
using a dispersive delay line, where the group velocity or group delay varies
with optical frequency. Ideally, the dispersive delay line would impress the
opposite chirp on the pulse, resulting in the compression of the pulse to its
minimum width, ~ I/Aw, where Aw is the frequency sweep. Treacy (1968,
1969) was the [irst to recognize that a pair of diffraction gratings was a suitable
dispersive delay linc for a lincarly chirped pulse; he used gratings to compress
the inherently chirped output of a mode-locked Nd: glass laser. Similar experi-
ments were later performed by Bradiey et al. (1970). Duguay and Hansen
(1969} used an LiNbO, phase modulator and Gire-Tournois interferometer
to compress pulses [rom a mode-locked He-Ne laser.

A chirp can be impressed on a intense optical pulse as it passes through a
medium with an inlensity-dependent refractive index, i.e., an optical Kerr
medium. The phase of the intensc optical pulse is modulated by the nonlinear
refractive index. Extreme small spectra| broadening of optical pulses in optical
Kerr liquids was first observed in sell-focused filaments by Bloembergen and
Lallemand {1966), Brewer (1967), and Ueda and Shimoda (1967). The weak
spectral broadening was first explained by Shimizu (1967) as due to a rapid
lime-varying phase shift arising from the nonlinear refractive index. Gustafson
et al. (1969) further elaborated on Shimizu's explanation with detailed numer-
ical calculations of the spectra of self-phasc-modulated pulses, including the
effects of dispersion and relaxation of the nonlincarity. Alfano and Shapiro
(1970) made the first measurements of self-phase modulation (SPM) in crys-
tals, liquids, and glasses (see Chapter 2). Spectral broadening data in glasses
were also oblained by Bondarenko et al. (1970).
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Fisher et al. (1969) suggested that optical pulses in the range 1072 (o
10"'* s could be achieved as a result of the SPM obtained by passing a short
pulse through an optical Kerr liquid followed by a dispersive delay line.
Laubereau (1969) used several cells of the optical Kerr liquid CS, and a pair
of diffraction gratings to compress 20-ps-duration pulses from a mode-locked
Nd:glass laser by 10x. Zeldovich and Sobcl'man (1971) proposed the
possibility of using alkali metal vapors to both spectraily broaden optical
pulses by SPM and compress the pulses by the strong dispersion of the group
velocily near the atomic resonance. Lehmberg and McMahon (1976) com-
pressed 100-ps-duration pulses from a mode-locked and amplified Nd: YAG
laser by 14 x, using a series of liquid CS, cells and diflraction gratings
scparated by 23 m. Speciral broadening of picosecond pulses from a fNlashlamp-
pumped, passively mode-locked Rhodamine 6G dye laser was reported by
Arthurs et al. (1971) and was attributed to SPM. Ippen and Shank (1975b)
compressed 1-ps-duration pulses from a CW pumped, passively mode-locked
Rhodamine 6G dye laser by 3x to a duration of 0.3 ps using diffraction
gratings separated by 10 cm.

The early measurements of SPM (Bloembergen and Lallemand, 1966);
Brewer, 1967, Ueda and Shimoda, 1967, Shimizu, 1967; Gustafson et al,
1969; Alfano and Shapiro, 1970; Bondarenko et al., 1970) occurred in self-
focused filaments, where the intensity was high and there were problems with
compeling nonlinear effects and uncertainties concerning the filament size (see
Chapter 2). Ippen et al. (1974) reported the first measurement of SPM in the
absence of self-trapping or self-focusing with the use of a guiding multi-
mode optical fiber filled with liquid CS,. Stolen and Lin (1978) reported
measurements of SPM is single-mode silica core fibers. In {ibers, any addi-
tional confinement caused by self-focusing is negligible. An additional advan-
tage of this guiding structure over bulk crystals or liquid cells is that the
modulation can be imposed over the entire transverse spatial extent of the
beam, and the problem of unmodulated light in the wings of the beam is
climinated (Ippen et al., 1974), Perhaps the most important feature of SPM in
optical fibers is that significant spectral broadening can be achieved at power
levels-much lower than those required in bulk media.

The first fiber pulse compression experiments utilized the fiber as a disper-
sive delay line to compress chirped optical pulses. Suzuki and Fukumoto
{1976) used an LiNbO, phase modulator to chirp t-um laser pulses, which
were subsequently compressed by the normal or positive group velocity
dispersion (GVD) (red frequencies lead blue) of a silica optical fiber. Wright
and Nelson (1977) compressed the chirped output of a GaAs semiconductor
laser operating at 0.894 #m using a positive GVD optical fiber delay line.
Iwashita et al. (1982) demonstrated 5 x compression of 1.7-ns, 1.54-um pulses
from a chirped InGaAsP injection laser using a 104-km negative GVD fiber
delay line. Mollenauer et al. (1980) performed the first pulse compression
experiments using optical fibers as a Kerr medium, in their work on soliton
compression of pulses from a color center laser. In these ex periments, the laser
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wavelength (1 = 1.55 pm) was in the anomalous or negative GVD (bluc
frequencies lead red) region for silica and did not require a separate dispersive
delay line. In this instance, the fiber material forms an integrated disper-
sive delay line and self-compresses the puise. Using soliton compression,
Mollenauer et al. (1983) compressed 7-ps-duration pulses by 27x 10 a
duration of 0.26 ps with a 100-m length of single-mode fiber. This compression
was achieved with only 200 W of peak power at the fiber input, thus further
attesting the low power requirements of nonlinear effects in optical fibers. It
is beyond the scope of this chapter to consider soliton compression in optical
fibers. Further information on soliton compression and its applications can
be found, for example, in exceltent discussions by Mollenauer and co-workers
{Moltenauer and Stolen, 1982, Mollenaucr, 1985; Mollenauer et al., 1986). This
chapter is limited to pulse compression, in silica core fibers, in the normal or
positive GVD region (1 < 1.3 um), where a separate dispersive delay line
is necessary, The compression of positively chirped optical pulses passing
through a dispersive medium possessing negative GVD is schematically
illustrated in Figure 10.1.

Nakatsuka and Grischkowsky (1981) demonstrated distortion-free pulse
Propagation of synchronously mode-locked dyc laser pulses by using the
positive GVD of fibers to chirp the pulses. In this experiment, low-power (to
avoid SPM) 3.3-ps dye laser pulses were chirped and temporally broadened
10 13 ps and recompressed back to 3.3 ps by the negative GVD of a near-
resonant atomic Na-vapor delay line. Subsequently, Nakatsuka et a). (1981)
performed the first pulse compression experiment using fibers as a Kerr
medium in the positive GVD region. This experiment utilized both the positive

COMPRESSED
PULSE

-
v

POSITIVE
CHIRPED b
PULSE
NEGATIVE GvD
DISPERSIVE [
MEDIUM

i

FiGure IIO. 1. Comprcssion of pasilively chirped oplical pulses (red frequencies leading
blue) using a dispersive medium Possessing negative group velocit ¥ dispersion (GYD).
Negative GVID; red frequencies delayed with respect 10 bloe.
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GVD and SPM 10 temporally and spectrally broaden 5.5-ps dye laser pulses
with subsequent compression by >3 x to 1.5 ps by passage through a near-
resonant atemic Na-vapor delay link. Shank et al. (1982) replaced the atomic
vapor delay line with a Treacy (1968; 1969) grating pair to compress the 90-fs
amplified output of a colliding-pulse mode-locked (CPM) dye laser by 3 x
to a duration of 30 [s, using a 15-cm fiber. Subsequently, Nikolaus and
Grischkowsky (1983a) compressed the 5.4-ps output of a synchronously
mode-tocked and cavity-dumped dye laser by 12 x (0 a duration of 450 fs,
using a grating-based dispersive delay line and a 30-m fiber. Using two
stages of fiber-grating compression, Nikolaus and Grischkowsky {(1983b)
compressed 5.9-ps puises [rom the aforementioned dye laser by 65x to a
duration of 90 fs. In the technological push to generatc optical pulses of
less than 10-fs duration, amplified CPM dye laser pulses were next compressed
to t6 [s by Fujimoto et al. (1984). Compression 10 12 [s by Halbout and
Grischkowsky (1984} was soon followed by compression to 8 [s by Knox
et al. (1985} Each of these compression achievements occurred with an
important concomitant increase in repetition rate. Recently, Fork et al. (1987)
achieved compression 1o 6 fs, the shortest to date, by using a grating pair
followed by a prism sequence in order to compensate the cubic phase distor-
tion of these large-bandwidth pulses by the grating pair.

Optical fiber compression of “long” duration picosecond pulses from
CW mode-locked {(CWML) Nd: YAG-bascd systems has also been achieved.
Subpicosecond pulses can be generated with these sources without the use of
a mode-locked dye laser. In addition, compressed CWML Nd: YAG-based
systems can be used as pump sources for synchronously mode-locked dye
lasers. Johnson et al. (1984a, 1984b) performed the first “long”™ pulse fiber
compression experiments in a system other than a dye laser. In these cxperi-
ments, 33-ps pulses at 0.532 ym from a CWML and [requency-doubled
Nd:YAG laser were compressed 80 x to a duration of 410 fs, using a 105-m
fiber and a grating pair. Shortly thereafter, Dianov ct al. (£984a) compressed
60-ps pulses, at 1.064 ym from a CWML and Q-switched Nd:YAG laser {1
kHz repetition rate), by 15 x 1o a duration of 4 ps using a 10-m fiber and a
grating-based delay line. The compression of 1.064-um pulses from a CWML
Nd:YAG laser was later performed independently by Kafka et al. (1984) and
Heritage et al. (1984). Kalka et al. (1984) demonstrated the compression of
80-ps pulses by 45 x 1o a duration of 1.8 ps, while Heritage et al. (1984)
compressed 90-ps pulses by 30 x to a duration of 3 ps. Dupuy and Bado (1984)
reported the compression of 110-ps pulses from a CWML argon-ion laser by
5 x. Further studies of the compression of 1.064-um pulses from CWML
Nd:YAG lasers were reported by Heritage et al. (1985a), Kafka and Baer
(1985), and Gomes et al. (1985a). Using two stages of fiber-grating compres-
sion, Gomes et al. (1985b) compressed 85-ps pulses, at 1.064 ym, from a
CWML Nd:YAG laser by 113 x to a duration of 750 fs. Damm ei al. (1985)
reported on the use of large-core (50 p#m) graded-index fiber to compress 5-ps
pulscs at 1.054 um from 4 mode-locked Nd:phosphate glass laser by 7x (o a
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duration of 700 fs. CWML and Q-switched Nd: YAG laser pulses at 1.064 ym
were compressed 29 x (o a duration of 2.9 ps by Gomes el al. (£985c) in a
manner similar to that reported by Dianov et al. (1984). Blow et al. (1985)
reported on all-liber compression of a CWML Nd: YAG laser at 1.32 #m by
adjusting the waveguide dispersion of two lengths of fiber. In this experiment,
130-ps pulses were compressed to a photodiode limit of 70 ps by using a
dispersion-shifted positive GVD fiber followed by a negative GVD fiber. Kai
and Tomita {1986a) reported the compression of 100-ps pulses at 1.32 ym
from a CWML Nd:YAG laser by 50 x to a duration of 2 ps using 2 km of
dispersion-shifted fiber and a grating pair. Using two stages of fiber-grating
compression, Zysset ¢t al. {1986) compressed 90-ps pulses, at 1.064 ym, from
a CWML Nd: YAG laser by 450 x to a duration of 200 fs. Kai and Tomita
(1986b) demonstrated the compression of 100-ps, 1.32-um pulses from a
CWML Nd:YAG laser by 1100 x 10 a duration of 90 fs by using one stage
of fiber-grating compression {dispersion-shified fiber) followed by soliton
compréssion in a length of negative GVD fiber.

In Section 2 we present results for picosccond [iber-grating compression in
a normalized form, from which one can calculate the optimum fiber length,
the achicvable compression, and the proper grating scparation for a given
input pulse and fiber. Section 3 deals with the subtletics and nuances of
femtosecond fiber pulse compression, that is, higher order dispersion com-
pensation of very large bandwidth pulses.

2. Picosecond Pulse Compression

2.1 Optical Kerr Medium

Optical fibers are usually considered to be linear media; that is, as the input
power is increased, one expects only a proportional increase in outpul power
(Stolen, 1979b). However, dramatic nonlincar effects can occur that can cause
strong frequency conversion, optical gain, and many other effects generally
associated with very intense optical pulses and highly nonlinear optical
malterials. These nonlinear processes depend on the interaction length as well
as the optical intensity. In smali-core fibers high intensitics can be maintained
over kilometer lengths. If this length is compared with the focal region of a
Gaussian beam of comparable spot size, enhancements of 10° to 10° are
possible using fibers. This enhancement lowers the threshold power for
nonlinear processes—in some cases 1o less than 100 mW (Stolen, 1979b). For
example, single-mode fibers with core diameters less than 10 H#M possess core
areas of < 107° cm?, which serves 1o translate powers in waltts (o intensities
of MW/cm?. An intensity-dependent refractive index leads to SPM and self-
focusing within a single optical pulsc. In fibers, however, any additional
confinement caused by self-focusing is negligible (Stolen and Lin, 1978).
Recently, Baldeck ¢1 al. (1987) reported on the observation of self-focnsing in
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optical fibers with 25-ps pulses from an active-passive mode-locked and
frequency-doubled Nd: YAG laser. (see Chapter 4) There are several caveats
to this observation of sell-focusing: (1) self-focussing occurred with pulse
energics greater than 10 nJ, in a multimode fiber with a core diameter of 100
um; (2) self-focusing appeared primarily at Stokes-shified stimulated Raman
frequencies, for which the effectof the nonlinear refractive index is enhanced
by cross-phase modulation; (3) self-focusing occurred at stimulated Raman
conversion efficiencies of approximately 50%. The experimental conditions
under which Baldeck et al. (1987) were able to observe self-focusing lend
further substantial support to the claim that scl-focusing is negligible under
the standard experimental conditions for pulse compression in single-mode
fibers. Hence single-mode fibers represent a necarly ideal nonlinear Kerr
medium for the generation of the SPM necessary for pulse compression.
Fisher et al. (1969) suggested that picosecond pulses could be compressed
1o femtosecond durations by employing the large positive chirp obtainable
near the center of a short pulse as a result of SPM in optical Kerr liquids.
SPM results from the passage of an intense puise through a medium with an
intensity-dependent refractive index. When the relaxation time of the non-
linearity is much less than the input pulse duration, the region where the
positive chirp is largest and least dependent on time occurs at about the peak
of the pulse and large compression ratios are possible. For longer relaxation
times, this region is delayed with respect to the peak of the pulse. Compression
is diminished by the influence of relaxation, which not only delays the
maximum chirp but also decreases the lincar chirp in magnitude and extent.
In the limit of the input pulse duration being much shorter than the relaxation
time, the resultant chirp would be nonzero only on the wings of the pulse. In
fact, if such a pulse were passed through the dispersive delay line, the most
intense portion would remain uncompressed. Consequently, Fisher et al.
(£969) limited their discussion to picosecond (> § ps) pulscs incident on Kerr
liquid CS,. The dominant contribution to the optical Kerr eflect in CS, is
molccular orientation, with a relaxation time of ~ 2 ps (Shapiro and Broida,
1967, Ippen and Shank, 1975a). In the optical Kerr gate experiments of Ippen
and Shank (1975a) utilizing subpicosecond pulses incident on CS,, the
asymmiciries in the transmission of the optical gate have been atiributed 1o
the relatively long relaxation time. In the case of fused silica, the dominant
contribution to the Kerr coefficient is the optically induced distortion of the
electronic charge distribution and is expected to have a relaxation time of
~10°"* 5 (Alfano and Shapiro, 1970, Owyoung et al., 1972; Duguay, 1976).
Thus, relaxation time effects should be negligible, even for the case of femto-
second duration input pulses, for compression in silica fibets.
In general, when an intense optical pulse passes through a nonlinear

medium, the refractive index # is modified by the electric field E,

"="o+”1<E2(l))+“‘, . ‘]'

where n, is the refractive index at arbitrarily low intensity and n, is the optical
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Kerr cpcﬂ?cicnt (see Chapters 1 and 2). The time-dependent portion of the
refractive index modulates the phase of the pulse as it propagates through

lht: medium. A phase change d4(¢) is thereforc impressed on the propagating
pulse:

Mm=nxsm»%i )

where w is the optical frequency, z is the distance traveled in the Kerr medium,
and c is the velocity of light. When relaxation time elfects can be neglected,
according 1o Shimizu ( 1967) and DeMartini et ai. (1967), the approximate
frequency shift at any retarded time (1) is given by the time derivative of the
phase perturbation, which is therefore proportional to the time derivative of
the pulse intensity

d d
wm=—£uw=~?mawm» %)

The instantaneous frequency w(t) will shift from the input optical frequency
wq by an amount that dcpends on the intensity profile

z d
w(t) = “’o[l - 5"25(51(1»]- )

A positive value of n, for silica implies that the increasing intensity in the
keading edge of a short pulse results in an increasing refractive index, or a
quasing wave velocity. As a result of the negative sign in Eq. (4), the
instantancous frequency of the leading edge of the pulse will decrease with
Tespect (o wy. This time-dependent slowing of the wave reduces the rate at
which the wave fronts pass a given point in the fiber, thus reducing the optical
frequency. The leading edge of the pulse is therefore red-shifted. On the trailing
edge of the pulse there is a corresponding frequency increase, or blue shift,
resulting in an increase in the spectral bandwidth of the pulse.

For the propagation of low-intensity optical pulses the input and output
‘rrequency Spectra would be the same (Ippen et al, 1974). As the intensity
Increases, the transmitted spectrum is broadened and spectral interference
maxima and minima appear as the peak phase shift passes through muhtiptes
of n. As discussed in the next section, the peaks in the sell-phase-modulated
spectrum can be washed out or filled in by the presence of GVD.

The spectral broadening of an optical pulse is much easier o treal in the
time domain than in the frequency domain (Stolen and Lin, 1978). in the time
domain the ntensity-dependent refractive index causes a phase shift of the

the pulse does not change with distance along the fiber and the instantancous

phase depends on the pulse intensity. A phase-modulated or chirped pulse is
Mlustrated in Figutre 10 23 indicating thor ot 20 :
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Figuge 10.2. Effect of an intensity-dependent refractive index on the phase and instan-
taneous frequency of an optical pulse after propagation down a single-mode fiber.

in the Icading half of the pulse and higher, than the carrier frequency, in the
trailing half of the pulsc. The magnitude of this frequency chirp, in the absence
of puise-shaping efects, builds up in direct proportion to the length of fiber
traversed. As illustrated in Figure 10.2b, there is a nearly linear chirp through
the central part of the pulse. This region of lincar chirp {positive) can be
compressed by the lincar dispersion (negative) of a grating-pair delay line, by
reassembling its frequency components. Treacy (1978, 1979) showed that when
two wavelength components, A and A’ are incident on a grating pair, the longer
wavelength experiences a greater group delay. This group delay is determined
by the optical path length traversed. With reference to Figure 10.3a, the
relationship between the first-order diffraction angles is

"

sin(y — ) =; —siny

where dis the grating ruling spacing, @ is the acute angle between incident and
dillracted rays, and y is the angle of incidence measured with respect (o the
grating normal. The slant distance AB between the gratings is b, which equals
G sec {y — 0) where G is defined as the perpendicular distance between the
gratings. The ray path length PABQ (see Figure 10.3a) is given by

p=b(l +cos8) = ¢t

where t is the group delay. After considerable algebraic manipulation, the
variation of the group delay with wavelength, for various ray path lengths, is
found by diflerentiating p/c with respect to 1 leading to

ot b)(A) 1
- (d d/c[1 —(A/d = sinp)}

(sec also Chapter 9).
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FiGure 10.3. (a) Treacy (1978, 1979) “single-pass™ geometrical arrangement of diffrac-
tion gratings used lor pulse compression. The angle of incidence with respect Lo the
grating normal is y, and @ is the acule angle between the incident and diffracted rays.
The ray paths are shown for 1wo wavelength components with 1’ > 1. Since the path
length for 4’ is greater than that for A, longer wavelength components experience a
greater group delay. {b) A positively chirped optical pulse with red (R) frequencies
leading the blue (B) incident on a typical “double-pass™ grating-pair compressor.
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A typical “doubie-pass™ (Johnson et al., 1984a, 1984b) graling-pair disper-
sive delay line is illustrated in Figure 10.3. Here the first grating disperses the
beam and the second grating makes the spectral components paratlel. The
path for the red-shifted light is longer than that for the blue, so if the spacing
is chosen correctly all the spectral components will be lined up alter the second
grating. However, the spectral components will not be together spatially and
the output beam looks like an cllipse with red on onc side and biue on the
other. This is corrected by reflecting the beam back through the grating pair,
and hence “double-pass,” which puts the spectral components back together
and doubles the dispersive delay; that is, the rays (bluc and red) undergo
double delay or retrace. Johnson et al. (1984a, 1984b) revived the use of the
“double-pass” grating-pair delay line, introduced by Desbois et al. {1973)
and Agostinelli et al. (1979), for the temporal expansion {picoseconds to
nanoseconds} and shaping of mode-locked Nd:glass and Nd: YAG laser
pulses. In large-compression-ratio experiments, the doublc-pass delay line
cancels the large transverse displacement of the spatially dispersed spectral
components of the output beam cvident in Treacy’s (1968, 1969) “single-pass”
grating-pair delay linc. The first compressor application of the double-pass
delay line was in the 80 x compression of mode-locked and frequency-doubled
Nd: YAG laser pulses by Johnson et al. (1984a, 1984b).

In the next section the parameters necessary for constructing an optical
pulse compressor based on a single-mode fiber and grating pair are described.

2.2 Nonlinear Pulse Propagation and Grating Compression

Tomlinson et al. {1984} and Stolen et al. { 1984c) have shown, over a fairly
broad range of experimental parameters, that the propagation of short, high-
intensity pulses in a single-mode fiber can be accurately described by a
model that includes only the lowest-order terms in GVD (positive) and SPM.
The pulse propagation is modeled by the dimensioniess nonlinear wave
(Schrédinger) equation:

or _.n 2 2
Selze) ”'i[a(r/r.,)' ~ 2141 ‘]‘ )

where & is the (complex) amplitude envelope of the pulse. (For a derivation
of the nontinear wave equation see Chapter 3). The time variable 1 is a retarded
time and is defined such that for any distance z along the fiber, the cenler of
the pulse is at t = 0, and we assume an input puise envelope of the form

&(z = 0,1} = Asecht/t,). (6)
The normalized length Zo and the peak amplitude A are defined by

2(. 2
- o.szz"’b-l—;g (M

nlclvl
= 0322" ¢ To
fo ID{A) 4

and
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FIGURE 10.4. Plot of the normalized group velocity dispersion for a silica-core fiber.
The normalized length 2, is obtained in meters by dividing (he square of the input
puise width in picoseconds by the value from the plot.

A= /PP, (8)

ned A,
16nz4n,

where

| = x 1077w, {9)
to is the pulse width (full width at half-maximum) of the input pulse (to =
1.761,), D(3) or D is the GVYD, D(4) in dimensionless units or D in ps-nm/km,
n is the refractive index of the core material and n, is its nonlinear Kerr
cocflicient in electrostatic units (1.1 x 10712 esu for silica), c is the velocity of
light (cmn/s), and A is the vacuum wavelength (cm). Figure 104 is a plot of the
normalized GVD for a silica-core fiber, based on values of D(2) derived from
Gloge (1971) and Payne and Gambling ( 1975). The peak power of the input
pulsc is given by P, and the quantity A is an efective core area (cm?), which
for typical fiber paramelters is fairly close to the actual core arca. Thesc
normalized parameters come oul of the theory for optical solitons in fibers
(negative GVD), where z, is the soliton period and P, is the peak power of the
fundamental solgon (Mollenauer et al., 1980). In the present regime ol positive
GVD there are no solitons, but these paramcters are still useful because z, is
actuaily the length of fiber required for GVD to approximately double the
width of the input pulse (in the absence of SPM), and P, is the peak power
required for SPM 1o approximately double the spectral width of the input
pulsc in a fiber of length z, (in the absence of GVD).
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As discussed earlier, an intense optical pulse will be spectrally broadencd
and frequency chirped on exiting the fiber. The next step of the pulse
COMPIESSION process is to reassemble the chirped pulse with a compressor.
The action of the compressor is most castly described in the frequency domain
since it is simply a frequency-dependent time delay. The Fouricr transform of
the pulse can be expressed in the form

£(z, w) = A(w)e'™, (10)

where A(w) and ¢(w) are the amplitude and phase (for simplicity we do not
indicate their z dependence explicitly). The effect of the compressor can be
described by a phase function ¢,(w), so that the Fourier transform of the
compressed pulse is given by

4(2.) = Alw)exp{if$(w) + ¢ (w)]}. (1)

If §(w) = — g{ew), then at £ = 0 all the frequency components of the pulse
will be in phasc and will thus create the pulsc with the maximum peak
amplitude. We assume that it is also the shortest possible compressed pulse
or closc 10 it. We define this compressor as ideal.

One of the most useful types of compressors is the Treacy (1968, 1969)
grating-pair compressor. A grating-pair compressor has a delay function that
is approximately of the form

$dw) = ¢y — ay0. (12)

The compressor constant g, can casily be adjusted by varying the grating
separation and is thus a directly accessibie experimental parameter. We use
the term quadratic compressor to refer (o a compressor with a response
function of the form of Eq. (12). It can be shown that the Fourier transform
ol a pulse with a linear frequency chirp, which means that the temporal phase
is proportional to ¢2, has a phase that is proportional 1o w?, so that, for a
linearly chirped pulse, a quadraltic compressor is the ideal compressor. To the
extent that 1he frequency chirp on a pulse is nonlinear, a quadratic compressor
is not the idea) compressor for that pulse, but if the departure is not too large,
a quadratic compressor can still give rcasonably good compression. The
expression for the grating constant is
ba?

ao_a;?d’coszy" )
where b is the cenler-to-cenier distance between the two gratings, d is their
&roove spacing, A is the center wavelength of the pulse, and ¥ is the angle
between the normat to the inpul grating and the diffracted beam at 1. From
the numericat solutions of Eq. (5), which includes GVD, Tomlinson et al.
(1984) and Stolen et at. (1984c) were able Lo derive an ex pression for the grating
constant in terms of the inpul pulse duration and peak amplitude,

ap/13 = t/1y = 1.6/A (14)
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or
ay = 0.5213/A4. (5)

An expression for the grating scparation can also be generated in terms of
these experimental parameters by combining Egs. (13) and (15)

b 2.08nc*d? cos?y’ rj,
34/

For the limiting case of zero GVD, the numerical results for the optimum
quadratic compressor lead to

Ao /13 = 0.25(A%z/z,) . (17)

Using Eqs. (13)and (17) as well as the pulse length normalization {to = 1.76¢,),
the grating separation in the absence of GVD is given by

L 0323ncd cos?y [ 12
= a3 Alzfz, ]’

It is interesting to discuss the role GVD plays in the pulse compression
process. In simulating the compression of picosecond pulses chirped by
propagating in the nonlinear Kerr liquid CS,, Fisher and Bischel (1975)
concluded that GVD would have the influcnce of expanding the temporal
region over which the chirp was relatively finear, resulling in optimum
compression. Grischk owsk y and Balan1 (1982a, 1982b) were the first 1o realize
the significance of GVD in fiber-grating compression. During passage through
the fiber, both the pulse shape and the frequency bandwidth are broadened
by the combined action of SPM and positive GVD. Thus, the red-shifted light
generated at the leading edge of the pu_lgé travels faster than the blue-shifted
light generatéd at the trailing edge, and this leads to pulse spreading and
rectangular pulse shapes. Because the new frequencies are generated primarily
at the leading and irailing edges, which gradually move apart in time, the
pulse develops a linear frequency chirp over most of the pulse length. These
“enhanced frequency chirped” (Grischkowsky and Balant, 1984a, 1984b)
pulses can lead to almost ideal compression by a grating pair. Negligible
GVD, on the other hand, can lead 1o large deviations from lincarity of the
chirp, which can result in substantiai wings or sidelobes on the compressed
pulse.

Optimum fiber-grating compression requires the appropriate choice of the
fiber length and grating spacing for optimum chirp and chirp compensation,
respectively. These lenglh scales can vary over an enormous range. For
example, Knox et al. (1985) compressed 40-fs pulses to a duration of 8 fs using
7 mm of fiber and a grating separation of approximately 1 cm. On the other
extreme, Johnson et al. (1984a, 1984b) compressed 33-ps pulses to a duration
of 4105 using t05 m of fiber and a grating separation of 7.2 m. Fora particular
input pulse width, pcak power, wavelength, and fiber core area, the optimal
chirp occurs for a single fiber length. The optimal fiber length varies as

(16)

b

(18)
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2o o T4/ /P. (19)
Not uncxpectedly, the grating separation has the same dependence on input
pulse width and peak power (sce Egs. (8) and (16)). _ .
Two limiting fiber length regimes of practical interest can be identified
(Tomlinson et al,, 1984; Stolen et al,, 1984). The first is that of a fiber of
optimum length to provide the best linear chirp (Grischkowsky and Balant,
1982a, 1982b}. The second regime is that for which the length is much less
than optimal and the effects of GVD can be neglected. Some of the properties
of the chirp and compression in these two limiting regimes are illustrated in
Figure 10.5, where the compression factor is about 12.5 x in each case,
Displayed in Figure 10.5 are the pulse shape exiting the fiber, the frcquenc.y
spectrum, the chirp, and the compressed pulse for both optimum qu_adrauc
and ideal compressors. If GVD is negligible, the fiber output putse will have
the same shape and intensity as the input pulse, whilc in a fiber of optimum
length GVD will broaden the output pulse by about a factor of 3 x . As pointed
oul by Grischkowsky and Balant (1982a, 1982b), a “squared” or “rectangular™
fiber output pulse will have a linear frequency chirp over most of the length
of that pulse. The overall width of the frequency spectrum is about the same
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FiGuRe 105 Pulse shapes before and after grating compression, freguency specira, and
chirp for the limiing regimes of optima? fiber length and of negligible group velocity
dispersion. The upper curves are for the case of negligible GV and an intensity-length
product A%z/2, = 125 The lower curves are for A4 = 20 and the corresponding
optimum fiber length of 2o = 00752, To compare the quality of compression in the
wo regimes, a common compression factor of approximately 12.5 x was chosen in
each case.
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in the two cases, but GVD acts to fill in the spectrum. For each length, the
grating separation was optimized to give the maximum peak intensity. The
optimum fiber length was chosen to maximize the energy in the compressed
pulse. In Figure 10.5 it is interesting to note that when the fiber length
and grating separation are optimized, the quality of the compressed pulse
(optimum quadratic compressor} is better than that with the ideal compressor
in the absence of GVD.

The procedure of Tomlinson et al. (1984) and Siolen et al. (1984c) for
calculating the compression, the optimal fiber length, and the grating separa-
tion is presented in Table 10.1. There are two important normalized para-
meters. The first is the normalizing length z, defined in Eq. (7), and the second
is the normalized amplitude 4 defined in Eq. (8). For a silica-core fiber the
GVD parameter C, has been given for several common laser wavelengths
but can also be read directly from Figure 10.4 for an arbitrary wavelength.
Table 10.1 also gives approximate expressions for the compression factor r,/t,
the optimum fiber length Zops and the grating separation b in both limits of
fiber length (see Eqgs. (16) and (18)). These €xpressions are supported by a
recent approximate analytical theory of the compression process reported by
Meinel (1983). The angle Y is between the normal to the grating and the
diffracted beam. For 4 < 3, the compression and pulse quality are not strong
functions of fiber length, so there is no clear optimum length. This fact is

compressed with fiber lengths between 4 and 20 ¢cm and produced the same
factor of 3 x compression.

Johmson et al. (19844, 1984b} used these numerical calculations to design
the first “long” pulse fiber-grating comnrecens far 1 ncmitenincan r
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FiGure 10.6. Schematic drawing of the “double-pass” fiber-grating pulse compressor
used for the 80 x compression of 0.532-um pulses, The dispersive delay line consists
of gratings G, and G, {1800 grooves/mm) and mirrors M, M, and M, Mirror M, is
cutin half 1o aliow the fiber output pulse 10 pass over it. M is slightly tilted downward
to allow the oulput beam 10 be reflected by M, out of the compressor. The round-irip
distance between the gratings was 724 cm.

a frequency-doubled Nd:YAG laser. The calculation deduced an optimum
fiber length z,,, = 83 m, a grating separation b = 606 cm {1800 grooves/mm),
and a compressed pulse width t = 350 fs. The cxperiment consisted of
coupling 240-W pulses into a 105-m single-mode polarization-preserving fiber
{Stolen ¢t al,, 1978) with a core diameter of 3.8 #m. A schematic drawing of
the fiber-grating compressor is displayed in Figure 10.6. Compressed pulses
as short as 410 fs or a compression of 80 x was obtained with a grating
scparation of 724 c¢m. The fiber input pulse and the compressed pulse are
displayed together in Figure 10.7. The agreement between calculation and
experiment was quite remarkable in light of the fact that the calculations were
for normalized amplitudes of 4 < 20. The compression experiments had
normalized amplitudes of 4 > 150.

As a result of the limited availability of high-reflectivity gratings at
0532 pym with greater groove densities than 1800 grooves/mm it was
important to keep the input pulse width as short as possible to avoid an
unreasonable grating separation. The graling separation varies as the square
of the input pulse width (see Eq. (16)). This is not as serious a problem at
1.064 um, where the cubic wavelength dependence is quite helpful in keeping
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FiGure 10.7. 30 x compression of 33-ps, 0.532-um pulscs. Standard background-free
autocorrelation of the input and compressed pulses displayed on the same scale. (Input:
Gaussian pulse shape. Compressed pulse: sech? pulse shape.)

the grating separation reasonable. The 33-ps fiber input pulses were obtained
by frequency doubling a harmonically mode-locked CW Nd:YAG laser
{Johnson and Simpson, 1983, 1985a; Keller et al, 1988). As opposed to
fundamental mode tocking, typical harmonic mode-locked pulse widths are
50 ps at 1.064 pym {Johnson and Simpson, 1985a) (see Figure 10.8). If 50- 10
60-ps fiber input pulses (0.532 um) from a standard fundamentally mode-
locked taser were used, a grating scparation of greater than 14 m would have
been needed.

Al this point it is useful to give a pulse compression example replete with
experimental parameters, numerical calculation parameters, and the resultant
numerical simulation of the compression process. This next example of 0.532
um puise compression was performed using a scparale, larger-core fiber
distinct from that discussed earlier in Johnson et al (1984a, 1984b). A “fNlar”
polarization-preserving fiber made by preform deformation (Stolen et al.,
1984b) with a 4.1-um silica-core diameter. A micrograph of the fiber is shown
in Figure 109. The birefringence resulling from the siress cladding lifts
the degeneracy of the two orthogonal modes of propagation. Thus linearly
polarized light propagating along the well-defined principal fiber axis will be
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Fiiurr 108. Background-free autocorrelation of the 1.064-um output of a harmoni-
cally mode-locked CW Nd:YAG laser (Gaussian pulse shape) These pulses are
frequency doubled in KTiIOPO, (KTP) to yicld pulses of 33 to 35 ps duration at
0.532 pm.

0.0

FiGure 109, “plar polarization-preserving fiber made by preform deformation. The
4.1-um pure silica core is surrounded by a B: Ge:SiO, stress cladding, an F:8iQ, outer
cladding, followed by a pure silica support cladding. The “rectangular” fiber has over-
all dimenstans of 100 x 200 um. '
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preserved. The diffraction efficiency of the gratings is a very sensitive function
of the polarization of the fiber output. Thus, polarization-preserving fiber is
extremely useful in reducing amplitude fluctuations in the compressed oulput
due to polarization “scrambling” effects in fibers, One disadvantage of using
polarization-preserving fibers is that the threshold for stimulated Raman
scattering (SRS) is reduced by a factor of 2 in fibers maintaining lincar
polarization (Stolen, 1979a). Experimentally, it was found that the reduced
SRS threshold was a small price to pay for the increased amplitude stability
afforded by polarization-preserving fiber. The effects of SRS on compression
are discussed in the next section.

For comparable compression, this larger core diameter fiber resulted in the
reduction of SRS by about a factor of 2. The fiber length was 93.5 m and had
a loss of 16 db/km at 0.532 ym. At the input lens (10 x objective) the peak
power was 235 W (820 mW average, 100 MHz repetition rate). However, this
is not the best estimate of the peak power actually coupled into the fiber. The
best approach is to measure the light coupled out of the fiber and correct for
the transmission of the output lens and the known loss in the given length of
fiver. This approach corrects for the loss in the input lens, mode-matching
eflects, light coupled into the cladding, and the reflection loss on the the fiber
input face. In this instance the peak power actually coupled into the fiber is
closer to 172 W. The fiber-grating compressor parameters given in Table (0.1
can be calculated with the following information: P = 172 W, 1, = 35 ps,
n=146 A, =0924_, =121 x 1077 cm? n, = 1.1 x 10°7? esu, P, =
374 mW, A =173, 2, =888 km, d = 5.56 x (0" ¢m, and Yy =32.5° The
calculations indicate an optimum fiber length z,, = 82m,a graling separation
of 603 cm, and a compressed pulse width of 320 fs. With this liber, pulses have
been compressed to durations as short as 430 fs {80 x compression). The
typical day-to-day duration of the compressed pulses falls in the range 460 10
470 fs (Johnson and Simpson, (1985a, [986). The actual grating separation
used to generate the 460-fs pulse displayed in F igure 10.10 was 698 cm.

What actually happened to the 35-ps, 235-W pulse as it propagated through
the fiber-grating compressor to produce the clean 460-fs pulses at the output?
The spectral width of the fiber input pulses was measured to be 027 A
and was limited by the slits on the spectrometer. The sell-phase-modulaied
spectrum of the outpul pulse was broadened to 17.2 A and is displayed
in Figure 10.11. GVD acted to fill in the self-phase-modulated spectrum,
resuiting in a flatiened spectrum. The fiber output pulse was substantiatly
broadened to a duration of 142 ps and is displayed in Figure 10.12. The
triangular autocorrelation function is indicative of a reclangular intensity
profile. As pointed out by Grischkowsky and Balant {1982a, 1982b), a
rectangular fiber output pulse will have a linear frequency chirp over most of
its length and result in optimum compression by a grating pair.

The two symmetrically located sidelobes on the fiber output [requency
spectrum in Figure 10.11 are not expected from pure SPM. To determine
the origin of these sidelobes Tomlinson et al. (1985) performed numerical
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Figure: 10.10. Typical autocosrelation of the compressed 0.532-um pulses using a

91.5-m length of the “Mlal” polarization-preserving fiber displayed n Figure 10.9.
Typical day-to-day pulses fall into the range of 460 to 470 fs.
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Fisune 10.11. Spectral width of the 35-ps, 235-W, 0.532-um fiber input pulses and the
spectrally broadened (by SPM) output pulses alter propagation down a 3.5-m length
of the 4.1-ym core diameter polarization-preserving fiber.
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Figure 10.12. Autocorrelation of the fiber outpul pulse broadencd by GVD. A
triangular autocorrelation function is indicative of a rectangular intensity profile that
has a deconvolution factor of unity.

simulations of the nonlinear pulse propagation using the experimental and
calculated numerical paramelters given previously. The resulls of several of
the numerical calculations are givep in Figure 10.13. This figure presents
the nonlinear pulse propagation as a function of fiber length z/z;. In
Figure 10.13a, at z/zy = 0.0020 (z = 18 m), the temporal shape of the pulse is
only slighity broadened (the input pulse width is 1.76¢,), and the instantaneous
frequency function and spectrum are characteristic of pure SPM. Recall that
the calculated optimum fiber length is z,, = 82 m. In Figure 10.13b, at
z/zg = 0.0054 (z = 48 m), the temparal shape has become more “rectangular”
as a result of the influence of GVD. The instantaneous frequency function
indicates a nearly linear frequency chirp over a significant portion of the pulsc
width. In Figure 10.13c, at z/z, = 0.0060 (z = 53 m), as the fiber length
approaches Zp the chirp “linearization” proceeds as a result of the con-
comitant pulse broadening. '

Figure 10.14 displays the instantancous frequency function, the temporal
pulse shape, and its {requency specirum, for a length z/z, = 0.01 (z = 89 m),
for a lossless fiber and for a fiber with a loss of 16 db/km (normalized loss
parameter a = 16.36). The nonlinear Schradinger equation {Eq. (5)) with the
inclusion of a normalized linear loss parameter a is given by

o8 .u[ ey |

e e = — . 1 _
z/z,) ‘s il 2|4 3] af, {20)
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FiGune 10.13. Numerical simulations of the nonlinear pulse propagation of 34.4-ps
pulses (¢ = [9.5 ps) at 0.532 ym with a normalized input amplitude of 4 = 173 and
normalizing fiber length of z, = 8.48 km displayed as a function of fiber length z/z,.
The upper curves show the instantancous frequency as a function of time, the middie
curves show the intensily as a function of time, and the lower curves show the
frequency specira of the pulscs. For the 93.5-m fiber used the normalized length was
tfzy = 0.0405.

In Figure 10.14a and b the resulting pulse shape shows wetl-developed inter-
ference fringes on the leading and trailing edges. The frequency spectra clearly
display the symmetrically located sidelobes. The spectrum for the fiber with
loss (Figure 10.14b) is in excellent agreement with the experimental spectrum
of Figure 10.11. (Since the experimental spectrum is an average over many
pulscs, we do not expect to see the fine structure displayed in the calculated
spectrum } Simulations of the effect of a grating-pair compressor on these fiber
oulput pulses gave a compression of 98 x for the tossless fiber and of 84 x
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Figure 10.14. Numerical simulations of nonlinear pulse propagation for A = 173 and
a hiber length of 2/z, = 0.01 for (a) a lossless fiber and (b) a fiber with a normalized loss
parameter a = 16.36 (16 db/km). The upper curves are the instantancous frequency,
the middle curves are the temporal shape of the output pulse, and the lower curves
show the frequency spectra of the output pulses. The inset in (b) displays a detail of
the interference region (optical wave-breaking) on the cdge of the pulse.

for the fiber with loss. Thus by including the fiber loss in the nonlinear
Schradinger equation, numerical solutions of Eq. (20) are in excellent agree-
ment with the caxperimentally observed B0 x compression.

The origin of the sidelobes in the frequency spectrum of the fiber outpul
pulses on Figures 10.1t and 10.14 has been attributed to a phenomenon that
Tomlinson et al. (1985) dubbed “optical wave-breaking.” Briefly, when an
intense pulse propagates down an oplical fiber, the leading edge of the
pulse experiences a frequency decrease or red shift, while the trailing edge
experiences a blue shift. For large-compression experiments (large values of
the normalized amplitude 4) in the presence of GVD, the red-shified light
near the leading edge of the pulse travels faster than, and overlakes, the
unshifted light in the forward tails of the pulse (and vice versa on the trailing
edge). Thereflore, the leading and trailing regions of the pulse wilt contain light



al two different frequencies, which will interfere and generale new frequencics.
These new [requencies appear as the sidelobes on the fiber cutpul spectrum
and result in a small increase in the background on the compressed pulse. This
phenomenon is somewhat analogous to the “breaking”™ of water waves and
has been described as optical wave-breaking. Optical wa ve-breaking can also
occur in small-compression-ratio experiments (small values of 4) if the fiber
is longer than the optimum fiber length, so that there is sulficient GVD to
mediate the interference process. The interference fringes resulting from the
optical wave-breaking are prominent in the calculated temporal pulsc shapes
(see inset of Figure 10.14b). Since the spectral bandwidth that contributes to
the compressed pulse is approximately twice the frequency difference involved
in the wave-breaking interference, the period of the interference fringes is
approximately twice the width of the compressed pulse. Additional evidence
for optical wave-breaking has appeared in the numerical studies of nonlincar
pulse propagation by Lassen et al. (1985).*

These experiments and numerical simulations demonstrate the enormous
range of applicabitity of the nonlinear Schrédinger equation (Eq. (20)) for
describing nonlinear pulse propagation in single-mode fibers. Fach of the
various terms in Eq. (20) represents the lowest-order approximalion to the
phenomenon that it is describing, and it is assumed that the higher-order terms
will be significant for very high compression ratios and/or very short input
pulses. The present results indicate that large compression ratios of 80 x can
accurately be described by Eq. (20) without invoking any higher-order terms.
The limits of this fiber-grating compression approach have recently been
studicd by BourkofT et al. (1987a, 1987b), Tomlinson and Knox (1987}, and
Golovchenko et al. (1988).

2.3 Stimulated Raman Scattering and Pulse Compression

The interplay between optical fiber pulse compression (4 < 1.3 ym) and
stimulated Raman scattering, or more appropriately the interplay between
SPM, SRS, and GVD, could castly fill a book chapter. It is much beyond the
scope of this chapter to discuss the role of SRS in greal detail. Instead, the
reader is referred 10 a number of excellent articles on SRS and nonlinear pulse
propagation in fibers in the region of positive GVD: Auyeung and Yariv, 1978,
Butylkin et al, 1979; Dianov et al., 1984b, 1985, 1986a, 1987: Gomes et al,
1986a, 1986b, 1988a; Heritage et al., 1988; Hian-Hua et al., 1985; Johnson et
al, 1986; Kuckartz et al., 1987, 1988; Lin et al.,, [977; Nakashima et al, 1987;
Ohmori et al., 1983; Roskos el al., 1987; Schadt et al., 1986, 1987; Smith, 1972;
Stolen and Ippen, 1973; Stolen and Johnson, 1986; Stolen et al, 1984a, 1972;
Stolz et al., 1986, Valk et al, 1984, 1985; Weiner et al., 1988, Several of the
salient leatures of SRS are beiefly discussed in this section.

_
* Note added in proof: Optical wave-breaking was recently observed (temporally) by
Rothenberg and Grischkowsky (1989).
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The maximum power of an optical pulse in a fiber is usually limited by SRS.
In the region of posilive GVD, a Raman Stokes pulse will travel faster than
the pump pulse. Thus the role of GVD is important in determining the
limitations of SRS on the self-phasc-modulated pump pulse. Stolen and
Johnson (1986) discussed a simple picture of the SRS process thal assumes
that the Stokes power builds up from a weak injected signal rather than from
spontaneous scattering. This follows the approach of Smith {1972) for CW
Raman generation, in which the integrated spontaneous Raman scatlering
along the fiber can be replaced by a weak effective Stokes input power. At the
lop of Figure 10.15, a portion of the injecicd CW Raman signal cnters the
fiber along with the leading edge of the pump pulse. Because of GVD, this
part of the signal will travel faster than the pump and never experience Raman
amplification. In the second line of F igure 10.15, a portion of the signal enters
the fiber along with the peak of the pump pulse. As the pump pulse travels
along the fiber with velocity V,. the faster-traveling Stokes signal (V) is
amplified by extracting energy from the pump. Amplification ceases when the
signal has passed through the pump pulse. Maximum amplification will occur
for a Stokes signal that passes through the entire pump puise, and this is the
portion of the CW signal that enters the fiber along with the trailing edge of
the pump pulse (third line of Figure 10.15). If a significant part of the pump
cnergy has been shifted to the Stokes frequency (pump depletion), subsequent
portions of the CW signal (fourth and fifth lines of Figure 10.15) will sce a
much reduced amplification,

The net result is that the amplification of the injected CW signal by the
pump pulse has produced a Stokes pulse with a peak that is ahead of the pump
pulse by about one pump pulse length (line 7 of Figure 10.15). If we define a

walk-ofl length /,,,
A2
lv_(v;-_ V:)ro: (2”

as the distance in which the Stokes signal passes through one pump pulse
width t, the Stokes maximum will be produced about two walk-off lengths
into the fiber. All of the Stokes conversion will occur within about four
walk-off iengths.

The signal gain depends on distance (L) along the fiber, and the net
amplification involves an integral over the region where the Stokes and pump
pulses interact. In the limit where the Stokes signal sees the entire pump pulse
the gain becomes

P(L) = P(0)e%, {22a)
i, 90Fs “167z 1 BoPul.
G A, J’dzexp[ I = 1.06 P (22b)

where g, is the peak Raman gain coefficicnt, A,,, is the effective core area, and
Py is the peak pump power. Thus, the maximum gain is approximalely the
peak power times the walk-off length. Typical values of G will be around 16
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Ficure 10.15. Schematic representation of a CW Stokes signal amplified as it passes
through a pump pulse because of GVD. Portions of the CW signal are separately
identified to illustrate that maximum amplification occurs for the part of the CW signal
that enters the fiber with the trailing edge of the pump pulse. Earlicr portions of the
CW signal see reduced gain because they do not pass through the entire pump pulse,
and later portions of the signal see reduced gain because the pump pulse has bt;cn
depleted by earlier Raman conversion. The dotted curve represents the propagation
of the pump pulse in the absence of Raman conversion.

but can go as high as 20 for significant Raman conversion and small walk-off
or interaction lengths. For example, Stolen and Johnson (1986) estimated a
value of G = 19.7, for 207, Raman conversion of 35-ps, 0.532-um pulses, and
a walk-ofT length of 6.2 m. _
An estimate of the critical pump power P, = F, entering the fiber, for which
the ntensities of the first Stokes component of SRS and of the pump were
equal at the liber output, was derived for the case of CW SRS by Smith (1972).
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This approach has proved to be fairly reliable even in the pulsed case. For the
case of polarization-preserving fiber, the critical pump power is estimated to be

GA
Px T,lf (23)
0lw

and for non-polarization-preserving fiber the critical pump power is

P = EISL" {24)
y()’w

The Raman gain in fibers is a factor of 2 higher if linear polarization is
maimtained (Stolen, 1979) and accounts for the factor of 2 in Egs. (23) and (24).
The peak Raman gain coefficient go al a pump wavelength of 0.526 xm is
1.86 x 107" cm/W (Stolen and Ippen, 1973). The Raman gain varies linearly
with pump frequency and the peak coefficient for a 1.064-um pump is
go =092 % 107! cm/W (Lin et al, 1977).

Fiber-grating compression of optical puises can be strongly affected by SRS,
which at high intensities will distort the pulse profile and consequently the
chirp on the pulse. SRS limits the power available in the compressed pulse.
Above the Raman threshold, further increases in pump power result only in
increased Raman conversion. SRS does not seem to have a major effect on
the compression of femtosecond pulses, and this can be attributed to the very
short walk-off lengths involved (see Egs. (21), (23), and (24)). Longer pulses
translate into longer walk-off lengths and lower critical powers for the onset
of SRS. The compression of the fundamental and the second harmonic of
mode-locked Nd: YAG lasers falls squarely into this region of competition
between SRS, SPM, and GVD. Under conditions of walk-off of the generated
Stokes pulse, intense SRS will preferentially deplete the leading edge of the
pump pulse and steepen its rising edge. SPM of the reshaped pump pulse
causes nonsymmetric spectral broadening and a nonlinear chirp. An example
of the distortion of the self-phase-modulated pump spectrum by the presence
of 209, Raman conversion (Stolen and Johnson, 1986) is displayed in Figure
10.16. This figure shows the Stokes and pump spectra for 35-ps, 0.532-ym
pump pulses afier propagation down 101 m of single-mode polarization-
presezving fiber (walk-off length = 6.2 m). The long-wavelength component,
or red-shifted frequency component, shows signs of depletion. The resultant
nonlinear chirp, of course, leads to very poor fiber-grating compression.

In general, compression in the presence of strong SRS using fiber lengths
less than z,,, (i.e., negligible GVD) results in compressed pulses accompanied
by broad wings. In addition, the spectral fluctuations lead to severe fluctua-
tions in compressed pulse amplitude and shape. Recently, Weiner et al. (1988)
demonstrated that high-quality stabilized compression could be achieved,
under these circumstances, only by utilizing an asymmetric spectral window
(Heritageet al,, 1985a) to select out a linearly chirped portion of the broadened
spectrum.
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FiGure 10.16. Raman and pump spectra of 35-ps, 0.532-pm pulses as measured from
a 101-m fiber at about 20%, Raman conversion. The sell-phase-modulated pump
specirum shows signs of depletion of the long-waveiength or red-shified frequency
components by SRS leading 10 a nonlinear chirp. (Walk-off length = 6.2 m))

Another approach 1o obtaining high-quality stable pulse compression is Lo
avoid or severely limit SRS and use fibers of length z_, to obtain the necessary
linear chirp. Johnson et al. (1984a, 1984b) generated high-quality 410-fs pulses
(B0 x compression) at 0.532 um with a fiber length greater than Zog and less
than 5%, Raman conversion. Using fibers of nearly optimum length and
operating below the Raman threshold, Roskos et al. (1987) and Dianov et al.
(1987) generated high-quality pulses as short as $50 fs (110 x compression) at
1.064 um.

Earlier pulse compression calculations for shorter fiber lengths clearly
indicated that the chirp would be severely distorted and asymmetric as a result
of strong SRS (Schadi et al., 1986; Schad! and Jaskorzynska, 1987, Kuckariz
et at, 1987). However, K uckartz et al. (1988) recently demonstrated that in
sufficiently long fibers the combined action of GVD and SPM could cause a
further reshaping and linearization of the chirp, which then could be elficiently
compressed by a grating pair. High-quality pulses with comparatively low
substructure as short as 540 fs {130 x compression) at 1.064 Am using 120 m
of polarization-preserving fiber were obtained in the presence of strong SRS
(Kuckariz e al, 1988). Heritage et al. (1988) recently demonstrated that
with a 400-m Jength of polarization-prescrving fiber, significant third Raman
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Stokes generation, and an asymmelric spectral window (Heritage et al., 1985a),
high-quality ulirastable compressed pulses as short as 550 [s {130 x compres-
sion) at 1.064 um could be obtained. They found that most of the pump
spectrum was linearly chirped by the strong reshaping due to strong SRS,
SPM, and GVD.

Several review and cxtended-length articles on nonlinear pulse propaga-
tion, pulse shaping, and compression in fibers have recently been published:
Aifano and Ho, 1988; Dianov et al., 1988; Golovchenko et al., 1988; Gomes
et al, 1988b; Kalka and Bacr, 1988; Thurston et al., 1986; Zhao and Bourkofl,
1988. (See Chaptcr 3.) This fist of articles is by no means complete and
furthermore is limited to discussions in the region of positive GVD,

Thus far, this chapter has dealt with negative dispersive delay fines
consisting of Treacy, (1968, 1969) grating pairs in reflection mode. Several
alternatives to this approach deserve mentioning, Yang et al. (1985) demon-
strated femtosecond optical fiber pulse compression using a holographic
volume phase transmission grating pair. Prisms were used as negative disper-
sive delay lines by Fork et al, (1984), Martinez et al. (1984), and Bor and Racz
(1985} and were used in femtosecond optical fiber pulse compression by Kafka

2-MICRON THICK COMPRESSED

PELLICLES l PUMP PULSE
10%T ’. ’.
7

I ﬁ:l: 7
DYE LASER '/
ouTPUT
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PULSE PULS

T 154
i oty

FIGURE 16.17, Schematic of a synchronously mode-locked Rhodamine 6G dye laser
pumped by fiber-grating compressed 0.532-um pulses. A pair of 2-ym-1hick pellicles

or a single-plate birefringent filter was used for wavclength tuning and bandwidih
control.
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-t
[
and Baer (1987). In another variation, Nakazawa et al. (1988) used a TeQ,
acousto-optic light deflector and corner cube combination as a negative o}
dispersive delay to demonstrate femtosecond optical fiber pulse compression. o
Onc of the first applications of “long” fiber-grating compressed pulses was
their use by Johnsen et al. (1984b), Johnson and Simpson (1985a, 1985b, 1986), £E o©
Kafka and Baer (1985, 1986), and Beaud et al. (1986) as a source of ultrashort Y o
pump pulses for wavelength-tunable femtosecond dye lasers. A schematic of - —=f |=— .42 psec
- z -
a Rhodamine 6G synchronously mode-locked dye laser pumped by com- 5 " t=0.92 paec
pressed 0.532-um pulses is displayed in Figure 10.17. Wavelength-tunable I o
pulses as short as 180 fs (Johnson and Simpson, 1986) were obtained from the
dye lascr synchronously pumped with 470-fs-duration 0.532-um pulses (see o~
Figure 10.18). o
Johnson et al. (1984a, 1984b) reported that the duration and functional form
of the compressed 0.532-ym pulses were extremely sensitive to the grating °
scparation (for constant fiber input power). As the grating separation was 25 o0 _q4& _ _
decreased from its optimum, the compressed pulse would broaden smoothly. 2520 -15-10 -5 o0 5 10 15 20 25
Compressed pulses of 460 to 470 fs {Johnson and Simpson, 1985a) duration DELAY (psec)
were obtained with a grating separation of 698 cm (see Figure 10.10). By )
decreasing the grating separation by 4.2, 15.6, and 277, the compressed pulses
were broadened 10 920 fs, 12.3 ps, and 22 ps, respectively (see Figure 10.16).
T
o
«] o
o
K E e
g o
E 0 ; ~=— 17.4 psec
Z o o t=12.3 psec
g 0.28 psec r °
G - t=0.18 psec
I O 4]
@ o
o
o o .
-50 -40 -30 -20 -40 0 10 20 30 40 50
° 60 -a.0 -2.0 o 2.0 40 6.0 DELAY (psec)
(b)
DELAY {psec) !-'u:uma_ 1019, Temporal tuning of compressed 0.532-um pulses with decreasing grating
FiGuRe 101K Autocorrelation function of the peliicle-tuned dye laser synchronously separation from the optimum (see Figure 10.10). The grating separation was reduced
pumped by 470.f5-duration 0.532-um pulses, tuned to a wavelength of 0.592 um from the optimum of 698 ¢m by (4)4.2%; (sech? pulse shape), (b) 15.6% (Gaussian pulse

{sech? pulse shape assumed). shape, and (c) 27%, (Gaussian pulse shapoe).
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FiGure 10.19 (continued)

Thus a temporally tunable source of ultrashort pulses was demonstrated. With
this source of temporally tunable pump pulses, the first reported investigation
of the dynamics of synchronous mode locking as a function of pump pulse
duration was made by Johnson and Simpson (1985a). The experimental
variation of the dye laser pulse width as a lunction of the pump pulse width
(see Figure 10.20) was

taye ~ 1032, (25)

n excellent agreement with the square root dependence predicted by
Ausschnitt and Jain (1978) and Ausschaitt et al. (1979).

Palfrey and Grischkowsk y (1985) generated 16-fs frequency-tunable pulses
by using a two-stage fiber pulse compressor (ogether with an optical amplifier.
Ishida and Yajima (1986) generated pulses of less than 100 Is tunable over
0597100615 #m by taking the output from a cavity-dumped, hybridly mode-
locked CW dye laser and coupling it to a single-stage fiber compressor. Damen
and Shah (1988) reported on femtosecond luminescence spectroscopy of 11I-V
Semiconductors with 60-fs compressed pulses. The 60-fs pulses were derived
from a compressed pulse-pumped synchronously mode-locked dye laser that
was further compressed by a fiber-prism pulse compressor.

Applications of fiber-grating compressed pulses include picosecond photo-
conductive sampling characterization of semiconductor epitaxial films de-
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FiGure 10.20. Temporal dynamics of the synchronous mode locking of the pellicle-
tuned Rhodaminc 6G dye laser as a function of the pump pulse duration, with the dye
laser tuned to (.595 um.

posited on lattice-mismatched substrates (Johnson et al., 1985, 1987; Feldman
et al., 1988), picosecond electro-optic sampling of GaAs integrated circuits
(Kolner and Bloom, 1984, 1986; Weingarten et al,, 1988), picosecond photoe-
mission sampling of integrated circuits (Bokor et al., 1986; May et al., 1987,
1988) picosecond vacuum photodiode (Bokor et al., 1988), picosecond optical
puise shaping and spectral filtering (Dianov et al,, 1985, 1986b; Haner and
Warren, 1987, Heritage et al., 1985a, 1985b; Weiner et al., 1986), and the
demonstration of an ultrafast light-controlled optical fiber modulator (Halas
et al, 1987) and its use in the firsq experimental investigation of dark-soliton
propagation in opiical fibers (K rokel e al., 1988).

Recently, pulse compression techniques have been applicd to the amplifica-
tion of high-energy 1.06-um pulses. The onset of self-focusing limits the
amplification of ultrashort optical pulses. Fisher and Bischel (1974) proposed
avoiding self-focusing in Nd: glass amplifiers by temporally broadening the
input pulse to lower the pulse intensity. They noted that under certain
circumstances, the glass noalinearity would impress a chirp on the pulse that
could subsequently be compressed by a dispersive delav line Srrick Tant ot
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Mourou (1985) and Maine et al. (1988) used an optical fiber to stretch a short
optical pulse, amplify, and then recompress using a grating pair. Since the
stretched pulse is amplificd, the energy density can be increased, thereby more
efficiently extracting the stored energy in the amplifier.

3. Femtosecond Pulse Compression

3.1 Theory

Remarkable progress has taken place in the compression of optical pulses.
The theoretical limit in the visible spectrum is just a few femtoseconds. Already
optical pulses as short as 6 s have been generated and used in experiments
(Fork et al, 1987; Brito Cruz ct al, 1986). Such a pulse contains spectral
components covering nearly the entire visible and near-infrared region of the
spectrum. The short pulse itself is nearly an ideal continuum source.

Itis useful 1o explore the limits of pulse compression in order to understand
and appreciate the processes involved in compressing optical pulses in the
femiosccond time regime. Attacking the limits provides a pathway for both
utilizing and generating ever shorter optical pulses.

When an optical pulse propagates through any dielectric medium, group
velocity dispersion broadens the pulse. For example, an 8-fs pulse will have
its width doubled by passage through ~1 mm of glass or ~3 m of air.
These linear propagation effects are not fundamental and can in principle be
corrected by a linear compensation scheme.

One of the most useful pulse compressors, the grating-pair compressor
devised by Treacy (1969) has been discussed earlier in this chapter. In his
original paper, Treacy pointed out some of the limitations of this compressor
for very short optical pulses having a large bandwidth. A grating pair induces
a phase distortion on an optical pulse that becomes more severe as the ratio
of the pulse bandwidth to the carrier frequency begins to approach unity.

The problem of generating ultrashort optical pulses reduces 1o menimizing
the phase distortion. A useful way to discuss this problem is in terms of the
Taylor series expansion of the phase:

2
#or = #on) + () (0w 4 ;(:w‘)(w ~

by

1/d?
*6((1"::) (oo =l 29

which is made around the central frequency, g, of the pulse spectrum. Treacy
has shown (hat a pair of diffraction gratings can be used 1o compensate for
the quadratic phase distortion, (d*@/dw?),, . of a frequency-broadened optical
pulse. He pointed out in the same paper that the principal remaining
problem in pulse compression of large-bandwidth signals using gratings is
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TarLE 10.2. Second and third derivatives of phase with respect to frequency for a double prism
pair, a double grating pair, and material.

Prism Grating Material
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Derivatives of the path P in the prism sequence with respect 1o wavelength
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TasLE 10.3. Second and third derivatives of phase with
respect (o frequency for the double prism pair and
double grating pair described in the text*

Derivalive Prisms Gratings Maienal
d*¢

-3 li57) +648 — 32, - 16401, + 29001,
dr

d*¢

i3 ) +277 — a9, +31200, + 16201,

* Lengths are in centimeters.

uncompensated cubic phase distortion, (d ’¢/dw’)wu. Christov and Tomov
(1986) also recognized this problem in a recent publication on optical fiber-
grating compressors Tables 10.2 and 10.3 show phase derivatives for prisms
and gratings.

To overcome the problem of unwanted cubic phase distortion an elegant
solution has been devised. Both a grating pair and a prism pair induce a cubic
phase distortion. We can take advantage of the fact that the cubic phase
distortion for gralings and prisms is of the opposite sign by using a configura-
tion where the compressed pulse is passed sequentially through a pair of
gratings and a pair of prisms. In this manner it is possible to cancel the cubic
phase distortion (Treacy, 1969).

The effect of a combination of prisms, gratings, and material on a pulse 1s
described by a total phase shift
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¢rlw) = glw) + §,{w) + dolw), 27

where the subscripts p, g, and m refer (0 prisms, gralingg. and material,
respectively. The material of length 1 contributes a phase shift

Pulw) = <l 1 (w), {28)
¢
where ¢ is the speed of light and n_(w) the refractive index. For the prism-and-
grating pair we follow the method described by Martinez et al. (1934). A
grating pair in a double-pass configuration causes a phase shift

272
$,lw) = 2‘:'![1 _ (%g — sin }') ] , (29)

where |, is the grating spacing, d is the groove spacing, and y is the angle of
incidence. .
For a double prism pair the phase shift is

$ylw) = ?—ti’ cos[ flen], 30)

where [, is the dislance between prism apices and f{w) is the angle bcl!ween
the refracted ray at frequency w and the line joining the two apices (Figure
10.21). For prisms with apex angle a and refractive index n,(w) the angle ¢ 2{w)
at which the refracted ray leaves the first prism can be calculated by a
straightforward application of Sncll’s law as a function of the angle of
incidence y, .

We define y, ... as the maximum angle at which a ray can leave the first
prism and still intersect the apex of the second prism. Equation (30) can then
be rewritien as

¢p‘w) = g'(_:_lgcos[wlmn - "'2(‘”}] (31)

Typical experimental values are a = 60°, ¥, = 47° (minimum deviation),
nywy) = 1.457 (quariz prisms}at wy = 3.1 rad/fs (4o = 615 nm), and ¥imee =
49"

The total phase shift #,(w) can be calculated numerically for conditions
typical of recent ultrashort-pulse-compression experiments by using Eqs. 128),
{29), and (31) to provide a group delay dispersion d ‘gr/dar),, of —700 fs?
and Lo cause the derivative of the group delay dispersion, d* ¢, /dw?, 1o be zero
at the center frequency of the Pulse. The value of d2¢,/dw? is such as Lo
compensate the lincar frequency sweep generated on a 60-fs, 200-kW pulse
proepagated through a 0.9-cm quartz fiber with a 4-um core diameter. The
Prism spacing, grating spacing, and material length used in the numerical
caleubations are L, =14 ¢cm, {, =07 ¢m, and l,=05 cm ol guartz, respec-
lively. The angle of incidence at the first grating was 45", and the number of
Brooves per mitlimeter was 600,
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FiGuse 10.21. Parameters used in describing propagation of the optical pulsc through
the prism sequence. The angle of incidence at the face of the firss prism is ¢, and the
angle with resect to the normal to the exit facc is ¥, The angle between a line drawn

The depar ure of this compressor based on prisms and gratings from an
ideal quadratic compressor can be evaluated by €xamining the variation of

sees that this combination of prisms, gratings, and materiaf provides the value
of group delay dispersion required 1o compensate for the linear chirp in the
puise. At the same time, this combination of prisms, gratings, and material
makes the derivative of the group delay dispersion zero at the center frequency

dispersion (d*¢/dw* # 0) across the spectral range of the pulse.

The consequence of the departure of these actual compressors from an ideal
Quadratic compressor can be examined by calculating the lemporal profile
of the compressed pulse given a hypothetical incident pulse with an ideal
quadratic phase distortion. In particular, we compare a compressor using
prisms and grz tings with a compressor using the gratings alone. Figure 10.23
shows the calculated intensity profilc for the case when prisms, gratings, and
material are used with the same parameters as in Figure 10.22. The handwidth
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Ficure 10.22. Plot of the second derivative of phase with respect to frequency for the
prisms{short dash), gratings (long dash), and material {dash-dot) and for the total phase
shift (solid).

of the incoming pulse was chosen to be 0.5 rad/fs, which corresponds (o a
transform-limited pulse duration of 4 fs. 1n both Figures 10.23a and 10.23b
the linear frequency sweep has been compensated for, but only in the case
of the compressor with prism pair, grating pair, and dispersive malterial
(Figure 10.23b) was it possibie lo compensate for the parabolic frequency
sweep by setting the cubic phase distortion to zero.

The oscillatory trailing edge on the pulse shown in Figure 10.23a is due
to the uncompensated cubic distortion, which causes the high- and low-
(requency edges of the pulse spectrum to lag with respect to the center
frequency. These delayed frequency components beat with cach other Lo create
an oscillatory trailing edge on the pulse. If prisms are used alone, the com-
pressed pulse is similas to that shown in Figure 10.23a but with the time axis
reversed; that is, the oscillatory irailing edge becomes an oscillatory leading
edge.

The dominant residual distortion of the phase-corrected pulse is that which
is due to the uncorrected negalive curvature of the group velocity dispersion
d*$/dwr* < 0. The efect is to leave small oscillatory wings on the leading and
trailing edges of the pulse, as is evident from Figure 10.23b, and to broaden
the main peak slightly. The lower limit on the duration of pulses compressed
_in this manner depends on the specific shape of the input-pulse spectrum and
Hs precise distortions. For the ideal secant hyperbolic shape input pulse
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FIGURE 10.23. Calculated pulse intensity vs. time for the case of compression using
only gratings and material dispersion () and for the case of COMPression using a

combination of prisms, Brating

s, and material dispersion (h).
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FiGure 10.24. Plot of encrgy in the main peak of the compressed pulse for the case of
combined prisms and gratings and for the case of gratings alone,

assumed above, the minimum compressed pulse width is between 6 and 7 fs,
which is in approximate agreement with recently observed pulses compressed
with grating and prism pairs (Fork et al,, 1987). In Figure 10.24 the energy in
the pulse peak is plotted versus pulse bandwidth for the case of gratings alone
and the grating-prism pair combination.

3.2 Experiment

The arrangement of gratings and prisms for puise compression is illustrated
in Figure 10.25. The experimental study was carried out using optical pulses
generated in a colliding-pulse mode-locked laser thal contained an intracavity
prism sequence idealical to the four-prism set shown in Figure 10.25. These
pulses were amplified at a tepetilion rate of 8 kHz in a copper-vapor laser-
Pumped amplifier 10 energies of ~ | #J. The amplified pulses had durations
of S0 fs and a Spectrum cenlered at 620 nm. A fraction of the amplified puise
energy was coupled into a polarization-preserving quartz fiber with core
dimensions of ~ 4 #mand a length of 0.9 cm. The optical intensity in the fiber
was | 2 x 10'? Wiem,
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FiGune 10.25, Combined graling and prism sequence used to remove both quadratic
and cubic phase distortion. The solid line is a reference line. The dashed line is the
path of a plane wave that propagates between the gratings at an angle & with respect
to the normal to the grating faces and between the prism pairs at an angle f§ with
respect 10 a line drawn between the prism apices. The planc LL' is a planc of symmetry
for the grating sequence, and the plane MM’ is a planc of symmetry for the prism
scquence.

A four-prism sequence was then introduced, so the combined prism and
grating sequence was equivalent to that shown in Figure 10.25. It was then
possible to adjust the spacing of the prism and grating pairs so the maxima
of the six different upconverted intensity traces all occurred at the same phase
delay. Subsequent optimization was done by monitoring the interferometric
autocorretation (Diels et al,, 1978, 1985) trace of the compressed pulse white
adjusting the prism spacing 1, and the grating spacing l,- It is not possible
to use the more conventional background-free autocorrelation technique for
pulses this short since even a small relative angle between wave vectors of the
interacting beams introduces measurable error. It was also necessary (o use
an extremely thin (32-um) KDP erystal to double the compressed pulse so as
to minimize distortion by grot@p velocity dispersion within the doubling
crystal. :

The interferometric aulocorrelation trace obtained on optimizing l,and |,
is shown in Figure 10.26. The prism spacing for this trace was I,=Tlcm,and
the grating spacing was l, = 0.5cm. For purposes of comparison we have used
crosses to indicate the calculated maxima and minima for an interferometric
autocorrelation trace of a hyperbolic-secant-squared pulse having zero phase
distortion and a full width at half-maximum of 6 fs. The close fit between
the calculated and experimental interferometric autocorrelation functions
indicates an absence of significant phase distortion over the bandwidth of
the pulse. The well-resolved interference maxima also provide a rigorous
calibration of the relative delay.

3.3 Applications

The success in generating optical pulses as short as 6 fs opens up the domain
of physical processes that take place in a few femtoseconds to study. A pulsc
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FiGure 10.26. Experimenial interferometric autocorrelation trace for a compressed
pulse for f, = 71 cm and I, = 0.5 cm. The interference maxima and minima calculated
for the interferometric autocorrelation trace for a hypesbolic-secant-squared pulse of
6-fs duration arc indicated by crosses. The close agreement between experiment and
theory demonstrates absence of significant phase distortion in the compressed puise.

that is so short contains frequency components from almost the entire visible
region of the spectrum. Such a pulse is a ncarly ideal continuum source. The
well-defined temporal and spectral character of the puilse makes it quite useful
for time-resolved spectroscopic problems.

Ultrashort oplical pulse techniques provide a unique means lor investigating
nonequilibrium energy redistribution among vibronic levels in large organic
molecules in solution. Previously, the dynamics of induced absorbance changes
have been measured using pump and probe pulses having the same frequency
spectrum. In the experiments described here induced absorption changes of
optically excited molecules over a broad spectral range of 2400 cm ™' centered
at the energy of the excitation pulse were measured while maintaining a 10-fs
time resolution. These experimenls permit the observation of time-resolved
hole burning and the process of equilibration to a thermalized popuiation
distribution on a femtosecond time scale (Brito Cruz et al,, 1986, 1988h).

The absorption spectrum of a large dye molecuic is dominated by vibronic
transitions from a (thermalized group state. Typically, these large molecules,
which have a molecular weight of 400 or more, have a large number of degrees
of [reedom. The optical absorption coeflicient may be written as a sum over
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transitions from occupied vibrational levels in the ground state to vibrational
levels in the excited state. The absorption coeflicient is given by

a(v) = C?; PM2y, vglv — virh (7N

where C is a constant, P, is the thermal occupation probability of the initial
state, M is the dipole moment of the electronic transition, Xy is the Franck-
Condon factor, and g is the line shape profile for each transition. The above
expression describes the molecular system in thermal equilibrium, With a
short optical pulse it is possible to excite a band of states that are resonant
with the pumping energy. Before the molecular system comes into equilibrium,
bleaching is observed in a spectral range determined by the convolution of
the pump spectrum with the line shape profile of the individual transitions.
As time progresses, the system relaxes (o thermal equilibrium due to inter-
action with the thermal bath. The thermal bath couples to the vibronic levels
by both intramolecular and intermolecular processes. The large number of
degrees of [reedom in the molecular backbone can form a thermai bath within
the molecule itsell. It is also possible for intermolecular energy transfer
1o take place on a somewhat longer time scale by collisions, dipole-dipole
inieraction, elc.

The experimental apparatus is arranged to perform a pump-probe type of
experiment with one important modification over previous experiments. The
probe pulse is approximately 10 fs in duration and has a significantly broader
bandwidth than the 60-fs pump pulse. The pumping and probing pulses are
derived from the same initial amplified 60-fs optical pulse having an energy
of 1 uJ with a center (requency at 618 nm. The probe pulse is formed by passing
a portion of the initial pulse through a 12-nm length of optical fiber followed
by a grating-pair compressor. The shorter pulse is then used to probe the
absorption spectrum by passing through the excited sample inlo a spectro-
meter and diode array. Care is taken to compensate for group velocity
dispersion in the probe optical path. The experiments are performed at a
repetition rate of 8 kHz.

The dyes are dissolved in cthylene glycol at concentrations that yield optical
attenuations of less than 1/e when the dye solution is flowed through a jet
with a thickness of 100 to 300 um. The pump puises are attenuated to levels
that induce absorption changes of a few percent or less.

The data are collected by a differential measuring technique. The pump
beam is periodically blocked by a shutier at a frequency of 10 Hz and the
transmitted specira are recorded in the computer memory in phase with the
chopped pumping beam. Specira are recorded at different time delays as
determined by the optical path delay, which is controlled by a stepping motor
translation stage. Inlegration time for a single spectrum is typically 30 5.

In Figure 10.27 the absorption spectrum for cresyl violet is plotted before
and after excitation with a 60-fs optical pulse at 618 nm lor zero relative time
delay. A decrease in absorption is clearly observed in the spectral region close
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Fiiure 10.27. Plot of the absorbance spectrum of the molecule cresyl violet near zero
time dclay before (solid linc) and afier (dashed line) excitation with a 60-f optical pulse,

to the pumping wavelength. In addition, replica holes are seen approximately
600 cm*! above and below the excitation energy. In Figure 10.28 the time-
resolved differential spectra are plotted for cresyl violel. The time delay
between spectra is 25 fs. The central hole and the two adjacent replica holes
are seen to broaden and form a thermalized spectrum in the first few hundred
femioseconds following excitation.

The mechanism for the formation of the replica holes is readily understood,
Measurements of the Raman spectra of cresyl violet reveal the presence of a
strong mode at $90cm™'. In a large molecule with a large number of degrees
of [reedom a correspondingly large number of modes can contribute to the
absorption spectrum, as illustrated with Figure 10,27, Usually only a few
modes with energies larger than kT change their occupation number during
the optical transition 10 the excited state. These modes are calied active or
system modes and have large Franck-Condon factors, The strength of the
absorption is determined by the Franck-Condon factor Xis- The 598-.cm ™!
mode appears 10 be the dominant mode in the absorption spectrum as
evidenced by bleaching both at the 0 -0 transition, which is at the excitation
energy, and at the 0- 1 and 1-Q posttions of the Franck-Condon progression,

The relative strengths of the bicaching at the central hole and at the replica
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FiGure: 10.28. Differential absorbance spectra plotied as a function of relative time
delay following excitation with a 60-ls optical pulse at 618 nm (or the molecule cresyl
violet.

holes can be determined by estimating the Franck-Condon lactors in the
harmonic approximation. We caleulate xo0/x0,. 10 = 0.26, which is consistent
with the experimental obscrvation value,

The hole observed in Figure 10.28 broadens and relaxes to the quasi-
equilibrium spectrum within the first few hundred femtoseconds. If we assume
that the inhomogeneous linewidth is much larger than the homogencous
linewidth, we can estimate the polarization dephasing time T, from the widih
of the hole burned in the spectrum. For the case of a Lorentzian profile, where
Al is the hat-width of the hole, the expression for T, is given by T, =
21%/ncAd. Using the above expression we determine T, to be 75 {s for cresyi
violet,

Some insight into the encrgy relaxation of the excited molecules can be
obtained by looking at the time cvolution of the differentiat absorption at
different spectral regions within our range of observation. in Figure 10.29 we
plot this evolution for a region 7 nm wide around 587, 625, and 654 nm. The
curve for 625 nm shows the evolution of the population in levels that are very
close in energy to the levels excited by the pump. In this spectral region an
overshool in the bleaching occuyrs as a consequence of the sreriral hal.
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FiGure 10.29. Plot of the differential absorption spectrum in time for three sclecied
wavelengths for the molecule cresyl violet, (The lines are 10 guide the eye.)

burning and a rapid recovery on the order of 50 fs is observed as the ground
and exciled states become thermalized. The bleaching at 654 nm also shows
a small overshoot, which recovers as the nonequilibrium distribution transits
to a thermalized distribution in the first few hundred picoseconds. On
the high-energy side at 587 nm a slower rise is observed as the molecular
distribution thermalizes.
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