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266 5 & Continuous Wave and Transient Laser Jdehavior

5 and 20 times the cavity photon decay time 7.* The time duration of the
pumping pulse must therefore be approximately equal to this buiidup time.
With the conditions considered above, the peak inversion may range be:ween
4 and iV wnes’ine tnresiold vaiue so that a laser pulse of high peak power
and short duration can be produced.

The most common example of a gain-switched laser is the electrically
pulsed TEA (transversely excited at atmospheric pressure; see Section 63.3.1)
CO, laser. Taking a typical cavity length of L = 1 m, a 20% transmission of
the output mirror, and assuming that the internal losses arise only from this
mirror’s transmission, we get ¥ =0.1 and r. = L/cy = 30 ns. Assuming that
the laser buildup occurs in a time ten times longer, we see that the du-ation
of the pumping pulse should last ~300 ns, in agreement with experimsental
results. Note finally that any laser can in principle be gain-switched given a
sufficiently fast and intense pump pulse, as for instance obtained by pumping
with another laser. As examples we mention the case of dye lasers pumped
by the fast (~0.5 ns) pulse of an atmospheric pressure N, laser or the case of
a semiconductor diode laser pumped by a very short {~0.5 ns} current sulse.

5.4.5. Mode Locking***"

The technique of mode locking aflows the generation of laser pulses of
ultrashort duration (from a few tens of femtoseconds to a few tens of
picoseconds). Mode locking refers (o the situation where the cavity modzs are
made to oscillate with comparable amplitudes and with locked phases.

As a first example we will consider the case of 2n + | longitudinal modes
oscillating with the same amplitude E, (Fig. 5.374). We will assume the phases
¢, of the modes in the output beam to be locked according to the relation

b=, = (5.106)

where ¢ is 4 constant. The total electric field E(t) of the e.m. wave, at a ziven
peint in the output beam, can be written, apart from a constant value lor the
tota] phase, as

E(t) = i;EoexP{i[(wo— lAw)t+ Ip]} (5.107)

where w, is the frequency of the central mode and Aw is the frequency diffe-ence
between (wo consecutive modes. For simplicity, we have considered the field

* It should be noted that the build-up time in Fig. 5.24 correspends to a much longer time than
these quoted values because Fig. 5.24 refers to the case of a three-level laser and also o a
silualion where pumping exceeds the threshold value by only a modest amount.

. e e oo

5.4 @  Transiewt Laser Bchavior 267

-l I- Aeas

A A L]

talg

e T g e

FIG. 5.37. Mode amplitude (represented by vertical lines)
versus frequency for a mode-locked laser. (a) Uniform
amplitude. (b} Gaussian amplitude distribution over a
bandwidth ( FWHM) Aw, ..

at that point where the phase of the center mode is zero. According to (5.107)
the total electric field of the wave, E(f), can be written as

E(1) = A(1) expliwyl) {5.108)

where

A1) = 3, Eyexplil(Bwt + ¢)] (5.1084)

Equztion (5.108) shows that E(r) can be represented in terms of a simfsoi_dal
carrier wave at the center-mode frequency w, whose amplitude A{/) 1s ime
modulated. If we now change to a new time reference (' such that Awt’ =
Awl + ¢, (5.108a) transforms to

A{1'y =Y E;explildet’) (5.109)

and the sum appearing in the right-hand side can easily be recognized as a

geometric progression with a ratio equal 1o exp(idwr’). A{1') is then readily

calculated to give

sin[(2n + 1Awt'/2]
sinfAwi'/2]

A(l') = E, (5.110)

To understand the physical significance of this expression, we have plot?ed
in Fig. 5.38 the quantity A’(¢"), which is proportional to the beam intensity,
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FIG. 538 Time behavior of the squared
amplitude of the electric field for the case of
seven oscillating modes with locked phases

and equal amplitude.
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versus time ' for 2n + 1 = 7 oscillating modes. We see that, as a resul- of the
phase-locking condition (5.106), the oscillating modes interfere to prcduce a
train of evenly spaced light pulses. The pulse maxima occur at those times for
which the denominator of (5.110) vanishes. In the new time reference ' a
maximum thus occur for ¢ = 0. For t' =0 the numerator of (5.113) alse
vanishes and A%(0) is seen to be equal to (2n + 1)’ E}. The next puse will
occur when the denominator of (5.110) vanishes again. This occurs at a time
¢ such that (Awt’/2) = 7. Two successive pulses are therefore separated by a
time

7, =2w/Aw (5.111)

For t' > 0, the first zero for A%(¢') in Fig. 5.38 occurs when the numerator of
(5.110) again vanishes. This occurs at a time ¢, such that [(2n + 1)Awt, /2] = =
Since the width A7, {FWHM) of A%(t) (i.e., of each laser pulse) is approxi-
mately equal to 1, we thus have

A7, =2nw/(2n + 1)Aew = 1/Av,,, (5.112)

where Ay, = (2n + 1)Aw, /27 is the total oscillating bandwidth {see Fig.
5.37a).

The mode-locking behavior of Fig. 5.38 can be readily understood if we
consider the various modes to be represented by vectors in the complex plane.
The Ith mode would thus correspond to a complex vector of amplitade E,
and rotating at the angular velocity (wy + {Aw). If we now refer to axes rotating
at angular velocity w,, the central mode will appear fixed relative to these
axes and the itk mode rotating at velocity lAw. At time (' = 0, according to
(5.109), all vectors will have zero phase and thus lie in the same direction
which we will assume to be the horizontal direction in Fig. 5.39. The total
field will in this case be (2n + 1) E,. For 1" > 0, while the vector correspanding
to the central mode remains fixed, the vectors of the modes with w > w, will

Jwty-27/%

FIG. 539 Representation of cavity
modes in the complex plane (five

. 1

2 modes). Figure (b) depicts the time
instant in which the sum of the five

{a} (b) modes is zero.
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rotate in one direction {e.g., counterclockwise} while the vectors of the modes
with @ < w, will rotate in the opposite sense (clockwise). Therefore, for the
case, €.g., of five modes, the situation at some later time t', will be as indicated
in Fig. 5.39a. If now the time ' is such that mode | has made a 2= rotation
(which occurs when Awt’ = 27), mode 1’ will also have rotated (clockwise)
by 2m, while modes 2 and 2" will have rotated by 4. All these vectors will
therefore be aligned again with that at frequency w,, and the tofal electric
field wilt again be (2n + 1) E,. Thus the time interval 7, between two consecutive
pulses must be such that Awr, = 27, as indeed shown by (5.111). Note that,
in this picture, the time instant r, at which A(r) first vanishes {see Fig. 5.38)
corresponds to the situation where all of the vectors are equally spaced in
angle (Fig. 5.39b). To achieve this condition, mode 1 must have made a rotation
of anly 27/ 5, or more generally, for 2n + 1 modes, of 27/(2n + 1}, The time
1, and hence the pulse duration A7, thus turn out to be given by (5.112).

Before proceeding it is worthwhile to summarize and comment on the
main results that have been obtained so far. We have found that the mode-
locking condition given by (5.106) gives an output beam that consists of a
train of mode-locked pulses, the duration of each pulse Ar, being about equal
to the inverse of the oscillating bandwidth Aw,,.. This result can be readily
understood by noting that the time behavior of the pulse is just the Fourier
transform of its frequency spectrum. Now, since Aw,, can be of the order of
the width of the gain line Aw,, very short pulses (down to a few picoseconds)
can be expected to result from mode-locking of solid-state or semiconductor
lasers. For dye lasers the gain linewidth is about 10” times larger than that of
a solid-state laser material, and very much shorter pulsewidths are possible
and have indeed been obtained (down to about 30 fs). In the case of gas lasers,
on the other hand, the gain linewidth is much narrower (up to a few gigahertz)
and relatively long pulses are generated (down to ~100 ps). We now recall
that two consecutive pulses are separated by a time 7, given by (5.111). Since
Aw = 27Av = we/ L, where L is the cavity length, 7, turns out to be equal to
2L/ ¢, which is just the cavity round trip time. The oscillating behavior inside
the laser cavity can therefore be visualized as being due to an ultrashort pulse
of duration Ar, given by {5.112) which propagates back and forth in the cavity.
In such a case, in fact, the output beam from one mirror is obviously a pulse
train with a time separation between two consecutive pulses equal to the cavity
round trip time. Some typical numbers bear out this picture since the spatial
extent Az of a pulse of duration At, = 1 ps, say, is 82 = c,d7 =03 mm, i.e.,
much shorter than a typical length of the laser cavity.

Before proceeding it is perhaps worth pointing out what happens in the
case of random phases. Figure 5.40 shows the time behavior of |A(#)f" for the
case of seven oscillating modes evenly spaced in frequency by Aw, with the
same amplitude E, and with random values for their phases. We see that the
output beam, unlike the mode-locked case considered above, now consists of
an irregular sequence of light pulses. As expected from the general properties
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FIG. 5.40. Time behavior of the
squared amplitude of the electric field
for the case of seven oscillating modes
with equal amplitude and phases
chosen at random (¢, = 2.4789, ¢, =
2.3316, ¢y = 5.5959, ¢, = 4.3687, &, =
0.6872, ¢, = 07608, ¢, =13217,
t  radians).

20

of Fourier series, however, each light pulse still has a duration &7, roughly
equal to 1/4v,,., where Av,,. is the total oscillating bandwidth, the average
time between pulses is roughly equal to A7, and the pulse sequence repeats
itself after a period 1, = 2w/Aw. Note that, since the response time of a
conventional electronic detector is usually much larger than Ar,, one does not
resolve this complex time behavior in the output of a multimode non-mode-
locked laser, but rather its average value is monitored. This value is simply
the sum of powers in the modes and hence is proportional to (2n + 1)E,
Since, in the case of mode-locking, the peak power is proportional to
(2n + 1)2E2, we see that mode-locking is useful for producing pulses not only
of very short duration but also of high peak power. In fact, according to the
discussion above, the ratio between the peak pulse power in the mode-locked
case and the average power in the non-mode-locked case is equal to the
number, (2n + 1), of osciliating modes, which, for solid-state or liquid lasers,
may be quite hign (10*-10%).

So far we have restricted our considerations to the rather unrealistic case
of an equal-amplitude mode-spectrum (Fig. 5.37a). In general the mode spec-
trum is expected to have a bell-shaped form. To see what happens in this case
we will assume the mode spectrum to be given by a Gaussian distribution
(Fig. 5.37b). We can therefore write down the amplitude E, of the Ith mode as

Ei= Eﬁexp[—(zmw)‘ In 2] (5.113)

Aewye

where Aw,,. is the spectral bandwidth (FWHM). If we again assume that the
phases are locked according to (5.106) and that the phase of the central mode
is equal to zero we again find that E(1) can be expressed as in (5.108} where
the amplitude A(¢) in the time reference (' is given by

A(r') = ED.E, exp i(lAwt’) (5.114)
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if the sum is approximated by an integral [i.e., Al1) = | E exp tUdwr) di], the

ield amplitude A{1) is seen to be proportional to the Fourier transtorm of
the spectral amplitude E;. We then gel

A\ 2
Al exp[—(f—:—) In 2] (5.115)
,

where the pulsewidth A7, {FWHM) is
Ar, =2In2/mhvo. = 0.441/A v, (5.116)

As a conclusion to the two examples given above, we can say that, when
the mode-locking condition (5.106) halds, the field amplitude is proportional
10 the Fourier transform of the magnitude of the spectral amplitude. The
pulsewidth AT, 1s related to the width of the spectral intensity Aw,.. by the
relation A1, = k/Av.., where k is a numerical factor (of the order ol unity),
which depends on the particular shape of the spectral intensity distribution.
A pulse of this sort is said to be transform-limited.

Under locking conditions different from {5.106) the output pulse may be
{ar from being transform-limited. If for instance we take

G = I+ U (5.117)

{note that (5.106) can be written as ¢, = l¢] and again assume a Gaussian
amplitude distribution such as in (5.113), the Fourier transform of the spectrum
can again be analytically calcutated and E(¢) can, in this case, be written as

E(1) < exp[—at’] expli(wpt + B} {5.118)

We see that the beam intensity, which is proportional to}E(t )7, is still described
by a Gaussian function whose pulsewidth A7, in terms of the parameter o
appearing in (5.118), is equal to

A7, = (2 In2/a)"? (5.118a)

Note, however, that, owing to the presence of the phase term P, in (5.117),
which is quadratic in the mode index I, E(t) has now a phase term, Bi*, which
is quadratic in time. This means that the carrier frequency w,+ 28t of the
wave now has a linear frequency sweep. The value of B and hence the
magnitude of this sweep depends upon the value of ¢, in (5.117), and its
specific expression is not given here since it will not be needed in what follows.
What is important to notice, however, is that a frequency chirped pulse of the
form given in (5.118) can indeed be obtained under the particular mode-locking
conditions given by (5.117). It can now be readily shown that a pulse of the
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type (5.118) is not transform-limited. To show this we can easily calculate its
spectral bandwidth by taking the Fourier transform of (5.118). The oscillating
bandwidth is, in this case, found to be

0.441 [1 + (mf;)z] V2
AT, 2 1n2

Avg, = (5.119)

where (5.118a) has also been used. We see from (5.119) that for BAT, » 1,
i.e., for sufficiently large values of the frequency chirp, the product At A,
becomes much larger that 1. The physical reason for this can be understood
if we notice that the spectral broadening now arises both from the amplitude
modulation of E(1) [which accounts for the first term on the right-hand side
of (5.119)] and frequency sweep 28t [which accounts for the second term on
the right-hand side of (5.119}].

5.4.5.1. Methods of Mode Locking

Mode-locking methods can be divided into two categories: (1) Active
mode-locking, in which the loss or gain of the laser is modulated by an external
driving source, and (2) passive mode-locking, usually achieved by a suitable
saturable absorber.

As a first example of active mode-locking, suppose we insert in the cavity
a modulator, driven by an external signal, which produces a sinusoidal time-
varying loss at frequency Aw’. If Aw’ # Sw, this loss will simply amplitude
modulate the electric field E(#) of each cavity mode to give

Ei(1) = Eg() + 8 cosduw'r} cos{wg + &) (5.1200

where & is the depth of modulation, @; is the mode frequency, and ¢, its
phase. Note that, owing to the presence in {5.120) of the term

E 6 cosAw’t cos{ant + @) = (Eod/2){cos{(w; + Aw'}t + &]

+ cos{(w, — Aw’)t + ¢v]}

E,(1) actually contains two terms oscillating at the two frequencies w, + Aw'
{modulation side-bands}. If now Aw’ = Aw, these modulation side-bands will
coincide with the adjacent mode frequencies of the resonator, which are equal
to w, + Aw. These two side-band terms will thus give contributions to the two
field equations for the adjacent cavity modes at frequencies w;, + Aw. The cavity
mode equations thus becomes coupled, in the sense that the field equation of
a given cavity mode will contain two terms arising from the modulation of
the two adjacent modes. This mode-coupling mechanism can be shown to lock
the mode phases according to (5.106) if the modulator is placed very close to
one of the end mirrors. This type of mode-locking is often referred to as
amplitude-modulation (AM) mode locking.
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The operation of the AM-type of mode locking can perhaps be more
readily understood by considering its behavior in the time domain rather than
in the frequency domain. Figure 5.41a shows the time behavior of the cavity
losses ¥ which are modulated at frequency Aw'. We will assume the modulator
10 be placed at one end of the cavity. If Aw’ = Aw, the modulation period T
will be equal to the cavity round-trip time 2L/¢. [n this case light pulses will
develop in the cavity as indicated in Fig. 5.41a. In fact, if a pulse is assumed
10 pass through the modulator at a time f,, of minimum loss it will return to
the modulator after a time {2L/c) when the loss is again at a minimum. If, on
the other hand, the pulse is assumed to initially pass through the modulator
al a time, e.g., slightly before 1, (solid-line pulse in Fig. 5.41b) the leading
edge of the pulse will sufier more attenuation by the modulator’s time-varying
loss ¥,, than the pulse trailing edge (see dashed-line pulse in Fig. 5.41b). Thus,
after passing through the modulator, the time at which the pulse peak occurs
will have been advanced in such a way that, during the next passage, the peak
will arrive closer to i,,. This shows that the situation depicted in Fig. 5.41a
corresponds to the stable mode-locked condition.

After these preliminary considerations of AM mode locking, we can go
on to consider the physical phenomena that determine the time duration of
the mode-locked pulses. These phenomena are quite different depending on
whether the laser line is homogeneously or inhomogeneously broadened. For
an inhomogeneously broadened line and if the laser is sufficiently far above

t t

(o)

RN |
madulator light pulse

FIG. 5.41. Time-domain description of AM locking:
{a} steady-state condition; (b) light pulse arriving "
!chorc the time £, of minimum loss; (c} pulse shorten. tm t
Ing occurring when the pulse arrives at time 1. (<)
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threshold, the oscillating bandwidth Aw,,. tends to cover the whale laser
pandwidth Av¥. Assuming a Gaussian distribution for the mode amplitudes,
we then get from (5.116)

A7, = 0.44/Av5 (5.121)

In the case of 2 homogeneous line, as explained in Section 5.3.5.1, the widih
of the oscillating spectrum tends to be concentrated in a narrow region around
the central frequency »,. In this case, the oscillating bandwidth and hence the
laser pulsewidth is determined by a different physical mechanism. With refer-
ence to Fig. 5.41c suppose that a light pulse of finite duration passes through
the modulator at the time 7,, of minimum loss. After passing through the
modulator, the output pulse (dotted line} is narrower than the incident puise
(solid line) since both the leading and trailing edge of the pulse are some-
what attenuated while the peak of the pulse passes without attenuation. How-
ever, this pulse narrowing is counteracted by pulse broadening which occurs
when the pulse passes through the active material. As remarked above a
homogeneously broadened gain line tends to reduce the oscillating bandwidth
of the pulse and hence increase its temporal width. The steady state pulse
profile, which is established by these two competing effects of pulse narrowing
{in the modulator) and pulse broadening (in the amplifier), can be described
analytically in a simple way and to a good approximation (see Appendix C).
The intensity profile turns out in fact to be well described, under typical
conditions, by a Gaussian function whose width 7, (FWHM) is given by

AT, = 045/ (v, Au)'"? (5.122)

where v, is the modulation frequency of the modulator (v, = ¢/2L). If the
pulsewidth expressions for the inhomogeneous (5.121) and homogeneous
(5.123) gain lines are compared for the same value of the laser linewidth (i.e.,
for Avi = Av,), we get

{BTp o (%) " (5.123)
(ATp)inhum L '

Since usually (Awy/ve) = (Avel/2¢)» 1, we see that much longer mode-
locked pulses result in the homogeneous case than in the inhomogeneous case.
As a final comment on this topic, we point out that the pulse-narrowing
mechanism depicted in Fig. 5.41c does not play an appreciable role in the
case of an inhomogeneous line, although it is still obviously present also in
this case. In this case the short pulsewidth is in fact established by the inverse
of the gain bandwidth, and the main role of the modulator is to establish
synchronism between the oscillating modes so that the laser pulses pass through
the modulator at the time of minimum loss {Fig. 5.41a).
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FIG. $42. FM locking. Time behavior of b A o
modulator refractive index n and of output [ JL Jl

imensity [, t

As a second exampie of active mode-locking, suppose one inserts in the
cavity a modulator, driven by an external signal, whose refractive index n is
modulated at frequency Aw’. Again, if the modulator is placed at one cavity
end and if Aw’ = Aw, the phases of the modes become locked, although with
a different relationship from that given in (5.106). Nevertheless, one again
obtains short pulses whose duration is of the order of the inverse of the
oscillating bandwidth. Since the optical length of the modulator is* L] =
n{t)L’, where L’ is its true length, this type of modulator produces a modulation
of the effective cavity length. As a result, the cavity resonance frequencies are
modulated, and this method of locking is often referred to as frequency-
modulation (FM} mode-locking. In the time domain, the FM mode-locking
behavior cdn be described as indicated in Fig. 5.42. Note that, in this case,
wo stable mode-locking states can occur, where the light pulses pass through
the modulator either at each minimum of n(1) (solid-line pulses) or at each
maximum {dotted-line pulses). Actually, switching between these two states
i3 often found to occur in practice. To gain a deeper understanding of what
happens in this case is a more complicated task than for the AM case. Since
this pre of locking is much less frequently used in practice, we will not
consider it any further here. We merely limit ourselves to pointing out that
our cavity is equivalent in its effect 1o a cavity without a modulator but where
the position of one cavity mirror is made to oscillate at frequency Aw. According
Io_lhe situation shown in Fig. 5.42, the mode-locked pulses tend to strike this
mlrl"or when it is at either of its extreme positions {i.e., when the mirror is
stationary). - - :

As a third example of active mode Jocking we will consider the case where
Ih§ laser gain is modulated rather than the laser losses. In the case of a laser
being pumped by another laser this is commonly achieved by pumping with
ano.lher mode-locked laser and adjusting the length L of the second laser
Cavity so that the pulse repetition period of this second laser, (2L/¢), is equal
to that of the pump laser. The mode-locked pulses of the second laser are then
In synchronism with those of the pump laser, and this method is usually

N . .
The optical length L is here defined such that the phasc shift of a wave in passing through
the modulator can be wrilten as ¢ = Qm/ho)Lop -
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Wi(t). a(t}

pumping pulses W, (1)

gain g(t)

FIG. 5.43. Time behavior of the pump rate W, {1} and of the laser gain g{/} in a synchronously
mode-locked laser.

referred to as mode locking by synchronous pumping. This same type of
pumping can also be achieved in a semiconductor laser by pulsing the pumping
current through the diede junction at a repetition rate equal to ¢/2L, where
L is the semiconductor cavity length. For both cases, the time behavior of the
laser gain resulting from this pulsed pumping can be described as indicated
by the dashed line in Fig. 5.43. From the discussion of AM mode locking, we
can readily appreciate that the mode-locked pulses (not shown in Fig. 5.43)
will tend to pass through the active material at the time of maximum gain.
Note that, for this scheme to work, the decay time of the inversion, for the
synchronously pumped laser, must be fast enough (i.e., of the order of the
cavity transit time) so that the corresponding gain can actually be significantly
modulated. The method is therefore often used for dye, color center, and
semiconductor lasers which have short lifetimes (a few nanoseconds) for the
upper state.

The last case we will consider is passive mode locking by a saturable
absorber. We consider an absorber with a transition frequency that coincides
with the laser frequency, with a low saturation intensity, and whose relaxation
time is much shorter than the cavity round trip time (fast saturable absorber).
To understand how such an absorber can lead to mode-locking we will consider
a time domain description. Let us suppose then that the absorber is contained
in a thin celi placed in contact with one of the cavity mirrors (Fig. 5.44a). If
the modes are initially unlocked, the intensity of each of the two traveling

Saturable Saturable
absorber absorber
K A
3 I 2 \% n %
ity o
Cavity mueror Cavity mirror FIG. 5.44. Time-domain description of passive
1 1ol

mode locking. .
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waves in the cavity will be made up of a rat}dom sequence ‘ot' h%htbb:rr;;i
-adicated as 1,2, and 3 in Fig. 5.44a; see also Fig. 1.3.40). As a.resulto abs et
[1'n ration, pulse 1 in the figure, being the most intense, will suffer the tj,asd
-s‘:tl:nuatio‘n in the absorber. This pulse will grow !"aster than.the other‘s‘,ldr;
:ﬁer many round trips the situation depicted in Fig. 5.44b u{l!l. evAecl::::lal ylhz
established where a single intense mode-locked'pulse remains. oy thy;t e
saturable absorber only works in the way described above provi o
decay time 7 is shorter than or at least co.mparable to .th'e"umef wp“ms "
between two consecutive noise pulses of Fig. 5.4-4a (typl?d ya .e e e
picoseconds). In the case of a slow absu.rber.(whu‘:h t‘yplcally megn 7o
order of a few nanoseconds) the saturation induced in the z;bso*: elirmg, u.ﬁ;
light pulse 1 in Fig. 5.44a will not have decayed ap?recmbly ¥ l. et me pu|;,e
3 arrives at the absorber and the process of selecting the most intense p

i ave effect,
" xt::)?gel: rl:lany passively mode-locked lasers make use of a fast salu;rzli:;;
absorber, under special circumstances, slow saturable 'absorbers car} a hs 2
1o mode locking. This may occur when the saturation cncrgy; ltc imc
medium is comparable to, although a little larger, than t'hallof t ehsa uJbue
absorber. The physical phenomena that lead to mode-loc.:kmg are rather s “c“,
in this case,? and will be described with the help of Fig. 5.45. For s!n;p bi
we will consider both the saturable absorber and the elicuvc mater;la lo. e
placed together in a single cell at one end of the laser cavity. Bcfc')re the zlarfls\; !
of the mode locked pulse the gain is assumed 1o be sn:laller lha.n t nnel 08 A;
so that the early part of the leading edge of the pulse will suffer dl nletd ozzr
some time during the leading edge of the pulse, when lhEl: accumu a; neSit %,{‘
density of the pulse becomes comparable to the saturfmon e‘nergy e ¥rh )
the absorber, saturation of the saturable absorbe}' will bggm to occur.r P
ahsorber loss can thus become smaller than the gain, and, if the energy ol the

+9)

Saturable s 1(1
NS

Sah.nbl-\glin g(t)

e T,

Mode locking pulses I(t)

-~

E 1 the
FIG. 5.45. Continuous-wave mode locking by means of a slow satur.ablc fbs:)lrbcr.’r:::i;:: e
figure is not to scale since the time duration of a mode-locked Pulsc is typ@a y sm.:l e
while the time interval 7, between two consecutive pulses, i.c., the cavity roun P
typically a few nanoscconds.
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puise is sufficient, this can occur at some time during the leading edge of the
pulse (times {; and ¢, in Fig. 5.45). Starting from this time, the pulse will be
amplified rather than attenuated. However, if the saturation energy density of
the gain medium is only slightly higher than that of the saturable absorber,
gain saturation will also be produced at some later time during the pulse
evolution. The gain can thus become smaller than the loss at some time during
the trailing edge of the pulse {times and t, in Fig. 5.45). Under the above
conditions, the pulse will see a net gain in its central part (i.e., for {, < 1<)
and a net loss in its wings (i.e., for 1<t and { > f,). Upon passing through
the cell the pulse will therefore be shortened and amplified. This process of
pulse shortening and amplification will cease when the pulse duration becomes
comparable to the inverse of the gain bandwidth Aug. Therefore, in this case,
the pulse duration Ar, is expected to be roughly equal to 1/Aw,. Note, finally,
that, after the mode-locked pulse has passed and before the arrival of the next
one, the saturable loss recovers o the initial value by spontaneous (radiative +
nonradiative) decay. During the same time interval, the saturable gain recovers
to its initial value by means of the pumping process. For the latter circumstance
to occur it is necessary that the recovery time of the gain medium (i.e., its
upper state lifetime) be comparable to the cavity round trip time. So, this type
of mode-locking can be made to occur with short-lifetime (of the order of 2
few nanoseconds) gain media such as dyes or semiconductors, but does not
occur with long-lifetime 1of the order of 1 ms) gain media such as Nd:YAG
or CO,. When the deliczte conditions for this type of mode locking can be
met, however, very short light pulses down to the inverse of laser linewidth
can be obtained. In fact cw passive mode-locked dye lasers have in this way
produced the shortest pu'ses (~25fs for the rhodamine 6G laser mode-locked
by a DODCI saturable absorber).

5.4.5.2. Mode-Locking Systems

Mode-locked lasers can be operated either with a pulsed or cw pump
{Fig. 5.46). In the pulsed case, active mode locking is commonly achieved
either by means of a Pockels cell electro-optic modulator or an acousto-optic
modulator. A possible configuration for a Pockels cell modulator is that of
Fig. 5.28a, where the voltage to the Pockels cell is sinusoidally modulated
from zero to a fraction of the A/4 voliage. Passive mode locking in pulsed
fasers is usually achieved by fast saturable absorbers. In pulsed mode locking
the overall duration A7} of the train of mode-locked pulses is in some cases
determined by the duration of the pump pulse. This is, for instance, true for
gain materials with fast recovery time (e.g., dye lasers), and in this case AT,
may typically be a few microseconds. For gain materials with slow recovery
time (e.g., solid-state lasers) and when a saturable absorber is used for mode-
locking, the presence of the saturable absorber will result not only in mode-
locked but also in Q-switched operation. In this case the duration A7, of the
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FIG. 5.46. (1} Pulsed and (b) cw mode locking.

mode-locked train will be given by the duration Ar, of the Q-swilched pulse
as calculated in Section 5.4.3.3 (a few tens of nanoseconds). Note that, when
a slow saturable absorber (7 of about a few nanoseconds) is used with a slow
gain material,® passive Q switching with single mode selection rather than
mode locking will tend 1o occur, as explained in Section 5.4.3.1.

In the case of mode locking with a cw pump, the output beam consists
of a continuous train of mode-locked pulses, two consecutive pulses being
separated by the cavity round trip time 2L/ ¢ (see Fig. 5.46b). Active mode
locking is usually achieved either by a Pockels cell modulator or, more
commonly, because of its lower insertion loss, by an acousto-optic modulator.
An acousto-optic modulator used for mode locking ditiers from that used for
Q switching (see Fig. 5.30) since the face to which the transducer is bonded
and the opposite face of the optical material are now cut parallel each other.
The sound wave launched into the material by the transducer is now reflected
back by the opposite face of the material. If the length of the optical block is
equal to an integer number of half-wavelengths of the sound wave, an acoustic
standing wave pattern will be produced. Under these conditions, if the sound
wave is oscillating at frequency o, the diffraction loss will be modulated at
frequency 2w. In fact, the diffiraction loss reaches a maximum whenever a
maximum amplitude of the standing wave pattern occurs. Consider now a

* It must be noted that we have been using the lerms “fast™ and “slow" in regard 10 recovery
time in a way that is dificrent for the cases of absorber and gain medium. The recovery time of
a sawrable absorber is considered ta be slow when its value (typically a few nanoseconds) is
comparable to a typical cavity round trip time. This value of lifetime is typical for absorbers
whose decay is determined by spontancous emission via an electric-dipole-allowed transition.
The recovery time is considered to be fast {a few picoscconds} when it is comparable to a typical
duration of a mode-locked pulse. Such fast recovery times usually arise from fast nonradiative
decay in the absorber. By contrast, the lifetime of a gain material is considered to be fast when
comparable to the cavity round-trip time. This occurs for an clectric-dipole-allowed laser
transition. The lifetime of a gain material is considered to be slow when it corresponds 10 an
electric-dipole-forbidden transition (7 of the order of a millisecond).
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standing sound wave of the form § = S.(sinw!)(sinkz). The maximum ampli-
tude of the standing wave is Sq and this maximum is reached twice in an
oscillation period (ie., at t =0 and t = 7/w). The modulator loss is thus
modulated at frequency 2e and mode locking is achieved when {1) the
modulator is put as near as possible o one cavity mirror, (2) the modulator
frequency 2w is set equal to 2m(c/2L) and, accordingly, the transducer is
driven at a frequency v equal to ¢/4L (e.g, v =50 MHz for L = 1.5m).

As discussed in the previous section, passive mode locking with cw lasers
can be achieved, under special circumstances, using slow absorbers combined
with fast laser gain media (notably dye lasers).

As a conclusion to this section as well as to the entire section on mode-
locking, Table 5.1 summarizes the operating conditions for some of the most
commonly used mode-locked lasers. For a detailed description of each of these
Jasers, the reader is referred to the next chapter. We merely wish to note here
that, when mode-locked by an acousto-optic modulator, cw Ar* and Nd: YAG
lasers give comparable pulsewidths A7, although the laser linewidth for
Nd:YAG (Av, = 150 GHz) is much larger than that for the argon laser (Avd =
1.5 GHz). This is due to the fact that the laser line is homogeneously broadened

TABLE 5.1. Mode-Locking Systems

Active Mode-locking Type of
material clement” operation Ar,
Gas
He-Ne¢ Quanz AOM cw 1ns
He-Ne Neon cell SA cw 350 ps
He-Ne Cresyl violet SA oW 220 ps
Art Quartz AOM cw 150 ps |
cO, Germanium AQM ow 10-20 ns |
{low pressure) SF, SA cw 10-20ns |
CO, (TEA} Germanium AOM Pulsed 1 ns
SF, SA Pulsed 1 ns
Solid
Nd:YAG Quanz AOM cw 100 ps
Nd: YAG LiNBO, EOM Pulsed 40 ps
Nd:glass Kodak 9860 or Pulsed Sps
9840 5A
Ruby D1 SA Pulsed i0ps
GaAs SA cw Sps
Color center Sync. pump cw 5ps
Liguid !
{dye lasers) i
Rhodamine 6G DODCI SA cw, Ar* pumped 251s ‘
Rhodamine 6G DODCI SA Flash pumped 1ps
Rhodamine 6G Sync. pump cw, Ar' pumped 0.5ps

4 AOM, acousto-optiz modulator; SA, saturable absorher; EOM, electro-eptic modulator.
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for Nd:YAG while it is inhomogeneously broadened in the case of the argan
jaser. Note atso that the cw mode-locking of a thodamine 6G dye laser by the
DODCI saturable absorber has produced the shortest pulse (25 1%).

5.4.6. Cavity Dumping

The technigue of cavity dumping allows the energy contained in the laser
to be coupled out of the cavity in a time equal to the cavity round-trip time.
The principle of this technique can be foliowed with the help of Fig. 5.47,
where the laser cavity is considered to be made of two 100% reflecting mirrors
and the output beam is taken from an output coupler of a special kind. The
reflectivity R = R{t) of this coupler is in fact zero up to a given time instant
and then suddealy becomes equal to 100%. This coupler will thus dump out
of the cavily, in a double transit, whatever power is circulating in the laser
cavity. Alternatively, if the reflectivity R of the output coupler is switched to
1 value less than 100%, the cavity dumper will still work correctly, coupling
ut the fraction R of the circulating power, if the coupler reflectivity is switched
10 its high value for a time equal to the round-trip time and then returned to
its zero value. Cavity dumping is a general technique that can be used to
advantage whether the laser be mode-locked, or cw or Q switched. In the
discussion that follows we will limit ourselves to considering the case of cavity
dumping of a mode-locked laser, since this is the case where cavity dumping
is used most often in practice.

For puised mode-locked lasers, cavity dumping is usually carried out at
the time when the intracavity mode-locked pulse reaches its maximum value
(see Fig. 5.46a). In this way a single ultrashort pulse of high intensity is coupled
out of the laser cavity. Note that, if the output coupler switches to a nominally
100% reflectivity, cavity dumping is simply achieved by merely switching the
coupler 1o its 100% reflectivity state. This type of dumping is often obtained
by a Pockels cell electro-optic modulator used in a configuration that is similar
to that used for Q switching (Fig. 5.28). In the configuration shown in Fig.
5.28a, the voitage in the Pockels cell is pulsed to its A/4 voltage at the instant
when cavity dumping is required, and the refiected beam from the polarnizer
is taken as output.

R-1 Laser rod rR.rlt} FR-!

FIG. 5.47. Principle of laser cavity dumping.






