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Theory of Active Mode Locking for
a Homogeneous Line

We have seen in Section 5.4.5 that, in mode-locked operation, a single ultrashort
light pulse is prod iced that travels back and forth inthe laser cavity. According
to the discussion already presented in Section 5.4.5.1, a theory of cw mode

to the case of 3 Fomogeneous line, since, in this case, the problem can be
handled in a simple and elegant way."! We consider the laser configuration
of Fig. C.1 and assume that the electric field of the light pulse before entering

the amplifier, £,(1), can be described by a generalized Gaussian form, i.e.,
{see also (5.118)],

Ei(1) = Eyexp[—at®*+ {{wot + Br?)] (C.1)
where w, is the car-ier frequency and a‘ and 8, respectively, describe the time

behavior of the field amplitude and frequency. To be more precise, the pulse
intensity has a time width (FWHM) given by

% ={(2In2)/a)V? (C.2)

while its frequency (which increases linearly with time) is given by w, + 8.
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472 Appendixes

We will also assume that the pulse width 7, is much smaller than 2/ c, where
I is the length of the active material so that, when the pulse is traveling in the
active material, there is no overlap with its own reflection from mirror 1. Note
that (C.1) can be expressed more conveniently as

E\(1) = Eyexp(~T 1) exp(iwgt) (C3)
where
Fr=a-ig {C.4)

is the complex Gaussian pulse parameter. In the analysis that follows we
require the pulse to maintain the generalized Gaussian shape of (C.3} while
traveling through the active material and through the modulator. We will
therefore make various simplifying assumptions to ensure that this is so.

After these preliminary remarks, let us begin by considering AM mode
locking. We et g(w) be the amplitude (i.e., electric field) gain per pass in the
active material under saturation conditions. With the assumption that the
upper level decay time is much longer than the cavity round-trip time, it can
be shown'® that

glw) = [exp — i(wl/c)) exp{(go/2)/[1 + 2i(w — we)/ Awp]} (C.5)

where | is the length of the active material, 2o is the single pass saturated
power gain at the center frequency of the transition, w,, and Aw, is the width
(FWHM) of the laser line. Note that, according to (C.5), the power gain G(w)
is given by

G(w) = |g(w)® = exp(g) (C.6)
where the gain g is given by
8 = 8o/{1 + [2(w — wg)/ Awy)*} (C.7)

Le., it shows the expected Lorentzian shape of a homogeneous line. N_cuw.
since the time behavior of the electric-field E\(t} of the laser pulse is Gaussian,
its Fourier transform E,(w) will also be Gaussian and given by

172 — a2
Ew) = %(::—r) exp[-(ﬁ;—l?i] (C38)

After traveling through the active material, the Fourier transform of the P“-!“
will then be E,(w)g(w). For this quantity to be a Gaussian function we require
g(w) to be a Gaussian function. We therefore expand the expression appeanag
as the argument of the second exponential function in (C.5) as a power senes

i

of (@ — wg). This gives L
glw)= exp(—i{(wl/c) + [olw — wo}/ Awgl})
X exp(go/2{1 ~ [Hw — wo)/Awo)’}
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Appendix ¢ 473
The imaginary term§ in t!'nc first €Xponential functign correspond 1o g phase
term ¢ = ¢(w), which Bives the time delay cxperienced by the puise after

traveling in the active materiaj (due to the finit i
o A as) Ite group velocity of the pulse;

__d¢ ! o
Ty = o =c +Z;; (CJO)

For simpi-icity we will not consider the effect of this de]
therefore 1gnore the phage term in (C.9) and write

glw) = exp(go/2){1 - [2{w - wo)/ Aw,]?)

Ey(w) = Ee)g(w))

_ EO 3 1 1/2 (w - )2
= —2—(;? exp(g,/) exp) - __71_"7_0-_] (C.12)
where, according to (C.8) and (C.11), I s such that

11,168

rr Awd (C.13)

The cgrresponding_ electric field ip the time domain, E;(1), can be obtained
by taking the Fourier transform of (C.12). we et
'I'-- /2
Ey(1) = E, (F) exp{(g,/) exp(~I"s? + iwgr) (C.14)
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Within the same approximation the change in pulsewidth as a result of the
pulse passing through the laser material is very small. We then have I" =T
and, accordingly, (C.13) can be approximated to

I'=T-16-8 2 (C.16)

Aw}
Also within the same approximation, (C.14) can be approximated to
Ey(1} = E; exp(go) exp(=T"1* + iwqt) (C.17)

Note that, from (C.16) one finds that Re(I") < Re(I"), where Re stands for
real part. We then see that, according to (C.4) and (C.2), the pulse broadens
after passing through the amplifier.

Let us now consider the passage of the pulse through the modulator, We
assume the moduiator placed as near as possible to mirror 2 and also that the
modulator length is much smaller than the length, cr,, of the pulse. Neglecting
the finite reflectivity of mirror 2 we then consider the effect produced by a
double pass of the pulse through the modulator. If we let the doubie pass
modulator loss be y,.(1) we can write

Ym = 8(1 — COS wnt) = 28 sin*(w.t/2) (C.18)

where 28 is the maximum loss introduced by the modulator and w,,, the
modulator frequency, is assumed to be such that the modulator period is equal
to the round trip time of the light pulse in the laser cavity. For small losses
the modulator transmission T, can then be written as

T =1~ ¥p = eXp{~¥m} = exp[-28 sin*(wn1/2)] (C.19)

It was shown in Section 5.4.5.1 that the pulse passes through the modulator
when the loss is zero (i.e., at time ¢ = 0). Since the pulsewidth is also assumed
to be much smaller than the cavity round trip time (i.e., r,w,, « 1), then (C.19)

~ can be approximated as

T = exp(—éwi,1?/2) (C.20)

which is now a Gaussian function. After passing through the modulator the
pulse E;(¢) is given by

Ey(1) = Ex()T,.(1) {(C.21}
From (C.21), (C.20}, and (C.17) we then get
Ey(1) = E, exp(go) exp[~T"t* + iwot] (c.2)
where
= 5‘»7?- (C23)
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Appendix C 475

Note that, since Re(I™) > Re(l'), the pulse is narrowed when passing through
the modulator.

To account for the fixed cavity losses arising from finite mirror reflectivities
and internal losses, the pulse E (1) after one round trip is written as

EJ(t) = [exp(~¥)]E;(8) (C.24)

where v, the logarithmic power loss per pass, is given by (5.8). We now set

the self-consistency condition E,(t) = E,(¢). From (C.24), {(C.22), and (C.3)
we immediately get

Bo=Y (C.25a)
and
MM=T (C.25b)
From (C.25b), with the help of (C.23) and (C.16), we get
16go 2 _ Swf,,

This shows that the pulse broadening in the amplifier must be balanced by
the pulse narrowing in the modulator. Equation (C.26) aiso shows that I is,
in this case, a real quantity so that, according to (C.4), we have

B=-I.T=0 (C.27a)
t/2
a=Rel) = (%) ﬂf—“-’i’ (C.27b)
4]

Equations (C.25a) and {(C.27) together provide a complete solution of our
problem. Note that (C.25a) shows that, within the approximation I" =T, the
threshold for mode-locked operation corresponds to the cw saturated gain go
being equal to the cavity losses. Note that, according to {C.27a}, the puise has
no frequency sweep. Equation (C.27b) with the help of (C.2) gives the pulse
duration. Putting v,, = w,,/27 and Avy = Awe/27 we then get

2W2In2\"? (g, ”‘( ! )”’
""( ™ ) (a) Ymvy (28

‘We note that the first factor on the right-hand side of (C.28) is approximately

equai to 0.45. The second factor, as a result of the 1/4th power, is approximately
equaj to unity. From {C.28) we then obtain the result

_ 7, = 0.45/ (v wo)'? (C.29)
Le., (5.122).
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The case of FM mode locking can be treated in a similar way. We again
assume the electric field of the pulse and the amplitude gain to be given by
(C.3) and (C.11), respectively. The modulator now produces a time-varying
phase shift Ad. For sinusoidal modulation we put

Ad = § cos{w,t) (C.30)
In this case a self-consistent solution is obtained only when the puise passes
through the modulator while the phase shift A4 is either maximum or minimum

(i.e., it is stationary). We will therefore assume the pulse to pass through the
modulator when ¢ = 0. The modulator transmission can then be written as

T = explidd) = C exp[—ib(wnt)?/2) (C.31)

where C = exp(i8). Since T,, now has the form of a Gaussian function, the
pulse, after the modulator, will again be given by (C.22) where now

ibw?,

"= l"'+-—2— (C.32)

Using {C.24) again together with the condition E () = E\(t) we find in this
case that

] /2 Wy AWQ
a=g= (Tzo) (—2-—) (C.33a)
o= (C.33b)

A comparison of (C.33a) with (C.27b) shows that, for the same value of
(8/2g,), i.e., for the same values of & and, according to (C.33b), the same
cavity loss 7, the quantity « and hence the pulse width 7, is the same for both
AM and FM mode locking. For the latter case, however, since 8 is nonzero,
the pulse frequency shows a linear sweep.
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