

INTERNATIONAL ATOMIC ENERGY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR.545/2

WORKSHOP ON MATHEMATICAL PHYSICS AND GEOMETRY (4 - 15 March 1991)

Generalities on A/G, An Introduction to K. Uhlenbeck's Theorems

T.R. Ramadas School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay - 400 005 India

Generalities on A/G, An Introduction to K.Uhlenbeck's Theorems.

T. R. RAMADAS

School of Mathematics, TIFR, Homi Bhabha Road, Bombay 400 005, India.

§1: Prerequisites.

In this section we recall definitions and set up notation, and close by previewing the remaining material.

A quick introduction to the relevant material is [N]. For the present we only consider smooth "objects".

In particular all connections and gauge transformations will be smooth until further notice.

§1.a Connections, gauge transformations.

Let M be a compact connected oriented manifold of dimension n, G a compact Lie group, P a principal G-bundle on M. For example M could be S^3 in which case $P \sim M \times G$, or $M = S^4$ and G = SU(2) in which case P is classified up to equivalence by its second chern number. Denote by π the projection $P \to M$. Given $g \in G$ denote by R_g the corresponding map $P \to P$, and for $x \in P$, let $x \cdot g \equiv R_g(x)$.

Recall the following equivalent definitions of a connection:

- (1) We have on P an exact sequence of G-vector bundles: $0 \to T_{\pi}P \to TP \to \pi^*TM \to 0$ where $T_{\pi}P$ is the "tangent bundle along the fibres". A connection is G-equivariant splitting of this sequence.
- (2) A connection is a equivariant Lie G-valued 1-form A on P satisfying $A(\sigma(X)) = X$ for $X \in Lie\ G$. Here "equivariant" means $R_g^*A = ad_{g^{-1}}A$ and $\sigma(X)$ denotes the vector field on P given by the differential of the G-action.

Exercise 1.1: Check the equivalence of the two definitions above. Prove that connections exist.

Recall the following equivalent definitions of a gauge transformation:

(1) A gauge transformation is a map $s: P \to G$ satisfying

(1-1)
$$s(x.g) = g^{-1}s(x)g$$
.

(2) A gauge transformation is an automorphism $\phi: P \to P$ of principal bundles that is trivial on the base. That ϕ is an automorphism means that $\phi(x.g) = \phi(x)g$; "trivial on the base" means that ϕ leaves each fibre of π invariant.

The correspondence $s \leftrightarrow \phi_s$ is given by $\phi_s(x) = x.s(x)$. Note that gauge transformations form a group. Exercise 1.2: Check the equivalence of the two definitions above. Note that $\phi_{s_1s_2} = \phi_{s_1} \circ \phi_{s_2}$. Define Ad P to be the bundle associated to the adjoint action of G on itself; check that a gauge transformation can be regarded as a section of Ad P.

(Recall that given a left action $(q,g) \mapsto g.q$ of G on a space Q, the associated bundle with fibre Q is defined to be the space $P \times Q$ modulo the equivalence relation $(x,q) \sim (x.g,g^{-1}q)$. The adjoint action of G on itself is given by $(h,g) \mapsto gh \equiv Ad_gh = ghg^{-1}$.)

Action of gauge transformations on connections.

We have the following formula:

(1-2)
$$(\phi^*A)(x) = ad_{s^{-1}(x)}A(x) + s^{-1}(x)ds(x)$$

where $s^{-1}(x)ds(x)$ denotes the (left-invariant) Maurer-Cartan form on G pulled back to P via the map s. (If G is a matrix group this expression for the Maurer-Cartan form can be interpreted literally; note also that in this case $ad_{s^{-1}(x)}A(x) = s^{-1}(x)A(x)s(x)$.)

PROOF: Write ϕ as the composite $P \xrightarrow{I \times e} P \times G \xrightarrow{R} P$ where I is the identity map of P and R is the (right) action of G.

Lectures at the Workshop on Mathematical Physics and Geometry, Trieste, March 1991

§1.b Exterior algebra of Lie G-valued forms.

Let N be a manifold (In our case it will be either M or P). Let $\Lambda_N^p \otimes Lie\ G$ be the bundle of p-forms on N with values in Lie G. We have then

(1) a multiplication

$$(\Lambda_N^p \otimes Lie \ G) \times (\Lambda_N^q \otimes Lie \ G)$$

 $\rightarrow \Lambda_N^{p+q} \otimes Lie \ G,$

and

(2) a differential $\Lambda_N^p \otimes Lie \ G \to \Lambda_N^{p+1} \otimes Lie \ G$.

If A, B, C are forms of degree p, q, r respectively and we denote by [.,.] the multiplication we have

- (1) $[A, B] = (-1)^{pq}[B, A],$ (2) $(-1)^{pr}[A, [B, C]] + (cyclic permutations) = 0, and$
- (3) $d[A, B] = [dA, B] + (-1)^p[A, dB].$

Given a connection A on P we let F_A denote its curvature two-form $dA + \frac{1}{2}[A, A]$.

Exercise 1.3: We recall the definition of the product [.,.]. If $A = \sum_I A_I \omega^I$ and $B = \sum_I B_J \omega^J$, where $\{\omega^I\}_I$ and $\{\omega^J\}_J$ are bases for p-forms and q-forms respectively and the A_I and B_J are elements of Lie G, then

$$[A,B] = \sum_{I,J} [A_I,B_J] \omega^I \wedge \omega^J.$$

- (a) Check (1), (2) and (3) above.
- (b) Let ω be the Maurer-Cartan form on G. Check that $d\omega + \frac{1}{2}[\omega, \omega] = 0$.
- (c) For any connection A on P check the Bianchi identity: $dF_A + [A, F_A] = 0$.
- (d) Given a gauge transformation s, check that $F_{A^*} = Ad_{s^{-1}}F_A$.
- (e) (Local expression for F_A :) If in a co-ordinate chart $\{x_i\}$ we write $A = \sum_i A_i dx^i$, then $F_A = \frac{1}{2} \sum_i F_{A,ji} dx^j dx^i$. where

$$F_{A,ji} = \frac{\partial A_i}{\partial x^j} - \frac{\partial A_j}{\partial x^i} + [A_j, A_i].$$

§1.c Forms on M with values in associated bundles; covariant differentiation.

If $T: G \to End\ V$ is a representation of G we let V_T denote the associated vector bundle. We have a natural isomorphism between sections of $\Lambda_M^p \otimes V_T$ and G-equivariant horizontal p-forms on P. (Equivariance of such a form α means that $R_q^*\alpha = T(g^{-1})\alpha$ and horizontal means that the interior product with any vertical vector is zero. Such forms are also called basic.)

We let ad P denote the vector bundle associated to the adjoint representation of G. Note that if E is any associated vector bundle, we have a natural map ad $P \rightarrow End E$.

Fix a connection A. Given a basic V-valued p-form α its covariant differential with respect to A is defined to be $d_A \alpha = H \circ d\alpha$ where H is the projection operator on the dual of the "horizontal bundle".

Exercise 1.4:

- (a) Check that $d_A \alpha = d\alpha + A \wedge_T \alpha$, where \wedge_T is defined using the representation T.
- (b) Check that $d_A^2 \chi = [F, \chi]$. (Ricci's identity).

§1.d Transition functions.

By local triviality of P and compactness of M we can find a finite family $(U_{\mu}, \{y_{i,\mu}\}, \{\tau_{\mu}\}, D_{\mu})$ where the U_{μ} are open subsets of M and the τ_{μ} are sections of P over the U_{μ} , and we assume for later purposes

- (1) for each fixed μ the $\{y_{i,\mu}\}$ are a set of co-ordinates on the U_{μ} .
- (2) for each μ , D_{μ} is a relatively compact open subset of U_{μ} with smooth boundary such that the D_{μ} form an open cover of M.

It is easily seen that there exist, for every (μ, ν) , G-valued functions $g_{\mu\nu}$ on $U_{\mu} \cap U_{\nu}$ defined by $\tau_{\nu}(y) =$ $\tau_{\mu}(y)g_{\mu\nu}(y),\ y\in U_{\mu}\cap U_{\nu}.$

Exercise 1.5:

(a) The transition functions satisfy $g_{\mu\nu}(y)g_{\nu\rho}(y)g_{\rho\mu}(y)=1,\ y\in U_{\mu}\cap U_{\nu}.$

(b) A section of a vector bundle V_T associated to P via a representation $T:G\to End\ V$ is given by functions σ_{μ} on each U_{μ} satisfying $\sigma_{\mu} = T(g_{\mu\nu})\sigma_{\nu}$. (c) A gauge transformation is given by functions $\{s_{\mu}\}$ satisfying $s_{\nu} = g_{\mu\nu}s_{\mu}g_{\mu\nu}^{-1}$.

(d) A connection is given by Lie G-valued 1-forms $\{A_{\mu}\}$ satisfying $A_{\nu} = ad_{a^{-1}}A_{\mu} + g_{\mu\nu}^{-1}dg_{\mu\nu}$.

§1.e Irreducible connections.

The space \mathcal{A} of connections on P is an affine space modelled on $\Gamma(\Lambda^1_M \otimes Lie\ G)$. In particular it is contractible (though we haven't yet endowed it with a toplogy - this we will do soon). Note, however, that the group G of gauge transformations acts on $A: A \mapsto A'$ where

(1-3)
$$A^{s} = (\phi_{s}^{*}A)(x) = Ad_{s^{-1}(x)}A(x) + s^{-1}(x)ds(x)$$

It is easily checked that this is a right action.

Note that the center of G, which we denote by Z(G), is a subgroup of G: if $s: P \to Z(G)$ is a constant map, it obviously satisfies the condition (1-1). Note also that for such s we have $A^s = A$. Thus Z(G) acts trivially on A. Which are the connections with nontrivial automorphisms? The answer is given by

LEMMA 1.6. Given $A \in \mathcal{A}$, the isotropy group at A is isomorphic to the centraliser of the holonomy group of A at $x \in P$.

Recall that the holonomy group of A at x, which we will denote H(A,x), is defined as the subgroup of G: $\{g \in G \mid \exists \text{ a path } x : [0,1] \rightarrow P \text{ with } x(0) = x, x(1) = x.g \text{ and } x^*A = 0.\}$. Holonomy groups at different points are conjugate in G.

PROOF: Exercise.

Definition 1.7: A connections A such that the centraliser of H(A, x) is Z(G) is said to be irreducible.

Remark 1.8: This definition will not work for nonsmooth connections, with which we will eventually have to deal. At that point we will use another characterisation.

Exercise 1.9: Describe the set of reducible connections on: (1) a principal SU(2) bundle on S^4 , and (2) a principal U(2) bundle on a two-dimensional manifold M.

§1.f Preview of remaining material.

The group $\mathcal{G}/Z(G)$ acts freely on the set \hat{A}_{k-1}^p of irreducible connections. We will prove in §2 that under suitable hypotheses this yields an infinite-dimensional principal bundle over an infinite-dimensional manifold M.

One of the lessons of recent years is that a lot of information about the topological and differential structure of M is encoded in sub-manifolds of M. These submanifolds are finite-dimensional; they are defined as solution-spaces of (gauge-invariant) nonlinear partial differential equations involving connections. An essential tool to study these moduli spaces are some theorems due to K. Uhlenbeck [U]. In §3 we give an introduction to this paper.

§2: Preliminaries.

We will need the apparatus of Sobolev spaces. The reason is that we would like to deal with Banach manifolds where the theory is quite analogous to the case of finite-dimensional manifolds — in particular the inverse function theorem is valid [L].

§2.a Preliminaries on Sobolev Spaces.

For a quick treatment of this topic see [F]. All the results we need (and more) are summarised in [P, Chapter 9

Let $p \ge 1$ be a real number, $k \ge 0$ be an integer. Let D be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \bar{D}$, \bar{D} the closure of D. We define the Sobolev space $L_k^p(D)$ as the normed linear space

$$L_{i}^{p}(D) = \{ f \in L^{p}(D) \mid D^{s} f \in L^{p}(D) \forall multi-index s such that |s| < k \}.$$

By a multi-index s we mean an n-tuple $\{s_1, \ldots, s_n\}$ of nonnegative integers; the differential in the above definition is in the sense of distributions.

 L_k^p is a Banach space. We define two closed subspaces:

- (1) $L_k^p(\bar{D}) = \text{closure of } C^{\infty}(\bar{D}) \text{ in } L_k^p(D).$ (2) $L_{k,0}^p(D) = \text{closure of } \mathcal{D}(D) \text{ (the space of } C^{\infty} \text{ functions with compact support) in } L_k^p(D).$

Since D has smooth boundary in fact $L_k^p(D) = L_k^p(\bar{D})$. These definitions can be extended to nonintegral nonnegative k (and in fact more generally, with care over boundary conditions.)

We have then the Sobolev embedding

THEOREM 2.1.

- (A) $L_k^p(\bar{D}) \subset L_l^q(\bar{D})$ if $k n/p \ge l n/q$ and $k \ge l$, and
- (B) $L_k^p(\bar{D}) \subset C^l(\bar{D})$ if $k n/p \ge l$.

We also have the Rellich

LEMMA 2.2. The embedding in (A) above is compact if the strict inequality k - n/p > l - n/q holds. Similarly the embedding in (B) is compact if k - n/p > l.

Recall that a bounded linear map $T: V \to W$ of Banach spaces is said to be compact if it takes bounded sets to precompact sets, or, equivalently if for every bounded sequence $\{v_n\} \subset V$, the sequence $\{Tv_n\}$ has a convergent subsequence.

We illustrate the part (B) of the Theorem in an elementary situation. Let D be a bounded open interval (a,b) in \mathcal{R} — then $L_1^2\subset C^0$. We will prove $L_{1,0}^2\subset C^0$; from this the more general result can be deduced. It is clearly enough to bound the sup norm of any function $f\in \mathcal{D}(D)$ in terms of its L_1^2 norm. We have $f(x) = \int_a^x f'(y) dy$ which yields by Cauchy-Schwartz $\sup |f| \le (b-a)^{\frac{1}{2}} (\int_a^b |f'(y)|^2 dy)^{\frac{1}{2}}$.

We also have:

LEMMA 2.3.

- (a) For k > n/p, L_k^p is a Banach algebra. If ql > n, $k n/p \ge l n/q$ and $k \ge l$ the inclusion $L_k^p \subset L_l^q$ makes L_1^q a module over L_k^p .
- (b) If, for i = 1, 2, $k_i p_i < n$, $k_i \ge k$ and

$$\sum_i (k_i - n/p_i) \ge (k - n/p)$$

then multiplication $L_{k_1}^{p_1} \otimes L_{k_2}^{p_2} \to L_k^p$ is well-defined and continuous.

The proof of these statements uses only the embedding theorem and Hölder inequalities. For example in statement (b) if we take $k_i = k = 0$, and we take we take $1/p_1 + 1/p_2 = 1/p$ the statement is the Hölder inequality. The case $1/p_1 + 1/p_2 < 1/p$ follows because the domain D has finite measure.

We use the notation $L_k^p(\bar{D})$ to emphasize that "in good cases the functions extend up to the boundary", i.e., a restriction to the boundary can be defined. A typical result:

LEMMA 2.4. The restriction map $C^{\infty}(\bar{D}) \to C^{\infty}(\partial \bar{D})$ extends to a bounded linear map $L_k^p(\bar{D}) \to L_{k-1/p}^p(\partial \bar{D})$ provided k-1/p>0.

A basic fact about Sobolev spaces is that elliptic operators between them, with appropriate boundary conditions, are Fredholm.

It is straightforward to define Sobolev spaces of functions with values in finite-dimensional real inner product spaces. We skip the details.

§2.b Topologies on A and G.

The results in this section are from [NR] and [UF]. (See also [MV],[S].)

We begin by considering an arbitrary real vector bundle E on M. Then for any real number $p \ge 1$ and integer $k \ge 0$ we can define a vector space $L_k^p(M, E)$. An element of this space is a represented by a measurable section σ of E satisfying:

* Given an open set $U \subset M$, a set $\{y_i\}$ of co-ordinates on U, a trivialisation e_j of E over U, and a relatively compact open $D \subset U$ with smooth boundary, the components of σ with respect to the trivialisation are in $L^p_k(\bar{D})$.

In the last expression D is thought of as a domain in \mathbb{R}^n via the co-ordinates $\{y_i\}$. This identification will be implicit in many places below.

One can similarly define, for any fibre bundle F over M, a manifold $L_k^p(M,F)$ of sections of Sobolev class L_k^p , provided kp > n. The necessity for this assumption is obvious — we need to measure the difference between maps in terms of co-ordinate charts on the total space F, only when the maps involved are continuous can we be sure that the image of a small enough open set in M is contained in a co-ordinate chart in F. The sufficiency follows from the invariance of the relevant Sobolev spaces under diffeomorphisms.

It is useful to have more concrete definitions. Recall (§1.d) the definition of a section in terms of transition functions Choose a finite family $(U_{\mu}, \{y_{i,\mu}\}, \{\tau_{\mu}\}, D_{\mu})$ such that the D_{μ} form an open cover of M. Then

$$\begin{split} L_k^p(M,E) &= \{\phi_\mu \mid \phi_\mu = g_{\mu\nu}\phi_\nu\} \\ &\subset \bigoplus_{closed \ subspace} \bigoplus_\mu L_k^p(D_\mu,V) \end{split}$$

where the $g_{\mu\nu}$ are the transition functions.

Exercise 2.5: (a) The vector space $L_k^p(M, E)$ endowed with the norm

$$|\phi|=\sum_{\mu}|\phi_{j,\mu}|_k^p$$

is a Banach space.

(b) Any other family $(U_{\nu}, \{y_{i,\nu}\}, \{e_{j,\nu}\}, D_{\nu})$, such that the D_{ν} form an open cover of M, yields an equivalent norm.

We define \mathcal{A}_k^p as the affine subspace

$$\begin{split} \mathcal{A}_k^p &= \{A_\nu \mid A_\nu = ad_{g_{\mu\nu}^{-1}}A_\mu + g_{\mu\nu}^{-1}dg_{\mu\nu}\} \\ &\subset \bigoplus_{\text{closed affine subspace}} \bigoplus_{\mu} L_k^p(D_\mu, \Lambda_D^p \otimes Lie \ G) \end{split}$$

For integers k, p satisfying kp > n we now let $G_k^p \equiv L_k^p(M, Ad P)$. This is a particular example of a Banach manifold of functions taking values in a manifold (which we have not defined), but one can give slightly ad hoc definition which work for the groups of interest, namely G = SO(n) or G = SU(m). Let $T: G \to V$ be the defining representation (thus V is respectively \mathbb{R}^n or \mathbb{C}^m) and let V_T be the associated vector bundle. This bundle carries an inner product (respectively real or hermitian) and we can identify $Ad P \mapsto End V_T$ where the image consists respectively of special orthogonal and special unitary

endomorphisms. We now define $L_k^p(M, Ad\ P)$ as the subset of $L_k^p(M, End\ V_T)$ consisting of sections taking values in $Ad\ P$.

Exercise 2.6:

- (a) Use the implicit function theorem, valid for differential maps of Banach manifolds, to check that this definition makes $L_k^p(M,Ad\ P)$ a closed submanifold of $L_k^p(M,End\ V_T)$. (A convenient reference is [L, Corollary 2s., page 17] note that in contrast to the finite-dimensional case one has to assume that the kernel of the differential map splits; this is automatic in the case of Hilbert manifolds but has to be checked otherwise.)
- (b) We have, in terms of transition functions:

$$L_k^p(M,Ad\ P) = \{s_\mu \mid s_
u = g_{\mu
u}s_\mu g_{\mu
u}^{-1}\}$$

$$\subset \bigoplus_{closed\ submanifold} L_k^p(D_\mu,G)$$

where again $L_k^p(D_\mu, G)$ can be defined as (the Banach submanifold of) functions in $L_k^p(D_\mu, End\ V)$ taking values in G.

Note that by the Sobolev theorem elements of \mathcal{G}_k^p give C^l -automorphisms of P where l < k - n/p. We have

PROPOSITION 2.7. G_k^p is a Banach Lie Group.

PROOF: By Lemma 2.3(a) the multiplication in $L_k^p(D_\mu, End\ V)$ is a smooth map (multiplication in a Banach algebra is smooth.). Thus the restriction to $L_k^p(D_\mu, G)$ is smooth, as is the inverse, being the restriction of the linear map $s\mapsto s^T$ or $s\mapsto s^\dagger$. Thus $L_k^p(D_\mu, G)$ is a Banach Lie group. The result now follows from 2.6(b).

Exercise 2.8 The Lie algebra of \mathcal{G}_k^p if $L_k^p(M,ad\ P)$.

We can now prove in a routine way, by a technique similar to the last proof,

PROPOSITION 2.9. Assume kp > n. Then \mathcal{G}_k^p acts smoothly on \mathcal{A}_{k-1}^p .

and

PROPOSITION 2.10. The curvature operator $A_{k-1}^p \to L_{k-2}^p(M, \Lambda_M^2 \otimes ad\ P)$ is smooth.

Let $\hat{\mathcal{A}}_{k-1}^p$ denote the set of irreducible connections on P of Sobolev class L_k^p — this is an open dense submanifold of \mathcal{A}_k^p (exercise). The group $\hat{\mathcal{G}}_k^p \equiv \mathcal{G}_k^p/\mathcal{Z}(G)$ acts freely on this set. The rest of this section will be devoted to the following

THEOREM 2.11. Assume kp > n. The quotient space $\hat{\mathcal{A}}_{k-1}^p/\hat{\mathcal{G}}_k^p$ is a Hausdorff Banach manifold. $\hat{\mathcal{A}}_{k-1}^p$ is a principal $\hat{\mathcal{G}}_k^p$ bundle over this quotient.

We show:

- (1) The action of \mathcal{G}_k^p on \mathcal{A}_{k-1}^p is proper. This will prove [B1] that the quotient is a Hausdorff space.
- (2) For $A \in \hat{\mathcal{A}}_{k-1}^p$ the map $\hat{\mathcal{G}}_k^p$ to $\hat{\mathcal{A}}_{k-1}^p$ given by $s \mapsto A^s$ is an injective immersion (i.e., has a closed immersion with topological supplement). By [B2] this will prove the Theorem.

LEMMA 2.12. Assume kp > n. Let (A_i, s_i) be a sequence in $A_{k-1}^P \times G_k^P$ such that $A_i \to A$ and $B_i \equiv A_i^{s_i} \to B$. Then there exists a subsequence s_i which tends to a limit s (so that $A^s = B$.)

PROOF: We will outline a proof under the assumption that k(p-1) >> n so that the relevant connections are actually continuous. For the general case see [UF, Proposition A.5].

Note that in a chart U_{μ} we can write

$$ds_i = s_i B_i - A_i s_i$$

where s_i , A_i , B_i are regarded as $End\ V$ -valued forms. By compactness of G one can find a subsequence s_j converging at some point $p \in U_\mu$. Integrating (2-2) "radially" away from p along straight lines and using standard results about the dependence of solutions of an ODE on coefficient (functions) we get the uniform convergence of the s_j on D_μ . A routine patching now gives this everywhere.

One can now "bootstrap" using (2-2) to get the desired result.

This result proves properness (because the isotropy groups are compact.)

We turn next to (2). The differential of the map $s \mapsto A^s$ at s = Identity is the operator $d_A : L_k^p(ad\ P) \to L_{k-1}^p(\Lambda_M^1 \otimes ad\ P)$. By the definition of irreducibility of A this is an injection. One proves that the a topological supplement is given by $ker\ d_A^s$; in fact that

$$L^p_{k-1}(\Lambda^1_M\otimes ad\ P)=Im(d_A)\oplus ker\ d_A^*.$$

This is standard when A is smooth, but needs work when it is not.

§3: A "Good" Gauge.

This section is essentially an exposé of [U]. I have skipped details which can easily be read off from that paper.

§3.a The Compactness Theorem.

We start with some functional analysis [RS]. Let V be a Banach space, denote by V^* its dual. The weak topology on V is the weakest topology such that each linear functional $\ell \in V^*$ is continuous. Recall the following special case of the Banach-Alaoglu

THEOREM 3.1. Suppose V is reflexive, that is, $(V^*)^* = V$. Then the unit ball is compact in the weak topology.

Exercise 3.2: The space $L_k^p(M, E)$ (§2.a) is reflexive for 1 .

To motivate the next theorem consider the case $G=\mathbb{R}$. This is not a compact group, but no matter. In fact we can drop the restriction kp>n (in fact we take $p=2,\ k=2$); and we consider the trivial bundle with R as structure group. Then $A_1^2=L_1^2(M,\Lambda^1)$, (i.e., 1-forms of Sobolev class L_1^2) and $\mathcal{G}_2^2=L_2^2(M)$ (i.e., 0-forms with Sobolev class L_2^2). The action of a 0-form s on a 1-form A is $A\mapsto A+ds$. The function $A\mapsto \int_M |dA|^2\tau$ (where τ is a volume element on M) is gauge-invariant and descends to the quotient modulo G_2^2 .

Exercise 3.3(a): Assume $H^1(M, \mathbf{R}) = 0$. Use Hodge Theory to prove: Given a sequence $A_i \in \mathcal{A}_1^2$ of 1-forms such that $\int_M |dA_i|^2 \tau \leq B$, there is a subsequence $\{j\} \subset \{i\}$ and gauge transformations s_j in \mathcal{G}_2^2 such that $A_j^{s_j}$ is weakly convergent in \mathcal{A}_1^2 . The weak limit A satisfies $\int_M |dA|^2 \tau \leq B$.

Exercise 3.3(b): What happens when M is not simply connected?

Fix a Riemannian volume element τ on M. Consider, on \mathcal{A}_1^p , the function $A \mapsto \int_M |F_A|^p \tau$. This is clearly gauge-invariant, and therefore descends to a function on $\mathcal{A}_{k-1}^p/\mathcal{G}_k^p$. The next theorem [U, 1.5] asserts, roughly speaking, that this function is a "norm" on $\mathcal{A}_{k-1}^p/\mathcal{G}_k^p$.

THEOREM 3.4. Let p > n/2, B a nonnegative real number. Suppose $A_i \in \mathcal{A}_1^p$ is a sequence of connections with $\int_M |F_{A_i}|^p \tau \leq B$. Then there is a subsequence $\{j\} \subset \{i\}$ and gauge transformations s_j in \mathcal{G}_2^p such that $A_i^{i,j}$ is weakly convergent in \mathcal{A}_1^p . The weak limit A satisfies $\int_M |F_A|^p \tau \leq B$.

We shall prove a local Theorem from which the above result can be deduced.

§3.b Existence of a "good gauge".

In this subsection $M = B^n$, the unit ball in \mathbb{R}^n . We set $\int = \int_{B^n} dy$ unless another domain of integration is explicitly given. We let $\mathcal{U} = \mathcal{A}_1^p$, $\mathcal{G} = \mathcal{G}_2^p$ and (for $\kappa \geq 0$) $\mathcal{U}_{\kappa} = \{A \in \mathcal{U} \mid \int |F_A|^{n/2} \leq \kappa\}$. Note that \mathcal{U}_{κ} is invariant under \mathcal{G} .

THEOREM 3.5. Let n > p > n/2. Then $\exists \kappa = \kappa(n)$ and c = c(n) such that every connection $\tilde{A} \in \mathcal{U}_{\kappa}$ is gauge equivalent to a connection A where A satisfies

- (a) $d^*A = \sum_i \partial_i A_i = 0$,
- (b) $\sum y_i A_i = 0$ on S^{n-1} , and
- (c) $||A||_{q,1} \le ||F_A||_q$ for $n/2 \le q \le p$.

Remark 3.6:

- (i) $\sum y_i A_i$ is a Lie G-valued function in $L_1^p(B^n)$. The claim in (b) is that it is in fact in $L_{1,0}^p(B^n)$.
- (ii) A version of the Theorem holds in the case p = n/2 and gives a regularity result for solutions of Yang-Mills equations.

PROOF: The proof is via the continuity method. One shows that U_{κ} is connected, then that the subset satisfying (a)-(c) (which we henceforth denote $\mathcal{W}_{\kappa,c}$) is both open and closed. The constants will be determined in the course of the proof.

Step 1: Connectedness of U_{κ} (for $p \geq n/2$)

Define, for $0 \le t \le 1$, $D_t: B^n \to B^n$ by $D_t(x) = tx$. For $A \in \mathcal{U}$ let $A_t = D_t^*A$. Then $F_t \equiv F_{A_t} = D_t^*F_A$ and

$$\int_{B^n} |F_t(y)|^p dy = \int_{B^n} |F(ty)|^p t^p dy$$
$$= t^{p-n} \int_{tB^n} |F(y)|^p dy.$$

The second equality follows from the change of variables formula. The first is left as an exercise.

For fixed $A, t \mapsto A_t$ gives a curve in U connecting A to the zero form, and the above computation shows that the curve stays in U_n if $A \in U_n$.

Step 2: The set $W_{\kappa,c}$ is closed in U_{κ} for n > p > n/2.

Let $\tilde{A}_i \in \mathcal{W}_{\kappa,c}$, $\tilde{A}_i \to \tilde{A}_i$ and let s_i be gauge transformations such that $A_i \equiv \tilde{A}_i^{s_i}$ satisfies (a)-(c). First, since $\tilde{A}_i \to \tilde{A}$, $\int |F_{\tilde{A}_i}|^p$ is uniformly bounded (by Proposition 2.9). Hence — using gauge-invariance of the integral and (c) — the A_i 's form a bounded set in L_1^p . By Theorem (3.1) there is a weakly convergent subsequence $A_i \cdots \to A$. We now show (i) \tilde{A} is gauge-equivalent to A, and (ii) A satisfies (a)-(c).

We first show (ii). That conditions (a) and (b) are preserved under weak limits is clear. As for (c) note that $A_j \cdots \to A$ in L_1^p for $q \le p$ since $L_1^p \to L_1^q$ is norm continuous (and hence preserves weak convergence). Thus $||A||_{q,1} \le \lim\inf_{A \to q} ||A_j||_{q,1} \le c(n)||F_{A_j}||_q = c(n)||F_{A_j}||_q = c(n)||F_{A_j}||_q = c(n)||F_{A_j}||_q$

It remains to show (i). We have $\tilde{A}_j^{s_j} = A_j$, or thinking of the s_j as matrix-valued functions, $ds_j = s_j A_j - \tilde{A}_j s_j$. Since n > p we have r > p such that 1/n - 1/p + 1/r = 0. Since G is compact the s_i are in L^{∞} so $||ds_j||_r \le c_1(||A_j||_r + ||\tilde{A}_j||_r) \le c_2(||A_j||_{p,1} + ||\tilde{A}_j||_{p,1})$ where in the second step we have Sobolev embedding. Thus the s_j are uniformly bounded in L_1^r . Pick a weakly convergent sequence $s_k \cdots \to s$ in L_1^p .

Step 3: An à priori estimate.

We prove: There exists d(n) > 0 such that if $A \in \mathcal{U}$, $||A||_n < k(n)$, and A satisfies (a)-(b) then it satisfies (c).

Let $\nabla A = \sum_i \partial_i A_j dy^y j$. Note first that if $d^*A = 0$ and $\sum_i y_i A_i = 0$ on S^{n-1} then

(3-1)
$$\int |\nabla A|^2 + \int \sum_{i} |A_i|^2 = 1/2 \int |dA|^2.$$

The proof is by integration by parts. This holds for any $A \in C^{\infty}(\bar{B^n})$ and by Lemma (2.4) for $A \in \mathcal{U}$. By the results of $[ADN^{***}]$ we have for $A \in \mathcal{U}$ satisfying $\sum y_i A_i = 0$ on S^{n-1} , 1 ,

$$||A||_{p,1} \le c\{||dA||_p + ||d^*A||_p + ||A||_p\}.$$

We claim this implies: If $A \in \mathcal{U}$ satisfies (a) and (b) then

(i.e., there is 'no cohomology'). Suppose the contrary. Then there is a sequence A_i satisfying (a) and (b), with $||A_i||_{p,1} = 1$ and $||dA_i||_p \to 0$. We can suppose (by going to a subsequence if necessary) that $A_n \cdots \to A$, for some A which will then satisfy (a), (b) and dA = 0. On the other hand $A_n \to A$ in L^p and $\liminf_i ||A_i||_p > 0$ by (3-2). Thus we have located $A \neq 0 \in \mathcal{U}$ with dA = 0, $d^*A = 0$, and $\sum_i y_i A_i = 0$ on S^{n-1} . But (3-1) shows that such an A must be 0 and (3-3) is proved.

An application of the Hölder and Sobolev inequalities yields the required result.

Step 4: Existence of a local gauge for "small" fields.

We prove: Suppose $A \in \mathcal{U}$ satisfies (a) and (b) with $||A||_n \leq k(n)$. Then there exists $\epsilon > 0$ such that if $||\tilde{A}' - A||_{p,1} \leq \epsilon$ and \tilde{A}' satisfies (b) then \tilde{A}' is gauge equivalent to A' satisfying $d^*A' = 0$. The solution depends smoothly on \tilde{A}' .

The idea is to use the implicit function theorem. Introduce spaces $\mathcal{U}_{\nu} = \{B \in \mathcal{U} \mid \Sigma y_i B_i = 0 \text{ on } S^{n-1}\}$, $\mathcal{G}_{\nu} = \{s \in \mathcal{G} \mid \Sigma y_i (ds)_i = 0 \text{ on } S^{n-1}\}$. Look at the map $(\tilde{A}', s) \mapsto d^* \tilde{A}^s$ of $\mathcal{U}_{\nu} \times \mathcal{G}_{\nu}$ to $L^{p, \perp}(B^n, ad G) = \{\phi \in L^p(B^n, ad G) \mid \int \phi = 0\}$. The linearisation of this at A, restricted to the tangent space to $\mathcal{G}_n u$ is an isomorphism for small enough $||A||_n$. Now apply the implicit function theorem.

Step 5: The set $W_{\kappa,c}$ is open in U_{κ} .

We prove: Suppose $\tilde{A} \in \mathcal{U}_{\kappa}$ is gauge-equivalent to A satisfying (a)-(c). Then if κ is sufficiently small there exists an open neighbourhood of \tilde{A} satisfying (a)-(c).

We can clearly take $A = \tilde{A}$. Then the previous step gives us what we want if we can prove the following Claim: Suppose $A \in \mathcal{U}_{\kappa}$ satisfying (a) and (b) with $||A||_n \leq k(n)$. Then for κ small enough there exists $\epsilon' > 0$ such that if $||\tilde{A}' - A||_{p,1} \leq \epsilon'$ then \tilde{A}' is gauge equivalent to \tilde{A} satisfying $\sum y_i \tilde{A}_i |_{S^{n-1}} = 0$.

We refer the reader to the paper for the short proof.

The theorem is proved.

REFERENCES

- [B1] N. Bourbaki, "Topologie Générale, Chapt. 3-4," Hermann, Paris, 1960.
- [B2] N. Bourbaki, "Variétés Différentielles et Analytiques (Fascicule des Resultats)," Hermann, Paris, 1967.
- [F] A. Friedman, "Partial Differential Equations," Holt, Rinehart and Winston, Inc., New York, 1969.
- [L] S. Lang, "Differential Manifolds," Addison-Wesley, Reading, Massachusetts, 1972.
- [MV] P. K. Mitter and C. M. Viallet, On the Bundle of Connections and the Gauge Orbit Manifold in Yang-Mills Theory, Commun. Math. Phys. 79, 457-472.
- [N] M. S. Narasimhan, Differential Geometry, Lectures delivered at the Summer Workshop on Fibre Bundles and Differential Geometry, Trieste (July 1982)..
- [NR] M. S. Narasimhan and T. R. Ramadas, Geometry of SU(2) Gauge Fields, Commun. Math. Phys. 67 (1979), 121-136. [P] R. S. Palais, "Foundations of Global Nonlinear Analysis," W. A. Benjamin, Inc., New York, 1968.
- [RS] M. Reed and B. Simon, "Methods of Modern Mathematical Physics I: Functional Analysis," Academic Press, New York and London, 1972.
- [S] I. M. Singer, Some Remarks on the Gribov Ambiguity, Commun. Math. Phys. 60 (1978), 7-12.
- [UF] K. K. Uhlenbeck and D. S. Freed, "Instantons and Four-Manifolds," MSRI Publications, Springer, New York, 1984.