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Generalities on A/G, An Introduction to K.Uhlenbeck’s Theorems.

T. R. RAMADAS
School of Mathematics, TIFR, Homi Bhabha Road, Bombay 400 005, India.

§1: Prerequisites.
In this section we recall definitions and set up notation, and close by previewing the remaining material.
A quick introduction to the relevant material is [N]. For the present we only consider smooth “objects”.
In pariicular all conneciions and gauge transformations will be smooth until further notice.

§l.a Connections, gauge transformations.

Let M be a compact connected oriented manifold of dimension %, G a compact Lie group, P a principal
G-bundle on M. For example M -could be S® in which case P ~ M x G, or M = S* and G = SU(2) in
which case P is classified up to equivalence by its second chern number. Denote by = the projection P — M.
Given g € G denote by R, the corresponding map P — P, and for z € P, let z.g = Ry(z).

Recall the following equivalent definitions of a connection:

(1) We have on P an exact sequence of G-vector bundles: 0 = T, P — TP — x*TM — 0 where T, P is the
“tangent bundle along the fibres”. A connection is G-equivariant splitting of this sequence.

(2) A connection is a equivariant Lie G-valued 1-form A on P satisfying A(o(X)) = X for X € Lie G. Here
“equivariant” means R;A = ad,-: A and o(X) denotes the vector field on P given by the differential of the
G-action.

Exercise 1.1: Check the equivalence of the two definitions above. Prove that connections exist.

Recall the following equivalent definitions of a gauge transformation:
1) A gauge transformation is 2 map s: P — G satisfying
E

(1-1) s5(z.g) = g~ s(z)g.

(2} A gauge transformation is an automorphism ¢ ; P — P of principal bundles that is trivial on the base.
That ¢ is an automorphism means that ¢(z.g) = ¢(z)g; “trivial on the base” means that ¢ leaves each fibre
of x invariant.

The correspondence s «+ ¢, is given by ¢,{z) = z.8(z). Note that gauge transformations form a group.
Exercise 1.2: Check the equivalence of the two definitions above. Note that ¢,,,, = ¢., © ¢,,. Define Ad P
to be the bundle associated to the adjoint action of G on itself; check that a gauge transformation can be
regarded as a section of Ad P.

(Recall that given a left action (g,g) — g.¢ of G on a space @, the associated bundle with fibre Q is
defined to be the epace P x @ modulo the equivalence relation (z,q) ~ (z.g,¢~'q). The adjoint action of G
on itself is given by (h,g) — gh = Adyh = ghg~}.)

cti auge t ions on jops.
We have the following formula:

(1-2) (" A)(z) = ad,-1(z)A(z) + s~ (z)ds(z)

where s~!(z)ds(z) denotes the (left-invariant) Maurer-Cartan form on G pulled back to P via the map s.
(If G is a matrix group this expression for the Maurer-Cartan form can be interpreted literally; note also
that in this case ad,-1(,yA(z) = s~1(z)A(z)s(z).)

1 R
PrOOF: Write ¢ as the composite P X, Px G = P where I is the identity map of P and R is the (right)
action of G.
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§1.b Exterior algebra of Lie G-valued forms.
Let N be a manifold (In our case it will be either M or P). Let A}, ® Lic G be the bundle of p-forms
on N with values in Lie G. We have then

(1) a multiplication

(A%, ® Lie G) x (A%, ® Lie G)
—)A?H @ Lie G,

and
(2) a differential A%, @ Lie G — AR @ Lie G.
If A,B,C are forms of degree p, ¢, r respectively and we denote by [.,.] the multiplication we have
(1) [A,B]=(-1)"*(B, A,
(2) (-1y"[A,[B,C]] + (cyclic permutations) = 0, and
(3) d[A,B]=|[dA, B]+(-1)°[4,dB].
Given a connection A on P we let F4 denote its curvature two-form d4 + (4, A].
Exercise 1.3: We recall the definition of the product [.,.]. If A = Y A4;w and B = Y Bjw’?, where {w!};
H J

and {w’}; are bases for p-forms and ¢-forms respectively and the A; and B; are elements of Lie G, then

[A, B] = E[AI, BJ}WI Aw’.
IJ

{a) Check (1}, (2) and (3} above.
{b) Let w be the Maurer-Cartan form on G. Check that dw + }[w,w] = 0.

(c) For any connection A on P check the Bianchi identity: dF4 + [4, Fq} = 0.

(d) Given a gauge transformation s, check that F4. = Ad,-1 F,.

(e) (Local expression for Fy:) Ifin a co-ordinate chart {z;} we write A = }_A;dz', then Fu = 33 Fy jido/dz'.
where ‘ "
0A; 84;
827 8z

§l.c Forms on M with values in associated bundles; covariant differentiation.

Faji= + [4;, Al

HT:G — EndV is a representation of G we let Vr denote the associated vector bundle. We have a
natural isormorphism between sections of A}, ® Vr and G-equivariant horizontal p-forms on P. (Equivariance
of such a form a means that Rja = T(g~')a and horizontal means that the interior product with any vertical
vector is zero. Such forms are also called basic.)

We let ad P denote the vector bundle associated to the adjoint representation of G. Note that if F is
any associated vector bundle, we have a natural map ad P — End E.

Fix a connection A. Given a basic V-valued p-form a its covariant differrential with respect to A is
defined to be dya = H oda where H is the projection operator on the dual of the “horizontal bundle”.

Exercise 1.4:
(a) Check that dya = da + A Ar o, where Ar is defined using the representation T.

(b) Check that d%x = [F,x]. (Ricci’s identity).
§1.d Transition functions.

By local triviality of P and compactneas of M we can find a finite family (U,, {¥i,u}, {7u}, D,) where
the U, are open subsets of M and the 7, are sections of P over the U,, and we assume for later purposes
that

(1) for each fixed u the {y; .} are a set of co-ordinates on the U,.
(2) for each i, D, is a relatively compact open subset of U, with smooth boundary such that the
D, form an open cover of M.



It is easily seen that there exist, for every (u,v), G-valued functions g,, on U, N U, defined by 1.(y) =
(W) (¥), ¥ €U N,

Exercise 1.5:

(a) The transition functions satisfy g (V)gve(M)gpu(¥) =1, y €U NT,.

(b) A section of a vector bundle Vr associated to P via a representation T : G — End V is given by functions
o, on each U, satisfying o, = T{g,. ).

{c) A gauge transformation is given by functions {s,} satisfying s, = y,,,a,,g;,}.

{d) A conuection is given by Lie G-valued 1-forms {A,} satisfying A, = ad -, 4, + 95w dguu-

§1.e Irreducible connections.

The space A of connections on P is an affine space modelled on I'(A},; ® Lie G). In particular it is
contractible (though we haven’t yet endowed it with a toplogy — this we will do soon). Note, however, that
the group @ of gauge transformations acts on A: A = A’ where

(1-3) A* = (¢, A)(z) = Ad,-1 () A(2) + 271 (2)ds(z)

1t is easily checked that this is a right action.

Note that the center of G, which we denote by Z(G), is a subgroup of §: if s : P — Z(G) is a constant
map, it obviously satisfies the condition (1-1). Note also that for such # we have A* = A. Thus Z(G) acts
trivially on JA. Which are the connections with nontrivial automorphisms ? The answer is given by

LEMMA 1.6. Given A € A, the isotropy group at A is isomorphic to the centraliser of the holonomy group
ofAatz e P. :

Recall that the holonomy group of A at z, which we will denote H(4,z), is defined as the subgroup of
G: {g € G |3 apath z:[0,1] — P with z(0) = z, (1) = z.g and z* 4 = 0.}. Holonomy groups at different
points are conjugate in G.

Proor: Exercise.

Definition 1.7: A connections A such that the centraliser of H(A, ) is Z(G) is said to be irreducible.
Remark 1.8: This definition will not work for nonsmooth connections, with which we will eventually have to
deal. At that point we will use another characterisation.

Exercise 1.9: Describe the set of reducible connections on: (1) a principal SU(2) bundle on §*, and (2) a
principal U(2) bundle on a two-dimensional manifold M.

§1.f Preview of remaining material.

The group §/Z(G) acte freely on the set J{{_l of irreducible connections. We will prove in §2 that
under suitable hypotheses this yvields an infinite-dimensional principa! bundle over an infinite-dimensional
manifold M.

One of the lessons of recent years is that a lot of information about the topological and differential
structure of M is encoded in sub-manifolds of M. These submanifolds are finite-dimensional; they are
defined as solution-spaces of (gauge-invariant) nonlinear partial differential equations involving connections.
An essential tool to study these moduli spaces are some theorems due to K. Uhlenbeck [U]. In §3 we give
an introduction to this paper.



§2: Preliminaries.

We will need the apparatus of Sobolev spaces. The reason is that we would like to deal with Banach
manifolds where the theory is quite analogous to the case of finite-dimensional manifolds - in particular
the inverse function theorem is valid [L}.

§2.a Preliminaries on Sobolev Spaces.

For a quick treatment of this topic see {F]. All the resuits we need (and more) are summarised in [P,
Chapter 9]

Let p > 1 be a real number, & > 0 be an integer. Let D be a bounded domain in R" with smooth
boundary 8D, D the ciosure of D. We define the Sobolev space L}(D) as the normed linear space

L}(D)={f € I?(D) | D*f € LP(D) ¥V multi — indez s such that |s| < k}.

By a multi-index s we mean an n-tuple {s;,...,8,} of nonnegative integers; the differential in the above
definition is in the sense of distributions.
L! is a Banach space. We define two closed subspaces:
(1) L{(D) = closure of C*(D) in L{(D).
(2) L§ (D) = closure of D(D) (the space of C* functions with compact support) in L¥(D).
Since D has smooth boundary in fact L{(D) = L (D). These definitions can be extended to nonintegral

nonnegative k (and in fact more generally, with care over boundary conditions.)
‘We have then the Sobolev embedding

THEOREM 2.1.
(A) LE(D) c L{(D) ifk—n/p>1—n/qand k > |, and
(B) LE(D) c C'(D) ifk—njp> 1.

We also have the Rellich

LEmMMA 2.2. The embedding in (A) above is compact if the strict inequality k — n/p > | — n/q holds.
Similarly the embedding in (B) is compact if k —n/p > L

Recall that a bounded linear map T : V — W of Banach spaces is said to be compactif it takes bounded
sets to precompact sets, or, equivalently if for every bounded sequence {v,} C V, the sequence {Tv,} has a
convergent subsequence.

We illustrate the part {B) of the Theorem in an elementary situation. Let D be a bounded open interval
(a,b} in R — then Lf C C° We will prove Lf‘o C CY; from this the more general result can be deduced.
It is clearly enough to bound the sup norm of any function f € D(D) in terms of its L? norm. We have
f(z) = [7 f'(y)dy which yields by Cauchy-Schwartz sup |f] < (b- a)‘i(f: |F () 2dy) 4.

We also have:

LeMmMa 2.3.

(a) For k > n/p, L? is a Banach algebra. Ifql > n, k—n/p > |-n/q and k > | the inclusion L} C L} makes
L} a module over Lf.

(b) If, for i = 1,2, kipi < n, ki > k and

B(ki - n/m) 2 (k= n/p)

then multiplication I§' ® L]} — L} is well-defined and continuous.

The proof of these statements uses only the embedding theorem and Hdlder inequalities. For example
in statement (b) if we take k; = k = 0, and we take we take 1/p) + 1/p; = 1/p the statement js the Holder
inequality. The case 1/p, + 1/p, < 1/p follows because the domain D has finite measure.

We use the notation Lf(D) to emphasize that “in good cases the functions extend up to the boundary”,
i.e., a restriction to the boundary can be defined. A typical result:
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LEMMA 2.4. The restriction map C®(D) — C™(8D) extends to a bounded linear map LE(D) — LY
provided k — 1/p > (.

(8D

k—1/p

A basic fact about Sobolev spaces is that elliptic operators between them, with appropriate boundary
conditions, are ¥Fredholm.

It ie straightforward to define Sobolev spaces of functions with values in finite-dimensional real inner
product spaces. We skip the details.

§2.b Topologies on A and §.

The results in this section are from [NR] and [UF]. (See also [MV]),[S].)

We begin by considering an arbitrary real vector bundle E on M. Then for any real number p > 1
and integer k > 0 we can define a vecior space LE(M, E). An element of this space is a represented by a
measurable section o of E satisfying:

* Given an open set U C M, a set {1;} of co-ordinates on U, a trivialisation e; of E‘ over U, and
a relatively compact open D C U with samooth boundary, the components of & with respect to
the trivialisation are in L(D).
In the last ezpression D is thought of as a domain in R™ via the co-ordinates {y;}. This identification will
be implicit in many places below.

One can similarly define, for any fibre bundle F over M, a manifold L}(M, F) of sections of Sobolev
class LY, provided kp > n. The necessity for this assumption is obvious — we need to measure the difference
between mape in terms of co-ordinate charis on the total space F, only when the maps involved are continuous
can we be sure that the image of a amall enough open set in M is contained in a co-ordinate chart in F.
The suﬁicmncy foliows from the invariance of the relevant Sobolev spaces under dlﬂ'eomorphmms

It is useful to have more concrete definitions. Recall (§1.d) the definition of a section in terms of
transition functions Choosee a finite family (Uy, {i,.}, {7}, D} such that the D, form an open cover of M.

Then
LY(M,E)={¢, | b = gunts}
@L,,(D,n V)

closed lublpace

where the g, are the transition functions.

Exercise 2.5: (a) The vector space L (M, E) endowed with the norm
161 = > Idiulf
H

is a Banach space.
(b) Any other family (U,, {y:iv },{€j s}, Du), such that the D, form an open cover of M, yields an equivalent
porm.

We define A} as the affine subspace

.Ai = {4, | A :a.d -1A +0;:dgyv}
EBL'(D,.,A ® Lie G)

closed uffme swbapace

For integers k,p satisfying kp > n we now let ¢ = L{(M,Ad P). This is a particular example
of a Banach manifold of functions taking values in & manifold (which we have not defined), but one can
give slightly ad hoc definition which work for the groups of interest, namely G = S0(n) or G = SU(m).
Let T : G — V be the defining representation (thus V is respectively R® or C™) and let Vr be the
associated vector bundle. This bundle carries an inner product (respectively real or hermitian) and we can
identify Ad P «— End Vr where the image consists respectively of special orthogonal and special unitary
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endomorphisms. We now define Lf (M, Ad P) as the subset of L¥(M, End Vr) consisting of sections taking
values in Ad P.

Exercise 2.6:

(2) Use the implicit function theorem, valid for differential maps of Banach manifolds, to check that this
definition makes L}(M,Ad P) a closed submanifold of L{(M, End Vr). (A convenient reference is |L,
Corollary 2s., page 17) — note that in contrast to the finite-dimensional case one has to assume that the
kernel of the differeniial map splits ; this is automatic in the case of Hilbert manifolds but has to be checked
otherwise.)

(b) We have, in terms of transition functions:

L:(M,Ad P) = {8,‘ I 8, = gﬂv’pﬂ;.,l}
P
closed lugunnifdd @Lh(ppg G)

where again L}(D,,G) can be defined as (the Banach submanifold of) functions in L5(D,, End V) taking
values in G.

Note that by the Sobolev theorem elements of G give C'-automorphisms of P where | < k — n/p.
We have

ProrosITION 2.7. Gf is a Banach Lie Group.

PROOF: By Lemma 2.3(a) the multiplication in L}(D,,, End V) is a smooth map (muitiplication in a Banach
algebra is smooth.). Thus the restriction to L{(D,, G) is smooth, as is the inverse, being the restriction of
the linear map s — &7 or s — st. Thus L{(D,,G) is a Banach Lie group. The result now follows from
2.6(b).
Exercise 2.8 The Lie algebra of G} if LY(M,ad P).

We can now prove in a routine way, by a technique similar to the last proof,
PROPOSITION 2.9. Assume kp > n. Then G acts smoothly on A} _,.

and

PROPOSITION 2.10. The curvature operator Ay _, — LY _,(M, A}, ® ad P) is smooth.

Let AL _, denote the set of irreducible connections on P of Sobolev class LY — this is an open dense
submanifold of A} (exercise). The group G = GF/Z(G) acts freely on this set. The rest of this section will
be devoted to the following
THEOREM 2.11. Assume kp > n. The quotient space AY_,/G? is a Hausdorff Banach manifold. AL | is a
principal Gf bundie over this quotient.

We show:

(1) The action of g on Af _, is proper. This will prove [B1] that the quotient is a Hausdorff space.
(2)ForA € .Az_l the map fjf to A’;_l given by s — A’ is an injective immersion (i.e., has a closed immersion
with topological supplement). By [B2] this will prove the Theorem.

LEMMA 2.12. Assume kp > n. Let (A;, 8;) be a sequence in AY_, xGF such that A; — A and B; = A{* — B.
Then there exists a subsequence s; which tends to a limit s (so thai A* = B.)

Proor: We will outline a proof under the assumption that k(p — 1) >> n so that the relevant connections
are actually continuous. For the general case see [UF, Proposition A.5).

Note that in a chart U, we can write
(2-1) ds; = #;B; — A;s;
where s;, A;, B; are regarded as End V-valued forms. By compaciness of G one can find a subsequence a;
converging at some point p € U,. Integrating (2-2) “radially” away from p along straight lines and using
standard results about the dependence of solutions of an ODE on coeflicient (functions) we get the uniform

convergence of the s; on D,. A routine patching now gives this everywhere.
One can now “bootstrap” using (2-2) to get the desired result. §

This result proves properness (because the isotropy groups are compact.)
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We turn next to (2). The differential of the map s —+ A at s = Identity is the operator du : Lf(ad F) —
LI?_,(Al; ® ad P). By the definition of irreducibility of A this is an injection. One proves that the a
topological supplement is given by ker d; in fact that

I¥_.(A}; ® ad P) = Im(da) ® ker d.

This is standard when A is smooth, but needs work when it is not.



§3: A “Good” Gauge.

This section is essentially an ezposé of [U]. I have skipped details which can easily be read off from that
paper.

§3.a The Compactness Theorem.

We start with some functional analysis [RS]. Let V be a Banach space, denote by V* its dual. The
weak topology on V is the weakest topology such that each linear functional £ € V* is continuous. Recall the
following special case of the Banach-Alaoglu

THEOREM 3.1. Suppose V is reflexive, that is, (V*)* = V. Then the unit ball is compact in the weak
topology.

Exercise 3.2: The space LY (M, E) (§2.a) is reflexive for 1 < p < co.

To motivate the next theorem consider the case G = R. This is not a compact group, but no matter.

In fact we can drop the restriction kp > n (in fact we take p = 2, k = 2); and we consider the trivial bundle

with R as structure group. Then A} = L}(M,A!), (ie., 1.forms of Sobolev class L?) and G2 = Li(M)

(i.e., 0-forms with Sobolev class L3). The action of a (-form & on a 1-form A is 4 — A + da. The function

A [, |dA]*r (where T is a volume element on M) is gauge-invariant and descends to the quotient modulo
2

2.
Exercise 3.3(a): Assume H!(M,R) = 0. Use Hodge Theory to prove: Given a sequence 4; € A? of 1-forms
such that [, |dA;[*r < B, there is a subsequence {j} C {3} and gauge transformations s; in G such that
Aj’ is weakly convergent in A}. The weak limit A satisfies [, [dA[>r < B.

Exercise 3.3(b): What happens when M is not simply connected?

Fix a Riemannian volume element 7 on M. Consider, on Af, the function 4 — f M |FalPr. This is
clearly gauge-invariant, and therefore descends to a function on Af_,/GF. The next theorem {U, 1.5] asserts,
roughly speaking, that this function is a “norm” on A} _,/GT.

THEOREM 3.4. Let p > n/2, B a nonnegative real number. Suppose A; € A} is a sequence of connections
with [, |F4,{Pr < B. Then there is a subsequence {j} C {i} and gauge transformations s; in Gf such that

A;."' is weakly convergent in A}. The weak limit A satisfies f,, |Fa|Pr < B.

We shall prove a local Theorem from which the above resuli can be deduced.
§3.b Existence of & “good gauge”.

In this subsection M = B", the upit ball in R". We set [ = [. dy unless another domain of integra-
tion is explicitly given. We let U = A%, @ = GF and (for k > 0) U, = {A € U | [|F4|"? < k}. Note that
U, 18 invariant under @.

THEOREM 3.5. Let n > p > n/2. Then 3 x = k(n) and c = ¢(n) such that every connection A € U, is
gauge equivalent to a connection A where A satisfies

(a) d°A=ZT8A;=0,
(b) ZTy:A; =0 on S*-1, and
() [l Allg,1 < lIFallg for n/2 < g <p.

Remark 3.6:
(i) Ey.A ia a Lie G-valued function in L{(B"). The claim in (b) is that it is in fact in L] o(B").

(i) A version of the Theorem holds in the case p = n/2 and gives a regularity resuli for solutions of Yang-Mills
equations.

ProOP: The proof is via the continuity method. One shows that U, is connected, then that the subset satis-
fying (a)-(¢) (which we henceforth denote Wy () is both open and closed. The constants will be determined
in the course of the proof.

Step 1: Connectedness of U, (for p > n/2)



Define, for 0 €t <1, D; : B® — B" by Di(z) = tz. For A€ld let A, = D;A. Then Fy = F4, = D; F4
and

f \Fuly)Pdy = j |Fity)PtPdy
B B»
~v [ 1RGP

The second equality follows from the change of variables formula. The first is left as an exercise.
For fixed A, ¢t — A; gives a curve in l{ connecting A4 to the zero form, and the above computation shows
that the curve stays in U, if A € U,.

Step 2: The set W, . is closed in U, for n > p > nf2.

Let A; € Wy, A; — A, and let &; be gauge transformations such that 4; = A!° satisfies (a)-(c). First,
since 4; — A, [|F; ;IF is uniformly bounded (by Proposition 2.9). Hence -— using gauge-invariance of the
integral and (c¢) — the A4;'s form a bounded set in L]. By Theorem (3.1) there is a weakly convergent
subsequence A; ... — A. We now show (i) A4 is gauge-equivalent to A, and (ii) A satifies {a)-(c).

We first show (ii). That conditions (a} and {b) are preserved under weak limits is clear. As for (¢) note
that A;... — A in Lf for ¢ < p since L§ — L{ is norm continuous (and hence preservee weak convergence).
Thus [{A|lg,1 < lim inf ||4;lg1 < e(n)l|Fa;lle = e(m)ilF4,lle = c(n)lIF4llg = e(n)l| Fally

It remains to show (i). We have j;’ = Aj, or thinking of the s; as matrix-valued functions, ds; =
8;A; — Ajs;. Since n > p we have r > p such that 1/n — 1/p+ 1/r = 0. Since G is compact the s; are
in I 8o ||ds;|l, < ex(l|4;lly + |}4;lle} < c2(ll4;llp,1 + [1A;llp,1) Where in the second step we have Sobolev
embedding. Thus the s; are uniformly bounded in L]. Pick a weakly convergent sequence sy «-- — s in LY.

Step 3: An d priori estimate.

We prove: There ezisis d(n} > 0 such that if A € U, ||A|ln < k(n), and A salisfies (a)-(b) then il satisfies
(€).
Let VA= E@.-Ajdy'j. Note first that if d*4 = 0 and ?y.-A.- = fonS"~?! then

(3-1) ./lVA|2+/I'_3|A.-]2 = 1/2jldA|2.

The proof is by integration by parts. This holds for any A € C*(B") and by Lemma (2.4) for A € U.
By the results of [ADN®***] we have for A € U satisfying £y, 4; = 0onS™~1, 1 < p < o0,

(3-2) l4llp.1 < c{lldAllp + |4 Allp + | Allp }-
We claim this implies: If A € U satisfies (a) and (b) then
(3-3) 4llp.1 < ¥ (n)lld4]l, (1 <p <o)

(i.e., there is ‘no cohomology’). Suppose the contrary. Then there is a sequence A, satisfying (a) and
(b), with J|Ai||p,1 = 1 and {|dA4;|l, — 0. We can suppose (by going te a subsequence if necessary) that
Ay --- — A, for some A which will then satisfy (a), (b) and dA = 0. On the other hand A, — 4 in I* and
liminf ||4;]], > 0 by (3-2). Thus we have located A # 0 € U withdA =0, &*A =0, and Tyidi = 0on
S§7-1, But (3-1) shows that such an A must be 0 and (3-3) is proved.

An application of the Hélder and Sobolev inequalities yields the required result.

Step 4: Existence of a local gauge for “small” fields.



We prove: Suppose A € U satisfies (a) and (b) with ||A||, < k(n). Then there ezists ¢ > 0 such that if
[lA" — Allp,1 < € and A’ satisfies (b) then A’ is gauge equivalent to A’ satisfying d* 4’ = 0. The solution
depends smoothly on A’.

The idea is to use the implicit function theorem. Introduce spaces U, = {B € U | 'Ey;Bi =0 on §*-1},

G.={s€g| ?y.-(da).- = 0 on S™'}. Look at the map (A4',8) s d"A* of U, x G, to L»+(B™,ad G) =

{¢ € I(B",ad G) | [ ¢ = 0}. The linearisation of this at A, restricted to the tangent space to G,u is an
isomorphism for small enough ||A|js. Now apply the implicit function theorem.

Step 5: The set W, . is open in U,.

We prove: Suppose A € U, s gouge-equivalent io A satisfying (a)-(c). Then if x is sufficiently small there
ezists an open neighboxrhood of A satisfying (a)-(c).

We can clearly take A = A. Then the previous step gives us what we want if we can prove the following
Claim: Suppose 4 € U, satisfying (a) and (b) with ||Afln < k(n). Then for x amall enough there exists
€ > 0 such that if ||A’ — Aj|1 < ¢ then A’ is gauge equivalent to A satisfying Ey.A.l sa-1=0.

We refer the reader to the paper for the short proof.
The theorem is proved. |
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