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I these lectures [ will deseribe, in general terms, the basie resulls and techunigues of
Donaldson theory. By Donaldson theory I mean the application of ideas from gauge theory
1o the classification of four-manifolds. My aim is to give a general pieture of how gange
theory can be used to prove theorems about 4-manifolls and so there are essentially no
detailed proofs; however in several places [ have tried Lo convey sonte of the main lines in
the proofs. The principal reference is the hook hy Donaldson and Kronheimer (4] which
coutains full proofs and further references. Many of the basie results are also proved in
the books by Freed and Uhlenbeck [5] and Lawson (7],

§1 THE MAIN THEOREMS

In this first section [ will deseribe the main results on the classification of 4-ianifolds
whicli arise from Donaldson theory and set them in the general context of the theory of
4-manifolds. Throughout we use the term closed manifold to mnean one which is compact
and hias no boundary. Let X he a simply-connected, elosed, oriented 4-manifold the tern
simply-conmected 4-manifold will, unless specified otherwise, mean a 4-manifold which sat-
isfics these iypotheses. There is a significant difference hetween the results for topological
manifolds and for smooth manifolds so it is important to earefully specify whethier we are
working in the topological category (topological manifolds 1p to homeomaorphisn} or i
the smooth eategory (smooth manifolds up to ditfeomorphism). Associated to X 1s u basic
invariant, its intersection form

Q = Q‘\' H H;(X,Z) X }{)(AY, Z) s F,
This 35 a bilincar form which is symimetric aud unimodular: symmetric means that
Q(z,y) = Q{y,x) for all r.y € H(X;2) and unimodular means that if we choose a bawsis
1. .. ep for the free abelinn group Hp (X5 2) aud express () as the symmetric matrix

A = (ay5), aij = (e, 0]

then det A = £1. The fact that Hy(X;Z) is a free abelian group follows from the hypothe-
ses on X and it follows from Poincaré duality that ¢ is nunimodular.

Two natural questions imnediately present themselves:

The Realisation Question. Given asynuuetric wdmodular form €@ s it the interescetion
form of saume situply connected 4-manifold?
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2 J S JONES

The Classification Question. Classify 4-manifolds with given intersection form.

The first theorem in the subject is the following result of [8].

Theorem of Milnor and Whitehead (1958). Let X and Y be simply connected 4-
mantfolds. Then if Qx = Qv it follows that X and Y are homotopy equivalent.

This is the crudest possible classification of 4-manifolds and we would like more re-
fined results which elassify topological 4-manifolds up to homeomorphisn. and smooth
4-manifolds up to diffeomorphism.  Milnor's paper [8] is the place where many of the
themes i the topology of 4-manifolds first appear, in particular the importance of the in-
tersection form and the fact that there are significant differences between the classification
of 4-manifolds and the analogous classification problem in higher dimensions.

Let us briefly digress to introduce some of the terminology of bilinear forms and the
basic invariants associated to synunetric unimodular forms @ defined over Z. More details
cun be found in [9] and [13]

(1} The rank of ) is the rank of the group on which  is defined. In terns of a
matrix representation of } it is the size of the matrix.

{2} The form @Q can be diagonalised over R and we define bt = b¥((Q) to be the number
of positive entries which occur when @ is diagonalised over R and ¥~ = 57(Q) to
be the number of negative entries.

(3) The signature of @ is defined by

o(Q) =b* — b~

(4) The type of Q is defined in the following roundabout way. We say that Q las
type I, or is even, if ((z,x) is always even. Then ¢ has type I, or is odd, if it
does not have type 11

(5) If Q(e,x) 2 0for all z, and Q(z,z) = 0 if and only if = = 0, we say that  is
positive deflnite; Q is negative definite if Q(z,2) < Oforall z, and Q(z,z) =0
if and only if £ = 0. We say that Q is definite if it is either positive definite or
negative definite,

There is a basic algebraic fact about even definite forms, see [9] or [13).

Lemma. Suppose Q is an eveu definite symmetric unimodular form over Z; then o(Q) is
divisible by 8.

There is an even definite symmetric unimodular form over Z with signature 8, this is
Ey. The matrix of Ey is given in [9] and [13] and also in Narashmhan's lecture [10]. It is
a pleasaut exercise to diagonalise this matrix over R and check that it has signature 8. It
can alse be shown, see for example [9) and [13], that Ey cannot be diagonalised over the
integers,

The second classical theorem about the intersection forms of 4-manifolds is the following
result proved in [12].
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Rohlin’s Theorem (1952), Let X be a smooth simply connccted 4-manifold, then
a(€Qx) is divisible by 186.

This theorem shows that there are genuine restrictions on the intersection forns of
stmooth 4-manifolds. For example Ey cannot be the intersection form of a smooth siuply
counected 4-manifold. The significance of Rollin's theorem for the classification of 4-
manifolds is discussed in Milnor’s paper |8

Befure describing some of answers to the general Realisation and Classiication Problems
let us discuss other “classical invariants” of smootl siply conneeted domanifolds, Sinee
we are now assuming that the manifold is smooth the other source of invariants of X is
the tangent bundle Tx and, in particular, its characteristic classes. The taugent bundle
has two basic characteristic classes, the Stiefel-Whitney class

wy € HY(X;2/2)

and the Pontryagin class
pL € HY(X,Z)

These can be computed from Qx as follows.
The function
HYX;Z) > Z/2,

o Qe 2} maod 2

is linear and so, by the unimodularity of ¢, it is given by
T Qe,z) mod 2

for some ¢ € HYX;Z). The homomorphisi Z — Z/2 of cocflicients, given by reduction
wodulo 2, induces a homomorphism H¥(X;Z) — H*(X;Z/2) of cohonmology and under
this homomorphisin ¢ — wy,

By applying the Hirzebruch signature theorem we deduce that

(P, [X]) = 3(6% —b7)

where (,) is the pairing between coliomology and homology aad IX] € HYX;Z) is the
fundamental class of the oriented 4-manifold X. Since HY(X; Z) is isomorphic to Z aud the
isomorphisin is given by 2 + (z,[X]) it follows that p; is determined by the interseetion
form.

Thus we sce that the classical invariants of X are all determined by the interscetion
form and if we follow the analogy with the classification of manifolls in diwcnsions 5 or
wwore it should now follow that the intersection formn of X essentindly determines X, Iudeed
if we classify 4-manifolds up to homeomorphism this is indeed true. The main theorem in
the purely topological study of simply counected 4-munifolds is the following result proved

in {G].
Freedman’s Theoremn (1982).

(1) Suppose X and Y are smooth 4-manifolds such that Qx 2 Qy; then X and V oare
homeunorphic.

7



4 J DS JONES

{2) Let Q be a symmetric wnimodular form over Z; then there is a topological 4-
mranifold X with Qx = Q.

(3} Suppose X and Y are topological 4wmantfolds with Qx = Qy = Q. If ¢ has
type Il then X and Yoare homeomorplic. If @ has type I then there are preciscly
two topaological manifolds, up to honeomorphism, with intersection forin Q.

In part (3) of Freedman's theorem the two manifolds with the same iutersection form
are distingaished by their Kirby-Siebenmann invariant; this is an invariant k(X) € Z/2
and it vanishes if and only if X x S' has a smooth structure. In particular if X is smoath
E(X) = 0 and we see the relation between part (1) and part (3). This result completely
settles the Realisation and Classification Questions for simply eonnected topological 4-
manifolds np Lo homeomorphism.

Let us now turn to smooth manifolds and, therefore, to Donaldson’s theorems  here
there are several surprises waiting for us. I will divide Donaldson’s work into three parts.

Deflnite forms. Donaldson proves the following theorem which gives very dramatic re-
strictions on the possible definite forms which arise as the intersection forms of simply-
conuected smooth 4-manifolds.

Theorem. Suppase that X is a smooth simply connected 4-manifold such that Qy is
definnite; then Q@ x is diagonal.

The original reference is [1] and the theorem is discussed, very carefully, in [4]. It should
be contrasted with Freedman’s theorem which tells us that, given a symmetric unimodalar
form defined over Z, there always exists a simply-connected topological 4-manifold with
this intersection form. Donaldson’s theorem tells us that if the form is definite and not
dingonal then the manifold given by Freediman's theorem cannot be smooth. The theory
of definite synmnetric unimodular forms is a difficult part of classical nunber theory, see
for example [9] and [13] but Donaldson’s theorem tells us that none of these forms, apart
from the simple diagonal forms, can occur as the intersection forms of smooth 4-manifolds,

One of the consequences of the combination of this theerem and Freedman'’s theorem is
that there must exist a fuke R - this is a smooth manifold which is homeomorphic to R?
but not diffeomorphic to R'. A very clear description of why this must follow is given in
the book by Freed and Ullenbeck [5]. The existence of a fake R? is proved by an implicit
argument - the only way to account for the fact that Freedman's methods nmist break
down in the smooth category is that there is a fake R*—and there is no known way of
constructing a fake R dircetly.

Dounaldson’s theorem proves, for example, that

PIE!; = Eﬂ - ip Eg
(where there are je-summands) cannot be the interseetion forin of a smooth simply con-
nected 4 manifold. Note that if nois odd then this also follows from Rohlin’s theorem.

Now let & be the Kummer surface

Ko={lzo oz, z,m] s 57 + 23 421 =0} CCP?
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where [z, 21, 22, 23} are the homogeneous coordinates of a point in 3- dimensional complex
projective space CPY. Then K is a smooth 4 manifold; Milnor shows in [8] that & is
siuply-connected and

o 01 01 0 1
Q"__E“D_E“@(l u)‘“(l u)"’(l n)'

On the other hand we know from Donaldson’s theoremn that —FEy o —FEu cannot be the
intersection form of a smoath simply-counected 4-manifold. 1t is natural to Took for the
dividing line between the non-existence results and the intersection forin of K. For this
we need to study iudefinite forms.

Indefinite forms. There is a classification of indefinite syimmetric noimodidar forms
over Z; this is given by the Hasse-Minkowski theorem, see [9] and [13]. Sucli forms ave
classified by their rank r = ¥ 4 b7, signature o = #* ~ b7 and type. The forms fall into
two distinet families:

{1} typel,

n(1)y@m{-1)
where, r=n+m, 0 =n—-m, b* ==n
(2) type I,

¥

0 1
—nFy (jim(l ())

where, r = 8n + 2m, 0 = —8n, bt = .
In the first family we assume that n,m > 1 to ensure the forms are indefinite and in the
second we assnme that m > 1.

Each of the forms in the first family is the interesection form of a smooth 4-manifold.
The intersection form of CP? with it usual orientation is just (1) and the iutersection form
of TP?, by which we mean CP? with the opposite orientation, is (—1). Now by taking
the commected sum of n copies of CP? with m copies of CP? we get intersection form
n(1) b m{-1).

In the second family the case n = 0 is easy to handle. Let S be the product §2 x 5% so

that
0 1
@s = (1 n)

By taking the connected sum of m copies of § we can realise the case n = 0 and m
arbitrary, However the example of the Kmnmer surface K requires us to look at the
question of whether the formus in the second family witlo v # 0 can be realised as the
intersection forms of simooth 4-mawifolds.

Theorem, Suppose X is a simply-connceted siooth d-manifold with even indefinite i
tersection forny; then

Y =1 = (Qx-

0 1 0 1
+ o ‘
=2 = ("’“_(1 n) “(1 n)

li
TN
-
F—
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The original reference is 2] and the theoren s diseussed i careful detail in [4]. Thus
it follows, by cobining this theoremn with Rohlin's theorent, that in the second family of
even indefiuite nnimodular forins the minimal, in the obvious sense, form with non-zero n
whidt ean oceur as the intersection form of a smooth simply-connected 4-manifold is

01
Ox :—2Es®3(1 0)

Thus I is indecomposable and it is tempting to believe it is one of the basic building
blocks of smooth 4-manifolds in the sense of the following conjecture.

Conjecture. The only even indefiuite unimodular forms defined over Z which cau be the
interseetion forms of smooth simply-connected 4-manifolds are

pPQr B 4Qs.

If this conjecture is true then we get a complete answer to the realisation question for
smooth simply-connected 4-manifolds. There are four indecomposable picces

S5, CP!, CP*) K
and every smooth 4-manifold is homeomorphic to a connected sum of these indecomposable
pieces. The only intersection forms which can occur are given by direct sums of

Qs, Qcr Qmn @k

Now, let us turn our attention to the Classification Question for smooth siimply-connected
4-manifolds.

Polynomial Invariants. The classification question for smooth 4-manifolds is to clis-
sify smooth 4-manifolds up to diffeomorphism. We will see that it is considerably more
complicated than the classification up to homeomorphism given by Freedman’s theorem,
Indeed one of the conelusions of Donaldson theory is that in many cases there are an in-
finite number of smooth manifolds with a fixed intersection form. In view of Freedman’s
theorem we can express this by saying that in many cases there are an infinite number of
smooth manifolds within each homeomorphism class. To distinguish between these siooth
manifolds we need more invariants and these are provided by Donaldson'’s polynomial
invariants.

These polynoniial invariants are defined under the following hypothesis: X is a stcoth
sitnply connected 4-manifold with indefinite intersection forin and b* is odd. The invariants
are polyuomial functions

By = Bx(X): Ho(X;Z) x - x Hy(X32) = Z

where there are k factors Hy(X;2Z). To say that they are invariants means that if f: X —
¥ is & an orientation preserving diffeomorphism and

fo: Ha(X;Z) — Ho (Y Z)
is the induced isomorphism on homology, then
DY) fulr )y oo, fulze)) = P(X W1y -0 T8

There are two main theorems about the polynomnials €.
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Theorem 1. Suppose that X is a connected s X = X\ #Xy where W), bHAR)
are both odd, and Qx,, Qx, are both indefiuite; thew (X)) = 0.

Theorem 2. If Z is an algebraic surface with b% odd and mdefinite interseetion forn,
then, for large enough k, ®4(Z) is non-zero.

Thie original reference is [3) and the construction of the polyuonnal mvarinuts and the
proof of these theorems is very carefully discussed in [4].

Here is an example, Let 84 be a sinooth algebraic swface in CP* of degree d So Sy is
the zero set of a homogeneous polynomial in 4 variables of degree d. Then by repuating
the method Milnor used to compute the intersection form of the Kummer surface K owe
deduce that

bt

Il

oy = %(d— 1)(d = 2)(d — 3)

2 .
b =84 = E(d —1}2d* —4d +3)
If d is odd the intersection form of Sg has type [ and if d is large enonghe it follows that
the form is indefinite and type I Thus, by the classification of such forms, it nust be
isomworplic to

ag(1) @& el —1).

Therefore, by Freedman’s theorem, it follows that Sy is homeomorphic to a connected sum
of vy copies of CP? and 84 copies of CP?. By theorem 1, provided d is large enough, all
the polynonsal invariants of this connected sumy vanish. Sinee 8y is an algebraic surface,
theorem 2, shows the polynomial invariants of Sy do not all vanish. Therefore it follows
that Sy cannot be diffeomorphic to a counceted suun of g copies of CP? and Ay copies of
CP?. This shows that, provided d is large cnough, there are at least two simooth manifolds
with intercsection form
ag{1} b pul 1)

A more careful application of the method shows that, up to difeomorphisim, there are an
infinite number of smooth manifolds homeomorphic to a concected sum of one copy of CP#
aud nine copies of CP2. This result is discussed in [4].

§2 GAUGE THEORY

Now I will outline some of the ideas which go into the proofs of Donaldsen’s theorems.
The theme ruming through Donaldson’s work is to treat the spaces of solutions of the
Yang-Mills equations as invariants of the underlying manifoid X, From now on we will
assuine that X is a smooth simply-contected 4-manifold equipped with o Riemannian
metric.

Let P Le a prineipal SU(2) bundle over X. Then sach principat humdles are elassified
Ly their Chern class ex(P)y € HYX). From uow on #* will denote integral homology.
Since X is closed and oriented, H' (X} = Z so we can identify the Chern eluss ¢ 7)) with
an integer. Thus we write

k= ’L(P) = —{es(P), [‘\’])

im0

S

PEE :
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where [X) & Hy(X) is the fundamcudal elass. We refer to k as the Chern pumber of
P This minus sign may book rather strange but, following Donaldson, it fits in best witl
later orientation conventions. Now we write Iy for a bundle determined by the integer &,
Let A be o conmection on P, Thos loeally, on an open set U in X on which the bundle is
trivialised, such a connection is given by

Ay = Ai(z)dry + Ay(x)dry + As(a)drs + Ayg(x)dry

where the 4, are funetions on U whicl take their values in su(2), the Lie algebea of SU(2).
The Lie algebra su{2) is the set of skew-adjoint 2 x 2 complex matrices with trace zero and
so the A; are matrix valued functions. Ou U NV, Ay and Ay are related by

Ay =g 'Avg + 97 dg

where ¢ - UNV — SU(2) is the transition function of the bundle Pg. To make sense of
thsis equation remewmber that bhoth ¢ and the A; are matrix valued functions.

Now let Ag be the space of connections on Py and let Gy be the group of automorphising
of Py which are the identity on the base space X. This group Gi is often referred to as
the group of gauge transformations of Py, This group Gy acts on A by pull-back of
comnections. Locally this is given by

g (A)=g¢ "Ag+ ¢ 'dg

where 4 s the connection and, since we are working locally, the gange transformation g
beeomes a function with valnes in ST (2).

The action of Gy on Ax and various facts about connections, in particnlar the notion
of an irreducible connection, has heen desceribed in more detail in the lectures given by
Ramadas and we refer to the notes from those lectures [11] for more details.

Now let A} be the space of irreducible connections on Pr. We can form the two quoticut
SpIces

By = Ax/Gs, By = Ay /Ge.

We use the notation [4] for the clement of By defined by a connection A: tlis is the gauge
equivalence elass of A. For technical reasons it is often easier to work with the subgroup
Gy of Gy consisting of those automorphisms of Py which induee the identity at a fixed point
+oin X. The advantage of passing to this sulgroup is that G acts freely on Ag and this
action has loeal shices. Thus the projection

Ag — Ai/G) = B}

iw aprincipal bundle with strvneture group G, 1a fact this space BY is homotopy equivalent
to a familiar function space.

Lemma, There is o homotapy equivadence

BY ~ Map, (X, HP™)

FOUR MANIFOLDS AND GAUGE THEORY ¢

In the statement of the lemma Map means base point preserving maps, HP™ is infinite
dimensional gquad erndonic projective space, and Map; means the component. of the mapping
space conststing of those maps f such that the induced homomorplism

fo  Hy(X)2Z o H(HPY) ~ Z

is tultiplication by k.
There is o natural principal $T7(2)-buncle

Pr — B

S . e . 0 . . o
.l]( ?mul as follows, The group G acts freely on Ay; it also acts on Py since, by definition
1t is a group of automerphisms of P, Thus we may forn the quotient

'P,(- = Ak XGE Pk.

Since Py is a principal SU(2) bundle over X it follows that Py is pricipal SU(2) bundle
over
Ak g X=H8xX

where the last equality follows from the fact that G) acts trivially on X.
In terms of function spaces we can deseribe this bundle Py as follows. There is a natural
evaluation map
Map (X, HP™) x X — HP™
and Py is the bundle over 8] x X o~ Map, (X, HP™®) x X induced from the canonieal

principal $U{2) bundle over HP™ by this map.
Now let

c=c(Pe) € HY(BY x X)

be the second Chern elass of Pe. We can use the Kiumeth theorem (together with owr
stonding hypotheses on X') to decompose H1(BY x X'} as

HY B @ HY(X)® H'(BY) @ HY(X) o 1(BY) & H'(X).
With respeet to this decomposition we write
e HH B @ HA(X)
for the appropriate component of ¢, Now we use e®# 4o define a homomarphisng
o s (X)) — 1B
m the natural way. There is a pairing

HYAXYor HiXN) S Z
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andd Uhis gives a pairing
HY(BY) & HY(X) & Ha(X) — H*(BL)
which we denote by (). Then po is defined by
po{u) = (€3%,u).
In fact this homomorphism pg descends to a homomorphism
u: Hy{X) — HYB})
The relation between By and B} is as follows. By definition B;'O is & subspace of BY aud
it can be chiecked that B;'B is the total space of a principal SO(3) bundle over By,

Ll
SO(3) — B:’u — B},
By urguing dircetly with this bundle it is possible to prove that there is a counuutative
diagramn

Hy(X) -2 HY(BY)

‘| |
HY(B}) —— HA(BY")
-
I will not try to deseribe the proof of this; it is given in [4]. This map
o : Hy(X) — HY(B])
is one of the importaut ingredicuts in the theory.

Now it is time to introduce the sclf-duality equations and the Yang-Mills moduli space,
Civen a connection A on Py we can form the curvature Fiy € Q2(X;5u(2)) ~the space of
2-forms on X with values in the bundle su(2) defined by

su(2) = Py xguq2y 58(2)
where SU(2) acts on su(2) by the adjoint representation. Locally the curvature is given

by the formula
Fi=dA+AnA.

Lui this local formula remember that A is a matrix of 1-forms so dA is the matrix of 2-forms
obtained by applying the exterior derivative d to each of the entries of A, and A A A s
defined by the cambination of niatrix multiplication and the exterior product of forms.

Now suppose that X has a wetric. Then the metric and the orientation define the
Hodge star operator

1 (X 5u(2)) — QNX;au(2)).
On KR! with its usual metric and orientation * is given by
#(da; A daj) = tdry Adeg

where {£,5,k,1} = {1,2,3,4} and the sign is + if (1,2,3,4) — (4,4, %,1) is an even pern-
tation and — if it is odd. This vperator is extended to matrix valued forns by applying it
to each cutry of the matrix,

I can now describe the Yang-Mills equations.

FOUR-MANLFOLDS AND GAUGE THEORY il

The self-duality equations.
' +Fq = Fy

The anti-self duality equations.
*FA = —FA

To understand these equations better 1t 1s a very good exercise work thew out explie-
itly in terwus of the above local description of connections, curvature, and the Hodge st
operator, They are first order non-linear equations for the conmection A, 1t is straightfor-
ward to check that if A satisfies one of these eqnations then so does g*{A) where y € Gy
Self-duality or anti-self duality is a matter of orientation conventions. Here T will follow
Dounaldsou and concentrate on the ASD (anti-self dual) equations and vefer to a connection
whose curvature satisfies the ASD equations as an ASD connection. Now we define the
moduli space of ASD connections

ASD conncetions

My =
t Ge

We use the obvious notation M? for the moduli space of irreducible ASD conuections.
k L

The structure of the moduli spaces. First we discuss the local structure of the moduli
space. The wain result is that, for a generic wetric, the space M3 is a smooth wanifold
of dimension

8k — 3(1+ %)

In particular note that if k is negative, there are no ASD connections. The proof of this
result is given in [4) and also {5} and [7].

In gr;uudl there are singularities in M corresponding to reducibie ASD counec tu:na
However it is possible to analyse the local structure of My in a neighbomrhood of these
singularities, see [4], [5], and [7]. There are two special cases where there are no redueible
ASD connections.

Lemma. Suppose that either

(1) the intersection form @ x is indefinite, or
{2) Qx iseven and k=1,

Then there are no reducible ASD connections on X and My Is a smooth manifold,

For the proof sce {4] or [3]. This gives us a complete description of the local structure
of My so we now look at its global structure.

The moduli space My is not compact so we should analyse what happens as we “go off
to iufinity” in My. To deal with this precisely we introduce the following definition.

Definition. An ideal ASD connection with Chern munber & consists of a pair

(Al {z1,..., )

w W

5
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wlu.'rv (Al & Meopand {0 ) s an anordered ! tuple of points in X. The curvatire
of the ideal conneetion ([Ali {21, ..., «11) is the measure

,,
2 2N
|FAI 4 87 ! b,:,_
=1
where |F4]? is the pointwise nonn of the curvature Fa.

Here |Fu]? + 872 3 8, is the measnre which, for any continuons funetion fon X, gives

the integral

i
j; FIFAIdp+ 87"y f(a2)
‘ W=t

where dy is the measnre on X defined by the metric. Note that we allow the possibility
that { = 0, in which case we have a genuine ASD connection. We also allow the possibility
I = &, in which case we have a flat connection on the product bundle on X and a set of
E points in X; since X is simply connected it mnst follow that the flat connection is the
trivial connection and we simply identify the ideal ASD connection with the set of points
{I],...,Ik}.
Deflnition. A sequence of ASD connections [4,] converges weakly to tl ideal ASD
connection ([4 {z,...,7 1) if

(1) The sequence |Fa, |2 converges to |[Fa|® + 872 3 8;, as measures.

(2) There are hundle isomaorphisms

po : Dilxe = Pilx,,

where Xg = X\{ry,..., 27}, such that the sequence of connections pj, 4., converges
to A in the €™ topology on compact sets,

Here part (1) means that for each continuous function f on X

I
/le,‘an;;—».[ FIFAIPdp 4873~ f(xi).
RY X

i=1
Now we have the following version of Ullenbeck’s weak compactuess theorem.

Theorem. Let [4,] be a sequence of connections. Then there is a subsequenee whirl
converges weakly to an ideal ASD counection.

The proof of this theoretn is given in each of the main references. There is a very simple
anadogy which may help to nnderstand ideal ASD connectious aned the weak compact-
s theorenn. Let Ratg be the space of meromorphic functions on the Riemann sphere
§ o €U o equivalently the space of Lolomorphie wmap §% — 5%, Then such a fune-
tion is completely determined, up to a constant, by its zeroes {zy,..., 2} and its paoles
I ope ). We ean exonine the behaviour of a sequence of such functions fo where
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the poles {py, ..., pr} remain constaut, one zero, say zy{o), converges to one of the poles,
say py, awd the other zeroes {zq,.. ., 25} remain constant. Then this sequence does not,
converge to an clement of Ratg; rather it converges weakly, in exactly tiie sense deseribed
above, to the “ideal rational funetion” (f;p1) where the zeroes and poles of f are

{22,.- ., 2}, {pe.. ..o}

Here the role of the curvature is played by the energy density [Jdf |7

The weak compactness theorem is used in many places in the theory, One inmediate
application i1s that it gives a compactification of the moduli spaces My as follows, Defiue
Sf(.\'_], the {-th symmetric product of X, to be the space

Sxy=xls

where X' is the [-fold Cartesian product of X and the synuneteic group Sp acts on X' by
permutiug factors. Now define the space of ideal ASID) connections fo e

k
IM; = U My < S
=0

topologised so that sequences converge if and only if they converge weakly in the sense
of the above definition. The weak compactnes theorem tells us that the space TMy s

compact. Now define the compactified moduli space A to be the closure of My in
I My

§3 EVEN INTERSECTION FORMS

Now suppose that X is a smooth simply connected 4-manifold with even intersection
form. If X has definite intersection form we assume that & = 1 It follows that, for
a generie metric on X, there are no reducible ASD connections, so Mg C By, and the
moduli spaces My are sinooth manifolds of dimension 8k — 3(1 4+ ). We can now fonn

HyX) 5 HYBY) — HA M)

the second homomorphism is induced by the inclusion of My in B, We still use the
notation

p Hy (X)) = HY (M)

for this homomorphism,

Recall that, geometrically, p-dinensionad elosed submaanfolds of & manifold AL define
p-dunensional omology classes in M. On the other hand, coditnension ¢ subipnifolds
{which must have no boundary but need not be cotupact) define g dimensional cohomology
classes in M. Each 2 dimensional homology class ¢ in the 4-manifold X can be represented
by a 2-dimensional surface L, © X and we now deseribe how to represent the cohomelopy
class p(u) € H2{ M) by a codimension 2 subimanifold V, © My and how Lhis submanifeld
V., is related to 2,
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Main Technical Lemuna. Let £ C X be a compact orientable surface with no boundiry
and let u € H,(X) be the homology class represeated by . Let Ny be a sufficiently swall
tubular neighbourhood of ©. Then we can find & smooth codimension 2 subanifold

Vé“ C My with the following properties:

(1) The submanifold Vék) My represents the cohomology class j(ul € H* [ My).

(2) Given surfaces By,..., %, C X in general position, the submanifolds V,_(;f) C My
are in general position.

(3) Let [Aa] be a sequence of connections i Vé“ which converges to an ideal con-
nection ({A]; {x1,-..,z1}. Then either one of the points x; must lie in the tubular

neighbourhood Ng or the connection [A] lies in Vék—” C My

Assutuing this result, which is proved in [2] and [4}, we go on to outline the proof of the
following theorem,

Theorem. Let X be a smooth, simply connected 4-manifold with even interscetion form
Qx.

(1) If Qx is definite then Hy(X} = 0.

(2) Suppose that Qx Is indefinite, then

01
+ —
rel= QX—(I 0)

ver = e (2 2)s( )

Proof of purt (1). Our assnmptions arc that Qx is definite and even. By changing the
oricntation of X if necessary we can assume that the intersection form of X 15 negative
definite and so b* = 0. Then, for a generic metric on X, there are no irreducible ASD
connections and so the moduli space My is a smooth 5-dimensional manifold.

Pick two surfaces £,,82 € X in general position which represent homology classes
w1, uz € H2(X). Pick suitably small tubular neighbourhoods N; of the surfaces T;. Now
the miain lemnna shows that we can find codimension 2 submanifolds Vi, Ve € M which
represent the classes g(u) ), w(uz) € H3(M,) and are in general position. Let

L=V,nV;

so, since ¥ and V; are both 3-dimensional submanifolds of a 5-dimensional manifold it
follows that L has dimension 1.

Now we count the number of ends of L. Recall the definition of an end of a topological
space Y. Intuitively the number of ends of Y is the number of components of Y\ C where C
is a sufficiently large compact set. The precise definition is as follows. If C, D are compact
sets with D C C we get an inclusion

Y\CcY\D

FOUR MANIFOLDS AND GAUGLE THEORY 15

and this inclusion indaces a map
m{¥ \ O} = mo(¥Y} D}

wlhere mp means the set of (path) components. The number of ends of ¥ s the mverse
linat

!il_ll m¥ \ C}
and au end of Y is a component of the topological space
&n_n Y\ C.

If we tuke a sequence [A,] of counections in L which converges to s ideal connection
then, since & = 1, the only possibility is that it converges to the ideal connection given
by the trivial connection on the product bundle and a single point in X, Iu view of part
{3) of the main technical lemma this point must Lie in Ny 01 Ny, Now a direct geometrical
arguient proves the following lemma.

Leimwma. There is precisely one eud of L for each component of Ny N Ny,

To prove this lemma, more generally to analyse the ends of the modudi spaces My, it is
necessary to use the “glueing construction” of Tauhes. We will not go into this coustruction
in detail, see Taubes's paper [14] and the basic references [4], [5], and [7] for details. The
proof of the above lemma is given in (2] and [4].

Let us now complete the proof of part (1) of the theorenm. The surfaces Xy, % C X
are in general position so they meet in a finite number of points. Since ¥, represents
w; € H}(X) it follows that

Qx(ur,uz) = |8, Ny o 2

where |Z; M Ef s the number of points in the finite set £ N By The neighbourhoods
Ny und N3 can be chosen small encugh so that the number of components of Ny nvNy 16
cqual to the mumber of points of ntersection of ;) and ;. The munber of components of
Ny N Ny is equal to the number of ends of L and since L is 1-dimensional it mst have an
even nuwber of ends. Putting these facts togetlier leads to the following conclusion: for
all uy,up € H2(X)

Qx(uy,uz)=0 wod 2.

Notice that our assumption is that Qx is even, that is Qx(x,u) = 0 mod 2 for all u €
H*(X), and the conclusion is that Qx(ur,uz) =0 mod 2 for all wy,uy € H¥(X).

Now suppose that Hz(X) # 0 and pick a non-zero v € Hy(X). Then since Qx is
unimodular there must exist another element v € Hy(X) such that @ x{u, v} = 1. But we
have just established that Q x(u,v) is even and this contradiction shows that H,(X) = 0.

Notice how the above argument contains three main steps:

(1) Use the given information about Qx to determine the dimension of the modnli
space.

(2) Now look at the intersection L of codimension 2 submanifolds of the forn Vi and
count the number of ends of L geometrically.

{3) Finally count the number of ends of L algebraically.

rs
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We now outline low to prove part (2) of the theorem by repeating the above steps,
Proof of part (£). First we consider the case where Qx is even and ndefinite, and b = 1.
I this ease we use Mg, which is a smooth manifold of dimension 10, and consider the
intersections of coditmension 2 submanifolds Vi, The contradiction comes from looking at
four surfaces By, Eq, B3, 8, C X in general position and the corresponding codimension 2

submanifolds ¥y, Vo, Vy, Vi © My in general position. So we analyse the endls of
L=vin¥,n¥hnV,.

Lot [A4] be a sequence of connections in L which converges to an ideal councction. Smee
k = 2 there are two possibilities to consider:
(1} The limit ideal ASD connection is of the form ([4]; {z}) with {A] € My andr € X,
(2) The limit is the product connection on the trivial bundle and a st twao polnts
ry € X.
We now use part {3) of the main technical lemma to show that the first case canmot happen.
Since the surfaces 5; are in general position no three of them intersect and we can assne
that the tubular neighbourhoods Ny are chosen sufficiently small so that no three of the
N, interseet. Thus the point 2 can lie in at most two of the N;. For convenience let 118
suppose that 7 does not lie in Ny nor in Ny. Now part (3) of the main technical lenina
shows that, using the obvieus notation, the connection [A] must lie

viVnv® o m,.

But now we count dimensions; the dimension of My is 2 and so V;” and Vq(” are codimen-
sion 2 submantfolds of a 2-dimensional manifold which are in general position. Therefore
Vfl(]) N v‘(l) -

and so the first possibility cannot happen.

Thus the sequence f4,) must converge to two points r,y € X. Where can the points
x,y lie? Sinee the surfaces are in general position no three of them infersect. We can
suppose the neighbonrhoods Ny are chosen small enough so that no three of then intersect
awdl, for i £ j, the number of components of Ny N; is the samme as the munber of points
of interseetion of £ and £, In this case the main technical leinma shows that each of
the N, must contain one of the points and we have just shown that the intersection of any
three of the Ny st be empty. We can assume, by interchanging = and y if necessary,
that x € N; and then one of the following possibilitics must hold:

(1) se Ny Ny, y €Ny O

{(2) r€ NN, y€ N, Ny

(3) r € NinNg, ye N N Nj.
Notice Low thie argument shows that if we had used five surfaces then

Vin,ntnvyni, =@

where the Vi are the corresponding codimension 2 submanifolds of My, Therefore this
interseetion is a compact 0 dimensional submanifold of My and so consists of a finite
mizuher of points, This fact leads to the definition of the Donaldsor polynomials but i
onr present context it shows that we cannot use five surfaces in the present proof. Next
we analyse the ends of L geometrically to prove the following resnlt.
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Lemma.
(1) There is precisely one end of L for cach (nnordered) pair {C, D} where O s a
compouent of Ny N N;, D is a comnponent of Ny O Ny and {7, ), k1 = {1,2.3,4}.
(2) There is & compact set K C L and a homeomorphism

LAK - (0,1) x H Aen

where the disjoint union is taken over all {inordered) pairs {C, DY as in part (1)
and cacli Ag p is a compact I-manifold.
(3} There is a cohomology class wy € H'(My;Z/2) such that

(w1, [Aepl) =1
where |Aq,n) is the homology class defined by the compact 1-manifold Ac .
The proof of this lemma comes from the direct analysis of the ends of the moduli space
and s given in detail in [2] and [4]. By part (3) we can truncate the space L by Ly removing

opru eylinders around the ends Ag p to produce a compact 2-manifold N with honndary

such that
aN = H A(',U.

Tlms onr geometric analysis shows two things:

(1) The number of ends of L, counted modndo 2, is

Qv{uy,u)Qx (g, wq) + Qx(eey, ua) y{2ta, 0y + Qg 1y Y x (g, 1a)

where u; € Ho( X} is the homology class represented by the surface =, € X
(2} There is a cohomology class w; € H'(M2;2/2) such that

(0, ONY =3 (w1, [Ac.nl)

and thus {w), 3N} is the same, modulo 2, as the nunber of ends of L.

But, necessarily,

{w, N} =10
andd so we conclude that
Qx (w2 x(ua, wa ) + @u{ur, ua)Q v {ue, ua ) + @yl w1 x (e, ) = 0 mod 2.

Now suppose that @y has rank > 2. Onr hypothesis is that Q0 x is indefinite and even
and it follows that we can find elements wy, g, g,y € Hy (X)) suely that

Q.\'(”l.“'z) = Q.\’('“:lJH) =1 mod 2
Ox (g, uz) = Qnlup,ug) = Qxln,wy) = Qxing,uy) = 0 mod 2
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One (rather crude) way to sce this is to use the classification of even indefinite forus,
Another, more direct, way is to work mod 2 and prove directly that any non-singular
symmetric bilincar form @ over Z/2 must have even rank, say 2r, over Z/2 and we can
choose a basis wy,..., o, 81,..., 8¢ such that

Qlau, 85) = 8}
Q(“haj) =0
Q(ﬁn nBJ) =0

where 85 is the Kronecker 4.
Thus if the rank of Qy is different from 2 we have a contradiction and, since @y is even
and mdefinite it follows that
01
Qx = (1 0) '

This proves the result in the case bt =1,

In the case bt = 2 a similar argument with the k£ = 3 moduli space and six codimension
2 submauifolds Vg gives a contradiction. If we now try the argument in the case b¥ =3
with the £ = 4 moduli space and eight codimension 2 submanifolds V»: the argument breaks
down. In this case, if we take a sequence of connections [A5] in L, the intersection of the
eight codimension 2 submanifolds, which converges to an ideal ASD connection we can no
longer conclude that the only possibility is that the limiting ideal ASD connection consists
of four peints in X and the trivial flat connection on the product bundle. Of course the
argument must break down because of the existence of the Kummer surface.

§4 SOME FINAL REMARKS

To finish these notes I will make a couple of very brief remarks concerning the proof
of Donaldson’s theorem concerning definite intersection forms and the construction of the
Donaldson polynomials.

Definite intersection forms. Suppose now that Qx is definite—we can choose the
orientation of X so that it is negative definite. Then we examine the moduli space M.
This inoduli space has singularities, one singularity for each pair {u, —u} where u € Hy(X)
and

Qx(u,u) = Qx{~-u,—u)=-1

Let v be the number of such pairs. Note that if Qx is even, which is the case we exmmnined
inn some detail in the previous section, there are no sigularities. In a ueighbourhood of
a nou-singular point M, is a smooth manifold of dimension 5. In a neighbourhood of
a singular poiut the space M, is homeomorphic to a cone on CP? where the singularity
corresponds to the cone poiut. Now we analyse the ends of M, to prove that there is a
compact set K, which includes the singularities, such that

MK 2 (0,1) x X,
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Finally we must prove that the S-disnensional manifold M7 is orieatable. These facts are
proved in detail in cach of the three main references [4], [5], and [7].

Now we truncate the space M, by removing an open neighbonrliood of caclr of the
singular points and cutting off the end to obtain a compact S-dimensional orented manifold
N whose boundary consists of r-copies of CP? together with asingle copy of X, This gives
a cobordism from X to r copies of CP2,

Now we use the fact that, by the Hirzebruch signature theorem, the signatune is a
cobordism iuvariant. Let us suppose that in the 7 copies of CP? which vecnr in the
boundary of N there are p-copies with the standard orientation, that is intersection form
(1), and g witl the opposite orientation, with intersection forin (=1), where p+4 =+, It
follows that

a(@x)=p—q

However, from the definition of v, and the fact that Qx is negative definite, it follows that

—o(@x)Z2r=p+yg.

Thusg—p>¢+pandsop=0,g=r, and

a(@x)=-r.

But it now follows, by a direct algebraic arguinent, that if we pick one element w,, 1 < v,
from each of the r-pairs {u, —u} with @ x(u,u) = —1 then wy, ..., u, is an integral basis
for H,(X) in which the form is diagonal.

This argutuent is also described in Narasimhan’s lecture [10].

The definition of Donaldson polynomials. Once more [ will restrict to the case where
Qx is indefinite so there are no singularities in the woduli spaces M. Suppose also that
b* is odd, then the dimension of My is evell, say

dim M, = 2L

Now pick | homology classes uy,...,u € Hy(X}. Then we can form the cohomology eliss

u(ul)_"-u{ﬂl) € H¥(My)

where the product is the cup product in cobomotogy. This is now o top-dinensional
cohomology class in My, and we would like to get an integer by evaluating this cohiomology
class on “the fundamental cycle” of M. Of course we caunot do this withowt some further
work since My is not compact,.

One approach is to argue with the codimension 2 submanifolds V; C My representing
the classes p{u,) and their intersection

L=Vin---nv.

The V; are in general position so they interesect in a 0-dimensional wamfold, Now we
repeat the analysis of the ends of L, which was so portant in the previows section, to
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prove that in this ease, provided & is large encugh, L has no ends. Thevefore L is compact
and it consists of a finite number of points, Next we must deal with orientations to attach
a sign to cach of the points in L. Finally we define @(uy, ..., u) to be the muuber of
poiuts in L counted with signs. This argument is carried out in detail in {4] and [3].

Another approach to the definition of $; s to compactify the moduli space My as in §2
to get My and then to prove that the cohomology classes p{u.) extend over My. Here we
mnst use the analysis of the ends of the moduli space which, in the previous approach led
tor the proof that L is finite. Next we must check that even though My is not a manifold
it is n “pscudo-manifold”; in particular the singularitics of M have codimension at least
2 and thercfore there is a fundamental class

IM] € HY (M)

Now we can define }
Sriug, ... w) = {u{uy ) (), (M)

This second approach is alsa discussed in [4] and {3].

The most difficult part of the definition of the polynomials $; is the proof that they do
not depend on the metric on X. The idea is most easily expressed using the codimension
2 subinanifolds and the finite set of points L. Then the strategy of the proof is that a
path of metrics joining a metric ¢ to a metrie ¢’ will provide a cobordism between the
corresponding finite sets L and I’ Once more the details are given in [4] and [3].

REFERENCES

1. $. K. Donaldson, An apphcation of gouge theory o four dimensional topology, Journal uf Differential
Geotnetry 18 {(1983), 279 315.

2. 5. K. Donaldson, Connections, eohomology and the intersection forms of four manifolds, Journal of
Differential Geomelry 24 (1986), 275 M1, -

3. 5. K. Donaldson, Polynomial invariants for smooth {-manifolds, Topology 28 {1950), 257-315.

1. 5. K. Donaldson and P. B. Kronheimer, The geumetry of four manifolds, Oxford Universily Press,
Oxford, DR, 194,

5. 13, 8. Preed andd K. K. Ublenbeck, Instantons and four-manifolds, MSRI publications, Vol |, Springer-
Verlag, New York, 1984,

6. M. H. Freedwian, The topelogy of four-dimensional manifolds, Journal of Differential Geometry 17
(19R2), 3HT-A54.

7. 1. B. Lawson, The lheory of gauge fields in four dimensions, CBMS Regional Conference Series in
Mathematies, American Mathematical Sociely, Providence, R1, 1985,

§. 1. Miluor, On saimply connected §-manifolds, Symposium Internacionale Topolgia Algebraica, Mexico,
1958, pps. 122128,

9. J. Milnor and 1. Husemoller, Symmetric bilinear forms, Springer-Verlag, Berlin, 1973,

10. M. S Narasimhan, Notea from a lecture al Dhis workshop.

11T /. Wanadas, Notes from leclures al this workshop.

12. V. A Roblin, New results in the theory of forr dimensional manifolds, Dok, Akad. Nauk. USSR 84
(1952), 221 224,

t3. ).-P. Serre, A conrse m anithmelic, Springer-Verlag, Herlin, 1973,

1. CIL Taubwes, Self-dual connections over non-self-dual four manifolds, Jouenal of Differential Geometry
17 {1982), 139174,

MATHEMATICS INSTITUTE, UNIVERSITY OF Wanrwtck, COvVENTRY (V4 TAL, FNGLAND

1reard: jdsicdonat s warwick ac.uk






