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ABSTRACT

The aim of these leciures is to show how algebraic geomeley can be used to formulate
and analyse a problem in physics. We shall study a particular quantum field theory defined
over a compact Riemann surface. The model we shall discuss first arose in string theory,
but has been subsequently studied by physicists as an interesting model in its own right.
We shall investigate whether the so-called correlafion funciiens of the system (defined as
meromorphic sections of line bundles over the product of copies of the Riemann surface) are
determined by physical data, viz. certain zeros and poles which they are required to have.
Algebraic geometry not only helps in answering this question, but also in determining
explicit expressions for the correlation functions. This analysis gives a new proofl of an
important identity for theta functions due to Fay. We shall also show how algebraic
geometry enables us to deal with more complicated physical situations, such as when zere
modes, branch point singutarities, or different statistics are involved. We shall try to show
how the essential physics is brought out by the algebraic geometry formulation, which

provides a very natural language as well as effective computational tools.
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1. Formulation of the problemn

We shall consider a model quantum field theory, defined over a Riemann surface, and
show how algebraic geometry can be used effectively in its study. The model is one which
arises naturally in string theory, but no knowledge of physics will be assumed nor required.

We shall only introduce some terminology from physics as motivation.

The model consists of a pair of guantum fields b,¢ on a compact connected Riemann
surface M of genus ¢ > 0. A quantum field can in general be thought of as a kind of
generalised random variable. Quantum fields are extremely singular objects and so we
shall not deal directly with them here, but only with certain functionals of {them, known
as correlalion functions. These are, in fact, the quantities of interest and we shall show
how they can be determined in this model from some physical input, using only algebraic

geometry, without dealing directly with the fields.

The general correlation function of the system is written symbolically as

Clm,n) = {b(Q) ... H(Qn)e(B)... (P, (1.1)

where the 's and P's are arbitrary points on M. Intuitively, a correlation function of this
form should represent the expectation of finding m particles of the b field at Gy s @on
and n of the ¢ field at P,..., P, in their ground state. This should not be taken too

literally here as (1.1} is merely an amplitude appearing in string theory calculations.

We shall denote by K the holomorphic cotangent bundle of M and by Pic'(M) the
set of holomorphic line bundles over M of degree (or Chern class) d € Z. Experience
with this model system on the complex plane suggests that, over the Riemann surface M,

the C{m, n) should have the following properties:

(P1) C(m,n) is a meromorphic section of @ € Pic* (M) in each P-variable and
of K@a™' € Pico'(M)in each Q-variable, where H'(M,a) == 0.
(P2) C(m,n) has a simple zero when the arguments of two b fields, or of two ¢ fields,

coincide (other variables being in general position).

(P3) C(m,n) has a simple pole when the arguments of a b field and a ¢ field coincide

{other variables being in general position).
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(P4) €(m,n) has no poles other than those required by (P3).

While the mathematical meaning of these conditions on C{m,n) is reasonably clear,
some explanation is surely required. The first condition (P1) is a generalisation of the sit-
uation in the physics problem, where b and ¢ are normally taken to be ‘sections’ (operator-
valued) of a kolomorphic spin bundle or thela characterislic, i.e. one of the 47 elemenits
of Pic?~'(M) whose tensor square is K. In physics parlance a field associated to a theta
characteristic is said to have conformel spin 1/2. We generalise this to the ‘twisled spin
/% case by associaling any @ € Pic® (M) to the field ¢, while associating K ® o
to the conjugate field b. This is consistent with the action principle (i.e. a variational
principle whose Euler-Lagrange equations give the equations of motion) of the classical

version of our quanium system, viz.

§~ f b, (1.2)

A

and so we naturally require bdc to be a volume form on M.

The condition that o should have no holomorphic section can be thought of as requiring
that the generalised random variables b and ¢ have zero mean value, i.e. that the one point

correlation functions €(1,0), C(0,1} vanish:

H'(M,a)=0- H' (M. K®a') {1.3a)
<b>=0=<c>. {1.35)

As we can see, the condition (P1) contains a lot of rather detailed restrictions coming
from the physical system. We shall re-examine it in section & and sirive for a deeper

understanding.

Condition {P2) should be regarded as a way of realising the condition that the fields
b, ¢ are fermionic, i.e. (P2) realises the ezclusion principle. This is not the only way it can
be done and we shall come back to the guestion of statistics in section 7, but it turns out

that (1'2) is a very interesting way to realise this condition.

Condition (P3) comes frotn the notion that b and ¢ are conjugate fields, i.e. that the

cocfficients of their Laurent expansions satisfy (b, €], = fum, where + (resp. - ) indicates

the anticommutator (resp. commutator), for the fermienic (resp. basonic) case. Condition

{P4} says that all poles must have this physical origin.

It is instructive to look at the sclution of the model on the complex plane, where it

represenis a system of {ree particles. In that case it is known that

C(m,n) = bpndet [(HQI(PIIT, (14a)

where the iwo point function is given by

< HQ)e( P) > 3%'7’ . (1.15)
Note from (1.4) that C{m,n) = 0 for m # n. The physical reason for this is charge
conservalion: the fields b and ¢ are supposed to carry equal and opposile charge. For
m = n the Zr-point function is a determinant of two point functions. This is known as
Wick’s theorem for o system of free fermions. We can regard it as the definition of a free

fermion system. It is the analogue for fermions of the condition for random variahles to

be uncorrelated.

We thus see that the conditions {P1) - (P4} that we have imposed on the C{m,n} have
a definite physical origin and meaning. At the same time they have a definite mathematical
meaning. It is not clear at this poini whether more input is needed from physics in order
to determine the C{m,n). To investigate that we must first put conditions (P1) - (P4) in

a more convenient and concise form.

Let {M,[1 <i<m+n}bem + n copies of M and denote hy M™" = [{"*" M, the
product manifold of the m + n copies. Let

P, M"‘+" > M
(1.5)

(Ziye oy Ziyer s Zman) * 2,

denote the i-th canonical projection. We denote by © the subset of Pie? ' (M) consisting
of holomorphic line bundles on M of degree g — 1 having at least one nonzero holomorphic
section (it is the empty set if g = 0). O is often called the canonical thele divisor. Then

choosing & € Pic® '(M) - © we define the holomorphic line bundle

Felmn) = pi(K@a ' )@...0p(KRa ")Rp,, (0)8...Qp, (a) (1.6)

over M™*n,



Let A,, denote the diagonal of M, x M, and

i Mt M x M
P ! (1.7)

(Ztse o0 Zgs ey Zmgn) o (200 25)

the canonical projection to M, x M,. Then

D, = prii{A,) (1.8)

is an element of Div(M™*"), the divisor group of M™t", Now condition (P2) defines
a certain element D.(m,n) € Div(M™*"), which we call the divisor of physical zeros.

Clearly,
D.(mn)=3"D,;+ Y D, (1.9a)

where 37’ (resp. 32") runsover 1 <i<j<m(resp. m+1<i<j<m+ n). Condition

(P3) similarly gives us Dp(m,n), the divisor of physical poles:

Dp(m’n) = ZD".?" (1.95)

where 3" runsover 1 <i<m,m+1 < j<m+n. Then
D{m,n) = D,(m,n) - Dy(m,n) {1.9¢)

is the total divisor of physical zeros and poles. In the following we shall denote by
{D.(m,n)} (resp. {D,(m,n)}) the set of D,; appearing on the right-hand side of (1.9a)
(resp. (1.9b)).

As is well known, a divisor defines a holomorphic line bundle and a meromorphic

section whose divisor of zeros and poles is the given divisor. We denote the line bundle on
M™% defined by D(m,n) as O(P(m,n)). Define

M (m,n) = F,(m,n) ® O(-D(m,n)). (1.10)

Then condition (P4) tells us that C(m,n) is determined by an element of H“{M™*",
M., (m,n)). To determine to what extent C(m,n) is fixed by our four conditions, we must
clearly determine dim H"(M™*", M, (m,n)). This is, however, a well defined mathemati-

cal problem to which we now turn our attention.

2. Two basic lemmas

Our computations of H"(M™", M, (m,n))} are inductive and ultimately depend on
the fact that H'(M,a) = 0 and dim H"(M,0) — 1. The reason that induction works
is explained by Lemmas 2.1 and 2.2 below, which bring out the remarkable structure of
My(m,n).

Lemma 2.1. H'{M™", M, (m,n)} = H"(Dy(m,n}), M,(m,n)|Dy(m,n)).

Proof. We have the canonical short exact sequence
0 = O(-Dy(m,n}) - O = O|Dy(m,n) -0 (2.1)

between the ideal sheaf of the closed subscheme D (m,r), the structure sheaf of M™ "
and the structure sheaf of D, {m,n). Tensoring (2.1) by M, (m,n) (exaciness is preserved)

and passing to cohomology, we see that we need to prove that
HY{M™, F(m,n)® O(-D,(m,n))) =0fori=10,1 (2.2)

The case i = 0in (2.2) is trivial, since H*{M"t", F.(m,n)) =0 for i - 0,1 by (1.3a) and
the Kiinneth formula. To prove (2.2) for i = 1, we replace D (m,n) in (2.1) by D,(m,n)

and tensor the new short exact sequence by F,(m,n). Passing to cohomology gives us
HYM™", Fom,n) @ O(—D,(m,n))) = H{D,(m,n), Falm,n)|2,(m,n)).
By direct computation and the Kiinneth formula we find that:
HY(D,;, Falm,n)|D;;) = 0 for each D,, ¢ {D.(m,n)}.

This completes the proof of (2.2) and hence of Lemma 2.1.

Let us define pr7 to be the canonical projection

mtn
pry s Dy =A< [ M- 4, (2.30)

p=1
P#id



and 77 to be the canonical prejection

min min

m) s Dy= A, [ M- [ M
p-l p=1
réeg p#ig

Lemma 2.2, Let m { n > 2. Then for any ,, = { P,(m,n)} we have
H'(D, Mo(m,n)|Dy,) = H'(M™'" 2 M (m - 1,0~ 1))

where
m+in

M=t I M
p=1

pAL

Proof. We have

Fulm,m)| Dy = n*(Foln = 1L,n - 1)) @ pri"(K,,)

[k

where K, denotes the canonical bundle on A,

Dimyn) =D(m — 1,0 = 1) = Dy 4 Y (D — Dy)
-1
(o
min

i Z (Dm h DH“)

p:mil
r¥s

Q- P(m,n)) D, = ﬂﬂ’(@(—— Dim--1,n - 1))@ O(D;1D,;

m min

ROUN (D= Dy Y (D, D) | D,
3 =rnd |l
:1#: pl’?‘)

=x(O-Dim - Oy®prl(K,")

(2.3b)

Thus

M (m,n)|Dy; = 72 (M, (m - 1,n -1)).

1

Hence by the Kiinneth formula

H' (D, Mo(m,m)| D) = HY(M™" * M {m -1,n-1)).

3. Computation of H'{(M™, M (m,n))

We now consider the computation of H'(M™'", M, (m,n)). It turns out that the case
when m # n is much simpler than when m = n and so we take these two cases separately.

The first case is in fact an easy consequence of Lemmas 2.1 and 2.2.

Theorem 3.1. Lel m # n. Then

e (Mm+ " Mn(m:")) =0

Proof. From {1.3a) and the postulates (P1) - (P4), we sce immediately that for m # 0,
H (M™ M, (m,0)) =0 - H"(M™ M,(0,m)}. (3.1)

Thus sinee m # n we need to do the computation of H" (M™*™ A (m,n)) only for m # 0,

n#EGandm i n > 2.
By Lemma 2.1 we have to compute H" {Dp{m, n}, M, (m,n)|1,(m,n)).

By Lemma 2.2, however, we have
H (D, M, (m,n) D} = HY (M™ 2 M (m Ln 1)) (3.2)
for each Dy; € {D,{m,n)}. The calculation is thus reduced inductively to the case when

m or n vanishes so that (3.1} applies. Thus the lefi-hand side of (3.2) vanishes for cach

Dy, ¢ {D(m,n)}. Hence the result.



Remark 3.2. From Theorem 2.1 we deduce that the correlation function C{m,n) = 0 for
m # n. This means that we have obiained from our postulates a result obtained in the

physics literature from current conservation, as explained in Sect. 1.

We now consider the case when m = n.. Our approach will again be inductive. We shall
start the induction at n = 1 and so we first have to consider M,(1,1), which determines
the two point function C(1,1).

Proposition 3.3. Let A denote the diagonal of M x M. Then
HO(M x M, M,(1,1)) = HYA,0|A) =¢. (3.3)
Proof We have Lhe canonical short exact sequence

0-O(-A)—- 00— 0]A—-0, (3.4)

where O is the structure sheaf of M x M. Tensoring (3.4) by M.(1,1) and passing to
cohomology we obtain (3.3).

The next proposition completes the compulation. Since it will be proved inductively
it will be convenient on occasion to use the same symbol D;; = pri;'{A,;) even when the
domain of pr,, is M*~* or M*~*, This will be clear from the context. We shall also
denote the diagonal of M, x M; x M, by A, and of M?" by A,,,.

Proposition 3.4. Let D,,, D,, be any two distinct elements of {Dy(m,n)}. Then we

have the following commutative diagram of canonical isomorphisms:

H' (M™ My(n,n)) -+ H(D,Ma(n,n)Dy)) - H'(Ag, 0|As)

N 4
H"(D;, N Dyuy Mao(n, )| Dy 00 12,,)

Proof. The proof is by induction and so let us assume that it holds up to n - 1. (Since we

have Prop. 3.3 for n = 1, we take n > 2 in the following). Then,

H'(D,,, Ma(n,n)|D,;) = H'(M™ * Mu(n - 1,n —1))  (Lemma 2.2}

10

= H'(Ag 2, 0100..0) {ba forn 1)
= H”(Ahnoi&bl)

Thus artow b is an isomorphism.

To consider arrows ¢ and d and the commulativity of the triangle of isomorphisms, it
is necessary to consider two distinct cases for I),,. Lel us first choose r — &, 5 - £ where
1#j#k+#E Then

Dy N Dy = A,y Byy x M

where

in
M2v|—4 — H Mp-

pel
pELIRL

Then

H'(Dy; 0 Digy Ma(nyn)| Dy, N Diy) = H' (M4, M (n - 2,n - 2)) (3.5)
- H”(AZH—hOEA?n—Ai)
= H'(Ay,, OAg,),

which proves d is an isomorphism in this case.

H(D,;, Ma(n,n)D,;) = H'(M™*, M,(n— 1,n 1))
= H'(Dpy Mu(r - Lin —1)|Dyy)  (eforn - 1)
= HY(M™* M, (n—2,n-2))
= H'(D; N Dy, My (n,n)iD,, 0 Dy) by (3.5))

which proves ¢ is an isomorphism and completes the proof of the commutativity of the

triangle of isomorphisms in this case.

=

EE)
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LR



The only other distinct case we need to consider is when 7 = j, 8 = k. Then
In-3
Do Dy = A M2

where
in

MY = II M,,
p-1

pfaak

H'(D,, 1 Dy, Mo (n,n)lD., 0 D,y)
CH A x M Mo(n -1, — 1) Bg x MP?) (3.6)

where M. (r - 1,n - 1)|A;e x M?™ 3 denotes the pullback of M,(n - L,n - 1) defined
In
over M * oo [] M, by the canonical isomorphism

{
1413

A:‘Jk w M!nr—il s M!rl' 2 - Mﬁ: w MZu—a'

Thus the right-hand side of {3.6) is canonically isomorphic to

HM™, Mo(n = Ln - 1)) = B (gm0, OlAn o)
= H”(AznaO|A2ﬂ}1

which proves that 4 is an isomorphism in this case.

H' (D, M (n,n)lD,,) = H' (M7 T M,(n—1,n-1))
= H'(A x M3 Mu(n - Ln = 1)[Ag x M)
= HYD,; N D, M (n,n)| Dy 0Dy,

which proves that ¢ is an isomorphism and that the triangle is commuatative in this case
as well.

The arcow e alone remains to be discussed. For that it is clearly sufficient 1o prove

isomnorphism for the composite ba,

By Lemma 2.1 we have

HYM™ M, (n,n)) = H'(D,(n,n), M.(r,n)|D(n,n)).

Since Aj, is contained in each D,; € {D,(n,n)} we have a natural map

H'(Dy(n,n), Mo(m,m)| Dy(mn)) + H(Agn, Mo ()| B2).

This map is injective, since a holomorphic section s of M, (r,n)|{2,(n,n) vanishes if it
vanishes on A,,. To see this, assume such a s is given. Then, by the horizontal arrow &,
s|D;; vanishes for each of the divisors whose sum is D, (n,n}. Hence s = 0. This implies
that (since M, (n,n)|A,, = O|Ay,)

dim HY(M™, M, (n,n)) < dim H'(Ag., O|Ay,) ~ 1 (3.7)

To show that equality holds, take a nonzero section ¢ of O|A3z,. Let {,, be the section
of M, (n,n)|D,; which goes into t under the isomorphism 5. Then by the commutativity
of the triangle which we have established, {,; and {,, coincide on Dj; 0 D,, for any two
distinct elements 13,;, 0,, of {D,(n,n)}. Hence the {f,,} ran be patched consistenily to

give a nonzero section. Thus

H'{(Dy(n,n), M {n,n)| Dy(n,n)) - H'{(Ag, OlA). (3.8)

From the horizontal arrows of the commutative diagram of Prop. 3.4 we get:
Theorem 3.5. dim H"(M™ M,(n,n)) = 1.

Remark 3.6. Theorem 3.5 proves that A4,(n,n) has a unigue nonzero holomorphic sec-

tion. Thus the correlation function C{n,n) is also unique {ap to a moltiplicative constant),

13



4.  Wick’s Theorem and identities of Cauchy, Frobenius and Fay

We have shown that the 2n-point function C{nr,n) is uniquely determined by our
conditions {P1) - (P4) for each n > 1. Now the two point function < 5(Q)e(P) > is a
meromorphic section of pj{K ® a~') ® pj(a) whose divisor of physical zeros and poles is

simply the polar divisor —A,,. Consider the determinant

n

det (({(Q)e(P,))) (4.1)

1,7=1

It is clear that this is a meromorphie section of F,(n,n) and, on examining conditions (P1}
- (P4), it is clear thal it satisfies each of them. By our unigueness theorem, this means that
with appropriate normalisation the 2n-point function C(n,n) is given by the determinant
of its two point functions. Recalling the discussion of (1.4}, we see that Wick’s theorem
holds for our sysiem on the compact Riemann surface M. Thus in physical terms we have
proved that our system is one of free fermions on M. This conclusion is independent of
the genus g of M. We shall now show how this observation leads to interesting identities

for each of the three cases (a) g = 6, (b) g=1,(c)g > 2.
(a) Case g = 0.
In this case we have:
Proposition 4.1. M,(n,n) is the trivial line bundle on M.
Proof. An easy consequence of the fact that for ¢ = 0, Pic(M'") = Z*~.

As a consequence

Faln,n) = O(D(n,n})) {4.2)

as line bundles on M**. Thus the 2n-point function C(n,n) is given by the canonical
meromorphic section of O(D(n,n)} with divisor D(n,n). For ¢ = 0, M can be identified
with the complez projective line IP', which can itself be identified with two copies U, Uy,
of the complex affine line A* glued together. We shall write down C(n,n) explicitly on
one of the affine lines. Now O(D(n,n)) is simply a combination of O(D;;) and the latter
is simply a pullback of O(A,;) on M, x M;. The holomorphic section of the latter with

14

divisor A,; is simply (z, — z;) in affine coordinates on U/,. We thus get

H15.<;§H(Qs - QJ)(PJ - Pl) )

C(ﬂ.,ﬂ) = nag:,jgn(Q‘ N P])

(4.3)

on (U/,)*. On the other hand, we have shown that C(n,n) has a determinantal form as

well and so
1 n
— - 1.4
C(n,n) = const. x del ((Q, - PJ)) ot (4.4)
It is easy to check that the consiant in (4.4) is unity. We thus get:
Theorem 4.2 (Cauchy’s identity):
HlSI(JSn(QI - QJ)(PJ B P‘) = del ( 1 . ) " (45)
H:g..jgn(Q-‘ ~-F) Q- PiJ o

(b) The case g = 1.

In this case the Riemann surface M and its Jacobian variety #ic”(M ) are isomorphic
under the Abel map. We shall consequently identify them when convenient. Moreover, K
is the trivial line bundle on M and © consists of just one element in Pic"{(M), viz. the
neutral element corresponding to the trivial line bundle. Corresponding to Prop. 4.1 we

have:
Proposition 4.3. Let £ be any element of Pic'(M) and let ¢7 denote the map

¢7 : M — Pic(M)

n n

(le---;QvuPh""Pn) _’O(ZQI‘ ZPI) ®£
1 1
Then
Me(n,n) = ¢ (0(0))-

We can understand the principle of the proof by confining overselves to the case when

n=1.

EE



Corollary 4.4. Let £ be an arbitrary element of Pic"(M) and let ¢} denote the map
@M x M o Pic"(M)
(@.P)-0Q P)o¢.

Then

M1,1) = pi(E77) @ p3(£) @ O(A) = g7 (O(0)).

Proof. We can use the seesaw principle in the following form: if L is a holomorphic line
bundle on X % ¥, where X and V are compact connected complex manifolds, such that
for each z & X the restriction L|{z} x V¥ is trivial and for each y € ¥ the restriction

L|X > {y} is trivial, then L is trivial.

Restricting M(1,1) to {Q} x M we get £ ® O(Q). The restriction of b (O(O)) is
the pullback of O(8) by the map P — £ @ O(Q — P). Recalling that © is the trivial line

bundie on M it is easy to check that this is also £ ® O(Q). Similarly for the other side of
the seesaw.

Corollary 4.5. Let ¢} denote the map
&M« M o Pid (M)
(@.F) ~0O@Q-P)
Then,

O(A) = ¢y (O(9)).

Proof. Put € as the trivial line bundle in Corollary 4.4.

We remark that O{A) has a one dimensional space of holomorphic sections for ¢ > 1.
As is well known the unigue holomorphic section of O(0) can be written in tcrms of the
theta function. We refer to the treatise of Griffiths and Harris for details. As a result we

see from Corollary 4.5 that the normalised holomorphic section of O(A) is given by

EQr) = 2Z 0 (1.6)

Pulting € a in Corollary 4.4, where a is any element of Pic"(M) - O, we sce that the

16

two point function < B(Q)e(F) > is given by the so-called Szegd kernel:

&, - P
< HQ)e(P) >= S.(Q. F) - 0—(‘2{5,—@% . (A7)

where E(Q, P) is given by (4.6).

Then from Prop. 4.3, putting £ - a, we see that

91(2;‘ Q‘ - ‘ﬂl‘ F, - G‘) lrl|g.(7<_" E(QHQJ)E(I’.:HPIJ )

. {4.8)
b (-a) [licrycn F(Qu 1)

Cln,n) =

But we have also proved that C(n,n) is the determinant of its two point functions, i.e.

n

(4.9)

0{Q. P, —a) 1 )

C(n,n) = eonsi. x det ( X o)

3,7 -1

Comparing (4.8} and {4.9), it is easy Lo see thai the constant is unity and so we have
proved:
Theorem 4.6 (Frobenius’ identity). For o # 0,

£: 30 Q - Pi+a) a0 (Q - Q)8:(F; - F)
81((1) 1]|<=‘,§n Hl{Ql . P})

(4.10)
Bl(Qe _ pj { a}) n
—del | —2" 1
‘ (sl(a.- BYATATS AN
In fact Frobenius wrote his identity in terms of the Weierstrass o-function:
- [licic,cn (@ -~ Q)a(l, - F,))
ola)" ol a+t (Q.fP.)) 2 R

( ) 21‘ Ill(r‘;(no(Q‘ t l.‘.‘) (4]])

e =it

where we have correcled a small error in the published paper of Frobenius. I is easy to
see that (4.11) is equivalent to (4.10), either by using the well known relation between o
and #, or by reflecting on the fact thal & is just as good a theta function for writing the

section of O(O) as 4,!



(c) The case g > 2.

We shall first show how to obtain an explicit expression for the unique holomorphic
section of M(n,n), whose existence was proved in Theorem 3.5. We shall first show that
the holomorphic line bundle M ,(n,n) is isomorphic to a pullback to M?" of O(0©), where
© is the canonical theia divisor in Pic?"'(M). Our analysis is based on the following

lemma, which is a modern interpretation by geometers of a result of Riemann!

Lemma 4.7. Let 1 be a line bundle on M of degree g — 2 and let
I, « M - Pic® ' (M)

be the map defined by
P -1 O(P).
Then
B(Oe)=Ken.

We shall first discuss M,(1,1), where £ is now an erbitrary element of Pic?~'(M).

Proposition 4.8. Let £ be any element of Pie?~'(M). Consider the map

® : M\ x M, — Pic”"'(M)
(@,P)-O0(Q-P)®E

Then
Me(3,1) = 5i(K 8£) 8 p3(€) ® O(Ass) = ¢1* (O(0)). (4.12)

Proof. An easy application of Lemma 4.7 and the secsaw principle.

18

Theorem 4.9. For £ € Pic? '(M) consider the map
d M o Pig? U M)

(Ql:"'inypls"':Pn) e O(ZQI 7ZP1)®E

Then

Me(n,n) = ¢{°(0(@)). (4.13)

Proof. An application of the seesaw theorem applied inductively from n .- 1 (Prop. 4.8).

We now choose a symplectic basis of a-cycles and b-cycles for M and a dual basis of
holomorphic 1-forms w = (1w, -, w,} so that the period matrix of M is now defined. Then
the Riemann constant k& € Pic" ' (M), which defines an isomorphism between Pic? ' (M)

and the Jacobian J(M), is defined as is also the Riemann theta function 8(z).

We shall adopt the notation #(£](z), where £ ¢ Pic?~'(M), for the theta function with
characteristics x ® £ -'. We shall also follow standard practice by writing in the argument

of a theta function the expression £1'Q, — L2 F, for the sum of n line integrals

Qit - +Un
w

Pyttt Py

Then from Theorem 4.9 and the isomorphism between Pic'(M) and AIb(M) we obtaim:

Corollary 4.10. The holomorphic section of M, (n,n}, unique up to a multiplicative
constant, is given by

Bla)(3°7 Q. - 32 R)
#[a)(0) '

(4.14)

The normalization constant 8(al(0) £ 0 iff H'(M,a) - 0, i.e. iff (1.3a) holds.

Qur aim now is to write down an expression for the correlation function C'{n,n), since
from Theorem 3.1 we know that C(m,n}) = 0 for m # n. From egqn. (1.10) and Corollary
4.10 it is clear that what remains to be done is to obtain an expression for the unique

meromorphic section of O(D(n,n)) with divisor D{n,n). We should like to have this
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section written in terms of familiar objects such as theta functions and prime forms. For
this we do not deal with O D(n,n)) directly, but use Prop. 4.8 and the multiplicative
structure of Pic{ M) ta obtain an isomorphic line bundle. We explain the procedure in

detail for the case m 1 (when D{I,1) - --Ayy), since this will be our basic building
block.

Tensoring the short exact sequence (2.1) by ({A)and proceeding to cohomology, we

see immediatety that O(A) has a one dimensional space of holomorphic sections. From
{4.12} we have

O(A1) = ¢, (O(@)) ® Fe(1,1) " {4.15)

For the study of the two point function C{1,1), we must choose £ = a. However, the
left-hand side of {4.15) does not depend on £ and so we can make a second choice for £
The choice we shall make is to put £ - @, where 4 is an odd theta characteristic with
dim H"(M.,3) - 1. Then 8 = O(z +---+ z,1) for some z,, -+, z,.; on M. Let hy be the
unique holomorphic section of @ (normalization will be fixed later). Then by the Kiinneth
formula, hp(@)ha(P} is a holomorphic section of Fu{1,1} = p/(K ® 1) @ p3(H). Clearly
the divisor of ks is z; + -+ + 2z,_,. We now need the following temma:

Lemma 4.11. With the above notation, 818)(Q - P) - 0iff (a) Q = P,or (b) P = some z,,

or (¢) @ - some gz,
From Lemma 4.11 and the preceding discussion we have:

Corollary 4.12 The prime form

88(Q - P)

EQ.F) = ha(@)a(P)

(4.16)

is a holomorphic section of a line bundle isomorphic to O{A) and it vanishes linearly on,
and only on, the diagonal A of M x M. E(Q, ') can be normalised to vanish like (@-P)
near A. Tn addition B(Q, ) = - E(P, Q).

From the isomorphism
EAOO)®F(1L,1) ' g (O@) & Fal1,1) (4.17)

and Coroli. 4.10 and Coroll. 4.12 we now deduee:
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Proposition 4.13. Let & ¢ Pic®'(M) be in the complement of the theta divisor so that

#{a)(0) # 0. Then the normalized two point Tunction (1, 1) is given hy the Szcyd kernel

flaj(@ 1) 1
Bla)(0)  E(Q,P)

$.(Q,P) = (1.18)

From the abelian group structure of Pie{M®"), it is clear that Q(I}n,n)) is simply
a product of pullbacks pr; (O(A,;)) and so we can easily write an isomorphism beiween
O(D(n,n)) and products of pullbacks of the right-hand side of (4.15) with £ == 3. It is
then easy to write down the desired section with divisor 2{n,r) in terms of prime forms.

Recalling Coroll. 4.10 we can then write down the 2n-peint function C(n,n).

Theorem 4.14. The unique normalised 2n-point correlation function C(n,n) is given by

g[a](i Ql_ i,’l) ]] IC(QI?QJ)E(I)NP:')
I 1 1< , ) (4_]9)
8lei(0) HE(@Q., 1)

.1

The discussion in Sect. 1 leads us to formulate:

Theorem 4.15. (Fay's identity). Let a € Pic® (M) be in the complement of the theta
divisor, so that #a](0) # 0. Then

flalt Q.- SR [ E(QuQ) E(P,. 1)

~del 1S,(Q.. P, 1.20
Tal(0) 1 E@.7) At 1@ Bl (120)

Proof. Clearly det [5,(@,, F;)| can be regarded as a seetion of F,(r,n) which satisfies
postulates (P1) - (P4), Hence

IT E(Q., 1)
det [S.(Q., P,)! - .
S @ BT BQn @) B
Y
is a holomorphic section of M, (n,nr). However, this latter section is unigue up to a

multiplicative constant and is given by Coroll. 4.10. The constant is easily seen to he

unity by a residue argument.



The above identity was discovered by Fay. The case when n = 2 is particularly in-
teresting since the identities for n > 2 can in fact be deduced from it as pointed out by
Fay. [t is amusing to note that this too is in agreement with physical intuition, since it is
believed in physics that if the four point function agrees with the {ree particle case, then

so do all the higher point functions. Multiplying (4.17) out in the case n = 2, we gei the
trisecant idenlily:

8lal(Q) — P )0e|(Q: — P)E(Gh, P )E(P, Q)
+ Blal(Q - P)8[al(Q: — P)E(Q, P)E(Q:, P1) (4.21)
= flal(Q1 + Q@ - P, — RYal(0)E(Q,Q)E(R, P).

5. The generalized b-¢ system

So far we have discussed only e ‘fwisted’ version of the conformal spin 1/2 fermionic
b-c system. There are several closely related systems considered in the physies literature.
One is the spin (1 — J),J system, in which the field ¢ is associated to the line bundle K&’
and b to K®'~/), where J is an integer or half integer. In the case when J is a half integer
we must first choose a square root line bundle of K, or thela characteristic. In the J = 1/2
case we have considered so far, we could assume that a had no holomorphic se¢tions. This
is no longer possible if J > 1. Hence we must understand the role of such holomorphic

sections in our analysis, since we made crucial use of their absence in our earlier analysis.

Another generalisation is to consider the case when there are special points on the
Riemann surface M around which the b and ¢ fields have specified rational monodromy,
thus drastically changing the analytic behaviour of the correlation functions. We shall
discuss this in the next section. Another related system is the bosenic b-¢ aysfem, usually
called the -y system. This will be taken up in section 7.

We shall now discuss the iwo point function < 8(Q)e(P) > of a generalised b-¢ system.
This will be relevant for understanding the spin (1 — J), J system, the monodromy com-
plications to be discussed in the next section, as well as for the 8-y system, since the two

point function is independent of statistics.
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Definition 5.1. Let o ¢ Pic"(M), € Piet(M) where p t ¢ - 2¢g 2, with no other
restrictions on a and 8. Let p,: M x M — M(3 = 1,2) be the canonical projections onto
the first and second factors of M x M. We shall say that the generalised b ¢ system has a
two point function (not necessarily unique), denoted < b(Q)e(F) =, if there is at least one
nonvanishing meromorphic section of p;(3) @ pj{a) whose enly singularity is a simple pole
along the diagonal A of M x M.

Remark 5.2 Up=g=g-1and §®a = K with H'(M,a) = 0, we are in the situation
of the original system we discussed. If p = 2{1 -~ J)(g — 1},q == 2J(g- 1),0@a = K, then
we have a ‘twisted’ generalisation of the spin {1 - J), J system.

The following rather surprising result can be proved:

Theorem 5.3. Necessary and sufficient conditions for the generalised b-c sysiemn Lo have
a two point function in the sense of Definition 3.1 are that p =~ ¢ - ¢ - 1,/ ®a - K,
and o (hence also 3) has no holomorphic sections. Under these conditions the two point

function is also unique.

Theorem 5.3 provides a basis for understanding condition (P1) of section 1. It may be
recalled that we had Lo give rather complicated, model-dependent reasons for the conditions
making up (P1). The requirement of having a two point function in the sense of Definition
5.1 is quite as satisfactory a basis for the physicist, if not more satisfactory than our earlier

justification. Now Theorem 5.3 shows the real origin of thege constraints.

While we cannot go into the proof, let us see the mathematical problem of which
Theorem 5.3 is the solution. We have the canonical short exact sequence between the ideal

sheal of A in M x M, the structure sheaf & of M x M and the quotient sheaf:
0->0(-A) -0 - 0OA=0 (5.1}

Let F.s = p{8) ® pi(e) and M,y = F,p @ O(A). Tensoring (5.1) by M,,5 we get the

exact sequence
0= Fop = Mop — MuplA -5 0 (5.2)

Passing to cohomology we get
0 H'(M x M,F.g)-» H'(M x M, Myp). (5.3)
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The condition for the generalised b-¢ systemn to have a two point function in the sense of
Definition 5.1 is that the injective map i in (5.3) should not be an isomorphism. What we
have to do is to prove that if the conditions of Theorem 5.3 are not satisfied, then i is an

isomorphism. I they arc satisfied, we have already seen that there is a unique two point

function.

For the higher spin b-c system we associate the field ¢ to a line bundle ¢ € Pic?7(9-1}( M)
and the ficld bto K®¢ . Thenfor J > 1, ¢ has ¥ = (2J - 1)(g - 1) holomorphic sections,
while K @ { ' has none. By Theorem 5.3 it cannot have a two point function in the sense
of Definition 5.1 {(which itself came from condition (P3)): the two point futiction must have

extra singnlarities apart from the pole along the diagonal.

What physicists do in this situation is to intreduce a set of N = (2J — 1)(g - 1) points
W, .-y on M oand assume that < 6(Q)e( /) > has a zero when P € {w,,...,wy} and
a pote when @ ¢ {w,.._,wy}. In our formulation this means that the two point function

is given by a holomorphic section of
riK® () epn)®0(A)ep(O(W)) @ p(O(-W)), (54)

where W= 3w Let a - £ ® O(- W), Note that o € Pic?"'(M). Then (5.4) can he
i

written as
pi(K @ a™') & pia) ® O(A). {5.5)

Since the wy,. .., wy can be taken to bein general position, we can assume that H'(M, a) -
0. Thus we are back in the twisted spin 1/2 case. In this way the two poeint correlation

function can be written down.

In the case of higher point functions, we must first specify the statistics. In the
fermionic case, it is casy to see that Wick’s theorem continues to hold. This leads to
an identity for ¢ = 0,9 ~ 1 and g > 2, which reduces to the identities of Canchy, Frobe-

nius and Fay, respectively, after cancelling some exira factors on the two sides.

6. The b-c system in the presence of a ‘twist structure’

A generalization of the b-c system that has been studied in the literature is when we
are given a distinguished set of points on M around which the b field and ¢ field have a
given (rational} monodromy. Such problems arise when there are so-called “fwist fields’ in

the problem, a special case being that of ‘spin fields’, or when dealing with orbifolds.

We shall show in this section how our methods can be genecralized to deal rigorously
with the most general problem of this kind. We give a complete sohition to this problem for
the b-¢ system. We thereby not only give a precise meaning to formal expressions appearing
in the literature, but also give a rigorous proof that certain correlation functions which are

usually not considered, or ruled out on heuristic grounds, indeed do not oceur.

We define a twist struclure on M to be an assignment of N, positive rational numbers
a1l <7 < N,)to N, distinct distingnished points 7,,...,25, of M and N negative
rational numbers (- 1,) (1 < j < N_)to N_ points yi,...,yn_ of M (where the y’s are

distinct from each other as well as from the z's) such thai

Ny N
Zﬂ‘_z,ﬁ =8, {(6.1)
i1 31

where £ is a (positive or negative) integer called the total twist. The b field and ¢ field are

required to have the following behaviour in the neighbourhood of these points:

Bz)~(z—-z) ™ (1<i<N,)

~(z-y) (<3N

{6.2a)

e(z)~{z—2) {(1<i~ N,)

~{r—y) Tt (1N

(6.2)

Equations (6.2a,b} must be taken to refer to the behaviour of the correlation functions
C{m,n) in the neighbourhood of such points. The problem we shall now consider is that of
obtaining the two point function < B(Q)c{ P’} > in the presence of a given fwist struciure,
our system heing defined by {(P3), {P4) and (6.2a,b). Tt will be evident to the reader that
the problem is not posed precisely. All sources of ambiguity will be spelled out as we

procecd.



If we want maximum generality, we should start once again with the generalised b-c
system of section 5. This would make our exposition tedious and is unnecessary since our
atm is to make contact with the existing literature. One possible use of greater generality
would be if a treatment of the spin (1 — J),J system were required in which the effect of
holomorphic sections were to be eliminated by a Lwist structure, rather than by poles as
in section 5. The modifications that would have to be made to the discussion below are
obvious (put £ = (2J - 1)(g — 1) in Theorem 6.2 below).

We shall, therefore, take ¢ (resp. b) to be a section of a (resp. K ® o'}, where
deg (a) = g — 1. We put no further restrictions on o at present. We expect the two point
function < b(Q@}e(P) > to be, in some sense, a multi-valued section of p; (K @2 ') @ pj(a)
and so we must determine a covering space M from the given data on which we can
interpret it as a meromorphic section of a line bundle.

In the following we shall write E(z,z) for the unique holomorphic section of the line
bundle O(z) over M, with divisor z, for any z € M. It is then easy io see that our

problem of making precise the behaviour of the two point function near the z;,y,, as given

by (6.2a,b), is really one of making sense of the formal expression

Ny N_
&) = [[(BG2y/ [T B (6:3)

For if (6.3) were defined, < 8(Q)e(P) > E(Q, P) £(Q)/¢(P) would be holomorphic in each
variable and we could hope to use algebraic geometry methods to count the number of

such sections.

Now, we can certainly write g, = p,/d (1 <1 < N,),v, = q,/d (1 < j < N_), where
the p,,q,,d are positive integers. Then £(z) is the ‘d-th root’ of

Ny N_
H(E(z,x-))""/ [IEG ), (64)

3=1

which is the canonical meromorphic section of the line bundle associated to the divisor

N. N,
dopwi- Y g (6.5)
=1

=1
Our problem is to construct a covering space M of M on which the d-th root of the
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section (6.4) can be interpreted as a meromorphic section of a line bundle pulled up from

M. Our solution to this problem is based on the following lemma:

Lemma 8.1. Let { be a holomorphic line bundle over a compael, connecled Hiemann
surface M and D an effective (i.e. positive) divisor on M such that * = O(L)) for some
positive integer d. Let o denote the canonical holomorphic section of O(D) with divisor
D. Then there is o d-fold eyelic covering w: M -+ M, ramificd precisely over the suppor!
of D, such that n*() admits a helomorphic section 7 salisfying

= x*{a) in H'(M,r (O(D))). {6.6)

k
Let D = Zm,P,, where the P, are distinet points of M and the m, are posilive inlegers.
1

Then M is irreducible if and only if the greatesl common divisor of (d,m;1 < i < k) s

unity and nonsinguler if end only if m; = 1 for 1 <i < k.

Lemma 6.1 is a known resuli in algebraic geometry, but it is not direcily applicable to
our situation since {6.5) is not a positive divisor. We can, however, add a suitable positive
divisor to {6.5) and subiract it later. The freedom in choosing the divisor to be added to
(6.5) introduces a certain arbiirariness in the construction of M, which is intrinsic to the
problem since physics only gives us the.nonpositive divisor (6.5). Since M has merely an
auxiliary role, this is of no imporlancé. So choose positive integers n; such that n, - v, is

positive (1 < § < N_) and consider the efleciive divisor

Ny N
D=3 pa.+ Y (md- gy, (6.7)
=1 1=1

In view of Lemma 6.1, if we want M to be irreducible we must require the g.c.d.
of d and the integer coefficients in (6.7) to be unity. While irreducibility is not strictly
essential, it is reasonable to say that, if this is not satisfied, then the original problem has
been badly posed. The fact that by Lemma 6.1 the covering space M will be a singular
curve unless the coefficients appearing in (6.7) are all unity is of no importance: M can
always be replaced by its canonical normalization if desired, but this step is not necessary

to interpret our formula for the two point function. In the case of spin ficlds each p, = 1,
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cach g, - 1, d - 2 and we can choose cach n, = 1. Then the integer coeflicients in (6.7)

are all unity and Af is nansingutar as well as irreducible.

The line bundle (1)) has a canonical holomorphic section #(z) with divisor P2, which

can be written as a product of prime forms:

Ny N
a(2) = [[{E(z, 20y [T(E(z,p))m . {6.8)
Now note that
N_
deg (O(D)) - d(€+Y n,}, (6.9)

ve. it is a multiple of d. Fence, by the divisibility of the group Pic"(M) for g > 1 and the
fact that Pic(M) = Z for g - 0, we can find a line bundle ¢ such that

¢t - O(D). (6.10)

In fact, there are d®? such line bundles and so we have to make a choice if g > 1. The
choice of ¢ plays no role in the present abstract discussion, but should be kept in mind
when interpreting the final formula for the two point function. [t reflects the fact that our

original problem was not well posed and so there is an ambiguity in the answer.

We now have the data, viz. ({,d, (D), ¢), to apply Lemma 6.1. We can thus give a

rigorous meaning to
N, N
[[(EG 20y [[(Eu,))m (6.11)
1=1

1=1

as a multi-valued section of {, which is properly defined as a holomorphic section of the

pullback of ¢ to the covering space M. Now, defining
N
T ={OO00 Y ny,), (6.12)
11

we see that we have given a precise meaning to £(z) of (6.3) as a mulii valued section of
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7, which is properly defined as a meromorphic section of #*{¥) over M. Note that

deg {7) = £ = “total twist! (6.13)

Then from (P3), (P4} and (6.2), we see that

<WQ)e(F) > E(Q, P)(Q)/E(P) {6.11)

is the pullback to A x M of a holomorphic section of the following line bundle over M x M:

rilKkwa')pla)O(A)2pi(v) @ pi(r ")

(6.15)
=p(K@a')@p{a)® A), wherea= a®1 .

Since

deg (A} +deg (K@a ") =g—-1 ftg- 1 £ 292 (6.16)

we see that we are dealing with the generalized b-c¢ system of section 5. Thus the generalized
system we discussed in section 5 is preciscly necessary to deal with the ordinary b-c system
in the presence of a twist structure. We can then apply Theorem 5.3 to conclude that to
have a nonzero two point function we must have & ¢ Pie? (M) ©. As a consequence

the totel twisl € of the twist structure must be zero. We have thus proved:

Theorem 5.2, Given a twist struclure on M defined by the date {,7v,8) the twisted
spin 3 b-c syslem over M (ie. c is a section of a ¢ Fic" (M), b of K@ a ') has a
nonzero twe point function if and only if the tolal {wist € i3 zero and @ = o ® 7" Hes in

the complement of the thela divisor @. When these conditions are salisfied the two point

function is unique and given by

£(F)
Q)

S.(Q), ). (6.17)

The methods of this section can be easily combined with those of section 7 to obtain
higher poini functions in the presence of a iwist structure. We can also consider the

fermionic b-c system, as discussed by us in Sectz. |1.4], in the presence of a twist stricture
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of zero total twist. It is easy to see that the thevrem proved there that the 2n-point
function is a determinant of two point functions remains valid in the presence of such a
twist structure. This leads to an identity which reduces, after cancelling common factors,
to Fay's identity for g > 2 and to Cauchy’s and Frobenius' identities for ¢ = 0 and 1,

respectively.

7. The b-¢ system with general statistics

Of the 4 conditions (P1) - (P4) thal we wrote down in section 1, only one, viz. (P2),
specifically restricted the slatistics of the fields b and c to be fermionic. This condition,
however, played a very vital role in our calculations and so it is not immediately clear
that it can be removed. In fact {P2) cannot be simply removed, but must be replaced by

another condition which does not impose any constraint on particle statistics.

At the level of the two point function < B(Q)e(P) > there is no difference between
the fermionic b-¢ system and the {bosonic) G-y system. The question of statistics comes
into question only {or higher point functions. In keeping with our aim of siudying the
constraints imposed by analyticity constraints originating in the physics of the problem,
we shall determine the vector space of all possible correlation functions with a given number
of b fields and ¢ fields, compatible with the physical analyticity constraints. We shall then

study how the imposition of statistics selects a suitable one dimensional subspace.

For the sake of brevity we discuss only the space V(n,n) of 2n-point functions, i.e.
when the number of b fields and ¢ fields are equal, since the same analysis shows that
the other cases do not appear. We recall that our system is described by (P1), (P3) and
{P4). In fact physics imposes a stronger condition than (P3). We did not need to use the
stronger form of (P3) earlier due to the special properties of (P2).

Consider an arbitrary nonzero element v ¢ V(n,n) and let D,; belong to its polar
divisor, i.e. Dy, € {D,(n,n)}. Note that

In
DIJ — AIJ % M!n-Z’M'Jn—d = H Mk (71)
kk#:-l-r
Then we require that
vE(z,2,)|M™ ¢ V(n - 1,n - 1). (7.2)
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This condition came for free earlier, because of (P2). Now we are required to impose it.

We must now rewrite conditions (P1), {P3), (P4) and (7.2) in a more convenient form.
For this we have to introduce some notation. Let S, denote the group of permmiations of

{1,...,n}. For each ¢ ¢ &, we define the divisor

Dg(ﬂ,n) = Z:Drr(z),nh' (73)
izl

Thus D,(n,n) C D,(n,n)} for each ¢ € S,. The line bundle O(D.(n,n)) on M®™ has a

canonical holomorphic section E,(n,n), where

Eﬂ{n!n) = l_[ E{zﬂ(i):zrnl)' (7’1)
=1

We shall denote the intersection of the D,, appearing on the right-hand side of (7.3) by

NPy (n,n). Our postulates are now as follows:
Every element v € V(n,n) must satisly:

P1) v is a meromorphic section of F,(n,n) such that v£,(n,n) is a holomorphic
section of Fa(n,n) ® O(Dy(n,n)), where Ey(n,n) = |<U< E(z,, z,)
ntl<i<n
P2) For each o € &, the restriction of vE,(n,n) to ND,(n,n) is an element of the

vector space
Uy(n,n) = H'(ND,(n, 1), Fa(n,n) @ O(Ds{n,n))| N Ds(n,n)) (7.5)

Morever, the only element for which this restriction is the zero vector of Uq(n,n) for every

o € 8, is the zero vector of V{n,n).

Postulate P1 summaries the content of conditions P1, P3 and P4 of section 1, while
P2 replaces condition P2. Postulate P2 is simply condition (7.2) applied repeatedly until
all possible poles are removed. Note that since we have not imposed any stalistics so far,
we cannot deduce from (7.2) that we can determine lower poini functions from a given

2n-point function by examining its behaviour at its poles.
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Rather surprisingly postulates 71 and P2 suffice to determine Vin,n):

Theorem 7.1. The vector space V(n,n) is the lincar span of its n! linearly independent

basis elements
{H S AQoieyy Pl ¢ sn} .
(S

Remark 7.2. Theorem 7.1 can be generalised 1o the spin {1 - J),J system by replacing
the Szegi kernel §.(Q, P} by the corresponding two point function. If there is also a twist

structure with zero total twist, the two point funetion should be multiplied by the factor

E(PVE(Q) as in (6.17).

A b-c system will be completely specified if we can associate to it a unigue set of
correlation functions {C(n,n};n ¢ IN}. Thus for each n € IN we must pick ont a one

dimensional subspace of V(n,n) for a given b-c system. We can do this by specifying the

particle Lype or statistics.

To study the possibilities, we must define an action of the symmetric group S, on
V{n,n). We can define the action on a basis element given by Theorem 7.1 and extend
by linearity. Since we have two kinds of particles, viz. the b fields labelled by @, F1,...
and the ¢ fields labelled by P\, Py, ... we can define a natural action of S, on the labels
{t,....n}of@Qy,...,Quandof P,,..., P, separately. Thus V(n,n) is an 8, = §,-module.
Considered as an S,-module, V{n,n) is simply the regular representation of S,,. Then we
know that V(n,n) is a multiplicity free direct sum of irreducible S, x 8, modules Vs & Vi,
where ¥y is the irredacible representation of 8, corresponding Lo the partition A of n. The
only one dimensional representations are the alternating and symmetric representations,

corresponding to Fermi and Bose statistics, respectively. We thus get:

Theorem 7.2. (a] In the case of Fermi statistics the 2n-point funclion
< B B(Q)e{ P o) > iy antisymmelric in the €)-variables and
separafely in the P-yariables and, as a result,

n

(B{Q) - o @n)e(Py)...e( D)) - det (S.(Q., 1)) X (7.6)

1,77

where det denoles lhe delerminant.

(8) In the case of Bose statistics, where it is conventional fo write B for b and v for ¢,
the 2n-poinl function < B(Qy)...B(Qu)v(F) ... ¥{) = is symmelric in the Q)-variables

and separately in the P-variables and, as a result,

n

(BQ). - BRI 7(P)  perm (S.(Qu 1)) (7.7)

where perm denotes the permanent.

While Theorem 7.2 exhausts the possibilities of choosing one dimensional subspaces
of V(n,n) by the usual notions of the connection between permutation symmeiry and
particle statistics, we can investigate whether other possibilities exist under less restrietive
conditions. A condition which appears quite natural is to simply demand the invariance
of the 2n-point function < B(@1)...5(Q.)e(F1)...c( %) » when the @’s and P’s are

simullaneously permuted in like fashion, i.e.

(@) HQu)e(P} . e(Pa)) = (B Qagr)) - M Qria)el Pay) - e(Pay)) (7.8)

for each & ¢ S,. This clearly means that we must restrict the 8, x &, representation in
V(n,n) to the diagonally embedded subgroup S,. It is obvious that the regular represen-
tation V(n,n) decomposes so as to give a one dimensional representation of &, for each

conjugacy class of 5, L.e. for each partition X of n. We thus obtain:

Theoremn 7.3 For each partilion X of n, there 15 a unigue 2n-point funclion, setisfying

postulates P1, P2 and the invartance condition (7.8), grven by
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Q). By (L)Y, - it (S (6 1) , {7.9)

ot

where immy, denoles the immanant. This is defined for an n < n malriz (A,,) by

imma(A,,)

L > @ [T A (7.10}

a8,

"
g

where 5 14 the character corresponding Lo the irreducible representation of S, labelled by

the partition X of n.

i1



Theorem 7.3 includes the case of Fermi and Bose statistics discussed in Theorem 7.2,
while including other cases. Other possibilities, not covered by Theorem 7.3, abound, since
the 8, x §,-module V(n,n) is, of course, a G x G-module for any subgroup G of §,,. In that
case simply put A,, = §.(Q,, P;) and restrict the sum in (7.10) to ¢ € G. For example, we
could consider & = Z,,, viewed as the group of n c¢yclic permutations of {1,...,n}. Then
the coeflicients in (7.10) are 1,w,...,w" ! where w is a primitive n-th root of unity and

the sum in (7.10) is over the n cyclic permutations.
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