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Algebraic Geometry of Instantons

M. Maruyama

Introduction. Instantons are (anti-)self-duat SU(2)-connections on the
4-dimensional sphere S*. The set of guage equivalence classes of instantons
with Pontrjagin number k carries a natural structure I(k) of (8|k| -~ 3}
dimensional real analytic manifold. The Penrose transformation enables us to
exploit algebraic geometry for the study of instantons, especially the moduli
space (k). In fact, pulling back an instanton to PE by the twistor space
structure v : PL — 3%, we obtain an algebraic vector bundle of rank 2.
This procedure gives rise to a bijective correspondence between the set of
guage equivalence classes of instantons with Pontrjagin number £ and the
set of isomorphism classes of algebraic vector bundles E with the following
properties (see Theorem 4.5)

(1) E is quaternionic

(2) The restriction of E to any fiber of v is trivial

(3) ca E) = k.

An algebraic vector bundle of rank 2 on P with the properties (1} and
(2) is called an instanton bundle. An instanton bundle js y-stable except for
a trivial case where k = 0. On the other hand, we have the theory of moduli
space of stable sheaves. In terms of the moduli space of stable sheaves, the
condition (1) in the above can be understood that the moduli space I(k) is
contained in the real part of the moduli space M(|k|, 2) of semi-stable sheaves
of rank 2 on Piwith ¢; = 0, ¢ = |k| and ¢3 = 0. The above condition (2)
shows that f(k) is an open set in classical topology in the real part. Thus
the condition (2) does not fit in seemingly with algebraic geometry. ln fact,
I(k) cannot be, by nature, an algebraic set and we can hope, at best, that
it is semi-algebraic. For example, it is well-known that I(1) is inside the 5-
dimensional ball. Verdiera’s description ([10]} of instanton bundles, however,
shows that the conditions are translated into linear and quadratic equations

il we use real coordinates and monads. All the diflicultics are reduced tu the
positive definiteness of a Hermitian form.

We start fromn algebraic equations given by Verdier’s description and get
a semi-algebraic set, taking the image by a real rational map. f(k) is the
guotient of this semi-algebraic set by an action of a real algebraic group.
We oblain a compactification of I{k) as the closure of I(k) in an ambient
projective variely where f{k) is embedded semi-algebraically. We see then
that this compactification is nothing but Donaldson’s compactification {{4]).

This note is divided into two parts. The first part deals with the difleren-
iial geometric viewpoint of instantons and ends by reducing them to algebraic
veclor bundles on PE with the above properties (1) and (2). 1 extracted ideas
of the explanation from the beautiful lecture note by M. F. Atiyah ([1}) and
added some explicit computations. The second part is essentially the same
as the latter half of my joint work with G. Trautmann ([6]). Here we depend
on Verdier's description of instantons and interpret it in term of a monad
other than that used by Verdier. Then we combine our interpretation with
the geometric invariant theory to get our main result.

1 Connections on C"-bundles

Throughout this section K denotes the real number field R or the complex
number field C. Let X be a differentiable manifold and £ a A7-bundle or a
vector bundle of rank r. Locally E is a direct product of &7 and X, more
precisely there is an open covering {U,} of X and a collection of differentiable
maps gap of Us NUs to GL(r, K) such that g,, is the constant map to the
identity matrix [, and gapgsy = goqy on Uy MU MU, Uy x K7 and Uy x K7
are identified on U, N Up via

Ua x KM uey 2 (2,§) — (2, 40a(2)€) € Uy x K |uunu,

By this identification we can glue U, x K" together to get a A-vector bundle
I, {gap} is called the transition matrices of & and r is, by definition, the
rank of E. If X is a complex maniflold, A is the complex number ficld C
and if we can choose {U,} and {gap} s0 that g,4’s are holomorphic, then E
is said to be a holomorphic vector bundle. A differentiable (or holomorphic)
vector bundle is a differentiable {or complex, resp.) manifold and the natural
projection 7 : E — X is a differentiable (or holomorphic, resp.) map. 1If we
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take the dual vector space of K7, then {'g;&} defines another veclor bundle
which is called the dual vector bundle of K and denoted by EY.

Example 1.1. Let {I7,} be an open covering by charis of a differentiable
manifold X and (z%,...,22) be a local coordinate system on U,. If we define
¥ap Lo be the (n x n)-matrix of differentiable functions on U, N s

ax?
3:?

then the collection {g.s} defines an R-vector bundle of rank n on X, This is
called the tangent bundle of X and we denote it by Tx. The dual bundle Ty
ol Tx is called the cotangent bundle of X. Assuming that X is a complex
manifold and taking a holomorphic coordinate system («7,..., ;) on each
chart, g,p is a matrix of holomorphic functions on Uy NUs. Then we obtain a
holomerphic vector bundle of rank »n on X. This is the holomorphic tangent
bundie of X and denoted also by Ty, The dual bundle §1x is the holomorphic
cotangent bundle on X,

Let B and I be dillerentiable {or holomerphic) vector bundle on X. A
differential (or holomorphic, resp.) map f : E — F is called a morphism
of vector bundles if f is compatible with the projections and the map f; :
E. — F. of fibers is a linear map of vector spaces for every x € X, where
i, = 75! (2) and ¥, = n5'(z) with 7z and xp the projections of £ and F,
respectively.

a

k/rp

Let 7 and s be the ranks of K and F| respectively. In lerms of the transition
matrices {gfﬂ} and {gf,} of E and F, the morphism f is a collection {f,}
ol differrential (or holomorphic, resp.) maps of U, to Hompg (K™, K°) = K™
such that f,gf, = _q‘f},fg on U, il

Il & morphism f : & — F is an enbedding, then E is said to be a
subbundle of F. I f is a surjection, then we call F' a quotient bundle
of £, An momorphism of vector bundles is a morphisin which ioduces an

isornorphism on each fiber. In the case where £ s a subbnadle of £, by
choosing suitable local bases of fibers, g(f;,,\ is written in the form

gfﬂ Aoﬁ
0 g.5

and then {g,,} gives rise to a quotient bundle of F which is denoted by
F/E. It is not hard to see that if £ is a quotient bundle of £, then there is
a subbundle § of £ such that F is isomorphic to E/S.

For K-vector bundles E and F on X, the teusor products of the transition
matrices of K and F' define another vector bundle £ Qg F whose fibers are
the tensor products of those of £ and £. The vector bundle is called the
tensor product of B and F. Similarly we can define a vector bundle whose
fiber over a point ¢ is Homg(E,, Fy). This is denoted by Hlomg (K, F). As
in the case of vector spaces we have a canonical isomorphism ol EY @ F o
Homy (K, I).

We denote the sheal of C-valued € p-forms ou X by AP, Let E be a

differentialle C-vector bundle of rank  on X. For an open set U of X, we
set

AP(EYU) = {E-valued C* p—lorms on U},
An element ¢ of A"(EWU) can be written in the form

Wia

(o =

Weo

on I/ 0, where w;,’s are p-forms on U NU,. The collection {¢,} subjects
ta the following transformation rule:

wig Wie
Gap -
Wi Whee

on U Nanls The cortespondence {7 — AP(E)(1/) defines a sheal A7(E)
on X.

A connection Vois a C-lincar map of sheal AYFE) to A'(£) with the
following property



{1.2) for every open U C X, every f € A%(U) and every ( € A°(E)(V), we

have

VU)(fC) =df - { + ITVU)()-

This is the same as defining a C-linear map V of A%(E)(X) to A'(E)(X)
such that for every f € A%(X) and every { € A"(E)(X), we have

V(¢ =df -{ + V()
For a p-form w and a local section ¢ of E, we define
V{(w() = dw - { +(-1)’w A V(().

Then we get a C-linaer map of AP(E) to APY'(E) because each element of
AP(EN(X) is locally written in the form w,{; + - - - + w,{, with w; a p-form
and {; a local section of E. Let us look at a special case

v AE) D ANE) 2 AYE).
For an f € A*(U) and a { € A’ E}{l/), we have
Vi(f¢) V{df - ¢+ V()

& f ¢ —df AV(C)+df AV(() + FYVH()

= fV¢).
Thus ¥? is compatible with the multiplication by C*-functions, that is, V?
can be regarded as a C*-section of A2 Ty @r EY ®@c E.

Definition 1.3. The global section F(V) of ATy ®@r EY @c F defined
by V% is called the curvature of V.

Let us examine the meaning of connections and their curvatures by using
local bases of vector bundles. Take an open set U of X where E is trivial,
that js, there is an isomorphism ¢ : Ely ~» U x C". Let ;,..., ¢, be the
sections of £ over U such that ye;,..., e, are the sections defined by the
standard basis of C". This (e),...,e,) is called a frame of E over U. f V is
a connection on F, then V{e;) can be written in a form

Vie) =3 O5e;
i=1

5

with 8, € A'{U). For { = Y21, aje; in A*(E)(l/), we have that o, & A°(U)
anel

r

V() = E:ia;e.+z_ueﬂjiﬂj

=1 i
= Z(dﬂj + Zﬂ,‘gﬁ)ﬂj.
i=1 =1

Taking another frame (e}, ..., e}), wewrite €] = ¥7_ | gqie; and e = 327, gl.¢)
with g;i, 95 € A°(U). Then, for g = (g;;), we have g™ = (g:J) and we see

Vi) = > dgii-e, +9,V(e;)

i=1

= E (dgji - €5+ 85 Z okgek)
=1 k=1

=3 {dgn ( yi,ﬂl) + 953 0uyizel}
=1 k=1 Lk

= 3 ( gh;dai+ Y yieﬂe.-.yj.) e}
k=1 \j=1 1< 8<r

The r x r-matrix 8. = (#,;) is called the connection matrix of ¥V withe respect
to the frame e = {e1,...,€e,). Then what we saw is

(1.4) 0, = g~ ldg + g~ '0.g.

Taking an open covering {U,} of X such that E|y, = U, x C” and fixing
a frame e, of {ef,...,e}} of E over U,, we have e] = }_7_, gjie], where
(9i;) = gag- By (1.4) we see the following.

Proposition 1.5. A collection {0} of r x r-matrices 0, whose entries
are 1-forms on U, gives rise to a connection on E if and only if it subjects
to the following rule of transformations:

aﬁ = gﬁadga,ﬁ + gauﬂagng ol U,;. n U{J‘;

where {gua} is the collection of the transition matrices of E.
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Sinee the curvature F/(V) is a global morphism of £ to A2 T ¢ P, the

representation of F(V), by Lhe frame e, has the following transformation
rle:

(1.6) F(V)y = 400 F(V)agas

Maoreover, we see

VHer) = VIV 0,0
1 L |
i=1
- 06 Z(a,./\ak,)c,t)
i=1

li
M"

(dG,, + Z O A 8,..)
1

1

We oliain therefore

Proposition 1.7. ['(V), =40, + 8, A 4,.

2 Hermitian bundles and integrable connec-
tions

Let £ be a differentiable C-vector bundle of rank r and let (7 be a Lic
subgroup of (/L{r,C). When we can choose a system of transition matrices
{#ap} such that for every z € U/, N Uy, we have g,5(z) € G, we say that
I has a reduction to (7 or that £ is a G-bundle. These transition matrices
define isomorplisms

Ug x Glianw, 3 (3,a) v (7, gap(z)a) € U, x Gluan,-

Gluing {#/, x (7} by using these isomorphisms, we obtain a €-principal fiber
bundle P on X. 7 is a differentiable manifold with a (G-action from right.
(7 acts on (7 by conjugations:

forge Gad(g): G 3r— grg™' € G.

Obviously ad(gg’) = ad{g)ad(g’'). Then we have the diagonal action of ¢ on
P ox (i
PxG3{(zz)— (rg,adlg” )y € P x (7.

The quotient of P x G by this aciion is denoted by P X g€ or Gp. Gpisa
fiber bundle whose fiber is G. Set Gy o be the sel of sections I'(X, ('p) of
the fiber bundle Gp. Gply, is isomorphic to U, x 7 and for z € I/, N Uy,
(z,q) in U, x G should be identified with (z, g5, (z)g9.5(x)) of Uy x ;. Thus
a member ¢ of Gg is a collection {t,} of C*-maps ¢, of [/, to & such that

gﬁﬂtagag = tﬁ or fag,;,fj = gu{gt{g OT U,, n Uﬂ.

Taking another member s = {s,} of Gg, lel us consider ts = {t,s,],
whore {t,84)(2) = ta()sa(z) in G for z € U,. Then we see

tosatas = taGapds = Gaptpsg ou U, N,

and hence G is a group with respect 1o the multiplication (£, s) v ts.

Definiton 2.1. The group G is called the guage transformation group
of P {or, E).

A system {e”} of frames e” of a G-bundle F is called a system of (-
frames if the transformation matrices with respect to the system are in ¢,
Fix a system of G-frames {e”} of E and take an clement ¢ = {1,} of the
guage transformation group Gg. Since for every » € U, {,(x) is an clemnent
of 7, (taley). .- talel)) iz a frame of £ over {/,. Morcover, if we write

faled) = Y25 ]TJ,e then we have

r T
aleg) Z et = ):rﬁEsrf;’ff
i=1 k=1

s (ng;‘ ) s (L )
k=1 3 k=1 j=1

= Z_] Z-rhff = Zqﬁ"

Therefore, foe™ = {L.{eT), .. ., la{e?)} forms a G-frame of E, in oiher words,
Gy is contained in the automorphisin group of the G-bundle £.



Definition 2.2. A connection V of a G-bundle E is called a G-connection
il for a system of G-frames of E, the connection matrix is contained in g-
vielued 1-forns, where g is the Lie algebra of G.

Let {¢*} be asystem of G- frames of E such that the connection matrices
8, ol V with respect this system are p-valued 1-froms; 8, is contained in
AYU,)@r § C AY(U,) @p pl{r,C). Pick an element ¢t = {{,} of Gg and set
f* = tae®. Then, by (1.4) the connection mattix &, of V with respect to f«
is written as follows

¥, =0, + 1500,8, = t70dL, + ad(i,)0,

Thus @ is g-valued 1-froms, too.

Proposition 2.3. A (-connection is transformed to another G-connection
by an element of the guage transformation group of E.

The group G acts on g by the adojoint representation ad : G — GL(g).
Then G acts on P x g as in the construction of Gp and we have an R-vector
bundle P x g/G which is denoted by ads(g).

If V is a G-connection and if 8, is the connection matrix of V over U,
with respect to a system of G-frames {€”}, then the curvature matrix has
the form

F(V)y=d0,+ 8,70,

Shrinking U, and taking local coordinates z,,..., 2, in U,, 8, can be writien
in the form

00 = A[dIl +---4 Andl'n
with A; € A%adg(g))(UVs). Then we see easily that dA, isin A'{ads(g)}(L,)

and 8,A0, = ¥5,;(4i, AjldziAdz;. Thus F(V), is actually in A*(adg(g))(V.).

Proposition 2.4. If V is a G-connection, then the curvature F(V) of V
is contained in (X, A>T} ®r ade(g))-

Now we shall study a special case,

Definition 2.5. A C-vector bundle E on X is called a Hermitian bundle
if there is a C*-map h of E Qg E to C such that at each point z of X,
hix): E; ®¢c E; — C gives rise to a positive definite Hermitian form.

If E is a Hennitian bundle and if A is the Hermitian form on E, then at
each point z of X, we can find an open neighborhood U of z and a frame

9

(er,...,¢,) of I over U which is orthonormal with respect 1o Ay for all
y € {/. Using these frames, we sce that E has a reduction o the umitary
group U(r} or E is a U(r)-bundle. This system of frames is called a unitary
frame of &.

Remark 2.8. If X is paracompact,then every differentiable C-bundic on
X carries a Hermitian form.

Let ¥ be a connection on a Hermitian bundle E. Taking a unitary [raine
{e*} of E, we denote the connection matrices by 8. Our Hermitian form &
on ¥ defines a C-map Ty ®n £ @c £ — Ty @a C. We use the notation
(£, 7) instead of R(£,n). Pick &, 7 in A*(E)U,) and then we can write

f=Yac, 1=3h
=1

i=1

with a;, & differentiable functions on {/,. Since

da, al
V() = (7, . & N

da, a,

we have )
. by

(V&) )y =Y daib; + (ar,...,8,)'0 | :
i=1 b,.

Stiilarily, i
r bl

(6T = 3 audb, + (ar, 0 |

=1 B,-

Thus d(€,1) = (V(£),n) + (£, V(n)) for all £ and 5 if and ouly if ‘8, = -0,
or #, ia an element of A (adg(u(r))), where u(r) is the Lie algebra of U(r).

Definition 2.7. A connection ¥V of a Hermitian bundle £ is called a
lermitian connection if for all £, € A%(E) U}, we have

d(&m) = (V£ m) + (£, V().
What we have showed right before the definition is the following.

10
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Proposition 2.8. V is a U(r)-connection with respect to a unitary frame
if and only if it is a Hermitian connection.

Assume now that X is a complex manifold and take a local (holemorphic)
coordinates z;,...,z, in an open set U. Z; can be written in the form =; +
V—Ty; with 21,31, 22, ¥2, . .+, Tn, Yn 8 System of real coordinates. The 1-forms
dr; + /—1dy; and dz; — v/~ 1dy; are denoted by dz; and dZ;, respectively.
dzy,dzy,dz;,d%,, ... d2,, dz, form a basis of AY(U) = (Tg &g CHU) over
A(U). The forms spanned by {dz;, A---Adz AdZ, Ao AdZ; |1 < <
i, i < o0 < jo} over A°(U) are called (p, g)-forms or forms of type (p,q}).
For a vector bundle £ on X, AP9(E)(U) is the set of E-valued (p, ¢)-forins
on {7 and A" K} denoles the sheaf of E-valued (p, ¢)-forms.

For a ¢"-function f € AYU) on U, we get

- (o)

S vt (L))

By setting

e =1 faf af af

"f~2«“(5;:* "‘ay.)‘“=—§}azd"“
" of AF\ . & af

and o f Z ( —ld—y‘) dz,-— 33 dz,

o1 P4

we see that df = &'f + d"f and f is holomorphic if and only if d"f = 0.
We can extend o, d" and d” to operations on (p, ¢)-forms so that for w =
Jdzig Ao Ndz, Adzy Ao AdE; we have

dw = df Adzm, Ao Ade, Adi, A Adzy,
dw = d'ff\dz,—, FASCEN f’\dz,-p/\d::,-l l\"'f\dqu
dw = d"fAdz A Adz AdE A A dE

Note that d'w is a {(p + 1,¢)-form and d"w is a (p, ¢ + 1)-form.
Il ¥ is a holomorphic vector hundle on X, then we can find a system of
frames {e™ = {¢¢, ..., ¢7)} such that the isomorphism of £;, to I/, < C” with
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respect to e is holomorphic. This system of frames is called a holomorphic
frame.

If both (e4,...,¢.) and (e],...,er) are lwlomorphic frames of £ over U/,
then we can write ¢; = 377_, gsie with g;; bolomorphic functions on U, in
particular, the transition matrices with respect to a system of holomorphic
frames are holomorphic. Taking a holomorphic frame (ey,...,€,) of £ over
U, an clement ¢ in A"(E)(U) can be written in a form

= Za,-e,- with a; € Ap.q(U).
=1

Let us define .
d”C — Z(d”an)f
i=1

Then we see that d¢ is in AP9H(E ')(U) If {e},...,¢L} is another holomor-
phic frame and if we write ¢; = 377, g;i¢], then

C = Z (zg‘,‘)(t‘,)(if.

Since d”(g:50;) = d"gi; A a; + gijd"a; = gi;d"a;, oune sces

Zd"(z:gua_,-)e: = Zd a; EJJ, L= Ld a0
=1 =1 =1 i=1
atsl hence the definition of 4% is independent of the choice of holomorphic
frammes. This means that the local " are glued together to get a C-linear
map
d" i AP E) —— AR,

Since A'(E) is a direct sum of A'™ and A%, a connection V on £ is the

sunt of two maps V' and V"

T A s A
AR AN
Definition 2.9. Let E be a holomorphic vector bundle on X with a

Hermitian structure. A connection ¥ on £ is said to be conpatible with the
holomorphic and Hermitian structure or an integrable Hermitian connection

if



(1) d{&n) = (V{&),m) + (€, V(3)} and
(2) V" =d".

We have the following basic result.

Proposition 2.10. Every holomorphic, Hermitian vector bundle carries
a unique integrable connection.

Proof. Let E be a holomorphic, Hermitian vector bundle and V be an
integrable connection. Fixing a holomorphic frame of E on an open seL U,
the connection matrices of V' and V" are denoted by # and 8", respectively.
&' is an r x r-matrix whose entries are {1,0)-forms and we see by (2) of the
definition that 6" = 0. Choosing a U(r)-frame of E over I/ and denoting
the transformation of the holomorphic frame to the U(r)-frame by ¢, we can
write the connection matrix 7 with respect to the U(r)-frame in the form

r=gldg+ 97N + ")

If we sel 77 (or, v) to be the (1,0)-part (or, (0, 1)-part, resp.) of 7, then we
see
TH = g—ldﬂg + g—lgﬂg = g—‘dlfg

which is determined by g. Moreover, since 7 is in A" (adg(u(r))), one sees that
'+ = —r. Hence, by compairing the types, one gets v/ = —*'7" = ~*(g~'d"g),
which is also determined by g. Now the connection thus obtained from ¢
is independent of the choice of the holomorphic frames and the U{r)-frames
(left to the reader). This means that the connection is unique. Taking a
holomorphic frame (ey,...,&} of E over U and set A = (h;;) with &,; =
{ei,€;). Then, a connection with the connection matrix # is Hermitian if and
only if we have the equality

dh = "0k + h6.

If we set @ = *(d'h - h7!), then it is easily seen thal this # satisfies the above
equality, of type (1,0) and subjects to the transformation rule of connection
matrices. Q.E.D.

For an integrable Hermilian connection ¥V, V" = { because V¥ = 47,
Thus, if we decompose the curvature F(V) into the sum F{V)*® 4+ F(V)}'! +
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£V along types, then #(V)%2 must be 0. On the other hand, the watrix
F(V) is skew-Hermitian. Hence F{VY*® = —1 (V)92 = 0. This shows that
the curvalure of an integrable Hermitian connection is of type (1,1). The
converse of this is also true,

Theorem 2.11. Let E be a Hermifian vector bundle over a cowplex
manifold and let V be a Hermitian connection on . E carries a commplex
structure with respect to which V is an integrable Hermitian comnection if
and only if the curvature of V is of type (1,1).

3 Hodge’s *-operator

An orientation of a real vector space V is an ordered system of basis
(x1,-..,2a) of V. Two ordered bases of V give rise Lo the same orientation
if the determinant of the transformation of one to the other is positive. In
particular, for a permutation & of the set {1,...,n}, (Zoq)s. .., Zo(ny) deter-
mines the saine orientation as (xy,...,z,) if and ouly if the signature of & is
1. .
Let us fix an inner product (, ) on the dual space VY and an orientation
of V. Giving an inner product on VY is equivalent to giving an elemenl
T hi;ri ® x; in S3(V) such that the matrix h = (,;) is positive definite.
We can find an ordered basis (zy,...,2,) of V such that it gives our fixed
orientation and the A with respect to this basis is the identity matrix. For
an even permutation (iy,... 45,1, Jn-p} of (1,...,n}, we define

*(I;IA--'AI,',)=.’L'JIf\'--/\xj“up

and then extend this to a C-linear transformation of the exterior algebra
AV @rC = @A’V &g C. This linear map » is called Hodge's ¥-operator.
1L is easy to see that * is compatible with the representations of the special
ortogonal group SO{n) on APV and A"*V and hence it is independent of
the choice of oriented orthonormal bases of V.

A differentiable manifold is said to be orientable if there is a chart {{/,}
and an ordered system of local coordinates (z%,...,2%) in U, such that
dct(%) is positive at each point of U, N ;.

As;ume that X is an orientable Riemannian manifold. Hiemannlan struc-
ture on X is a differentiable, symmetric bilinear map A of Ty ®p T'x to R such
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that at each point £ of X, b induces a positive definite bilinear form 2(r) on
the tangent space of X at z. Then we can define a *-operator on the exterior
algebra AT5 , ¢om C over the complexified cotangent space 7%, Wr C of X
al .

A comnplex manifold is canonically otientable. In fact, if 2z} = =7 +
Volye, ., 2t = 19 4 T 1y? are complex coodinates in a chart {72 then
(x7, 947, ... 27, y7) gives tise to a system of real coordinates in {/* which
provides us with a global orienlation. Let h be a Hermitian structure on
the complex tangend bundle of X. A induces a unitary structure A{z) on
the complex tangent space Tx; of X at z. h(z) is represented by I =
i, higdz @ dz; with k(z) = (k). Alter changing coordinates differetiably
we may assumie that A(r) is the identity matrix and then H = ¥7_ (dr; @
dr; + dy; @ dy;). Thus, applying the above procedure to the R-vector space
V spanned by {dry,dy,,...,dry, dya} in Tg = Ty @n C, we can define a
x-operatot on the algebra A TE.

Since a *-operator is independent of the choice of oriented orthonormal
basis, we have a global *-operator on the sheaf &.4” and the space of sections
DAPL) on an open set U,

Let A, B and A be mutually disjoint subsets of {1,...,nr}. Set dz, to
be dz, A - Adz,, where A = {iy,...,1,} and #; < -+ < i,. Similarily, we
define dzg. Let way be the form [T;ear(dz; A dz;). Then we have

*(dzA A dia A wM) = (‘"l)m+ﬂ1‘5ﬂ_l(*2\/ -I)P—“v -1 -bdZA A dZB Awpy,

where m =M, p=§A+ 483+ 2mand N = {1,...,n}\ (AU BUM).

Now assume that X is a 4-dimensional, orientable Riemanian manifold.
‘Then the =-operalor induces an involution on A?*(U) and hence A*({7}) is the
direct sum of two subspaces

A1)y = fw|wisa?2 - form with *w =w)

ANU). = fw|wisa?2—form with *w = —w)
A member of A2(U)y (or, AU)2) is called a self-dual (or, antiself-dual,
resp.) forin. Let (z),...,74) be a oriented system of coodinates in U/ such

that the Riemannian metric is given by T4 dz; @ dr;. We see then that
A*(U), is spanned by

dry Adiry +dryAdrg,dey Adrey —dra ANdrg,dee Adry + day A dry

and A2(U)_ is spanned by
dry Adry — drg Adzy,doy Adry + deg Adry, doy Adry — dog Aday.

[ one sels zy = 21 + V=129 and 23 = 24 + /=1y, then one has

VI

dl‘] = %(dzl + df_c'l) d:l’fg = —T{d2’| — (ii])
1 W1

d:I'a = 5((122 + dfg) dl’4 = — 2 (dZ'z - dZ)_)

The above computations show that on A%(U),

Ve

dry Adez +drsndes = (dz; Adz, + dzg A d3)

2
d.’lfl AdIg—dIgAd.‘B4 = %(d.’.’] A1122+d2| /\dl})
V=1
d;l"] A d:l':.; + d.?,'; f\d.’l?;; = - p (dzi Ay (iZ")_ - d;“; A t[z'))

and Lhal on A*(U)_
V-1

(l.‘l’.’l A d.t') - dﬂ'.;; A d$4 = T(d:‘tl A dz'l - dlz A d}ig)
1

d:c. A d.‘l:a + d.’.ﬂg A d.'.174 = E(dzl A dz'z - ([22 A dzl)

dzy Aday — dig Adey = Y ;1 (dzy A dzg + dzy Adzy).

Let us introduce the notion of primitive elements in Lhis case.

Definition 3.1. Under the above situation, let u be the (1, 1)-form
dry Adzy + dzs Adxy = ‘é;j(dzl Adz + dzy Adzz). An element w s said to
he primitive if we have u A w = 0.

By the ahove computation we see that the space A" {7} of (1,1)-lorms
on I is the direct sum of A2(U)_ and the spare generated by the form
u and that AXU)_ is contained in the space of primilive clements. Siuee
u A xw = dry A deg Aday A dry we get the following.
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Lenuma 3.2. Uunder the above situation the space AXU).. is exactly the
space of primitive (1, 1)-forms.

Two Riemannian metrics A and £’ on X are said to be confomally equiv-
alent if there is a R-valued differentiable function f on X such that the value
of f is positive at every point and k = fh'. Note that on a 4-dimentional
manifold *-operator is conformally invariant on A%(U), that is, conformally
equivalent Riemannian metrics give rise to the same *-operator.

4 Penrose transformation

We shall first recall a real structureon X = P%. Let H be the quaternions
R +Ri+ Rj+ Rk over R. Identifying C with the subfield R+ Rz of H, the
multiplication by complex numbers to H from left defines an action of C on
H? and then H? is isomorphic to C* as C-vector spaces. The multiplication
by j to H provides us with an antilinear automorphism of C* which induces
a continuous map |¢| of X to itself. Since j2 = —1, |o|? = id. For a section a
of Oy over an open set, we define o*(a) to be a - |¢|. The couple & = {|o],0%)
is now a real form of X, in other words, there is an R-scheme Xp such that
Xg @g C is isomorphic to X over C.

Note that X has no real or o-fixed points. A complex line in X is said to
be a real line if it is stable under the action of o. It is easy to see that a line is
real if and only if it is the line joining a point z and o(z). On the other hand,
the above identification of C* with H? gives rise to a real analytic morphism
7 of X to P}. Since P} = HU {00}, it is not hard to see that P} is real
anlytically isomorphic to S4. Every fiber of v is a line and moreover a line
of X is real if and only if it is a fiber of v.

{et zo be the north pole {0,1) in P} = S and let ¢, be the real line
v Yz.). Hyperplanes of X = P which contain the line £,, are parametrized
by another real line £, over the south pole x4 = (1,0). If a hyperplane P*
corresponds to a point (1,u) of £, then P*\ &, is {(1, 4,u,v) | u,v € C}
as a subset. v maps a point {1, u,u,v) € P*\ £ to the point y = (1 +
a1y Mu+vi) e H=Py \ {z=]}. If we write y = y1 + yai + yaj + yak, then

1= w4 ot patn
Y2 = tg— vyt phaty
¥a = vty — paty
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Y2 = U2t puy — ol
where o= iy + /~ g, u=u; + v—lug and v = v, + /—lv,. Set

1 0w
0 O M
mo—p2 10
—pz o 01

(One finds then
detT = (1 4+ 4%+ p?) > 0.

Setting (z1,...,24) lo be the standard basis of R?, wedefine 2% = (a7, ..., 2})
by the equalion

Ty Iy
M

T3 -1 2
u = T

it Za

1': Ty

Since det 7 > 0, the orientation of z# is independent of . If we introduce a
complex structure to H 2 R* by 2% = 2% 4 /<12, 25 = 2% + v~ 1z}, theu
v induces a biholomorphic map of P#\ £, to R* with this complex structure.
The Riemannian metrics A* determined by Y1, dz¥ @ dic! are conformally
equivalent with each other becanse

4 4
S dr @ dui = (14 p* + 42°) 3 dul @
i=l i=1
The complex structure given by the matrix

0 0
0

-1
0

01
00 -1
00 0
10 0
instead of 7 corresponds to the point (0, 1) of £ and the system of coordinates
of this structure is denoted by £ = ({°,...,27). As remarked at the end
ol the preceding section, the above oriented Riemanian structures provide
us with the same *-operator. If we denote the space of (1, [)-formes on R
with respect to the (2}, z3) by AL' and the space of antisclf-daul 2-forms on
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R with respect Lo the above #-operatar by A_. By Lemma 3.2 we see that
A_ T Nuer, ALt Now the following is alinost obvious.

Proposition 4.1. A_ = [,¢q, A}

Pick a point p on 5* and embed 5% into R® by the equation 0, x¥ +
(zs — 1) = 1 with p = (0,0,0,0,2). Taking a point g of 5* other than p,
the line in R® joining p and ¢ meels at one poini ¢ with RY = {zs = 0}.
Hy sending ¢ to { we get a real analytic map p, of S*\ {p} to R* which
is called the streographic projection from p. We can endow $* with an
oriented Riemannian structure such that for every point p of S* p, gives
rise to a conlormal equivalence between S*\ {p} and the standard oriented
Riemannjan structure of R

Definition 4.2. Let E be a SU(2)-bundle on §* and let ¥V be a SU/(2)-
connection on . V is called an inststanton if the curvature F(V) satisfies

«F(V) = —F{V)

for the *-operator with respect to the above oriented conformal structure.

Let (£, %) be the pull-back of an instanton {E, V) by the map v : PL —
5S4, Assigning a point p of S* for the north pole, we can apply the above
consideralion to the eniries of the curvature F{V) and see that for every
hyperplane P containing the line v=!(p), all the entries of F(V) are of type
(1,1) on P\ »~"(p}. This implies that the curvature F(V) is of type (1,1).
Then, by Theorem 2.11 E carries a holomorphic structure with respect to
which V is an integrable Hermitian connection. We denote this holomorphic
vector bundle on PL by E(V). Since F(¥) is trivial on each real line which
is simply connected, F(V) is trivial on every real line.

The Hermitian structure of £ is equivalent to an antilinear isomorphism
of E to the dual bundle £Y and hence an isomorphism Ag to EY, If {8,)
is a systetn of connection matrices of V, then {—*#,} defines a connection
on EY. Since ¥ is Hermilian, ~'8, = 8, and hence {#,} is a systemn of
connection matrices on EY. Since the pull-back of this connection to £ by
Xy 15 the connection V, we see that Ag induces an isomorphism A : E(V) —
a{(F(V)V)) 2 o (#{V}) of holomorphic vector bundles.

In order to study holomorphic vector bundle in a wider calegory, let
us understand vector bundles in terms of colierent sheaves. A holomorphic
veclor bundle on a complex manifold ¥ s given by an open covering {{/,)
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of ¥ and a collection of holomorphic transition matrices {g,;}. By patching
lofomorphic free sheaves OF by using {#.4), we get a coherent locally free
sheaf.  Conversely, a coherent locally free sheafl on ¥ ois also given by an
open covering and transition matrices, which provide us with a lolomoerphic
vector bundle. Thus the category of holomorphic vector bundles on a complex
manifold is equivalent to the category of a coherent locally free sheaves,

On the other hand, if ¥ is a projective variely over C, then the category C*
of anlytic coherent sheaves on Y is equivalent to the catergory C* of algebraic
coherent sheaves on ¥ (GAGA-prinsiple), more precisely, if we denote the
holomorphic {or, algebraic) structure sheaf of ¥ by OF {or, Oy, resp.), then
the functor

€3 Fia F@Re, O gt

is an equivalence of categories. Thus, from now on, we undestand a vector
hundle on a projective variety to be an algebraic, cohercnt locally free sheaf.
Our E(V) is then a coherent locally free sheaf on F2.

Definition 4.3. Let F' be a coherent sheaf on X = P}. Since o is an
involution on X, we can naturally identify ¥ with o*(a*(#)). F is said to be
quaternionic (or, real) if there is an isomorphism ¥ of F' to o*{#') suclh that
a* () ¢ = —id {or,e™(3) - ¥ = id, resp.)

It is easy to see that the above A makes F(V) a quaternionic sheaf. For
our instanton V, we have a non-positive integer k such that

8k = —/ Trace( F(V) A F(V)).
o

This & is called the Pontrjagin number of E. The sccond Chern class
c2(££(V)) 1s represented by the (2, 2)-form

—% det 2™ {(F(V))
r

which is equal to

1
L Trace(F{V) A F{V)),
" Trace( (V) A F{V))

Thus we see that c( F(V)) = —k.
So far we showed that if ¥V is au instanton with Pontrjagin mmber £,
then we can construct a vector bundle F' = J(V) of rank 2 on X with the
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following propertics:

(a) Fis quaternionic
(4.4) (b} for every real line £, the restriction F|q is trivial
(c) efF)=—*k.

Let G(3,1) be the Grassmann variety of lines in X. Then Z = {{z,¢) €
X x@G(3,1) | z € £} is a subvariety of X x G(3,1) and the natural projections
pr:Z— X and py: Z — G(3,1) are flat, proper morphism. In fact, py is a
P2-bundle whose fiber over a point z is P? formed by lines passing through
z and p; is a P'-budle whose fiber over y is P! fromed by points on the line
corresponding to y.

Let V be the 4-dimensional C-vector space H?. A line £ in X corresponds
to a 2-dimensional quiient space W, of V¥, We have a surjection A*V"Y to the
1-dimensinal space A?W, which gives rise to a point y, of P(A*VY) & PL,
This map £ — y, is an immersion of G(3,1) into P& which is called the
Pliicker embedding. On the other hand, the involution & on X introduced in
the beginning of this section provides us with a real structure on the vector
space A’V and hence we have a natural real part P} in PL. Our 54 is
nothing but the intersection G(3,1) N P§, in PE.

Pick an algebraic vector bundle F on X with the property (4.4). By
the property (b) there is a Zariski open set U in G(3,1) such that $* Cc U
and that for every point y of U/, the restriction of F = pi(F) to the fiber
p7'(y) is a trivial bundle. Thus {p2}. |y can be regarded as a holomorphic
vector bundle of rank 2 on U. Ristricting (p;).F|u to §*, we obtain a real
analytic, a fortiori, differntiable C-vector bundle £. Note that the fiber £,
al each point y of 54 is the space of holomorphic sections of the trivial bundle
F|,-1(,). By tracing the way of construction of the quaternionic structure on
E(V) in opposite direction, we see that the quaternionic siructure of F gives
us a Hermitian form on E. The quaternionicity implies that this Hermitian
form is positive definite. Pulling back this Hermitian structure to F, we
obtain the unique integrable Hermitian connection ¥ on F.

Let J be the defining ideal of a real line £ in X. We see that the conormal
bundle J/J? of ¢ in X is isomorphic to Of(—1) & Op(—1). Then F @ J/J*
is isomorphic to Oy(—1)# because F is trivial on the line £. Consider the
exact sequence

0 — FRJJIP—FQOx/ I —FgO,—0.
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The above result shows that HY(X, F@J/J4%) = 0 aud hence the holoorphic
sections of F' @ Oy which provide a trivialization lift to holomorphic sections
of F&Ox /J% This means that F is trivial along the first infinitesial neigh-
Louhood of £ and hence the curvature of V contains no 2-forms involving any
direction along fibers of ». We see therefore that V descends to a connection
V on £. Since F(V) is of type (1,1), V must be an instanton by virtue of
Proposition 4.1,
Sumimatizing the above results, we have the following theorem.

Theorem 4.5. The set of isomorphisin (i. e, guage cquivalence) classes
of instantons with Pontrjagin number k is in bijective correspondence with
the set of isomorphism classes of algebraic vector bundles of rank 2 on X
with the property (4.4).

5 Moduli spaces of algebraic vector bundles

Let (Y, Oy (1)) be a couple of a non-singular projective variety Y and an
ample line bundle Oy (1) on ¥, that is, there is a positive integer @ and an
embedding j of ¥ to a projective space PV such that for the line bundle
Opn (1) corresponding to hyperplanes, we have an isomorphism of Oy(u) =
Oy (1)® to 7*(Opwn(1)). For a coherent sheal E on Y, there is a non-enpty
open set U of ¥ such that E|y is isomorphic to a free sheal OF. This
r is called the rank of E and denoted by r(E). Since Y is vou-singular
and projective, we can define the Chern classes of E by using resolusion by
coherent, locally free resolusion of £. We denote the degree of the first Chern
class ¢;(E) of E with respect to Oy (1) by d(E, Oy (1)) or simply d(£). The
alternating sum ©(=1) dim Hi(Y, E ® Oy(m)) is a polynomial in m. We
denote the polynomial by x(E(m)) and call it the Hilbert polynomial of E.
If r(E) # 0, then we set

u(E)
P_r,,(m)

d(E, Or(1))/r{E)
X(E(m))/[r(E)
A coherent locally free sheaf on Y is called a vector bundle. A coherent

sheaf on Y is said to be torsion free if it is a subsheaf of a veclor bundle. A
coherent, torsion free sheal is of rank 0 if and only if it is O as a sheal.

Il
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Definition 5.1. (1) A coherent sheal E on Y is said to be g-stable (or
p-semi-stable) if (a) B is torsion free and {b) for every coherent subsheaf F
of £ with 0 < r(}) < r(E), we have u(F) < p(E) (or, u(F} £ u(E), resp.}.

(2) A coherent sheaf E on Y is said to be stable {or semi-stable} if (a) E is
torsion free and (1) for every coherent subsheaf F of E with 0 < r(F} < r(E),
we have Pp(m) < Pg(m) (or, Pp{m) < Pg(m), resp.) for all sufficiently large
m.

By Riemann-Roch Theorem we have the following implications:
j-stable = slable = semi-stable ==3 j-semi-stable.
The following is not hard to prove.

Proposition-Definition 5.2. If £ is a semi-stable sheaf on Y, then
there is a filtration 0 = Eo C By Cc --- C E,., C E, = E by coherent
subsheaves of £ with the following properties:

(a) for § €1 < a, we have P, (m) = Pe(m)

(b} for 1 <7 < a, E;/E,_y is stable.

Moreover, if we have another filtration 0 = Ej ¢ E{ C --- C Ej | C
Ey = E with the properties (a) and (b), then we have o = § and there
is a permutation v of the set {1,...,a such that E[/E|_| is isomorphic to
Eotir] Exgiy-1-

gr(E) = @™, E;/Ei_y is independent of the choice of the filtration. Two
semi-stable sheaves £ and F are saide to be S-equivalent if gr(F) = gr(F).
The S-equivalence is an equivalence relation ande denoted by E 3F. Note
that if one of £ and F are S-equivalent and one of them is stable, then they
are jsomorphic,

Let f1(m) be a polynomial in m. We set
¥y (H) = {E | I is semi-stable and x(E{m)) = H(m)}/
and
Ey{lf) = {£ | £ is stable and x(E(m)) = H{m}}/ = .
Obviously Ty (H) is a subset of Zy (H).

Theorem 5.3. Ly (f!) carries a natural structure of a scheme My (1)
and Xy (H) forms an open subscheme My (H) in My (1IN, My(H) is locally
of finite type and moreover if the characteristic of the ground field is 0, then
4 is projeclive,
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Though we shall here avoid explaining the real weaning of the natural
structure, let us note that it implies the following universal property:

Let T be an algebraic scheme and let E be a T-flat coherent sheaf
on Y x T such that for every geometric point { of 7, £, is semi-
stable and its S-equivalence class [F;] is contained in Ty ().
"Then the map ¢ — [£] gives rise 1o a morphism of 7' to Ty (H}.

6 The universal extension on P*

First of all we shall recall the Riemann-Roch fornmla on P2 For a
coherent sheal I on P3, we have the following equality:

3
x(F(m)) = ~—-—+(5+)+

6
2 11
(R-R) Egl +2c,— o + ?1) m+
c o Tt . Il
Tty td et pat,

where ¢; is the i-th Chern class of F and r is the rank of .
Let E be a coherent sheaf on P} with the following properties

(2) elE) =es(E) =0,

(1) Eis g-semi-stable,
(Uv)
(3) HYP* E)Y= 1P E)=0

The properties (1) and (2) imply that [P, K) = Homa,, (K, Ops(—-4))Y =
0. Then (3) and (R-R) show that dim /' (P?, I} = 2e,(E) — r(£). Oun the
olher hand, we have a canonical isomorphisins

Exty ,(H(E)®Opi, E) & H'(P" Homo,, (11'(£) ® O, 7))
Homy(HH{ £, H'Y(E)).

114

Let £ be the clement of EXL},FB(H'(E) & Opz, £) which corresponds to the

identity map of H'(E) by the above isomorplising. The £ defines an exten-
sion

0 — E — U(E) — H'(E) ® Ops — A,
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Definition 6.1. /(}} is called the universal extension of E.
The lollowing are very basic properties of the universal exteusions.

Lemma 6.2. Let £ be a coherent sheal on P? with the property (UV).
(1) a(V(E)) = 0, c(U(E)) = e(E), e3(U(E)) = e3(E) and r(U{E)) =

2¢4(E) and hence we have

3
4
PU(E)(TH.) = fé— +m? 4 Em

(2) H'(P3U(E)) =0 forall i .
(3) If a coherent sheaf F fits in an exact sequence

0—E—¥F—0%—0
and if H(P% F) = 0 fori = 0, 1, then 5 = b(E) and F is isomorphic to
U(E).

The universal extension U/{E) of E is not necesarily semi-stable even if
E is semi-stable. To state an affirmative result for the semi-stability of the
universal extensions, let us introduce the following notion.

Definition 8.3. For a coherent sheaf F on a variety Y, we denote the
dual Hoeme, (£, Oy) by EY, There is a natural homomorphism + of E to its
double dual (EY)Y. E is said to be reflexive if -y is an isomorphism.

Note that a vector bundle on a variety is reflexive.
Proposition 6.4, Let E be a reflexive, u-stable sheal with the property
(UV) and S an extension of O3} by E:
0— £ —85— O0f —o.
If H%(Ops, 8) = 0, then S is stable. In particular, the universal extension
U(E) is stable if c;(E) = 0.

Proof. Since cz(E) 2 0, the coefficient of m in Pg(m) is less than U et
£ be a coherent subsheaf of S. We have to prove that Pp(m) < Ps{m) and
hence we may assume that S/F is torsion free and ¢,(F) = 0. Since 5/F is
p-semi-stable, we see that G = H*P? §/F) ® Op: is naturally a subsheal
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of 5/F. Let F' be the inverse image of & by the surjection 5§ — S/#. 1
s = r{F) and ¢ = dim HY(P?, §/ ), then for large m,
1

Pi(m) = —{x(F(m)) + x(Ops(m)*))

1 3 11
= porw {.sP,,-(m) + (% + m* + ?m + l) t}

1
s+1 {sPp(m) + tFs(m)}
If Ppi(rn) < Ps(in), then above inequality means that Pr(m) < Py(m). Thus
we may assume that H°(P? S/F) = 0. Setling E' = E N F, we have three
cases.

Case 1. Assume that E' # 0, E. Since E/E' is a subsheal of the torsion
free S/F and E/E' # 0, we see that 0 < r{E’) < r(E). Then the u-stability
of E implies that d{E) < 0 and hence d(F/£") > 0. On the other hand,
F{E' can be regarded as a subsheaf of S/ E which is a trivial vector bundle.
This means that d(#/E") < 0. Thus we come io a contradiction,

Case II. Let us next treat the case where B’ = 0. As in the case I,
' = F/E’' is a subsheaf of a trivial vector bundle. Since & is reflexive, so is
5. Then F is reflexive because S/ F is torsion free. These and the assumption
that ¢ () = 0 imply that F is a trivial vector bundle. We assumed that
HY(P?, 8) = 0 and hence H°(P?, F} = 0. Therefore, F* = 0 in this case.

Case III. Finally assume that E' = E. We have the following exact
commutative diagram.

0 0
T T
S|F — S§/F
T T
0 — F — 5§ — Off —
I T T
0 — E — F — FE — 0
1 1
0 0

Since 5/F is torsion free, the rightmost column of the above diagram shows
that F/F is reflexive. This and the fact that ¢ (F/E)} = 0 show that
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FIE 2 OF and hence §/F = (9%"_0'}. This means that S/F = 0 be-
cause FIP(P* S{F) = 0. Thus we see thal £ = 5. Q.E.D.

Let M (n,7) be the moduli space of semi-stable sheaves E of rank r on
P? with ¢;{£) = 0, co{£) = n and 3(E) = 0. There js a Zariski open set
Vin,r} of M(n,r) formed hy the S-equivalence classes [E] of semi-stable £
whose gr(E£) have the praperty (UV) and whose universal extensions U(E)
are semi-stable. Note that by Proposition 6.4 V(n,r} contains all u-stable
vector bundles with the property (UV) in M(n,r). We get a map p(n,r) of
V(n,r) to M(n,2n) by sending E € V(n,r) to [U(E)] € M(n,2n).

Theorem 6.5. (1) ¢ is a morphism.

(2) Let V(n,r}* be the open set of M(n,r) formed by the y-stable, re-
flexive sheaves E such that HP(P* E(q)) = 0 if {p,q) = (1,-2), (2,0) or
{2,—-2). Then V(n,r)* is an open subschem of V(n,r) and the morphism
@(n,r) induces an immersion of V{(n,r}* to M(n,2n).

To show a nature of ¢(n,r) we shall give an interesting example.

Example 6.6. Let £ be a line in P? and let L be the line bundle O,(1}
on £. Pick a pe-stable vector bundle E of rank 2 on P? with the property
(UV) and e(F) = n — 1. Assume that E is trivial on the line £ (if the
characteristic of the ground field is 0, then E is trivial on almost all lines).
Since L is generaled by two global seclilons, we have a surjection

u:  — Flg — L.

Then £’ = ker{u) has the property (UV) and is p-stable, too. By an casy
computation we see that cz(I2) = n. Look at the exact sequence

0 — HO(P, 1) — H' (P E'Y — H' (P, E}) — 0.

Take a basis {&, &} of H°(P?, L) and exlend it to a basis {£,..., &2} of
HY PP B, £ = {£),..., a2} can be regarded as an element of

Extg,  (#'(E') ® Ops, E') = II'(P, f) 0=

and it defines an extension of [P, E') & Ops by £ which is isomorphic
to the universal extension {(£7). The natural map

§:Exty {(H'(F) @ Opa, 'y — Exto , (IM{E) ® Opa, £)
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gives risc to a commutative diagram

0 0
1 1
L == L
T 1
0 — FE ~— F AN Ifl(l';")®0p3 — 0
1 T [
0 — E' — U(E) — H(E)®Opm — 0
1 T
0 0

where F' is the extension defined by &(£). Since £ and £ are sent to
zero in HY(P®, E), F contains G = 0% which is mapped to a direct fac-
tor of #H'(P*E)® Opa by v. The fact that H(P*,U(E")) = 0 and
dim H(P?, L) = 2 implies that the map of G to L is nothing but the natural
surjeclive map ¢ : H°(P?, L) ® Ops — L. Thus U(E’) contains (&’ = ker(().

By the construction of G, the natural homomorphism of U{F£')/G' to
F/G is an isomorphism and we have an exact sequence

0—'E—+F/G-——»O$gﬁ‘°)w—r(}.

Since HO(P3,G) = H°(P3, F) and since H'(P?, (/) = 0, HY(P?, F/C) van-
ishes. By the exactness of the middle column of the above diagram and
the fact that H'(P3,U(E")) = 0 we have that H'(P3 F) = 0 and hence
H'(P? F/G) = 0. Thus, by Lemma 6.2, £/ is isomorphic to U(F). It is
nol hard 1o see that @, = G' is stable, independent of the choice of { and
P, (m) = Pygy(m). Thercfore, gr(U(£’)) depends only on the location of
the line £ and is independent of the choice of the surjection w. The surjections
w's are parametrized by P? and different points in P? give us different £
Thus ¢(n,2) contracts the P2

7 Verdier’s description of instantons

Now we shall go back Lo the situation of §4, for example, X denotes P
with a strange involution ¢ and Xy is the real form of X defined by the o.
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Definition 7.1. A veclor bundle E of rank 2 on X = P% is called an
instanton bundle if it is isomorphic to the E(V) obtained from an instanton
V.

If the second Chern class is not zero, then an instanton bundle is u-stable.
In fact, if & = E(V) is not g-stable, then it contains Ox. Since ¢;(£) > 0,
J = E/Qyx is torsion free but not locally free. Pick a point = of X where J
is not locally free. Then, on the real line joining z and #(z), E is not trivial,
which violate (b) of (4.4).

It is known that for an instanton bundle £, H*(X, E(—2)) vanishes. For-
getting the real structure of instanton bundles and taking this vanishing of
the cochomology we come to the notion of mathematical instantons.

Definition 7.2. A vector bundle E of rank 2 on X = P} is called a
malhematical instanton bundle if it is stable, ¢;(£) = 0 and H'(X, E(-2)) =
6.

The set of mathemetical instanton bundles E with ¢;{ £) = n forms an
open subscheme of the moduli space M(n,2) which we denote MI(n). Asis
well-known, if E is a mathematical instanton bundle, then H*({X, E(—a)) =0
for every @ > 2 and hence, by Serre duality, H*(X, E(b})) = 0 for every
b > —2. Therefore, a mathematical instanton bundle has the property (UV).
Since mathematical instanton bundles are u-stable, the vanishing of the cohio-
mologies show that (n, 2) induces an immersion @(n) of MI(n) to M(n,2n).

The map sending a mathematical instanton bundle £ to ¢*( E} induces an
automorphism of MI{n) which is also denoted by o. A real point, that is, a
fixed point by o corresponds to a real or quaternionic bundle. If a points of a
connected component of the real part MI(n){R) = MI(r)® corresponds to a
quaternionic bundle, then so do all the points of the component. Since the set
of bundles with the property (b) of (4.4) forms an open set of M I{n)}(R), the
set I(n) of instanton bundles is open in MI(n)(R) in the classical topology
(that is, the topology by the absolute value).

Let us examine the above viewpoint more precisely. Since X has a real
form Xn and Ox(2) descends to a line bundle on Xg, every moduli space
‘M of semi-stable sheaves has a real form, that is, there is an R-scheme Mg
such that M = My ®g C. H E is an instanton bundle, then the quaternionic
structure of E gives rise to an isomorphism { : HY{X, E) —+ H'(X,0"(E))
such that ¢*(¢) - { = —id and hence it induces a quaterninic structure on
= "X, E)®cOx. Thus EQo, HY is a real sheaf. Then Exty (H, E) =
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X, E Qo, HY) = Homg, (#, 1} carries a real structure and moreover id
in the last space is a real vector. This means that the universal extension
I/{ £} is qualernionic.

w(n,2) is defined over R and hence there is an R-morphisim p(njy of au
open subscheme of M(n,2)g containing I(n) to M{n,2n)g. w(n)n is au im-
mersion over /(n). On the other hand, it is known that for an instanton bun-
dle E, Extéx(E, E) = 0 and then it is easy to see that Exi, (U(E),U(k)) =
0. This means that M(n,2)n and M(n,2n)g are smooth at £ and {/(E),
respectively. Thus we have the following.

Proposition 7.3. The moduli space I(n) of instanton bundles with
€z = n is an open submanifold (in the classical topology ) of the sef of real
points of the projective algebraic scheme M(n, 2)g and it can be regarded as
a submanifold of the set of real points of another projective algebraic scheme
Min,2n)g.

Our main interest in the sequel is compactification of I{n).

Definition 7.4. The closure (in classical lopology) of I(n) in M (n,2)r(R)
is denoted by I(n). We denote the closure (in Lhe classical topology) of {(n)
in M(n, 20)g(R) by I(n).

Pick an instanton bundle E with ¢;(E) = n — 1 and a real line & By
the definition of instanton bundle, £{; is quaternionic and isomorphic to OF?
whose quaternionic structure is given by a symplectic basis {e),e2}. Since
O¢(1) is quaternionic, = = Homg,(E|¢, O¢(1)) is a four dimensional C-vector
space with natural R-structure. An element # in Z is real if and only if
#{e1) = s and 8(ez) = —o*(3). This implies that a real clement ¢ is always
surjective because the common zero of s and —o* (s} should be a real point
of £ and £ has no real points. On the other hand, for a real 8, E{#) = ker(#)
inherits a quaternionic structure from that of E. Fixing E and ¢, the set of
E{(0)'s is parametrized by P} (R) in M(n,2)g(R).

As we have seen in the previous section, all the points of P3(Rt) in the
above are sent Lo one point of M(n,20)r(R) by @(n)p. We shall sce later
that the image point is in I(n).

Now let us recall Verdier’s description of instanton bundles and then write
down the conditions explicitely by using systems of coordinates. [n the first
place we shall fix notation. Let n be a positive integer, W an n-dimensional
C-vector space with real structure. Fixing a real basis {e;,...,¢e,} of W, we
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can wrile

W=({R+ - +e,R)®p C.

{ denotes the conjugation on W which defines the real structure. Let I{ be
a (2n + 2)-dimensional C-vector space and fix a basis {u,..., gz} of Y.
For a four dimensional C-vector space ¥ = CZy + CZ, + CZ, + CZ3, o is
the antilinear automorphism of ¥ such that

a(Zp) = 21‘0(21) = —20,0(32) = Z3aa(23) =—Z;

If we let the row veclor (ag, ay, a3, ay) represent an element f = Y0 a;Z; in
V , then a{f) is represented by

(aﬂs al 3 &21 aJ)El

where
0t 00
w_| -1 0 00
=T 00 01
00 —~10

Denoling the identity matrix of degree n 4+ 1 by Iy, set

= ( 1,2, 0 )

and Jy = —Jy. By using J;, we define an altenating form j, : U @cld — C

as follows:

by
nlawwb)=(a,..., 0020 | )
b‘ln+2

where a = S aqu; and b = ¥ bu,. We use the notation of inner product
{a,b) instead of j;{(a b). Let j, : 4 — U be the antilinear map defined by

4

j-_;(a) = (tl‘.“... ,Ttgn+2).]2 N

where a = ¥ a,u,.
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For elements a = 3 a;u; and b = 3 b, in U, we have the following
equalities:

by
(7a(a), faB)) = (@, @upa)' 2 il |
binsa
by
= (@1,..,8042)h | ! = (a,h)
BInA{»?
by 42
(a,72(b)) = (a1, .., 8242} N2 | = EG;I’.‘
Bansz iz

Thus {a, b) = (a, jz(b)) is a positive definite Hermitian form.
Let ¢ be a C-linear map of W ®c V to 4. Define p(3h) Lo be

-1
WacV 22 WeeV -4 i i

Then p{¢) is a C-linear map. Let us consider the following two conditions

on .

(INT 1) For every v € V, p{W ® v} is contained in an isolropic subspace
of 1.

(INT 2) ¥ = p(3).

frora given ¢ € ]}omC(W ®c V,U) satisfying the above conditions (INT
1) and (INT 2), let % be the homomorphism

W @c Ox(~1) 25 W eV ®c Ox Y8 U ¢c O,
where we identily X witl‘_l P(VY) and « : (qx(—l) — V&c Ox is a natural

map, If we assumne that ¥ is injective and im{v} is a subbundle of 4 ®¢ Oy,
then the condition (INT1) implies that

W e Ox(—1) 5 U e Ox % WY ®c Ox (1)
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is a monad whose cohomology sheal 1) is a vector bundle of rank 2 on X
with ¢, (FE (%)) = 0 and ¢(£(¢)) = n. The condition (INT 2) means that
E(y) is quaternionic.

Theorem 7.5([10, Theorem 6.6}). E(y) is an instanton bundle. Con-
versely, if B is an instanton bundle, then there is a € Home(W ®c V,U)
satisfying the conditions (IN'C 1) and (INT 2) such that E is isomorphic to
E(y).

The latter part of the theorem is rather complicated. The main peoint
of the first part of the theorem is that the restriction of E(¢) to a real line
is always trivial. The trivialilty comes from the fact that (a,b) is positive
definite. We shall give another proof of the first part in §6 (see Remark 9.9).

If {2Y,2), 2}, Z)} is the dual basis of {Z,, Z,, 24, Z,}, then the above
1 can be writien down in the following way:

Ylet= ¥ alluoz).
1Sk<Intd
o<ica
Thus ¥ is represented by an n-ple (4y,...,4,) of (2n + 2) x 4-matrices,
where A; = (ai',)). The condition (INT 1) means that ((e;), ¥(e;)) = 0 as
polynomials in Zy,..., Zy for all ¢, j. Since we have

o)
(%) () o v v
(lei), les)) = Z (@0ks---» Bonpan) i | 22,
0k, <3 {7)
Ggntae

The condition is equivalent to

(INT 1’) The 4 x 4-matirix ‘4;J,4; is alternating for all i, j.
Using the n-ple (A;, ..., A,), p(¥) is represented by
(JTIAVE, . LI ALME) = (LAY, JALSE),

Thus the condition (INT 2) means that

(INT 2) A; = JJA;*L for all 4.
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8 A compact semi-algebraic set

In the preceding section we exploited a monad Lo get an instanton bundle.
We have another type of monad to represent an instanton bundle. Iu fact,
an instanton bundle £ with ¢;{ E'} = n is the cohomology sheal of a monad

W @c Ox — WY &c (1) — W &c Ox

Il £ is represented by ¢ € Homg(W @c V, i), then we can construct a
commutative diagram by using two monads.

0 0
! _ !
0 = WecOx(-1) 24  Wveei(l) — WecOx — 0
s a II
fil

0 — Zf@c@x — WV®CVV®(;O,\' —+ W'@Cox — 0

1 1

WY @c Ox(l) =—= WY &cOx(1)
H l
0 0

where the middle column and middle row are exact. If one looks into Beilin-
son’s spectral sequence, then one finds that § in the above diagram 15 f4 - '5,.
Thus we have

a-w()y="¢- 5.

The isomorphisin classes of monads of two types are in bijective corre-
spondence. 1t is casy to see that coker(w()) = U(F£) and the map efn,2)
is nothing but forgetting the third term of the monad in the first row of the
above diagram. Thus, to study T(n) we have to ignore the condition that
im{#) is a subbundle and have to use the first row instead of the leflnost
column. For simplicity sake we use —w() rather than w(¥). Let w{z} be
the C-linear map 4+ j; - 3 of W ®c V to WY ®¢ VY. If we regard w(s)
as a lincar map of W to WY ®¢ VY &¢ VY, then it is represented by an
n x n-matrix §2() whose entries are in VY @c VY. By using the basis we
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fixed in the preceding section, we can write down Q(3) in the form
WA - AL A

A A, - AT AL
) =

4, 5h4, - ‘A A,
Since 'A;Jy Aj is alternating by (INT U'), it isin A2 VY, which we denote by

3:;. Moreover, we see that ‘A0, A; = A Af) = =tA L A7) = A 0)A
Thus we obtain a symmetric matrix

S(ih) = (si5)-
By using the coudition (INT 27), we get
iy Ay = AL AR = ~AAE = TAAL
If we write 'A.J; A; in the form (m',cj,), then this equation means
my, =0, myy, = —m and
my, = (1)1 T a0y, where & = £+ (-1)".

Hoin) = Homg(W & V, U} is an R-vector space. Let Qo(n) be the alge-
raic set in Fg(n) defined by the equations (INT 1') and (INT 2') which are
real polynomials. Since the equations (INT 1} and (INT 2’) are homogencous
over R (quadratic and linear, respectively), Qo(n) gives rise to an algebric (a
fotiori, closed) set {n) in the real projective space H(r) = Ho(n}—{0}/R".

Put Wy be the real vector space 3%, Re;. o induces a real structure on
AV, In fact, setling Zy; = Zi A Z;, we see that Zy;, Z13 + Zoo, v —1 (Z13 —
Zox)s Zoz — Zanan V= 1{Zoy + Z13) and Zyy form a real basis. We denote the
R-veclor space spanned by this basis by (A V). Then AV = (AV®@rC.
The equation (INT 3) and the symmetricity of S(b} show

(INT 3}{

iy ) G) o 2n+2 () (4}
=1 Uro Gy = Mgy = mm P ‘1:0 4y
i oane2 6. 0)

My = 2=y r i

o 2n+2 (4) 5(3}
Mgy = —tagy = iy = 30 g dg

1
7”|IJ'2 — 22r1+2 {i ] l'J]
L '
mi = —mi, = —mi = z"fzat%lu( )
2, l Yy i — pdt = et (Jl (v)
=1 ey T 7”1\5 =gy =) gny % o
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Therelore, mg) and my, are real, M} = my) and mngh = —indy. This inplies
that
Y i v o ii gy
sij = mg g + ml{azm +mgyZg; + Mz +
v ij N
mosd 2723

= mngl +R(m )(7V 'V]Jf
RIGAIVE (Z Z:z )+ SR(”' )(7;3 - Zﬁ) +
S(m W=T(Z8 + 2}y) + miZ3,

where for a complex number z, R(z) and 3{z) are the real part and the imag-
inary part of z, respectively. These equalities show that S(1) is a menmber
of Ky(n) = Homa(Wa, WY ®g (A2V)Y). The map Qu(n) 3 & 2 S(4) €
Ky(n) is defined by real homogeneous forms. Furthermore, if 5(3} = 0, then
miy = ml, = mif = mY, = 0 for all i. The above computation shows Lhat
this is equivalent to vanishing of “u) for all k, £, ¢, which mneans that ¢ = 0.
Thus the map fu induces a real algebraic morphism [ of Q{n) to the real
projective space K(n) = Ko{n) — {0}/R". To state our result, we need the
concepl of semi-slgebraic sets.

Definition 8.1. Let Y be a subset of a real algebriac variety Z. Y is said
to be semi-algebraic at a point z of Z if there exists an open neighborhood
(i the classical topology) V of z in Z and a finite number of elements fj;
and gy of I'(V, Ogz) such that

¥n V:U{y eV | fi, =09 >0, forall j, &}

11 Y is semi-algebraic at every point of Z, il is said that ¥ is semi-algebraic
iz,
The following due to Seidenberg is aue of basic results on send-algebrate

s0l5.

Theorem 8.2 ([8]). If f : Z — Z' is a morphisin of real algebraic
manifolds and if Y is semi-algebraic in Z, thea f(Y) is seri-algebraic in 77

What we have seen in the above is

Proposition 8.3. Put Ky(n) = Homg (Wo, WY @r (A2 V)y) and K{n) =
Ko{n) — {0}/R*. f(Q(n)} = P(n) is compact (a fortiori, closed in K(n))
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and semi-algebraic set in K{(n). A point of Ky(n) gives rise to a point of
P(n) if and only il it is represented by the matrix S(3) with i satislies the
conditions (INT 1) and (INT 2).

We shall now study the ellect of changing basis of W on the set F(n).
Pick another real basis {e},...,e.} of W and write ] = X7, bj;e; with
b;; € R. Then # is represented by matrices

(3" Ay Y Ajbin) = (A, .., AL
=1 1=1

Lel us examin two conditions (INT 1*) and (INT Z') for (Af,..., A}). Since

CALAY) = () (‘Aubu)i(Acbe))
1<k t<n
= z bki'(‘Ag.flAg)bgj=— Z bki‘AkletbtJ
15k g<n 1<k, E<n
= "tA':-Jl'A;,

(INT 1) for (Al,..., AL) is satisfied. (A},..., AL} obviously satifies the

condition (INT 2') because b;; are real. The above computation shows that
if ¥ denotes the map represented by (A},..., AL}, then

S(¢') =*BS(¥)B,

where B = (b;) € GL(n,R}). We get therefore,
Lemma 8.4. Let GL(n,R) acts on Ky(n} as follows:

for B € GL{n,R),5 € Ky(n),5— 'BSH.

Then this induces an action of GL(n,R) on K(n) and P(r) is stable under
this action.

Let p = (poy, Poz, Po3s P12s P13, P2a) be a point of (A? V)y which satisfies the
equation pgpza — PozPia + poatiz = 0. The equation means that the Pfaffian
of the matirix (p,;) is zero, where we set p;; = —pji. Thus 35, pi; Z,; is pure
or there are linear forms L; = ¥ g 0,Z;, (1 = 0,1} such that ¥, ; pi; Zi; =
Lo A Ly. Since p is real, we may assume that L; = o{Lg). Pick a point
g = (qo1,-.,gza) in (A2V)Y which is different from p and satisfies go;q22 —

a7

qorgratgosgrr = 0. And write ¥, ; 40,4, in the form Ly ALy with Ly = o(Ly).
Then £, = Lo, Z) = Ly, 2y = Ly, 2§ = L, form a basis of ¥ and the action of
o with respect Lo this basis is represented by E, too. By writing 4, for this
basis, we obtain the representation of 5{3) in terms of Z;, = Z/ A Z]. Note
that if we choose a suilable g, then the transformation from Zs to s is
represented by a unitary matrix.

9 Boundary of P

We shall denote PL by X in this seciion, too and identily it with P(VY).
We also denote the polynomial Z§, ZY, — ZHZY, + 25,2} by g. Note that
g is the equation of the Grassmann of lines in X in P(A?VY). Let us start
wilh an easy lemuma.

Lemma 9.1. Let 5 be a member of Home (W, WY @cA? VY) and let u(S)
be the homomorphism of W ®¢ Ox(—1) to WY @c Qx(1) which is defined
by the multiplication by S. Assume that det S # 0 mod g as a polynomial
in Z:;, where S is regarded as a matrix whose entries are il AL VY. Then

{1) u(5) is injective,
(2) E(S) = coker(u(S)) is torsion free,

(3) the set {det § = 0} NG is exactly the set of lines € such that E(8)|,
is not isomorphic to the trivial bundle of rank 2n,

where (§ is the Grassmann of the lines in X .

Proof. Let K (or, I) be the kernerl (or, image, resp.) of u(5). Since
both are torsion free, for sufficiently general line £ in X, we sec that K|, and
I]¢ are subsheaves of W ®@¢ O(~1) and WY @¢ Qx(1)|e, respectively. Thus
HYE, 1(=1)|e) = 0 and if K # 0, then (€, K{-1)|} # 0. Look at the

followiug diagram :

o\
G Pt
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where Fois the incidence correspondence. Since p is flat, we have exact
SCQUENCEs

00— q,p'(”—l}) — R‘q.p'([\'(—l)) —_—
Rly.p" (W ®c Ox(~2)) ~= Rlg.p"(I(-1)) — 0,
Ry (1{(-1)) 2 Rlgp (WY Q¢ lx) — R'a.p(E(S)).

It is easy 1o sec that R'g.p"(WRcOx(—2)) = WS Oc(~1), Rlg.p" (WY&
f1x) = WY ®¢ O and the composition v- u is nothing but the multiplication
by §. Since p*(/{—1)) is Lorsion free, so is g.p*({(—1)). On the other hand,
we know that ¢,p"(/{—1}) = 0 on a non-empty open set. Thus ¢.p~(J(—1}) =
0 on the whole space. We have seen in the above that if K # 0, then
#'qup*(K{—1)) # 0. This means that if u(S) is not injective, then rank{im(v-
u}) < n and hence det § = 0 on . This completes the proof of (1).
Now we have an exact sequence

0= qup(E(S)) — Rap'(W Gléc Ox(-2))
!
O(~—1)%n

L R (W Rc Qx) — Rlg.p (B(S)) — 0,
I
OIEI_;):I

where w is the homomorphism of the multiplication by S. This sequence
shows that il det S £ ¢ (mod g), then ¢.p"(E(S)) must be 0. On the other
hand, since A = 0, depthoxlg E(S), 2 dimOyx, — 1. Hence if the torsion
part 7" of E(S) is non-trivial, then it is supported by a closed subset of
codimension one. Then the subsheal g.p*(T) of g.p™(E(S)) is of positive
rank because general lines in X meet Supp(T’) at a finite set of points. This
contradicts our assumplion. Therefore, we sce that E(S) is torsion free.

To prove (3], let 12 be the set of pinch points of E(S5). B is of codimension,
al least, two in X. If a line £ is contained in 8, then the kernel of u($)|,
contains an inverlible sheaf Ofa) with @ < —2. Since the map w in the
above sequence is compatible with base change, the non-zero vector space
HY(8, Ogla)) is a subspace of ker(w(f}). Thus £ € {det § = 0} N . Assume
next thal £ is not in B. Then we can find a hyperplane Y containing £ such
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that ¥ 1 I3 is a finite set of points, Pick a line & in Y. At a general point
of ¢=1 (€, p"(u(SNe-1(ey is injective and hence injective on ¢7'(€). This
implies that p"(£{S5)) is flat over G at &. There is an exact sequence

0 — W e Or(-2) — WY Q¢ Oxly — E(S)y —— 0.

Thus if the torsion part of E($)]y is non-trivial, it must be supported by
curves and contained in YN B. This is impossible and hence E(S)]y is torsion
free. The dual plain YV is contained in (¢ and the diagram in the beginning
of this proof induces

Fyv
q Y
Yv / \Y

Using the flatness of p*(E(S)) over G in a neighborhood of Y'Y and the base
change theorem we see that {det S = 0} N YY = Supp(R'q\p™(£(5}v)).
Phierefore, our assertion follows from a well-known resull on P? [3, p 373].

Q.E.D.

As a corollary to the above lemma we obtain a basic result.

Proposition 9.2. Let 5 and u(3) be as in Lemma 9.1, Assume that
{det S = 0} does not meet the real part of the Grassmamn {g = 0} N
P{(A*V)Y). Then E(S) = coker(u(5)) is a vector bundle and there ts an
exact sequence

00— F s B(S) — OF — 0,
where o = dim I{*( X, E(S)}¥).

Proof. In the first place, note that ¢;(E($)) = 0. By our assumption on
det S we can apply Lemma 9.1 to this case and know that (S} is a p-semi-
stable sheaf. Assume that E(S) is not locally free and pick a pinch point =
of E(S). By (3) of Lemma 9.1 all the lines passing through x are “jumping
lues” or contained in {det § = 0}NG. Thus det 5 = 0 at the real line xo(x)
which is ins the real part of the Grassiann. This violates our assumption and
hence F{S) must be locally free. Since £(S)Y 1s a p-semni-stable of degree 0,
we have an injection

0 — HO(X, E(S)¥) ®c Ox Lo E(S)Y.
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Sctling F = coker(#)Y, there is an exact sequence
0 — ¥ — E(S) s 0%,

[ is generically surjective and hence A = im(f) is a torsion free sheaf of rank
a. Now let us look at the diagram in the proof of Lemma 9.1. On one hand,
¢.p"(A(—1)) is torsion free. On the other hand, it is zero at a general point
of . Thus we get an exact sequence

0 — Rlqp™(F(-1)) — R'q.p"(E(S)(-1)) — Rle.p"(A(-1)} — 0.
As we have seen in the proof of Lemma 9.1,
{det S =0} NG = Supp(R'q.p*(E(S)(-1))),

which is, by the above exact sequence, equal to Supp{R'q.p*(F(—1))} U
Supp(R'q.p"(A(-1))). Let T be O%*/A. Then T is a torsion sheaf and
I'g.p*(A(~1)) = q.p*(T(-1)). It is easy to see that a line which meets
Supp(T’) at a finite set of points contained in Supp(g.p*(T{—1)}) and then
we see that a line in X is contained in Supp(R'q,p*{A{~1))) if and only if
it meets Supp(T). Thus, for a point = in Supp(T}, the real line zo(z} is in
{det § = 0}. This contradicts our assumption. Therefure, T = 0, in other
words, f is surjective as required. Q.E.D.
Pick an S in Ko(n) which represents a point of P(n). Since § = S(#) for

some ¥ € Qo(n) and since rank(y’) < 2n + 2, we see that if we regard w(y)
a linear map of W ®@c V to WY @c VY, then rank{w()) < 2n + 2 (see the
beginning of §5). Letl us consider the following exact commutative diagram
which is dual to a part of the diagram in the beginning of the preceding
section:

0

i

W &c Ox(-1)
L
WY@ Ox — UY®cOx
| ls
0 — E(S)Y — WEcOY(-1) — WY®cO0x(1) — 0

i
0

41

‘This shows us that (X, WecQ}(—1)) = WecV. Since ‘w(y) = H%(b-7),
we obtain that

dim HO( X, E(8Y) = dimW ®c¢ V — rank('w(z})) > 2n — 2.

Assume that {det S = 0} conlains no real lines. Then, by the above propo-
sition, there is an exact sequence

0 — F — E(S) — H(X, E(5)")¥ ®c Ox — 0.

If rankw(4) < 2n + 2, then rankw(y) < 2n because w(i) is alternating.
In this case, dim H®(X, E(5)¥) = 2n and hence E(S) is trivial. This is
inpossible because e £(S)) = n > 0. Thus rankw{(y) = 2n + 2 and then F
is of rank 2 and locally free. Since ¢;{F) =0 and H(X, F} =0, F' is g-stable
vector bundle. By the definition of E(S), we have that Hi(X, E(5)) = 0 for
all 2. Hence F satisfies the condition (UV) and F( S} is the universal extension
of I (see Lemma 1.3). Moreover, by Verdier's Theoremn (Theorem 7.5) [ is
an instanton bundle. We have proved the following.

Proposition 9.3. Let S be an element in Ky(n) which represents a point
of P{x) such that {det § = 0} contains no real lines. Then there is an exact
sequerce

00— F— E(S)— O?z""z — 0
such that F is an instanton bundle and E(S) is the universal exteusion of F.

Next assume that {det § = 0} contains a real line p = (pu1,...,pu) €
G N P({A*V)y). Then det S(p) = det (s;;(p)) = 0. Since S(p) is symmetric,
real matrix, we can find a B in the orthogonal group O(n, R} (a fortiori, in
G/ L(n,R)) such that BS(p)'B = (&;) with ty; = 0. By the computation at
the end of the preceding section, after changing the real basis of W, and a
suilable choice of generators of (A® V)¥, we may assume that sy,(1,0,...,0) =
0 or m)! = 0. Since by (INT 3) m}! = T2 )P = £2¢2 V2, the
condition provides us with

aﬂ) =0fort=90,1and all ¢.

Substituting a%f’, ( = 0,1) in (INT 3) by 0, we get

— 1y v
815 = iy

_ 1oy
3;1 = Myl

12
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[f 3} = 0 in addition to the above, then Ay = 0 and hence sy; = 5, = 0 for
all j. Suppose that mly #10. Define B’ to be the matrix

1 0 0 0 .- 0
~M 1 0 0 - 0

~-Zr 0 1 0 --- 0

B | O
Then we have
mZy, 0 ... 0
0
LRI Y » L
BS'B = : s,
0
If det S1{¢) = 0 with ¢ a real line, then for a suitable By € GL(n —1,R),

the {2,2) element of
10\ {1 0
(UBl)HbB(U'B,)

vanishes al ¢. The same argument as above shows that if we choose B} €
(¢ L(n — 1, R) suitably, then f3{5,'H] has a form

M, 0
0 S,

wheee My = as Ly A ol with a3 € R and L; € VY. Then

M, 0 0
( v ) s ( -~ ) | o M o0
' ' 0 0 S

13

wilth M; = a;L; Ao L; with a; € R L; € VY. Conlinuing this procedure, we
can find a C € & such that

M, 0

ST =
0 M,

S,

where M; = a;L; A oL; with q; € R and L; € VY and where {det 5, = 0}
contains no real lines or r = n, that is, S, does not appear.

Lemma 9.4. Let L L' be linearly indepndent elements of ¥Y¥ and let
M =LA If weregard M as a global section of Qx(2), then the quotinet
sheaf ¢ = Qx(1)}/MOx(—1) is isomorphic to the sheaf Q. where £ is the
fine in X defined by L = L' = 0 and where Q, is the kernc! of a surjection of
O to Oy(1).

Proof. We have the Koszul cmplex defined by L and L' and the Euler
sequence:
0 — OX —F OX(].)Gn —_ 14(2) — U,
00— ﬂx(Q) — v [iefe] OA(I) — 0,\(2) — 0],
where [ is the defining ideal of €. Since both sequence are exact and since the
map of Ox(1)}¥? to VY @c Ox(1) defined by the multiplication by (L, L) in-

duces the map of Ox to Qx(2) of mulliplication by M, we have the following
exacl commutative diagram:

0 0 0
| l |

0 — OX -— ﬂx(z) — (,'{1) — 0
l l L

0 — Ox(l)(m J— VV®C0X(1) . Ox(l)!b'z — 0
| !

0 — ]((2) —_— (’)x(z) _ (’)((2) .
0 0 0

—
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The rightmost column shows our assertion. Q.E.D.

If ayaz---a, # 0, then E(S) is isomorphic to Gy, @ -+~ D Qe & L(5,),
where £; is the real line defined by [; = o(L;) = 0. Note that Q, =
05 (1)/M;Ox(~1) is quaternionic. By Proposition 9.2, E(S5,) is locally free,
of rank 2r — 2r, trivial on every real line and there is an exacl sequence

0 — F(5,) — E(5,) — 0% — 0,

where @ = dim [I°(X, E(S;)¥). Since rankw($) £ 2n — 2 and M, gives
rise to a rank 2 (4 x 4)-block in Q(¢), we see that dim HO(X, E(S,}V) >
4(n—r1)— (2n + 2 —2r) = 2n — 2r — 2. Thus, as we have seen in the proof
of Proposition 9.3, & = 2n — 2r — 2 or 2n — 2r. The latter case is absurd
because H%(X, E(5,)) = 0. F(S,) is therefore of rank 2, which means that
E(S5,) is the universal extension of the instanton bundle F(5,)

Remark 9.5. Since F(5;) is an instanton bundle, Verdier's Theorem
shows that S, must be represented by a point of P(n — r). We can directly
see this by applying repeatedly Lemma 10.2 in the next section.

Let SKu(n) be the set {T € Kg(n)|T is represented by a symmetric nxn-
matrix whose entries are in (A V¥)} and let SK(n) be SKo(n) — {0}/R".
Clearly SK(n} is a linear suspace of K(n). GL(n,R} acts on S5K(r) as in
Lemma 8.4 and its center acts trivially on SK(n). Thus PGL(n,R) acts on
SK(n).

Proposition 9.6. For the above action of PGL(n,R) on SK(n), a
geometric point A of SK(n) is not semi-stable (or, not stable) if and only
i there exists a B in GL{n,k(A)) and a positive integer o such that o <
n—a+1l (or, a < n— o, resp.)} and that for BA'B = (a;5), a;; = 0if (1}
i<n—a+l{or,Sn~aresplandj<aor(2i<candj<n-a+l
{or, £ n—a, resp.). Thus if A is not semi-stable, then det A = 0.

Proof. We may extend the base field to C. Then, since we have an isogeny
of SL{n,C) to PGL(n,C), we may prove our assertion with respect to the
aciion of §L(n,C). Assume that a geometric point A of SK'(n) is not semi-
stable (or, not stable). Then there is a one parameter subgroup A of SL{n, C}
such that u{A, A} < 0 (or, € 0, resp.). If we choose a suitable basis of W,
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then the action of X on W is the multiplication of the matrix

n 0

tr2

0

At) =
yra

where 7y, 7y, ...,y are integers such that ry < vy < oo <y and 7 1y +
.-+ +7, = 0. Changing a basis of W, A is transformed to BA'B. If we deuote
the matrix BA'‘B by (a,;}, then the action of A(1) is represented by

a;; — it a5

We need a simple numerical lemma,

Lemma 9.7. Let ry,rq,...,r, be a sequence of integers such that »| <
Py S S, it a4+ = 0 and not all of #;’s are zero. Then
there is a positive inlegers o and f such thata €n—a+1, < n - 3 and
Tat eap1 S0 andrg+7ra_5 < 0.

Proof, If r; + r, <0, then we may put a = 1. Assume that r; +r, > 0.
We have

0<7'1+rn = —(T2+"'+rn—l)
= =X (i e — {1+ (1)

where m is the biggest integer with m < n/2. Thus one of ripy 47, iy
negative, which proves the existence of . If r{ +v,_, < 0, then we may
chouse 1 to be 8. Assume that vy + r,., 2 0. We then obtain

0<r4ry = —(rg+ 7 ztr)
= —Z:’;_g‘(f.‘+7‘n_,‘)—15{1'1'(—1)"}1',,‘—r,,,

wliere m is the least integer with m > n/2. Since rp, must be positive, one
of r; + r,,_, is negative. This completes the proof of our lenima.

Let us go back to the proof of Proposition 9.6. Pick an a in the above
lemima. Then we see that #; +7; S0l (1)i<n—a+1and j < o or (2)
i<aand 7 <n-a+l. Since p(h, A} <0, a;; should be 01l (,7) is in this
range. If we pick 2 instead of a, then the proof of the condition for A to be
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not stable is simtlar to the above, Conversely, suppose that we have B and
a which satisly our condition for A to be nol semi-stable in our proposition.

Let {e], ..., e} be the basis of W after the linear transformation by B. Take

such a one parameter subgroup A of SL(n, k(A}) that

1"l ifl1<i<o
At)el) = ¢ tel fla<i<n+l-o
ittt ifntl-—a<i<n

Then, lor this A, we have that g(A, A) < 0. If B and «a satisly our condition
for A 1o be not stable, then we pick the one parameter group A:

e f1<i<€a

1

M) ={ ¢  la<i<n-ea

te) ifn—a<t<n
[t is clear that for this A, g(X, A) < 0. Q.ED.
Now we come to the main result of this section.
Theorem 9.8. lLet S be a member of SKy(n) which represents a point
of P(n).

(1} There is 2 B in (7L(n,R), members Ly, ..., L, of ¥V, real numbers
ay, ... 1, and a synmetric S, with {detS, = 0} containing no real lines

such that
M, 0

BB = -
0 M,
Sr

where M, = aj b, A el and where if 7 = n, then we understand that S, does
nol appear.

{2} S is semi-stable with respect to the action of PGL(n,R) on SK(n)
if aned only if Tla; # 0, that is, det 5 £ 0.

(3) 5 is stable if and only if r = 0.

(1) If 5 is semi-stable, then E(S} = Q,, &+ Qr, @ E(S,), where §; is the
real line defined by Ly = a( L} = 0 (for the definitions of E(5) and Qy,, see
Lenima &1 and just after Lemina 9.4, respectively). Moreover, E(5,) is the
nniversal extension of an instanton bundle with c;(F) = n —r.
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Proof. (1) was proved in the above. (2) is obvious by Proposition 9.6. If
r > 0, then it is casy to see that there is a I in GL(n, C) such that B'S*H
has the O-matrix of degree » at the upper-left corner. Then, by Proposition
9.6, S is not stable. Assume that r = 0. If 5§ is not stabie, then there is a
posilive integer a such that o € n — « and that by choosing a suitable hasis
aver C, 5 is transformed 1o a matrix

0 0 [0
0 Dy Dy
C Dy Dn

where € and Dy, are square matrices of degree a, D)y is {n — 2a) x (1 — 2a)
and [y and where Dy, are (n — 2a) x o and o x {n — 2e}, respectively.
Changing the order of rows, we come to the matrix

C Dy Dy
0 Dy Dy
0 0 C

"T'his means that there is an exact sequence
0— B — E(5) — Fy — 0,

where By = E(C) and E; = E(T) with

Dy Dy
o C |

Since holh det C and det T" are not zero al any real line, Proposition 9.2 tells
us that E, and E, are locally free and we have exact sequences

0 — Fi s B, — H(X, Y)Y 6 Ox — 0.

If dim HO(X, E¥) = r(E;) or v(E;) — 1, then L, is a trivial bundle because
ey{Ii) = 0. Since neither Ey nor E; is trivial bundle, dim HY(X, £Y) <
r(#5) — 2 and hence dim H9(X, E(5)¥) < r{E(S5)) —4. On the other hand,
we know that dim F°(X, E(SY) = r{£(S)) — 2. This is a contradiction and
we see that 5 is siable. (4) was proved right afier Lemma 9.4, Q.1E.D.

Remark 9.9. If E(S) is locally free and of rank 2n, then the above
theorem shows that {det § = 0} contains no real lines. Then, by Lemma 9.1
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E{5) is irivial on every real line and hence it is the universal extension of a
vector bundle of rank 2 whose restriction to any real line is trivial (see the
proof ol Proposition 9.3). This is another proof of the first part of Verdier's
theorem (Theorem 7.5).

Let SM(n) be the good quotient of SK {n)* by PGL(n,R). The above
theoremn shows that P(n)y = {z € P(n)|z is represented by a matrix 5
with del S # 0} is PGL(n,R}stable and closed (in the classical topology)
in SK{n)*. Thus the image F(n) of P(n)o in SM(n) is closed [7, Theorem
3] and semi-algebriac. Since SM(n) is projective, P(r) is compact.

There exists a PGL{n,R}-stable, Zariski closed set R in SK(n)* such
that for a geometric pomnt S in §Ky(n), u(S) is injective and E(S) is a semi-
stable sheafl if and only if it does not give rise to a geometric point of R. The
image R of 2 1o SM(n) is closed set and does not meet P(n). There is an R-
morphistn # of SM(n) — R to M(n,2n)g (see Proposition 7.3) which sends
cach point of SM{n) — K 1o the S-cquivalence class of the corresponding
semi-stable sheaf. Since P(n) is compact and semi-slgebric, so is 8(P(n)) in
M(n,2n)a(R).

Proposition 9.10. The set [[}., f{n —a) x £°(51) is compact and senii-
algebraic in M{n,2n)g(R), where S* parametrizes the real lines in X, ¥*
stands for b-th symmetric product and where we understand that 1{0) is one
point. Moreover, I{n) is open in the compact set.

_Proof. Our assertion is obvious because Theorem 9.8 shows us that
0(P(n)) is exactly the set in the proposition.

10 A compactification of the moduli space
of instantons

We have proved so far that [I;_, I(n ~ a) x £°(5*) is compact and semi-
algebraic in M(n,2n)p(R) and hence I{n) is contained in the set. In this
section we are going to show that these two sets coincide. As in §5, Q(n)
denotes the real, closed subscheme of H(n) = Home{W @¢c V,U) — {0} /R"
defined by the equations (INT 1) and (INT 2'). Pick a point z in Q(n). =z
is represented by an n-ple A = (A4,..., 4,) of {2n + 2) x 4-matrices. For
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A= (fe(ki,)), the equation (INT 2') is written in the form

i [ ] _ (1)
“S}rwro = arll)l “E.‘+|+r| = =l
ML ' _ b

ai::-l+r2 = as"3)| ai:—l-l+r3 = —Gyg-

Thus @(n) i3 a real subscheme in the linear subspace T'{n) of (1} defined
by the above equations. For an n-ple A = (A;,..., 4,) which gives rise Lo a
point of T'(n), set
Fi(n,A) = (- {E aflal) - TiH aeai |
_ 0. n i )
(1) S alla) + (DN TR afhag+

(-1t ot afall) + (-1 T allal

(q)u I‘:i(ﬂ, A)

where for an integer o, o is the integer & + (—1)*. Q(n} is delined by the
equations {Fi(n, A) =0, Fl{n,A)=0|1<i<j<n 0<m<3,0<k<
£ <3} in T(n).

Take a point y in Q(n — 1) and let B = (B;,..., B,) represent y. This
salifies the equations Fi(n —1,B) =0, Fi(n - 1,B) =0 (2 < i < j < u).

Writing
B

with B! and B! (n x 4)-matrices, we set

1100 0000
- 0 = n o
it - ! p < ¥ <
B 1100 |+ B oopp | BSi<isn)
0 B!

Then, for §(y) = 6(B) = B = (B,,..., B,), we have that Fi(n,B) = 0,
P‘:.E(n,_nﬁ) = 0 and that if ¢ > 2, then F(n,B) = Fji{n — 1,B) = 0 and
Fi(n,B) = Fij(n —1,B) = 0. Thus §(y) is a point of Q(n).

Let R(n) be the open subscheme of Q{n) consisting of Lhe points which
define instanton bundles and Q(n)* be the set of points which give risc to
semi-stable sheaves. Note that R(n) is a smooth real algebraic manilold (10,
§5, §6]. Our main result in this section is stated as follows.
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Theorem 10.1. Q(n)}*" is the closure of R(nt) in @{(n)** and ding H(n) =
3?4 13n — 1.

Proof. First note that the latter assertion is contained in [10] and that
codimension of R(n}in F(n) is equal to the number of the equations to define
(n). Our prool is by induction on n. When n = 1, our assertion is obvious.
In fact, @(1)** = T'(1) and @{1)** — R(1) is a thin set. Assume that our
theorermn is true up to n — 1. We claim the following.

Claim: There is a dense Zariski open set B'(n — 1) of R(n — 1} such that
for every y in ['(n—1), 8(y) is a smooth point of Q{n)** and dimy(,) Q(n)” =
dim R{n).

Let a; = (@, . anp14) (0 <4 <3} and let A be the matrix

‘ag, ‘a; ‘ta; ‘as
A= .

15 tz g ta

a, —'ag ‘A3 — Az

We deline 3(n, A) o be the 10 x (81 + 8)-matrix

—a, 0 0 0 0 a 0 O
Ay —ay 0 0 —ag a 0 0
—as 0 —y 0 0 A7 0 an
ay 0 0 —E_l[ 0 a3 —ag 0
0 a, 0 0 —-a 0 0o 0
0 —ag a, 0 —dajy 1} 0 a
0 a O a —a; 0 —-a 0
0o © & 0 0 0 0 a
0 0 a, -a 0 0 -a a
0 0 O a 0 0 -a; 0

where 0 is the 0-row veclor of degree n + 1. Pick a point y in @(n — 1)** and
let it be represented by B = (Hg,..., B,) with B, = (bi't’) Let us set

D(n, 3)) —D(n, By) 0
D(n, ) 0 —D(n, By) 0
JB) = : : 0 '
D, 1) 0 0 e, 0 =D, By)
51

et oy =idn+r4i4+2and f;, = (r+ DB+ 8) +(n 4+ 1) - 1)+ 1.
We denote by JZ—B) the minor matrix of degree 10 — 10 of J(B) made by
choosing C(IIE_IEIIIS (- vty Orgy Oy Pty 2 Brsy .. Jo<ren—z. The points
y with det J{B) # 0 form a Zariski open set Z of @(n —1)*. Let us look at
a special point gy in @(n — 1) which is represented by By = (8,..., B.)

with
0 0 0 0

0 0 0 0

0 0 1 1 1 —1
0 0 ¢ 0
. 0 0 o0 0 n
Bi= 00 0 0 n+l
0 0 0
0 0 1t -1 n+1—1
0 ¢ 0 0
0 0 0 0
Then we see that
T 0
J(Bg) = s

|
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where T} is a square matrix of degree 10 with the following form

1 0000

-1 1001

0 0 01060

o 0010

0 -1 001
-1 0 0 -1 0
1 0 0 -1 0

6 -x 0 0 O *

¢ 1 -1 0 -1
0 0 1 0 -1

\ /

As isiasily seen, the determinant of this matrix is not zero and hence
det J(Bg) # 0. Thus Z is not empty.

By induction hypothesis, every point of Z is the limit of a sequence of
points in R(n — 1). This and the fact that Z is a non-empty open set imply
that 2’ = R(n — 1) N Z is not empty. Let y be a point of Z’. The Jacobian
J(6(y)) of the equation (g). al §(y) is

_ . J(B)
0 D(n, By} —D(n, 8} 0o - 0
0 D(n,By) 0 ~D(n,By) © 0
: : : .. 0
0 D(H:Eﬂ) 0 . _ 0 —D(ﬂ, Bz)
0 0 D(n,B.;} —D(R,Bg) a e 0
0 0 0 D(n,B,,) —D(n,B,)

(Note that F,(n, A} = F!(n, A) for some u, v and Flin,A) = Fi(n,A)).
Since y is in R(n — 1) the lower block of the above matrix is of rank 5(n —
1&5—2). On the other hand, on the columns we picked up to make the minor
J(B) the lower block has only 0. Thus we see that rank(J(6(y))) = 5n(n—1}),

which means that @(n)* is smooth at é(y).
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The actions of GL{n — 1,R) on Wy and Sp(n) = Spe(n) nl/(2n) on U
{here dim Wy = n — 1 and dimf = 2n) induce an action of

G = (PCGL{n —1,R} x Spr(n))/{-1,+1}

on R{n — 1) (see {10, §6]). As Verdier proved, ft(r — 1) is a principal fiber
bundle over the moduli space of instanton bundles with group . Since the
moduli space of instanton bundles with fixed instanton number is connected
([9,3]) and since G has at most two connected comnponents, R{n — 1) has at
most two connected components and the action of a suitable elemeunt ¢ of G
transforms one component to another. Now put R'{n — 1) = 2" U ¢Z’. Since
R{n—1) is sinooth, the complement of H'(n—1) in A(n—1) is a thin scl and
then #(n — 1) is dense in R(n — 1). This completes the proof of vur claim.

Lemma 10.2. Let 1y be an element of Qy(n) which gives rise to a point
of @(n)* — R(n). Then, after changing frames of V, Wy and U, there is
a B = (By,...,B,) which represents a point of Q(n — 1) such that ¢ is
represented by §(B).

Proof. If we choose a suitable frames of ¥ and W), then 1 is represented
by A = (Ay,...,A,) such that for all 2 < ¢ < n, ‘4, A = 0 and that

tag ‘a, 0 O
Al = )
( ‘ay ~'my 0 0O )

where the notation is the same as in the proof of the above claini. Set
n+l r+1
T = 2 agit + Z A1ilnt 144
=1 =1

ntl n+l

Ty = Z ayty — ¥ &oillug1yi-
=1

i=1
Then we have that z; = ja(2;). Since 4; # 0, z; # 0 and hence (z,2,) =
{£,,z,) # 0. Moreover, we see that {z,,z;} = (21, J2(23)) = (£, —2;) = 0.
Thus, putting
I -+ Ia
v 2z, )
I — Iy

Yny2 = ==,
\/2(11: 11.)
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we ]l&l\’(‘ t'l“l'l’ (ylvyu+l) = ﬁl: (ylxyl) = I1 (yn+lsyn+l) =1 a'nd <ylv yn+l) =
0. Now let U’ be the orthogonal complement of the vector subspace spanned
by r, and zy with respect to (x,*). Then it is clear that ja(24') = U’ and j,
iduces a non-degencrate alternating form on W', 1t is easy to see that we
can find a basis {y2,. .-, Ynt1, Ynt3s- - - Y2as2} of U’ which is symplectic with
respect 1o 71|y and unitary with respect to {x,*}. Then {y,,...,¥3u42} is a
basis of I which is symplectic and unitary. I{ we write

nt?
=

U = L 9595
i=1
then ¢ = (g;;) s an element of Sp(n + 1) = Spe(n + 1) N U(2n + 2) and
aA = (gAq,...,94,) represents 1 with respect to the new basis. If we
replace the first member ¢ of Lthe basis of Wy by ‘/ﬁeh then

1100
0
114340

0

Since {gA,)JJigA; = ‘A A; = 0, we have that for all 2 < i € n, the first
and {n 4+ 2)-th rows of gA; are 0. By the facl thai g is in Sp(n), gA satisfies
the equations (INT 1") and {INT 2’). This completes the proof of our lemma.

Let us go back to the proof of Theorem 10.1. Pick an A = (A,..., A,)
which represents a point of @(n)** — R(n). Then, by the above lemma, we
may assutice that A = §(B). Il B is nol contlained in R'(n — 1), then it is
the limit of a sequence of points of '(n — 1) by induction and by the fact
that Ji(re — 1) is dense in H(n —1). Thus we have only ic prove that for
B € f'(n—1), 4(B) = A is the limit of a sequence of points of R{(n—1). In this
case, A represents a smooth point in @(n)**. [ we note that the dimension
ol Q(n)** — R{n) is less than dim R(n) and that dim, @(n)” = dim R(n),

we see that our asserlion is obvious. Q.E.D.

oA =

Combining the above Lheorem and Proposition 9.10, we get the following,

_Theorem 10.3. T(n) =0 o F(n - a) x E2(5"Y) and it is semi-algebraic
i M(n,2n)p(R).
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