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Introduction
The main object in the swudy of Riemannian geometry is  (propertics of) the
Riemann tensor which, in turn, splits into Weyl tensor, traceless Ricci tensor and
scalar curvature. The word "splits” above means that at every point of the
Riemannian wmanifold 1he space of values of the Riemann tensor constilutes an O(n)-
module which is the sum of three irreducible components.

More gencartly, let G be any group, not necessarily Q(n). In what [ollows we
recall definition of G-structure on a manifold and (the space of) its structure functions
(SF) which are obstructions to integrability or, in other words, (o possibility of
flaticning the G-structure. Riemannian tensor is an example of SF.  Among the most
known (or popular of recent) examples of such tensors are:

- an almost conformal structure, G = O(n)xR *, SF arc called the Weyl tensors,

- an almost complex Sstructure, G = GL{n;€) C GL(2n;R ), SF arec called the
Nijenhuis tensors;

- an almost symplectic structure, G = Sp(2n}, (no accepled name for SF);

- Penrose’ twistor theory, G = U(2)xU(2), SF -- Penrose tensors -- arc called the
"a-forms" and "B-forms”.

Remark. The adjective "almost” should always be added until the G-siructure
unider study is proved o be flat, i.c. integrable; by abuse of language people ofien omit
it, we also have 1his bad habir.

In a very lucid paper [G] Goncharov calculated all structure functions for the
classical space, i.c. an irreducible compact Hermitian symmetric space {CHSS); in his
examples G is the reductive part of the stabilizer of a point of the space. He did not,
however, write down Lhe highesy weights of irreducible components of SF; we do il
here and interpret some of these caiculations in [LPS1].

In what follows we expose some of the results of calculations of SF for classical
superspaces (for definition see {8] or [L2]); the first to be served are analogues of
CHSSs and we will sireich the analogy as far as we can.

The problem was raised in [L2], where some examples were indicaled as being
of particular interest. The thcorems in the main text continue summary of about [ive
year long tedious and labourious calculations (parlly announced in [P1, P2, P3]) duc 10
Poletaeva, who on the way corrected some statements and conjectures ol [L2], [L4]. We
will show that supermanifold iheory naturally hinis 10 widen the usual approach 10 SF
in order to embrace al least the foliowing cases:

- infinitc dimcnsional gencralizations of Riemannian geometry connected with
string theories of phisicists (these infinite dimensional examples have no analogucs
on manifolds because they require no less then three odd coordinates of the
superstring); our "Einstein equations” even for finite dimensional G arc not what is
known as supergravity: the corresponding G-structures are different, sce [LPS1),
mathemalically these structures look mosl nawyral;

- the G-structures of N-ecxiended Minkowski superspace: the langent space (o
the Minkovski superspace for N+ Ois nawrally endowed with a (2-step) nilpotent Lic
supcralgebra structure that highly resembles the contact structure on a manifold. We
start  studying such structures in carnest in [LPS2).

0.1.Preliminaries,

0.1.1. Structure functions. Let us retell some of Goncharov's results (|G))
and recall definitions (|S1]).

Let M be a (smooth, ie. of class C™) manilold of dimension n over a ficld K
which in 1his section is cither R or €. Let F(M) be the frame bundlc over M, ie. the
canonical principat GL(n; K)-bundle. Let GEGL(n; K) be a Lic group. A G-structure on
M is reduction of the frame bundle to the principal G-bundle corresponding to the
inclusion G<Gh(n; K), i.e. 8 G-struciure is the possibility o sclect transition functions
so that their values belong o G.

The simplest G-structure is the flat G-structure defined as follows. Let V be K®
with a fixed frame. Consider the bundle over V whose fiber over v&V consists of ali
frames obtained from the fixed one under the G-aclion, ¥V being idemtilicd with TyV.,

Obsiructions 1o identification of the k-th infinilesimal ncighbourhood of a point
meM on a manifold M with G-struclure and that of a point of the flat manifold V  with
the above G-structure are called structure functions of order k. Such an identification
is possible provided all structure funciions (who will be shornly refered to as SF) of
lesser orders vanish, By abuse of tanguage the space of structure funclions will also be
called SF.

Proposition. ([S1]). SF of order k are elements from the space of (k.2)-th
Spencer cohomology.

Recall the definition of the Spencer cochain complex. Let S! denote the operator
of the i-th symmetric power. Set 9 ;| =T ‘M. g4 =9 = Lie(G) and for i > 0 put:

9; = [X-Hom(g_],gi_l): X(v){w,...) = X(w)yv,..) for any v.w '9-l}
=Sg_ *eg, NS Y l(g_])*eg_l
and set (1> 9g)e = ;5.1 9§
Suppose that

the gp-module g , is faithful. 0.1.1)

Then, clearly, (g_l. 90).C pect(n) = der l([[xl..... %xn 1] . where n = dim 9.1 1L is subject
1o an easy verification that the Lie algebra struclture on e¢ci(n) induces a Lic algebra
structlure on (9-1' 90)... The Lic algebra (g_l. 90)"' usually abbreviated 1o g,, will be
called Cartan's prolong (the result of Cartan prolongation) of the pair 9 _; 8g)

Let E' be the operator of the i-th exierior power, sct Ck‘sgt =91 s® Es(g_l‘);

usually we drop the subscript or at least indicale only 90 Define the differential dg:

cks 5 Ck-ls+1 sening for any vy, .., vg+1eV (as usval, the stol with the haued
variable is ignored):

(3DNVLe o Vsa) = ECIDFV L e AV ¥ NV, )

s+1-i
As cxpected, 4.0
of (9-1' 90)*.

0.1.2, Case of simple g 4, over €. The following remarkable fact, though
known 1o experis, is seldom {ormulated explicitcly:

s+1 = 0 and the homology of this complex is called Spencer cohomology
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Proposition. Ler K =@, 94 = (g _;. 9g)s be simple. Then only the following
cases are possible:

I} g, % O and then ¢, is either veci(n} or its special subalgebra soect(n) of
divergence-free vector fields, or its subalgebra h(2n) of hamilionian fields;

2jgy =0.9; * O then g4 is the Lie algebra of the complex Lie group of
automorphisms of a CHSS (sec above).

Proposition cxplaing the reason of imposing the restriction (0.1.1) if we wish g,

1o be simple. Otherwisc, or on supcrmanifolds, where the analogue of Proposition docs
not imply similar restriction, we have 10 (and do) broaden the notion ol Carnan
prolong 10 be able to get rid of resiriction (0.1.1).

When g4 is a simple finite-dimensional Lie algebra over € computation of
structure  functions becomes an easy corollary of the Borel-Weyl-Bott-... (BWB)

theorem, cf. |G]. Indeed, by definition ., Hk.29‘ = H2(g_]; g«) and the BWB thcorem

implies that, as ¢ -module, Hz(g_l; 9 «) has as many components as Hz(g_l) which,

thanks 1o commutativity of g |, is just Ez(g_l); their highest weights, as eaplained in

1G], arc also not difficull 1o deduce from the theorem, however, |G] lacks this
deduction so we will give it here. Remarkably, in case 2) of Proposition SF are also of
order 1 except for one case,

Let us also immecdiately calculate SF corresponding to casc 1) of Proposition: we
did not find these calculations in the literature.

In what follows R(Eajx;} denotes the irreducible go-modulc with highest weight
Zajnj, where mjis the i-th fundamental weight; we will dencte it somctimes by its
numerical labcls R(Eaj; a) the highest weight with respect 1o the center of g, stands
after semicolon, cl.[VO], Reflerence Chapter,

Theorem, 1)Scrre |St]). In case 1) of Proposition structure functions can only
be of order 1.

Mg ) gu) =0
BH%(g.|: 94) = R(z)eR(x))  for gy = H(2n), n>1;
12y ;i 94} = Riny) for gu=19(2).

2)(Goncharov [G]). SF of G-structures of classical CHSSs are of order 1 except for
G = CO(3) and their weights are (recall that Q, = Gryd):

for g4 = veci(n) and soect(m), m>2;

CHSS 2L Gry,M+n

weight 0 R(2, 0,...0 -1)eR(1, 0,..,0, -1, -1) ®R(1, 1, 0,..0 ,-1})@R(1, 0,....0, -2}
of SF

0161 LGry, Qp >4

R(1,1, 0....0, -1,-1,-2) R(2, 0....0, -1,-3) R(2nl+2n2)

0.1.3. SF for reduced structures. In  {G] Goncharov considered
(generalized)  conformal  structures. Structure functions  for the corresponding
(generalized) Riemannian struciures, i.c. when 89 is the semisimple pan g of g = Lie

(G) for (he cases considered by Goncharov scem to bhe more difficull o compute
because in these cascs (9-1' 90)., =9.%9y and the BWB-thecorem does not work. Having
computed them, however, we get as a rcward more SFs and, consequently, more
intricate  gcometry.

Since ~g = 0, all we should worry about are 5F of orders | and 2. The following

stalcment is a dircct corollary of  definitions.
Proposition (|G], Th4.7). For A9 and ¢ SF of order 1 arc the same and SF of

order 2 for A9 are 52(9 1) = 52(9_1*).

Example: Riemannian geometry. Let G = O(n). In this casc ¢ = gAland in Sz(g_l)
a 1-dimensional subspace is distinguished:; the sections through this subspace
conslilete a Riemannian meteic g on M. (The habilwal way 10 delermine a metric on M
is via a symmetric matrix, but actually this is just one scalar matrix-vaived function,
net n{n+1)/2-dimensional space of functions.) The values of the Ricmannian tcnsor al

a point of M constitute an O(n)-module Hz(g_]; 9s) which contains a wrivial component
whose arbitrary section will be denoted by R. What is imporiant, this trivial

componenl is naterally rcalised as a submodule in a module isomorphic to Sz(grl)_

Thus, we have 1wo matrix-valued functions: g and R cach being a scction of the (riviul
gg-module. What is more natural than to equatc them (up to a constant factor)?

R=1L g where A « R, {0.1.3)

Let now R correspond 10 the Levi-Civita connection; the process of restoring R from g
involves differentiations thus making (0.1.3) into Einstein equation (in vacuum and
with cosmological term L),  a nonlincar pde.

A gencralization of this example to G-structurcs associated with other CHSSs and
1o supermanifolds is considered in [LPS1].

0.1.4. SF for contact structures: Shchepochkina® prolongs. In heading
a) of Proposition 0.1.2 are tisted all simple Lie algebras of (polynomial or flormal)
vector fields except those that preserve a contact struciure,  Recall that a contact
structure is a maximally nonintegrable distribution of codimension 1, ¢f. [A]l. To
consider contact structures we have to generalize slightly the notion of Cartan
prolongation: the tangeni space to a peoint of a manifold with a contact structure
posscsses a natural structure of a nilpoteni Lie algebra (Hcisenberg algebra).

This case is very attractive from  supcrmanifold point of vicw becausc the
tangent space to the N-cxtended Minkovski superspace is naturally endowed with a  2-

step nilpotent Lie superalgebra g = ... 59, siructure with dim g | = 4Ne, dim g
= 4, Since for the Lic (super) algebra of contact vector ficlds dim .9 = 1, il is casicr to
siart with centact structurcs.

In general, given a nilpotent Lie algebra g = ®asiz g9 and a Lic subalgehra

9, © ber g_which preserves Z-grading of ¢ _, define its i-th Shchepochking prolong
fori > 010 be:

* First considered by I. Shchepochkina  in [Sh]



¢ = (5"(g.)0%®9, nS*(g_)'Og,)i.

where 1he subscript  singles  out the componem of degree i.Similarly 1o Ihe above,
defing  g,. or rather, (9 , gglu- 28 ® ;. 4 ¢, then, by the same reasons us in 0.1.1, g,

is a Lic algebra (subalgebra of T(dim g ) for d = 2) and Hz(g_; g«) is well-defined.

The space Hz(g_i 9 4) is the space of obsiructions 1o flawness. It naturally splits

into homogencous components whose degree corresponds 1o what we will call the
order of SF; in general case the minimal order of SF is 2-d. When d > 1 there is no clear
correspondence between the order of SF and the number of the infinitesimal
neighbourhood of a point of a supermanifold with the flat G-structure.

Example. Let g = ¢3p{2n), ¢ | = R(x[; 1), g9 = RW) ; then go= 12n+1) and
y _ * s-1 = *
c* %9, = 9k-29E°(9.1 ") 09, 3®EY (g1 )9 5"
The number k here is the order of SF.

Theorem. For g,= E(2n+1} all SF vanish.

0.1.5. SF for projective structures. I is also interesting sometimes (o
calculate & Hk'z(g_; b) for some Z-graded subalgcbras BT g,. such that h, =g, foris
0. For example, for g =gl(n) and ¢ _; iis siandard (identily) representation we have
g+ =vecl{n) and as we have seen all SF vanish; but if h=35Im+ 1) coecl(n) then the
corresponding SF arc nonzero and provide us with obstructions to imtcgrability of
what is calied projective connection.

Theorem. 1) Lef gy = veci(n), b =51(n + 1). Then

SF of order I and 2 vanish, SF of order 3 are R(2.1, O, ..., 0, -1)

2)Let gy =1(2n+1), b = 5p(20 + 2). Then SF are R(my+xy; 3) of order 3.

0.1.6. Case of simple g4 over R.

Example: Nijenhuis tensor. Ler g = gl(n) CgW2ZniR), g | is the identity module.
In this case ¢4 = eect(n), however, in seeming contradiction with Theorem 0.1.2 the SF

arc nonzcro. The reason is that now we consider not C-lincar maps but R -lincar ones.
Theorem. Nonvanishing SF are of order 1 and constitute the ga—module

«9_10¢Ezn(9_1*), where gicv) = «Cgv for ca €, gagl{n), ve«V and a gl(n)-module V.

0.2. SF on supermanifolds: Plan of campaign.

The necessary background on Lie superalgebras and supermanifolds s
gathered in a condenced form in [L5]. The above definitions are gencralized to Lic
superalgebras via Sign Rule.

One of the slogans we are guided is "simple Z-graded Lie superagebras of finite
growth (SZGLSAFGs)are as good as simple finite-dimensional Lie algebras”, there
should be similar results for either. On the strength of arguments of 0.1 we shall

- list Z -gradings of SZGLSAFGs of depth 1 and 2 (recall that a Z-graded Lic
(super)algebra of the form @ d< i<k 9018 said 10 be of depih d and length k, here d, k

>0.)". (for the known SZGLSAFGs and d = 1 this is done in {LSV]). We should also explore
the cases associated with Z-grading of the form & ., . ¢; of Kac-Moody (iwisted loop)

superalgebras,

Remarkably, there are nol only “trivial® analogues of CHSS, the spaces of loops
with values in a finite-dimensional CHSS, but associated with twisted loop algebras and
supcralgebras.

- formulate analogues of Theorems 0.1.2 and BWB for SZGLSAFGs (otherwise we
will have o continue calculate everything with bare hands and there is praciically
nothing humainly computable lel).

Can programmers help? Most pant of the calculations omitued here is a par
for a fast computer, especially to formulale conjectures. Now, when only cases
impossible 10 1ackle with bare hands arc lefl, we desperatcly nced solution 1o the
foltowing problem, cf. [F] and [LP]:

Problem. Write a program for calculating (co)homology of a Lic
(super)algebra g with coefficients in any g-module

- calculate prejective-like and reduced structures for the above and then go
through the list of real forms.

Some nontrivial points in what follows are:

- Canan prolongs of (3_j.9p) and of (Mg _,, g,) are cssentially different;

- faithfulness of g q-actions on ¢ _; is violaled in natral cxamples:

a) Grassmannians of subsupcrspaces in an (n.n)-dimensional superspace
when  the center & of g acts trivially; retain the same  delinition ol Caran

prolongation; the prolong is the semidirect sum (9-1'90,2)* lﬂS“‘(g_l*) with the

natural 2 -grading and Lie superalgebra siructure; notice that the prolong is no!
subaigebra of veci(dim g ;)

b) the structure preserving the exterior differenual. More precisely recall, thai,
supcrmanifolds, the good counterpart of differential forms on  manifolds
pseudodifferential and pseudointegrable forms. Pseudodifferential  forms on
supcrmanifold X are functions on the supcrmanifold X' associated with the  bundle 1
obtained from the cotangent one by fiber-wise change of parity. Differential formy on X
fiber-wise polynomial functions on X'. (In panicular, if X is a manifold there arc
pscudodifferential forms.) The exterior differential on X is now considercd as an odd vo
fiecld d on X'. Let x = (ul. up.ﬁl. Eq) be local coordinates on X, xi' = n(xi). Then

Exi'&Iaxi is the familiar coordinate expression of d. The Lie superalgebra @ (J)

vetct(m+n/m+n), where {m/m) = dim X, -- the Lie superalgebra of vector Tields preserving
ficld d on X' {(sec dcfinition of the Nijenhuis opcrator P4 in [LKW]) -- is neither simplc

transilive and therefore did not draw  much atention se far. Siill, the corresponding
structure (€ (d) = (g_;. 9g)s, where g = gI{k)xM{g1(k)) and where II(glI(k) is abckean a

constitutes the kernel of the 90-aclion on g = id, the standard (identity) representation

g 1(k)) is interesiing and natural. Let us call il the exterior differential structure; as we -
see, it is always integrable ( like projective structure ),

Theorem. Structure functions of the exterior differential structure are 0.

Digression. An interesting counterpart of the exterior diffcrential structure s
the odd version of the hamiltonian structure. Pseudointegrable  forms on
supermanifold X are functions on the supermanifold ‘X associated with the bundle X
obtained from the taangear one by fliber-wisec change of parity. Fiber-wisec polynomial
functions on 'X are called polyvector fields on X. (In particelar, if X is a manifold there
arc no pseudoinicgrable forms.) The exterior differential on X is now considered as an
odd nondegenerale (as a bilinear form) bivector field div on X'. Let x = (u}. up.gl.

Eq) be local coordinates on X, "‘i = u(a/axi). Then div = Zaz/axi'axi is the coordinate
eapression of the Fourier transform of 1the exterior differential d with respect 1o
primcd variables. The Lie superalgebra aui(div) is isomorphic 10 the Lie supecralpebra
Te(m+n) which is the simple subalgebra of vec¢d(n+m/n+m) 1that preserves a



nondegencrate odd differential 2-form mzzdxi'dxi: an imteresting algebra is the

supcralgebra  sle(m+n) which preserves both div and w: for both of these Lic
supcralgebras and their deformations the corresponding SF are calculated in [P1] and
[LPS1) .

Note that @ {(d) is not even transitive; on manifolds we are accustomed to

disregard such struclurcs;
- formulation of Serre's theorem (sce above) fails to be true for superalgebras;
counlcrexamplcs are supcralgebras of series svecl, sce below, and sle.

[LPS1| and {LPS2] 1ogether with this paper constitute an outcome of the first 5-
year part of this plan. In these texts we deal with lincar algebra: at a point; global
geometry, practically not investigated, is nontrivial, cf. the review (MV],

Acknowledgements. We are thankful to D. Aleksecevsky, J. Bernstein, A.
Goncharov, A. Onishchik, V. Scrganova and 1. Shchepochkina for help. During
preparation of the manuscript D.L. was supporied by Il Bendixson grant and NSF grant
DMS-8610730.

Terminological conventions. 1)The g -module V with the highest weight §
and even highest vector will be denoted by Vt or R(E ).

2)Let ¢g denote the (rivial cenmtral “extent” (the result of the extention) of a Lic
(supcryalgebra g, whereas p  stands for projectivization (as in psl, pq) and 5 for
“trace"less part (as in sV, sq. sh).

1.Spencer cohomology of pgqin).

Before we proceed, recall that all 2 -gradings of depth 1 of sI(m) arc of the form
9.1290®9,, where gy =g * with 9= c(sI(p)® s1(m-p)). As gq-module, Hz(g_]-_ g «) has
two components if (p-1){m-p-1) + 0 and vanish otherwisc.

The Spencer cohomology of the Lie superalgebra g = psqln), i.c. SF for the
Qucergrassmannians, rcsemble that of $i{n) much more than that of sT(m/n}). In T[act,
the structure of  SF for the "usual” superGrassmannian (9 = sl(m/n)) is so complicated
that just to list the answer with all particular cases takes as much space as the whole of

this paper, sce [P4].
Proposition ([K]). A} All Z-gradings of depth | of psqgin) are of the form
9.1%90®9; with g, = 9_1"' and 9g = ¢ps(q(p)®qin-p)) . p(n-p} +{}, whereas g .y s one

of the two irreducible gg-modules in idpoid where Id, denotes the siandard

*
n-p -
(identity) representation of the “summand” of 90 isomorphic to q{k) , explicitely :
= i i *.
9_4= <{xinmfx))e{y*n(y}), where xudp, y"dn-p .
B)(Q_lr- 90)* =9

Theorem, H“'2 90 = V2£]+gp+5!.25n_p ng”s’l_p; other SF vanish.

2.Spencer cohomology of osp(m/n),
2.1. Z-gradings of depth 1. All thcse gradings are ol the form 9.1®297%9,

and g =9 *

Proposition (K] and [LSV]). For osp(mi2n) the following values of 9 are
possible for the Z-gradings of depth I:

a) cosp(m-2i2n) with ¢_;= id;

bigitrin} if m = 2r with ¢ _;= EZ(id).

2.2. Carlan prolongs of (9 4,94} and (9 4, *94).

Proposition. 1)(g _;,90)s = ¢ except for the case 2.1b) for r = 3, n = 0 when
{9_p 9g)x = L#cH3N0) .

2497 "90)+ = 9.1° "9¢-

2.3. Structure functions.

Theorem. Cases a) and b} below correspond to cases 2.2 of Z-gradings, For
cases mn = 0 see [G] and Introduction.

a)As "go-module, HZ'ZAQO - SZ{AZ(Q_I))M"(Q_J) and splits into the direct sum of

three irreducible components whose weights are given in Table I, where m = 2r +2 or
2r +3 and n>0 (the case n = 0 is considered in |G} and Introduction).

Asx go-madule, H2'290 = HZ'ZAQOIS:',(Q_I) and Table 1 alse contains the highest

weights of irreducible components of Hz'zgo . For k+2 SF vanish.

BJAs g -module, Hz(g_l,' Qo) is irreducible and their highest weights are given
in Table 2 for r # n, n+2, n+3.

The case r = 4, n = 0 and r = 2, n = 1 coinside, respectively, with the cases
considered in a} for of8) and osp(4i2).

3.Spencer cohomology of d(x).

Proposition ([K| and [LSV)). All Z-gradings of depth 1 of g are lisied in Table |
of (LSV]. For all these gradings (9_;. 9g)x = 9 .

Theorem. For these gradings we have, respectively:

UH!'2 90 = V(Za.*])etq.sz,' other SF vanish.

H)H‘"2 90 = V((a+2)/a)gl+gz.' other SF vanish.

HUH"'?‘ 90 = V((avj)/(].;.ajjgl.quez,' other SF vanish.

4.5pencer cohomology of nbs.

Proposition, The only Z-grading of depth 1 of g is listed in Table | of [LSV],
see also [K].

1.2

Theorem. For this grading (g _;, 90)n =9 and all SF vanish except H 90 given

-by the nonsplit exact sequence of go'modu!es

0->X>H'? > V25> 0 (4.1}

where X is given by the nonsplit exact sequence of go-madufe.\'
d--> !‘I(V4€l+z,_~2+,_~3) > X > V3£]+28] -> 0 (4.2)

5. Spencer cohomology of vectory Lie superalgebras in their
standard grading.



Theorem (cf. Theorem 0.1.2). 1) ¥ For g4 = veclimin), soect (min), F(2m+1in)

and m(r) SF vanish except for soect(O/n) when SF are of order n and constituie the g,-

module TI"(1).
2) For gu= b(0im),m >3, SFare H({R(3¢1)0R(¢‘,)j.

3) For g« =s5(0im), m > 3, nonzere SF are same as for h(0im) plus additionally
H"{R(}rl)) of order n-f.
4) For g « = sle(n), n >1, nonzero SF are Hl2 speln) = 83(94*). H2 speln) = T101),

HY spe(n) = 1),

6. Nonstandard gradings of the Lie superalgebras of hamilton and
contact vector fields. For cither of these superalgebras, g(m/n) (= B(2m/m), $h(n)
or I(2m+1/n) for n>1) there is one grading of the form ¢ = ®ysis-l g;with g, =
F(m/n), go=g(mln-2)0F(m/n). where F(m/n) is the superspace of "functions” (in owur
case polynomials or power series) on which 90 naturally acts, and 9, =g_1‘.

By incredible effort one of us (E.P.) managed 10 calculate the case g = 3h(6). We
will consider it in [LPS1). We have no idea how to approach other, especially infinile
dimensional cases: the number of irreducible components grows with n and m! The
only result to this end is due to Yu. Kochetkov {1985, unpublished) who showed that SF
of order 2 do contain a trivial component thus cnabling us to write an analoguc of
Einstein equation for g4= W2m/n), sh(n) or 12m+1/n) for n>l.

7. Odd sanalogues of Nijenhuis tensor: SF for q(m). For the even and odd
complex structures on supcrmanifolds SF are implicitely calculated in [W]. Here we
calculale them explicitely for the odd siructure.

Proposition. For 99 = 9(m) and 9.5 = id we have g 4= 9.1°9%y

Theorem. For m = 1 SF vanish.

For m = 2 the ga-maduie HZ(Q_F 9w has two componenis: Ez(id*)OEz(id*).

For m > 2 the ga-module HZ(Q_I; 9 u) has four components:

E2(id*)oE2(id*)@E2(id*) #E2(id*).
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Clasgical superspaces and rclated struclures
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Introduction

The main object in the study of Riemannian gcometry is  (propertics of) the
Riemann tensor which, in turn, splits inlo the Weyl tensor, Ricci tensor and scalar
curvature.  The word "splits" above means that  al every point of the Ricmannian
manifold M" the space of valuecs of the Ricmann tensor constitutes an O(n)-module
which is the sum of three irreducible componcnts (unless n =4 when the Weyl
tensor  adilionally splits inlo 2 components).

More genearlly, let G be any group, not necessarily O{n). In what follows we
recall definition of G-structure on a manifold and of (lthe space ol) its sfructure
functions (SFs) which are obstructions to intcgrability or, in other words, to
possibility of flattening the G-structure. Riemannian Iensor is an cxample of SF.
Among the most known (or popular of recemt) cxamples ol (-structures arc:

- an almost conformal structure, G = O(n)aR*, SF arc called the Wey! tensors;

- Penrose' twistor theory, G = SU(2)xSU(2)xC*, SF -- the Penrese fensor --
splits  into 2 components whose seclions are called “a-forms"” and “f-forms”;

- an almost complex structure, G = GL(n;@) CGL(2n;R ), SF is called the
Nijenhuis tensor,

- an almost symplectic structure, G = Sp(2n), (no accepted name flor SF).

The first 1wo examples are examples of a “"conformal" structure which
preserves a tensor up to a scalar. In several versions of a very lucid paper |G)
Goacharov calculated (among other things) all SF for all structurcs with a simple
group of conformal transformalions, whose subgroup of [linear transformations iy
the reduclive part of the stabilizer of a point of the space and is the "G” which
determines the G-structure on the manifold. Remarkably, Goncharov's examples
corrcspond  precizely to the classical spaces, i.c. irreducible compact Hermitian
symmeltric spaces (CHSS). Goncharov did not, however, wrile down the highest
weights of irreducible components of SFs; this is done in [LPS1] and some of these
calculations are interpreted as lcading to gencralized Einstein cquation.

In this talk we advertize results (mostly due o E.Poletacva) of calculating SF
(and interpreiation of them) for classical superspaces who are deflined and partly
listed in [S] and [L2] (see also [V]. containing intercsting papers on supcrgravity
and where curved sepergrassmannians are introduced). The problem was raised in
[L2], ¢f. [L4], and the above examples are now superized in [P} and |LPS). The
passage to supermanifolds paturally hints to widen the usual approach 1o SFs in
order 1o cmbrace at least the following cases:

- 2 ypes of infinite dimensional generalizations of Riemannian geometry
connccled with: (1) string theories of physics (these infinitc dimcnsional examples
have no analogues on manifolds because they  require no less then three odd
coordinates of the superstring; the list of corresponding hermitian  superspaces
deduced from 8] is given in [L2}; dual pairs, etc. will be considered elsewhere) and
(2) Kac-Moody (super) algcbras (scc Table 5);

- the G-structures of the N-extended Minkowski superspace: the tangent
space 1o the Minkovski superspace for N#+{is naturally cndowed with a 2-step
nitpotent  Lic  supcralgebra structure that highly resembles the contact struclure
on a manifold. We start studying  such structures in cammest in [LPS2], compad€ ovur
approach with that of the GIKOS group lead by V.. Ogicveisky, Maore gencrally, we
shall calculate SF for the G-structures of the type corresponding 1o any "llag
varicty", not just Grassmannians, particular at that, sce Table L



Elsewhere we will gencralize the machinery of Jordan algebras, so useful in
the study of geometry of CHSSs [Mc], to the cases we consider (this is Vinel's thesis).

Can programmers belp? A good pari of the calculations we need are very simple (Lo
calculate cohomology is 1o solve systems of linear equations (Fi). Still, though the number of
papers on supergravily is counted by thousands {(scc reviews in our bibliography, of which
1053}, [WB], [We] arec easy to understand) there is remarkably smail progress in actual
calculations {cf. mathematical papers [Schl, [RSh], [Me]). It is yer unclear what arc all
supergravities for N>1. The reason lo that: the calculations are voluminous besides, these
calculations also have to be "glued” in an answer and there are no rules for deing so, cf. [P4).
Thus the problem is a challenge for a computer scientist, our calculations, together with [LP1}
and [P1-4), illustrate (LP2). For our cohomology of cur infinile dimensional Lie (super)aigebras
there are NO recipes al all (not even from Feigin-Fuchs nor Roger [FF]).

in this text we deal with linear algebra: at a point. The global geometry,
practically not investigated, is nontrivial, cf. [M], [MV].

Acknowiedgements. We arc thankful to D. Alekscevsky, ). Bemnstein, P.Deligne, A.
Goncharov, V.Ogievetsky, A. Onishchik and I. Shchepochkina for help. During the preparation
of the manuscript D.L. was supporled by I.Bendixson and NFR grants, Sweden; MPI, Bonn; and
NSF grants: via Harvard and DMS-8610730 via IAS; SFB-170 supported D.L. and V.5. al the
final stage,

Preliminaries
Terminological conventions. 1) A ¢ - module V with highest weight § and even highest

vector will be denoled by \f",g or R(E). An irreducible module with highest weight Za;n;, where

is the i-th fundumental weight, will be denoted sometimes by its numerical labels R{Zaj; a} the
highest weight with respect 10 the center of ¢ stands after semicolon, cf.[OV], Relerence
Chapter.

2) Let ¢g denote the trivial central “extemt" (the result of the extention) of a Lie
(superjalgebra g; ket p siand for projectivization (as in psl, pg) and § for "wrace”-less part (as
in 51, 59, sh).

0.1. Structure functions. Let us retell some of Goncharov's results ([G]) and
recall definitions ([St}).

Let M be a manifold of dimension n over a field K; think K =€ (or R). Let
F(M) be the frame bundle over M, i.e. the canonical principal GL(n; K )-bundle. Lct
G<GL{n; K) bc a Liec group. A G-structure on M is reduction of the frame bundle w0
the principal G-bundle corresponding 10 inclusion G< GL{n; K), i.c. a G-structure is
the possibility to sclect transition functions so that their values belong 10 G.

The simplest G-structure is the flar G-structure defined as follows. Let V be
K" with a fixed frame. Consider the bundle over V whose fiber over veV consists of
all frames oblained from the fixed one undér the G-action, V being identified with
TyV. )

Obstructions o identification of the k-th infinitesimal neighbourhood of a
point meM on a manifold M with G-struciure and that of a point of the flat manifold
¥  with the above G-structure arc called structure functions of order k. Such an
ideniification is possible provided all structure funciions of lesser orders vanish.

Proposition. ([St)). SFs of order k are elements from the space of (k2)-th
Spencer cohomology.

Recal! definition of the Spencer cochain complex. Lei st denote the operator of the i-th
symmetric power. Sel ¢ | =T M, g, =9 = Lie(G) and for i > 0 pur:

(9.1, 9p)s = ®; 5. 9} where g, = {XeHom(g _;.9; 1} XivMw,..) = X(WKv,...)
for any v.w «g ] = 51(9-1)‘.90 nst 1(9_1)'.9_1-

Suppose that

the g o-module g _, is faithful. 0.1
Then, clearly, (9_1. 90).c oectin) = dey K [[x]..... xn 11, where 0 = dim 9.1 It is subject 10 an
easy verificarion that the Lie algebra struclure on oeci{n) induces a Lie algebra siructure on

(§_ ). 9¢)s- The Lie algebra (g _;, gdv. usually abbreviated to g, will be called Cartan’s prolony
(the resuly of Cartan prolongaiion) of the pair {9 . g)-

Lel E' be the operator of the i-th exterior power; set Ck‘s9 = gk_solis(g_l‘); usually we
-

drop the subscript or at least indicate only g . Define the diffescntial  3y: cks s ckasvl

seuting for any vj, .., vg+1¢VY (as always, the slot with the hatted variable is ignored):
(3001, o Va4 1) = ECDRO o v v v )

As usual, asasﬂ

0.2. Case of simple g, over €. The following remarkable fact, though known 16 cxperls, s

= 0, the homology of this complex is called Spencer cohomology of (g 1. 94).-

seldom formulated explicitely:
Proposition. Let K=C, g, = (94. 90), be simple. Then only the following cases are

possible:

1) 9,7 0 and then ¢, is either oect{n) or its special subalgebra svectin) of divergence-
free vector fields, or its subalgebra B(2n) of hamilionian fields;

2)92 =, 4, * 0 then g, is the Lie algebra of ihe complex Lie group of awomorphisms

of a CIISS (sec above).
Proposition explains the reason of imposing ihe restriction (0.1) if we wish g, 1o be

simple. Otherwise, or on supermanifolds, where the analogue of Proposition docs not imply
similar restriction, we have o (and do) broaden the notion of Caran prolong to be able to get
rid of resiriction {0.1).

When g, is 2 simple finile-dimensional Lie algebra over € computation of structure

functions becemes an easy corollary of (he Borel-Wcil-Bml-... (BWB) theorem, ¢f. |G| Indeed,

by delinition & Hk'zg = Hz(g_l; g,) and by the BWB theorem Hz(g_l; ¢ o) a5 g-module, has as
L)

many componenls as Hz(g_l) which, thanks 10 commutativity of g ;. is just 52(9'1); the highest

weights of thcse modules, as explained in [G], are also deducible from the theorem, However, [}
pityfully lacks this deduction, see (LP1] and [LPS1] where i1 is given wilh interesting
interpretalions. .

Let us also immedialely calculaie SF corresponding te case 1) of Preposilion: we did nol
find these calculations in the literature. Nole that vanishing of SF for g, = oveet and ¥ (sce 0.5)

follows from the projeclivity of g as go-modules and properties of cohomology of coinduced
modules {F]. In what follows R(Zajx;) denolgs the irreducible g ,-module. The classical spaces

are listed in Table 1 and some of them are bapthized for convenicnce of further references.
Theorem. 1){Serre [St]}. In case 1) of Proposition structure functions can only be of
order 1.

n)Hz(g_l; gs)=0 for g, =vect(n) and svect{m), m>2;
b)Hz(g_]: ¢4) = R(ng)oR(n}) for g, = H(Zn), n>1;
H2(9.1:9.) = R(ny) for g4 =b{2).

2)(Goncharov [G]). SFs of Qi are of order 3 and constituie R(41|:1). SF for Grassmannian

Gr,,,"'*" (when neither m nor n is 1, i.e. Gr is not a projeclive space) is the direct sum of two
components whose weights and orders are as follows:

Let A =R(2,0,...0,-1)®R(1,0,...0,-1,-1) B=R(1,1,0,..,0,-1)®R(1, 0, ..., 0, -2).
Then if mn » 4 both A and B are of order 1;

fm= 2,nw 2 Aisof order 2 and B of order 1,

ifa= 2, me 2 Ais of order I and B of order 2;

ifn=m=2both A and B are of order 2.
SF of G-siructures of the rest of the classical CHSSs are the following irreducible gu—mudules

whose order is I (recall that Q4 = Gr24).‘
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0.3. SF for reduced structures, In [G] Goncharov censidered conformal
structures. SF [lor 1he corresponding generalizations of the Riemannian structure,
i.c. when g, is the semisimple pan g of g = Lie {(G), seem to be more dilficult 1o
compute because in these cases (9-1' 90}" =9¢.%9g and the BWB-thecorem docs nol

work. Fortunately, the following stalement, a direclt corollary of definitions, holds,
Proposition ([G], Th.4.7). For 9q = *g and ¢ SF of order 1 are the same and

SF of order 2 for g = "9 are Sz(gt) = Sz(g_l‘). (There are clearly no SF of order 3 for

9p="9)
Example: Riemannian geomerry. Let G = O{(n). In this case 9= g_lami in

52(9_]) a l-dimcnsional subspace is distinguished; the scctions through this

subspace constilutc a Riemannian metric g on M. (The habitual way to detcrmine a
mctric on M is via a symmetric matrix, but actually this is just one scalar matrix-
valued function.) The values of the Riecmannian temsor at a point of M constitute an

O(n)-module Hz(g‘l; ¢ «) which contains a (rivial component whose arbitrary
section will be denoied by R. What is important, this trivial component is realised
by Proposition as a submodule in Sz(g_l). Thus, we have {wo matrix-valued

functions: g and R each being a scction of the trivial ¢,-module. What is morc

natural than to require their ratio to be a constant (rather than a function)?

R =1 g where h « R. (EE,)
Recall that the Levi-Civita conneclion is the unique symmctric affine connection
compatible with the meiric. Let now 1 be the structure function (sum of its
components belonging 1o the distinct irreducible O(n)-modules that conslitute

112(9‘1; g«)) corresponding Lo the Levi-Civita connection; the process of restoring 1
from g involves differcntiations thus making (EE,) into a nonlinear pde. This pde
is not Einsicin Equation yet. Recall that in adition 10 the trivial component there is
another O(n}-component in Sz(g_l), the Ricci tensor Ri. Einstein equations {in

vacuum and with cosmological term 1) are the two conditions: (EE,)} and
Ri =0. (EE i)

A pgencralization of this example to G-structures associated with certain
other CHSSs, flag varietics, and to supermanifolds is considercd in [LPS1] and [LP3|.
0.4. SF of flag varieties. Contact structures. In heading a) of Proposition 0.2
there arc listed all simple Lie algebras of (polynomial or formal) vector ficlds
cxcept thosc that prescrve a contact struclure.  Recall that a contact structure is a
maximally nonintcgrable distribution of codimension 1, cf. [A].

To consider contact Lie algebra we have to  generalize the notion of Cartan
prolongation: the tangeat spacc 10 a point of & manifold with a contact structure
possesses a natural structure of the Heisenberg algebra.  This is a 2-siep nilpotemt
Lic algcbra. Let us consider the general case corresponding to “"flag varictics” --
quotients of a simple complex Lic group modulo a parabolic subgroup. (The

nccessity of such a gencralization was very urgent in the classification of simple

Lic superalgebra, sec [Shch] and |L2], where it first appeared, alrcady supcrized.)
Given an arbitrary (but Z-graded) milpotent Lic algebra g _= Ty d 9 and

a Lie subalgebra 95 < dsr g_which preserves & -grading of g , definc the i-th

prolong of the pair (g , gp) for i > 0 10 be:

* L)
g; = (5 (9.)*®g, N3 (g )*®g ).
where the subscript  singles  out the component of degree i.Similarly (o the above,
defing g 4. o rather, (9, ggle. 85 ® . 49,0 them, by the same reasons as in 0.1,

¢« i5 a Lie algebra (subalgebra of I(dim ¢ ) for d = 2 and dim 9 5= 1) and l{i(g_; 94)

is well-defined. Hl(g_;g.) naturally splits into homogencous componenls whose

degree corresponds 1o what we will call the erder. (For the particular case of Lic
algebras of depth 2 the obtained bigraded complex was independently and much
carlicr dcfined by Tanaka [T] and used in [BS] and [O]. No cohomology was
explicitely calculated, however; see calculations in [1.PS2] and [LP3].)

The space Hz(g_; 9 «) is the space of obstructions to flatness., In gencral casc
the minimal order of SF is 2-d. For ¢ > | we did not cstablish correspondence
between the order of SF and the number of the infinitesimal ncighbourhood of a
point of a supcrmanifold with the flat G-structure.

Examples. 1) G* is a simple Lie group, P its parabolic subgroup, G the Lcvi
subgroup of P, 8g = Lic(G), ¢ _is the complementary subalgebra to Lic{(P) in Lic(G*).
The corresponding SF, calculable from the BWB-theorem if g4 is finitc-dimensional
and simple describe for the first time the local geometry of flag varictics other
than CHSSs, see [LP3] for details. Here is the simplest example.

2) Let ¢ = ¢5p(2n), 9 = Rixy; 1), 9.2 = R(0} ; then g 4= T{(Zn+1) and

ck %9, = 9k-s*E"(9 0 ©9;.51°E" (9 e "
Theorem. For g4= 1(2n+1) all SF vanish.

This is a reformulation of the Darboux theorem on a canonical 1-form,
actually.
0.5, SF for projective structures. It is also interesting somctimes (o calculate

}{2(9_; b) for some Z-graded subalgebras Bh< g, such that bi =9, for i <0. For
cxample, if g =gl(n) and g ; is its standard (identity) representation we have g, =
vect(n) and, as we have seen, all SF vanish; but if H =s{(n + 1) Coect(n) then the

corresponding SF are nonzero and provide us with obstructions to integrability of
what is called the projecrive connection.
Theorem. 1) Let g = veci(n), b =351(n + 1). Then SF of order I and 2 vanish,

SF of order 3 are R(2,1. 0, ..., 0, -1}

2)Let gu = 1(2n41), b = sp(2n + 2). Then SF are Rim;+my; 3) of order 3.
0.6, Case of simple g4 over R.

Example: Nijenhuis tensor. Let g = gl(n) < gl(Zn;R), g ; is the identity
module. In this case g. = oecl(n), however, in sceming contradiction with Thecorem

0.1.2, the SF arc nonrzero. There is no contradiction: now we consider not €-lincar
maps bul R -lincar ones.
Theorem. Nonvanishing SF are of order 1 and constitute the gg-module

TIOCEzR(g-l”' where glcv) = TV for ca€, gagl(n), veVand a gl(nj)-module v,



One of our mottos is: simple Z-graded Lie superagebras of finlte growth
(SZGLSAFGs) are as good as simple finite-dimensional Lie algebras; the results
obtained for the laiter should hold, in some form, for the former. So we calculaic

SF on supermanifolds: Plan of campaign
The nccessary background oa Lie superatgebras and supcrmanifolds s
gathered in a condenced form in [L5]), see also (L1, L2). The above definitions  arc
gencralized to Lie superalgebras via Sign Rule.
On the strength of the above examples we must list &-gradings of SZGLSAFGs
of finite depth (recall that a Z-graded Lie (super)algebra of the form © . . | ¢, is

said 10 be of depth d and length k; here d, k >0), calculale projective-like and
reduced structures for the above and then go through the list of real forms.

Our theorems are cast in Tables. In Table 1 we set notations. Tables 2 and 3
complement difficult tables of [S]. Table 4 lists all symmetric superspaces of depth 1
of the form G/P with a simple finite-dimensional G. Table 5 lists all hermitian
superspaces corresponding to simple loop supergroups different from the obvious
examples of loops with values in a hermitian superspace. Notice thar there are 3
series of nonsuper examples.

We compensaie superfluity of exposition by wast bibliography with further
resulls. Let us list some other points of interest in the study of SF on superspaces.

- there is no complete reducibility of ihe space of SF as g ,4-module;

- Serre’s theorem reformulated for superalgebras shows that there arc SFs of
order >1, see {LPS1];

- faithfulness of g q-actions on g , is violated in natural examples of: (a)

supergrassmannians of subsuperspaces in an (n,n)-dimensional superspace when
the center R of g4 acts trivially; retain the same definition of Cartan prolongation;

the prolong is then the semidircct sum 9.y goln). k5% (9 1® wilh the natural 2 -

grading and Lic superalgebra siructure; notice that the prolong is not subalgebra
of vect{dim g ;) (b) the exterior differential d preserving structure.

More precisely, recall 1hat for supermaifolds the good counterpart of
dilferential forms on manifolds are not differential but rather pseuwdodifferential
and pseudointegrable forms. Pseudodifferential forms on a supermanifold X are
funciions on the supermanifold X' associated with the bundle t*X obtained [rom
the cotangent onc by fiber-wisc change of parity, Differential forms on X arc
fiber-wise polynomial functions on X'. In particular, if X is a manifold there are no
pseudodifferential forms. The exterior differential on X is now considered as an odd
vector field d on X', Let x = (ul. . “p‘gl' vy Eq) be local coordinales on X, xi‘ = x(xi).

Then d = Ex;°d/dx; is the familiar coordinaic expression of d. The Lie superalgebra

¢ (d) C oect(m+n/m+n), where (m/m) = dim X, -- the Lic superaigebra of vector
fields preserving the field d on X' (sec definition of the Nijenhuis operator P4 in

[LKW]) -- is neither simple nor transitive and therefore did not draw much
attention so far. Siill, the corresponding G-structure (@ (d) = (9_1» 9g)s, where g =
gl(k)xN{gl(k)) and wherc M(gl(k})) is abelean and constitutes the kemel of the g -
aclion ‘on 9.9 = id, the standard (identity} representation of gY(k)) is interesting
and natural. Let us call it the d-preserving structure, The Tlollowing theorem
justifies pseudocohomology introduced in [LKW}L

Theorem. SFs of the d-preserving structure are 0.

An inlcresting counterpart of the d-preserving structure is the odd version
of the hamiltonian structure. In order to describe it recall that pseudointegrable
forms on a supermanifold X are functions on the supermanifold 'X associated with
the bundle X oblained from the tangent one by fiber-wise change of parity.
Fiber-wise polynomial funciions on 'X are called polyvector ficlds on X. (In
particular, if X is a manifold there are no pseudointegrable forms.) The exterior

differential on X is now considered as an odd nondegencrate {(as a bilincar form)
bivector Ticld div on X'. Let x = (ul. e uP. E‘l' s éq) be tocal coordinates on X, 'xi =

n(alaxi). Then div = za’-/axi'axi is the coordinale cxpression of the Fourier iransform

of 1the cxterior differential d with respect (o primed variables; the operator is called

"div" because il sends a polyvector field on X, ie. a funciion on 'X to s divergence.

The Lic superalgebra aut(div) is isomorphic to the Lie superalgebra Te(m+n) which

is the simple subalgebra of oect{n+min+m} that preserves a nondegencrale odd

differential 2-form @ = idxi'dxi: an interesting algebra is 1he superalgebra

sle(m+n) which preserves both div and o; for both of these Lic superalgebras and

their deformations the corresponding SF are calculated in [PS] and |LPS1|
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and definitions

is an abbreviation for noncompact

conventions of [§]

the notationai
(Lie(Sc)y® T, NCHSS

space, in the diagram of § the veriex defining the minimal parabolic subaigebra p

Everywhere we assume

tables.
mentioning this specifically. In Table 135

in

Notations

hermitian symmetric

Lie (P), such that X can be presenied

as (8c)% /P, is shaded. In_Table 4 we call a homogencous space G/P, where G is a simple Lie supergroup P its parabolic

subsupergroup corresponding to several omitted generators of a Borel

subalgebra (description of these generators can be

in [L3, # 31)), of depth o and lengeh 1 if such are the depth and length of Lie (G) in the Z-grading compatible with

that of Lie(P).

found

PeGr (no

structure (hence are of depth 1) except

Note that all superspaces of Table 4 possess an hermitian

hermitian structure), PeQ (no structure, length 2), CGrU‘kU-“ and 3CGr, O'" (no structure, lengths n-k and, resp. n-k-1)

symmetric spaces

Hermitian

1.

Table

names

(Sc)*

of NCHSS

3.15ToX

The diagram

of 5

s460°

Name of X=S5/G¢

CHSS X

SU(I, n) ¢pn

id

g1(n)

SU(n+1)/U(n)

¢pl

SU(p, 9 ‘Grpp+q

*

s(ei(p)*gl(q) ideid

SU{p+q)/8(U(p)=U(q)

+
Grpp q

*OGr

SO(n, n)

AZid

g1(n)

SO(2n)/U(n)

OGrn

*Q

SQ0(n, 2)

id

co(n)

SO(n+2)/S0(2)x50(n)

Qn

*LGr

Sp(2n; R}

s2id

gT(m

Sp(2n)/U(n}

LGrg

Eg

co(10)

E6/SO(10)xU(1)

(op?)

E7

e

E7/EgxU{1}

OGr2 sLGrp & ¢PL,

Q3 =LGr2. Q #87xs2,

Q1 ;‘IP].

Q4 sGr2*.

0Gr3 ;Gr34.

Qccasional isomorphisms: Grpp'"’:I =Grqp+q,



Table 2. Dual pairs of homogeneous symmelric superspaces

{p)sly{mi2n)/osp(m,pi2n) {p)sv(m,pl2n,n}/osp(m,pl2n}
(prsle(2mi2n}/(p)3cl{min) (prsu*@mi2n)/(pr)scl(min)
psic(nin)/pqln) Opg(n)pgr(n)
psle(nin)/spee(n) supe(n)/sper(n)
(p)su(m,pln,q)/ (plsu(m,p+s-rin,v+q)f
Hp)s(u{r+s,rit+v,v)e f(p)s(u{r+s,ritev,v)e®
@ u(m-r-s,p-rin-t-v,q-1) e g(m-r-s,p-rin-t-v,q-1)
{p)su{2n,mi2n,2q)/o5p*(2mi2n,2q) (prsu*(2miZn)/osp”(2mi2n,2q)
psu(m,pin,g}/puq(n,p) supe(n)/puq(n,p)
psu*2ai2n)pg*(2n) %pq(n)/pq*(2n)
p;u"(?.ann)l;u"(Zn) supc(2n)/;p|‘(2n)
osp(m,pI2Zn)/osp(s+r,ri2g)e osp(m,p+s-riZn)/osp(s+r,ri2q}e
®osp(m-r-s,p-si2n-2q) ®osp(m-r-s,p-sl2n-2q)
o5p(m.pl2n)/s(m/2,p/2in,q) osp T (mi2n,2q)/u(m/2,p/2In.q)
o;p"(2ml2n.2q)lo.sp‘(2p|2s+2r.2r)0 osp*(2mi2n,2q+2s-2r)/
®05p*(2m-2pi2n-2r-25,29-21) Jo3p® (2pi2s+2r,2r)®
eosp*(2m-2pi2n-2r-25,29-2r)
osp”(2mi2n,n)/osp ¢ (min) osp(2mi2n,n}/o3pg(min)
psqc(Zn)/prirg(n) psq (2n)Mprsrg(n)
psqe(2n)0prq(n) psq (20)0prq(n)
psugq(m,p)/ps(egir+s.ne pseq(m.p+s-n/ps(ug(r+s,ne
eug{m-r-s,p-r)) *uq(m-r-s,p-r))
psugq(m.p)pu(r+s.rim-r-s,p-r) psvq(m,p+s-c}/pu(r+s,rim-r-s,p-r)
sper(2n)upe(n) spe*(2n)upe(n)
spee(2n)fsepe(n) spe*(2n)/s pe(n)
shin,pyll (k,m,p,n) sh(n,p+1-k)/ (k,m,p,n)

Table 3. Selfdual homogeneous symmelric superspaces

(prse’ 2mi2a)cprs(et (2pi2gre s (2m-2pi2n-2q));

(p)s1r(mi2n)/(p)s(gTelpla)® g l(n-pin-¢})

(p)su(Zm, mi2n, n}pimsimltming  Cpgm¥pCoa(p)e®y(n-p));
99 (n)psiml(pln-p)i supe(n)/s(upe(p)eepe(n-p)); supe(n)pimscl(pin-p)
osp(2m, mi2n)/g ir(min); o,sp‘(2ml2n, n)lu‘(mln); P39rn)/ps(gr(p)}®g(n-p))
ps9r(m/pglplp) psg @n)ps(e 2pyeg @n2p); psugQm, mI/Pimsimg(m):
psug(@m, myTpimg(m); spec(n)/s{per(n-p)epec(p)): spe(n)isic(pln-p)
spet@ny/s(pe’@prope” 20-2p)) spe @n)su”(2pi2n-2p)y sh(2n, nyll(n)

m

m,n
m,

superdoma-

in
sCGro 0"

Name of the
Grp,q
Grplp
Qm-2.n
OLGrm n
QGrp"
PeQn-1

n
PEGrp
CGrU'kO'n
CQm-2.0

Grpmerqrl
*0GI*LGry,

domain
Grpm*Grpm

Underlying
Qm-2
n
Grp
cp™!
n
Grp

Oim

nln
Oln

Same with volume elements preserved in the

-dimensional one
sub- and ambient supermanifolds

with respect to the

nondegencrate even form

2mi n
Queergrassmannizn of q-symmetric (plp)-

min
subsupermanifolds in €

q

min
Ortholagrangean supergrassmannian of (mim)- OGrm*'LGrn

with respect to the nondege-nerate even form

respect to the odd symmetric or skewsym-
metric form

Curved supergrassmanian of (0l1)-dimen-
Curved superquadeic of (011)-dimensional
isotropic with respect to the (partly) split

p)-dimensional (and with a fixed volume for
spe) subsuperspaces in ¢t isotropic with

isotropic with respect to the nondegenerate
0dd lagrangean supergrassmannian of (pin-

Superquadric of (110)-dimensional isotropic
odd form lines in ¢°'®

Supergrassmannian of the (pl q)-dimensional
dimensional subsuperspace in €
0dd superquadric of (1! D)-dimensional

sional subsupermanifoids in €

symmetric form

dimensional isotropic
subsuperspaces in €

Interpretation
subsuperspaces in €
Same for m=n, p

lines in €

ideid®
ideig*
irr(id®id*)
x(s? (ig))
or

~E? (dp
Alkyex(id)
"(Valif k=1
"(id)

superspaces of depth 1

veet(0l n-k)® gl(k;A(n-k))
vect(0f n-k)®s1(k;A{n-k))

s(altpl @)®glim-pl n-gh
ps(glipl p)®gt(m-pl n-q))
cosp(m-2| 2n)

gl{ml n)

s{qlp)®q(n-p))
p(q(p)eq(n-p))
cpe(n-1)

espein-1)

glp! n-p)

Gl n-p))

B0l m-2)®A{m-2)ez
shim-2)®A(m-2)sz

80

Table 4. Ciassical

sl{ml n)
pal(ml n)
osp(ml 2n)
o3p(2ml 2n)
$q(n)
piqin}
pein)
spe(n)
pein)
(spein))
oect(@l n)
sveci(0l n)
h{0: m)
shim)
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Abstract. Analogues of Einstcin cquations (EE) are written for certain non-
Ricmannian manifolds, who locally are as cerain compacl Hermitian
symmelric  (supcr)spaces, c.g. as the Grassmanaian Gr2n4“. Similar
analogues are indicated for supermanifolds, in particular, for certain
infinite dimensional oacs. Some of these infinite dimensional analogues of
EE equations are realized on 1he total spaces of Fock bundles over
supermanifolds with no less than 3 odd coordinates and their invariance
group is the N-extended Neveu-Schwarz superalgebra for N>2, Qur EE are not
supergravily ecqQualions; supergravity cquations require a contacl-like
structure and are. discussed elsewhere.

introduction

The main object in the swudy of Riemannian geometry is  {propertics of) the
Riciann tensor which, in turn, splits into the Weyl tensor, (e traceless
Ricci tensor and the scalar curvalure. All these tensors are obsiructions 10
the possibitity of “flautening” the manifold on which they are considercd.
The word "splits” above means 1hal al every point of the Ricmannian
manifold the space of values of the Riemann tensor constitutes an O{n)-
module which consists of the three (if o + 4) irreducible components (for n
= 4 there are 4 componenls because the Weyl tensor splits additionally in
this case).

More genearlly, let G be any group, not necessarily Oin). In wha
follows we will recall definition of G-structure on a manifold and (the space
ofy its structure functions (shorily referred to as SFs). SF arc obsiructions 1o
integrability or, in other words, to possibility of flauening 1he G-siructure.
The Riemannian tensor is an example of SF. Among the most known (of
popular of recent) other examples of such iensors are:

- an almost conformal structure, G = O(m)xBR *, SF arc called theWey!
tensor, )

- Penrose’ twistor theory, G = SU(@)xSU(2)xd *, SF arc called the "a-
forms” and "B-forms";

- an almost complex swruciure, G = GL{n;€)CGL(2n:R), SF arc called the
Nijenhuis  tensor;

- an almost symplectic siructure, G = Sp(2n), (no accepted name for
SF).

Remark. The adjective "almost" should be always added umiil the G-
struclure under study is proved flat, i.c. integrable; by abuse of lanpuage
people often omit it,

In several versions of a very lucid paper [G] Goncharov calculated all
structure  funciions for analogues of  conformal structure. In other words,
his model manifold is a classical space, i.e. an irrcducible compact
Hermitian symmelric space (CHSS). and therefore in his examples G is 1he
reductive part of the stabilizer of a point of the space.

Acknowledgements, All of us are thankful e D. Alckscevsky, J. Bernsiein, A
Goncharov, A. Onishchik and I, Shchepochkina for help. During preparation of ihe
manuscript we were partly supported by SFB-170, D.L. was supportcd by l.Bendixson
grani; NFR, Sweden, and NSF grant DMS-8610730.

0.1. Structure functions. Let us reicll some of Goncharov's resulis
([G]} and recall definitions ([St]).

Let M be a manifold of dimension n over a field K. Let F{M) bc the frane bundie
over M, i.e. the principal GL(n; K }-bundle. Let GCGL(n: K} be a Lic group. The G-
siruciure on M is the reduction of the principat GL{n; K )-bundle 1o the principal G-
bundle, i.e. the possibility 10 select transition functions so that their values belong to
G

The simplest G-structure is 1he flai G-swructure defined as follows. ket Vo be K1
with a fixed frame. The flat struclure is the bundle over V whose fiber over veV consisis
of all frames obtained from the fixed one under the G-action, V being identificd with
TyV.

In textbooks on differential geometry (e.g. in [St]) it is cxplained (hat
obstryclions 1o identification of the k-th infinitesimai neighbourhood of a poim meM on
a manifold M with G-structure and that of a point of the flat manifold V  with he above
G-structure  are called structure functions of order k.

Such an identification is possible provided all structure funciions of
lesser oarders vanish.

d



Proposition. ([St]). SFs constitute the space of the (k,2)-th Spencer
cohomology.

The Spencer cochain complex whose cohomology are mentioned in Proposition is
defined as foHows. Let §'denote the operaior of the i-th  symmeiric power. Set g | =

TaM. 84=9 = Lie(G) and for i > 0 pux

g9, = (XeHomig .9, ;)0 X(v)(w,.) = X(w}v...) for any v.w «g ]
=s'(g_)veg, NS Y g oeg
Now set (9_1. 90)‘ =% .19
Suppose that

the g g-module g _, is faithful. n

Then, clearly, {§_;.9p)eC oect(n) = der K[{x. .. % ) . where n = dim g _;. It is subject
to an easy verification that the Lie algebra swucture on ve¢t(n} induces same on (9-1‘
¢qle. The Lic algebra (¢ ;. 8¢l usually abbreviated to g,, will be called Carran’s
prolong  (the result of the Cartan prolongation) of the pair (§ . §4)-

Let El be the operalor of the i-th exierior power; set

k.5 _ 3 '

C g 10 0ph = 9k-s®E @ )t

we usually drop the subscript of ck.s(g_l‘ ag)s o at least indicate only g,.

Define the differential 3g: CkS > CKM.8+1 seuing for any vy, .., Vg4 16V {us
usual, the slol with the hatied variable is ignored):

(MUY, o Vsg]) = I(-I)E(vl. M ....vs_'_l)’vsﬂ_a

As expected, asasﬂ = 0, and the homology of this complex is calied Spencer cohomology

of (g_l. 90)..

0.2. Case of simple g, over €. The following remarkable fact, though known
to experis, is scldom formulated explicitely:

Proposition. Let K =€, 9, =1(9 ;. 95)e be simple. Then only the following
cases are possible;

b g+ 0 and then g, is either pect(n) or its  special subalgebra soect(n) of
divergence-free vector fields, or its subalgebra B(2n) of hamiltonian fields;

2)92 =10, 9; * 0 then g, is the Lie algebra of the complex Lie group of
automorphisms of a CHSS (see above).

Proposilion explains the reason of imposing the restriction {0.1) if we wish g, to

be simple. Otherwise, or on supermanifolds, where the analoguc of Propesition docs not
imply similar restriction, we have to (and do) broaden the notion of Caran proleng 10 be
able 10 get rid of restriction (0.1).

When g, is a simple finite-dimensional Lie algebra over € computation of

structure  [unclions becomes an casy corollary of the Borel-Weil-Bott-... (BWR) theorem,

ef. {GL. Indeed, by definition @, Hk'zg = Hz(g_l; 9.) and by the BWB theorem Mg
-

4 +} as g-medule, has as many Componems s Hz(g_l) which, thanks to commutalivity of

% 1 is just El(g_l): the highest weights of these modules, as explained in |G, are also

deducible from the theorem. However, {Gl pityfully lacks this deduction, sec [LP1} and
[LPS1] where it is given with intercsiing interpretalions,

Let us also immediately calculate SF corresponding 1o case 1} of Proposition: we
did not find these calculations in the literalure. Note that vanishing of SF for g, = oect
aml ! (see 0.5) follows from the projectivity of ¢, as go-modulcs and properlics of

cehomolegy of coinduced modules (F]. In whal lollows R{Za;n;) denotes the irreducible
gu—mndule. The classical spaces are listed in Table 1 and seme of them are bapthized

[or convenicnce of funther references.

Theorem. 1){Serre [S1]). In case 1} of Proposition structure functions can only
be of order 1.

a)Hz(g_l: 4.)=0 for g, =veci(n) and soect(m), m>2;
BH2(g_: 9.) = Rinz)®R(xy) for g4 = HQ2m), WY,
H2 (9 yi 94) = Rxp) for 9o =ik,

2}(Goncharov [G]). SFs of Q3 are of order 3 and constitute R(dnl). SF for

Grassmannian  Gr,,™*" (when neither m nor n is 1, i.e. Gr is not a projective space) is
the direct sum of two componenis whose weighis and orders are as follows:
Let A =R(2,0,..,0, -)sR(1,0, ..., 0,-1,-1), B=R{1, 1,0, ..,0,-)=R(1, 0, ..,
0, -2).
Then if mn » 4 both A and B are of order I;
ifm= 2, n+ 2 Aisrof arder 2 and B of order I,
ifn= 2, m+ 2 Alisof order | and B of order 2;
ifn=m=2both A and B are of order 2.
SF of G-riructures of the rest of the classical CHSSs are the following irreducible S

moduies whose order is 1 (recall that Q4 = Gr24):

CHSS P’ OGr, LGry Qp . o4

weight of SE - EXEAvepev  EXSAvepev  Blvmev
Eg/S0(10)xU(1) E7/EgxU(1)

""""""""""" EURmgNeRmg  EXRGOMORG)

0.3, SF for reduced siructures. In {G] Goncharov considered
conformal structures, SFs for the corresponding generalizations of (he
Ricmannian structure, j.e. when gg is the semisimple pant *g of g = Lic (G).
scem 10 be more difficult to compuic because in these cases (9 . gl = 9.
®9 and the BWB-theorem does not work. Fortunately, the f{ollowing
statemenl, a direct corollary of definitions, holds.

Proposition ([G], Th.4 7). For 9g = Mg and g SF of order | are the same
and SF of order 2 for 99 = "9 are 52(91) = 52{9_[*)_ (There are clearly no SF
sol order >2 for
$9="9)

Example: Riemannian geometry. Let G = O(n). In this case g = g _jand
in 52(9_1) a l-dimensional subspace is distinguished; the sections through

this subspace constitute a Riemannian metric g on M, {Thc habitual way 1o
detcrmine a metric on M s via a symmelric matrix, but actually this is just



onc scalar matrix-valucd function.) The values of the Riemannian tensor al
a point of M constitute an O(n)-modulc Hz(g_l; g+ )} which contains a trivial
componcnt whose arbitrary section will be denoted by R. What is important,
this trivial component is realised by Proposition as a submodule in 32(9“1).

Thus, we have (wo matrix-valued functions: g and R cach being a scction of
the trivial g,-module. What is more natural than 1o require their ratio 10 be a

constant (rather than a function)?
R =X g, wherc A «aR. (EEy)

Recall that the Levi-Civila conncction is the unique symmelric alfinc
connection compatible with the metric. Let now t be the siructure tunction
{(sum of its components belonging to the distinct irreducible O(n)-modules
that constitute Hz(g_l; 94)) corresponding 10 the Levi-Civila conncclion; ihe
process of restoring ( from g involves differentiations thus making (EE,)
into a nonlincar pde. This pde is not Einsiein Equation yel. Recall that in

adition to the trivial component there is another  O(n)-component in Sz(g_
1). the Ricci tensor Ri. Einstein equations (in vacuum and with cosmological
term &) are the rwo conditions: (EE,) and

Ri =0. (EEg)

Notice that we have ne SF of order 1 to think about. This is not so for
supcrspaces or flag manifolds.

A gencralization of this example to G-structures associaled with
cerain other CHSSs, flag varictics, and to supermanifolds is considered in
[LPS1] and [LP3].

The prerequisites on symmelric spaces see in [H]; on symmetric
superspaces in [S).

1. SF for reduced structures -- analogues of EE on manifolds

In [G] Goncharov did not explicitely calculate SFs for G-structures

corresponding to the reduction of the generalized conformal struciure. Let

us fill in this gap: let us explicify Proposition G for the classical CHSSs. (The

excedplions do nol give analogues of EE and are considered in (LP3))
Proposition. Let 90 be the semisimple part *¢ of 9 = Lic (G)

corresponding to a CHSS. Then SF of order 2 are:

——————— CHSS ph Gry,m+n

_______ wsé_gp‘g R(xz) R(2x I }j R{(2n L * )
L R(KZ)CR(nz*)

of SF-

~~~~~~~ OGry, o
LGry,

_______ R, ..., 0, -2,-2)¢R( 0, ..., O, -1, -1, -1, -1) RO, .., 0, -2,
2)8R( 0, ..., 0, -4) .

Let us show what, in our opinion, plays the role of EE on some CHSS
different from the quadric. Let R be a scction of the vector bundle with the
above SF as the fiber; if SF consists of several components denote them R = R
+ R2 in accordance with the decomposition of the module of SFs as indicaied
above or in what follows. Consider SF corresponding to  (he canonical
connection (the restoring of this connection involves dilferentiations).

An analogue of EE, :

v=2AR2" (or v =ARTif R has just one irreducible component)
(EEy)

where v is a fixed volume element in the following cases:
1) P20 or Gryp™  (ihe conventional EEg is just it forn = 1y
2) p2n,
3) OGr4, we set v = AR2™ (the conventional EEg is just it for n = 1).

Analogues of (EEj.) are equations

Ry =0 (if there is such a component)
(EEpjc)

All these cquations are meaningful provided SFs of order 1, T = @T;, vanish:

T =0 (if there is such a componenl)
(EEgy)

Notice that if the space of SFs is irreducible there is no EE[ ..

2. EE on supermanifolds
The necessary background on Lic superaigebras and  supermanifolds  is
gathered in a condenced form in [L]. The above definitions arc gencralized
to Lie superalgebras via Sign Rule.

Let us try (o list all possible analogues of the above EE on
supermanifolds.

1) The first idea is 10 replace o(m) with os3p(mli2n) for a Z-grading of
the form

o3p(mi2n) = g_;®9,%9, wilh gg= cogp(m-212n} and m >2,

2) The mext step is to replace osp{mi2n} with i1 odd (periplectic)
analogues: p¢(n) and spe(n) and the "mixture” of these: pe{n)e T (az+bd),
where a, ba@, d is the outer derivative of spe{n), ic. peln)= spe(n)eCd, 2 the
central element. In matrix realization we can take d = diag Ay, -1 2= ]2:1'
definitions sece in [L4].

Why is m +0 in 1)? Might it be that an analogue of EE is connected
not with $p(2n), the Lic algebra of linear sympiectic iransformations, but
with the infinilc dimecnsional Lie algebra of all symplectic transformations,
i.e. the Lie algebra h(2nl0) of Hamillonian vector fields? As Theorem 0.1.2
slates, the answer 1o the above suggestions is NO: SFs are only of order 1 (and
are investigated in [P4]).

Let us not give up: the algebra o{m) has one morc analogue -- Lic
superalgebra b (0im) of Hamiltonian vector ficlds on (Otm)-dimensional
supermanifold. So another possibility is (o

7



3) replace osp(mi2n) with H(2nim), where m *0;

4) replace osp(mi2n) with (2n+1im);
and consider odd analogucs of 3) and 4}

5y replace pe(n) and spe(n) in 2) with Te(n), and zle(n);

6) replace pe{n) with m(n), and sm,{n).

We should also explore the cases associated with Z-grading (il any) of
Kac-Moody (iwisied loop) superalgebras of the form e o<1 9 Remarkably,

there are not only “trivial” analogues of CHSS, the spaces of loops wilh
values in a finile-dimensional CHSS! There are CHSSs associaled with twisicd
loop algebras and superalgebras, cf. [LSV].

3.Spencer cohomology of osp(min)

3.1. & -gradings of depth 1. All these gradings are of the form g _
1990%9 1 @d ¢y =9,4"

Proposition ([K] and [LSVE. For osp(mi2n)} the following values of
§g are possible for the Z-gradings of depth I:

a) cospim-2/2n);

b)glirin) if m = 2r.

3.2, Cartan prolongs of (9 _,9¢) and (9 .y, “9¢).

Proposition. ajfg ;. gp)s = 9 except for the case 2.0b) for r = 3. n =0
when
{91 9ph = orcl(30) .

b9 1 "99)e = 919 "99-

3.3. Structure functions.

Theorem. Cases a) and b) below correspond to cases 2.2 of Z-
gradings. The cases ma = 0 see in [G] and Introduction.

a)as Agy-modute, HEZngy =52(a%19 1 21a%(9 ;) and splits into the

direct sum of  three irreducible components whose weights are given in
Table 1.
2

As go-module, H2'290 = H 'ZAQDISZ(QJ) and Table 1 also contains the
highest weights of irreducible components of HZ'ZQD . For kw2 SF vanish.

tr)As golmadule, Hz(g_]; 94) is irreducible and their highest weights

are given in Table 2 for r = n, n+2, n+3.
The case r = 4, n = 0 and r = 2, n = | coinside, respectively, with the
cases considered in a) for of8) and osp(4i2}.

4. Spencer cohomology of spe(n)

Proposition {cf. [K] with [LSV]). All Z-gradings of depth | of ¢ are
listed in Table 1 of [LSV]. They are :

a%y) 9o = sHnpip), 9_;= Stiid), 9= E2(ia*);

ask) g, = sltn-pip). 9= S2(id), 9_;= E*(id*)

b) gy = peln-d), g_y= id (considered endowed with a symmetric form).
In these cases gy = 9.

Theorem. a*k)  Nonvanishig SF are  of order ! and constiture g
completely reducible go-module described in Table 3.

9

b)For g, = pe(n-1), speln-l). cpe(n-l)and cspe(n-1) and the above g,
All SF vanish except for Hl‘z speln-1) = n(g_]) = n(Vq) and there are
following nonsplit exact sequences of spe{n-1)-modules:

0-->Verae —>H22 speln-1) —> Ve +2e9) > 0 for n>d

0 --> X--> Hz'2 spe(3)-=> INV3e )--=> 0. where X is determined from the
Sfollowing nonsplit exact sequences of spe(3)-modules:

0--> Vepagy —->X > 1V2ep4265) > 0
and 0 -> X-—> H2'2 epe(3)-> Vag; --> O, where X is determined from the

following nonsplit exact sequences of spe{3)-modules:
O--> V24269 ) --2X > N(V3g) > 0

Besides, there are exact sequences:

0> HZJ speln-1)-> H2'2 p,(,..;)-->'/2£,--> 0
and

0--> H22 sptin-1)-> H?? espeln-1y->Vae--> 0
both for n>3; and exact sequence

0--> N(Vaep+2e9) > ' epe(n-1) —->V2ep--> 0 forn >4
Moreover, H*Z cpen-1) = INSP(E2(Vep )t <({NEY (Ve )

§. An analogue of a theorem by Serre for Lie
superalgebras: concequences of involutivity
The theorem we have ascribed above to Scrre is actually a corollary of his
initial statement that 2 -graded Lie algebra of the form g =@ ., [9is

involutive if and only if its Spencer cohomology Hk'sg vanishes lor s2(
*

([St]). For superalgebras we only need the enly if pant for the time being. To
formulate it we have to supcrize the notion of involutivity. Let us do so and
recall the classical definition of involutivity for Lic algebras as well.

bet 9 =% ., ;9 beaZ-graded Lic superalgebra, {ay, .. ag) 2
(homogeneous) basis of g_y. Clearly, the map

a: g -> 9 . x > [x, ]
is a homomorphism of ¢ _j-modules. A Z-graded Lic algebra of the form g =
® ., 1 9iis called involutive if thc maps aj are onto. To superize it wec have (o
rcquire Lhe same of the even maps a;. Additionally we must demand vanising
of the homology of the odd maps a; (welldefined thanks to the Jacoby Vv
identity).

In scientific 1erms this is formulated as follows. For a Ltc
superaigebra

9 =@, ;9 scu

g"=ker gynkergan _aker g, gf =@ . 6.
Notice that ar(g" 1) € ¢ Vi1, The Lic superalgcbra g = @ i> .q 9@ will be
called favelutive if the following conditions arc (ulfilled:

" =g ;:

(2) a,—(gr_l) = gr'1 il a, is cven,

(3 ap(g" 1y = g" il a, is odd.



k.s

Theorem. if g is involutive then H 9, 0 for s20 .

6. Speacer cohomology of vectory Lie superalgebras in the
standard grading (Definitions see in [L4].)
Theorem (cf. Theorem 0.1.2). [) For g . = oeclimin), soect (min),

F(2m+1in) and m(n) SF vanish except for seeci(0in) when SF are of order n
dand constitute the gﬂ-module nns).

2)For gu=Dh(0im),m>3, SF are H(R(3¢IJOR(0‘,)).

3) For g 4 = 5b(0im), m > 3, nonzero SF are same as for H{0im) and an
additional direct summand H"(R(x! ) of order n-1.

4) For g 4 = sleln}, n >1, nonzero SF are HI2 gpein) = Sj(g_]*). .h’z’2
spe(n) = 13{1), H™? spein) = (1),

Let Ael, » be the canonical odd 2-form and R a section through H2.2
={1{(1). Thus, there is a possibility to write two analogues of EE; for

spe(n) ~
sle(n):
® = AR, (EEo(2-form))
and
v = AR, {EEs(volume))

where v is the volume form (of parity congruent to n mod 2).

7. Nonstandard grading of the Lie superaigebras of
hamilton or contact vector (fields
There is one grading of ecither of these superalgebras (that we denote by
g(min) = B2mn), shm) or 1(2m+1in)) of the form

9= F(min), 90 =g (min-2)®F(min-2) l'or_n)l.
where F(min-2) is the superspace of "functions” (polynomials or power
series in our casc) on which gp naturally acts, and gy =9 _* For n>2 ¢ | is
not purely odd and is isomorphic 10 the total space of the Fock bundic over a
(2m, n-2)-dimensional symplectic supermanifold.

By an incredible effon one of us (E.P.) managed to calculate SFs of
order 1 for g = 3h(6). The space of these SFs is not compleiely reducible, some
of the indecomposable components look as complicated as follows:

X --> o< - X
! T 1
0<- X-> 0
t I t
X--> 0<- X

According 10 sec. 2 all these SF constitule constrainis similar 1o the Wess-
Zumino conastraints in supergravily and must vanish; the lack of complete
reducibility implies that only pan of these relations are relevant (thick
dots). We have no idea how (o approach other, especially infinile
dimensional, cases; the number of SF grows with m and n! Yu. Kochelkov

10

showed (unpublished) that for g(min} = b(2min) or h(n) there is aulways a
trivial companent (perhaps, there are scveral) in the space of 2Znd order SFs.
An answeer might come from programmers: cohomology is a computerizable
problem {LP1] .
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Abstract. A language suitable (o describe nonholonomic mcechanics

(superymanifolds is applied 1o derive supergravily equations
exicdded Minkowski superspace for any N.

on

an

an
N-

Introduction

This paper is a continuation of [LPS], where Lthe necessary background iy
presented. In JLPS] we bhave written certain analogucs of Einstein cquations
on (super)manifolds. These analogues ., however, arc nol supergravily
equations. The reason is that they naively superise the technique of
differential gcometry developed only [or the case when the langemt space is
considered endowed with the 1trivial {(zero)} Lie bracker (this technique
appcared under the impression that partial derivalives commuie).

As shown in [L2] (see alse [L4], |[LSV], |LP)]), the supermanitold theory
naturally hints to devise a new language sutable 1o describe the structure of
an N-cxlended Minkowski superspace. The langent space to the Minkovski
superspace for N#Qis nawrally endowed with a (2-step) mnilpotent Lic
supcralgebra struciure that highly resembles the contact structure on a
manifold, cf [A]

(The hasty reader might think thar 1this can never happen, by the
parcniheiical remark above the 1angent space can only be endowed with the
trivial bracket. This, however, does happen. The simplest example: let o = dt -
Zi<p Pida; be the contact form on a (2n+l)-dimensional manifold M. Then a
canonical basis of the 1angent space to every point of M is conslituted by
vector fields 3/d1, 3/2qj, and 3/dpj+ q;3/dt. The fields 3/dp; won't do: they ure
not invarianl under contact transformations. Thus the tangent space s
nawrally e¢ndowed with a Heisenberg algebra struclure.)

Here we give the definitions that allow one to calculale structure
funclions = (analogues of the Ricmann tensor) for various contact-like
structures: of the "naive" cven one; another, odd one, with plenty of s
interesting  satellite  structures, ‘and of the complexified N-cxicnded
Minkowski superspace.

QOur theorems have an intecresling counterpart in classical mechanics:
th¢y cnable us te siudy nonholonomic mechanics in  parallel with the
holonemic one and verily integrability of differential cquations whose
symmetries are induced not from point transformations but {rom conlact
onc: the two possible cases [ALVY] (only for the first onc there were means of
description -- Spencer cohomology). In the last cemtury Herz neticed that
some of nonholonomic problems are nol variaticnal ones [VG|. In our
contexl his remark indicates the source of difficultics (discused by
V.Ogievelsky and E.Sokachev) in expressing some of supergravity cquations
in a Lagrangcan form: this might bé just impossible,

Since the local geometry is given by a G-struclure, it was natural (o
investigate Minkoysky superspaces from that poimt of view in order 10 wrile
SUGRA cquations, but ail the previous attempis tried to adjust the 1ext-book
technique  which does not treat contact like cases, see a moving account in
[VG], and therefore does not lead 10 SUGRA, with the possible cxception of
N=1; this unlucky coincidence delayed our substantiation of the hypothesis
from [L] on the correct description of SUGRA,
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generosity and encouragement. All of us are thankful to D. Alecksecvsky, ). Berosiein, A.
Goncharov, A. Onishchik and I. Shchepochkina for help.  During preparation of the
manuscript we were parlly supported by SFB-170, D.L. was supporied by l.Bendixson
grant; NFR, Sweden, and NSF gramt DMS-8610730.
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0.1. SF for contact siructures: Shchepochkina prolongs!.
FProposition (.2 |LPS] lisis all simple & -graded Liec algebras of finiie growth
(SZGLAFGs) admiuing a Z-grading of depth 1 (ie. of the form g =@, ., |, g,).

Among such we find all simple Lie algebras of vector fields (with polynomial
cocflicients) excepl those that preserve a conlact structure whose canonical
Z -grading is of depth 2. Recall that a contact structure is a maximally
nenintegrable distribution of codimension 1, c¢f. [A]. To cembrace comact
structures we have to slightly generalize the notion of Cartan prolongation:
the tangenl space to a point of a manifold with a contact structure posscsses
a natural structure of a nilpotent Lic algebra (Heisenberg algebra).

Given a Z-graded nilpotent Lic algebra ¢ =®4,.. 49, and a Lic
subalgebra
9, C ber g_ which preserves 2 -grading of g , define its i-th

Shchepochkina? prolong for i > 0 10 be:
* *
;= (5 (9.)*®9, NS (91" ®g );,

where the subscript  singles  out the component of degree i.Similarly 1o the
above, define  g.. or rather, (g _.9ple. a8 ® .. 49, then, by the same

rcasons as in [LPS), g, is a Lie algcbra and Hz(g_; g4) is well-defined. The

space Hz(g_; ¢ «) is the space of obstructions to flamness. It naturally splits

into homogencous componems  whose degree corresponds to the order of SF.
in general case the minimal order of SF is 2-d.

Example. Let g = ¢3p(2n), g_; = Rnt; 1), 9.5 = RO) ; then g4= T(2n+1)
and
K 1 R LT WL 1 O LT P

The number k here is the order of SF.

Theorem. For gu= [(2n+1) all SF vanish.

Remark, This is a conceptual reformulation of Darboux's thcorem on
the lack of parameters for the contact form.

Proof of this theorem illustrates the might of science: since ¥(2n+1),
as T(Zn+1)-module, is induced from a character of g4 nontrivial on (he
cenlter, H‘(g; g+«) = 0 with Poincaré's Lemma, sce {F} .

0.2, SF for projective structures. [t is also intercsting somctimes
to calculate @ Hk'z(g‘; h) for some Z-graded subalgebras h<C gy, such  tha
b-l =9, for i £0. For cxample, lct g = gl(n) and 9.4 its standard (identity)
representation. Then g, = oect(n) and all SF vanish (JLPS)); bul if b =35l(n +

1) < o¢cl{n) then the  corresponding SF arc nonzero and provide with
obstructions 10 integrability of what is called projective connection.
Theorem. 1) Let g, = oectin), b = sl(n + 1). Then
SF of order I and 2 vanish, SF of order 3 are R(2,1, 0, .., 0, -1)

_'For depth 2 this construction was developed in [T] but nobody, the author
included, undcrsm_c;:_!_ ils importance, We thank S.Shnider, who indicaed [T§ 10
us.h e o« VR AT O AR

2This construction was first described in [Shl.

2let gu =T(2n+1), b= sp(2n + 2). Then §F are R(rr,+n'2; 3} of order 3.

0.3. SF on supermanifolds. Our motto is
"simple &-graded Lie superagebras of finite growth (SZGLSAFGs)are as good

as simple finite-dimensional Lie algebras"

There should be similar resolis for either.  On the strength of arguments of
sec. 0 we shall

- list Z-gradings of SZGLSAFGs of depth 2 similar to that of F(2n+1)(this
is deducible from [K], [L1], [S2]) and in what follows we will explain which of
all Z-gradings of depth 2 wc have in mind;

- calculate projective-like and reduced structures for the above.

¢.3.1. Darboux theorem on supermanifolds. ([L1)). Let @ be a
homogeneous (with respect to parity) nondegenerate (as a bilinear
functional) closed differential 2-form on a supermanifold M over K =R or
€. In a neighbourhood of any point there is a coordinate system such that

w=Xdpdq, + Eej(dﬁjjz, where £;= t! for K= R and £ I for K=,

f<isn, 1<jsm and (2n, m) = dim M, if p{w) = O,
and

w:deidq‘- , I<i<n, where (n, n) = dim M, if plw) = 1.

Proof of this theorem for the family of forms depending on a
parameler sunning a supermanifold is given in [SH]. Samc arguments as in
the case of manifolds (cf. |A}), App. 4), derive from the abovc thcorem the
classification of 1-forms:

Corollary. Let a be a differential I-form which determines u
distribution of codimention p{a) such that da is nondegencrate (iec. a is
maximally nonintegrable). Then either
::d.r +E(p'.dq‘. - q; dpf) + Eejgwdgq’ where €= +] for K=R and £j= [ for K =

' I<isn, Isjsm and dim M = (2n + 1, m), if p(w) = 0;
ar

a=dr +Z(frl.dql. +q; drrl-), 1<i<n, where dim M = (n, n+l), if p{w) = 1.

We  has often heard that "Riemannian geometry has  parameters
whereas the symplectic one does not". It is our aim to clucidate this phrase:
we have shown (Th, 0.2 in [LPS$]) that the symplectic geometry docs have
parameters, the ftorsion, which being of order 1 does not prevent onc to
reduce a 2-form to a canonical form. The curvature, alias an SF of order 2,
might have been the problem; whercas conriact structures have no SFs at all.

0.3.2. SFs on the N-extended complexified Minkowski
supermanifold. In this casc 9 = g = 0(4)®0(N) = s1(2)e51(2)eo(N), g =@ |
> 29 with g, =id,eldeid,eld* dim g , = id; ®id,*, where idj is the space
of the standard (identity) represcntation of the j-th summand s1(2), Id the
space of the standard representation of o(N), The corresponding mairix
representaion was first found for a particular real form of g, =g ®gg by
Golfand and Likhiman

Terminclogical conventions. 1)The ¢ - module V with the highes
weight £ and even highest vector will be denoted by VF, or R(§ ).

Dlet ¢g denote the trivial central "extem” {the result of the extention)
of a Lic (supcralgebra g,

L. SF for contact siruectures.
Theorem. For 1(2n+1im) and m(n) all S¥ vanish.



Proof: same as of Th. 0.1.

I. SF for N = | superMinkowski structures
The G-structure of the Minkowski space can be viewed as cither (pscudo)
Riemannian or, equivalently, twistor one. Their “straightforward”

superizations are considered in [LPS] and [P, respectively. Neither of these
superisalions are whal is accepted as supergravily nor superiwisiors. The
reason is that Minkowski superspace is naturally endowed with a conlact-
type structure.

“Recall” first of all, what is the complexified and a compactified
Minkowski superspace M{N), cl.IM].

An accoumt of physical reasons for the restrictions N<sd4 for the Yang-
Mills and N<8 for the supergravity theories can be found in [OS].

Consider the Lic supergroup SL(Ni4) and its parabolic subsupergroup
P cotresponding to the two odd simple rools in the base (system of simple
roois) of the form

+ +
Q0---#---0--,,,--0---®---0 (there are N-1 white nodes in the middle)

Let G = SL{NM).q = SL{N)xSL(2)xSL(2)xC*. Then (N} = SL(Ni)/P
endowed with the natural G-structure. The conventional versions of the
Minkovsky superspace  correspond to a certain real form of the (complex)
superspace MM (N) wilth the AG-structure, i.c. the reduced G-structure.
Clearly,

AM(N) = P/AG, where *G = SL{N)xSL(2)xSL(2).

Of inlerest are also SFs of an enlargement of *af(N) obtained by
dimensional reducgion, physicisis' name for the passage from *3(N) Lo

AR(N) = P/AG, where MG = QxSL(2)xSL{2) and Q is a parabolic subgroup of
SL(N),

i.c. the passage lo a smaller parabolic P, the ome with the diagram

+ + + +
Y NS S | POr o St

Theorem, All the orders and weights of all the SF for N = I Minkowski
superspace *M(N) and the Minkowski space for comparison are as follows
(dash means that there are no SF of this order; notice that the orders of SF
for N = 0 can only equal 1o 1 or 2):

0 3eqp + 81, 26y + 281, €1 + 3§

Jey + 28y, 261 + 351, €1, &1

2 4e1, 48], 2¢5+28),0 €1+31, 0,0
k] 3eq, 35y
g mmmmmmmmmmmm e e ——

The cocycles corresponding to  these weights are.

for N = 0
weights T Teoeyees
acy T Wy1 e 2e((Ij'alyel2y
48 Wy2 =c12e((f1afz0622)
2e1+281 Ri = Ze((fafyeil) +2120((lalfzel2:2)
0 R T

le12e((f'aly @l 2)+2c eq@((f Aly@f [2)rep2 e ((F|'Alr eI 2) ]+
fep2e((f]Afp@f ) 2e ey o (f)afa el Ty ) e 2@ (T ATy # T2 2)]

for N =1
weigmts T cocycles 7
;13_1‘:51 _______________ T Ty = (01'06;31'_2_2 ______________
2eq + 28y Tg =(c19¢))®fz0p’
€] + 385 T3 =(cl'0c1)0f2'2
ey + 251 Tol=(cq®e )@ (l2n{lr'®l7)
2 + 361 Toyz r—(cl'Ocl)O_(ff';\-Zf_z'O T
T T To3-I L(ejocpeifialljeiz)-
zi(ci'ocI)O(fln(fi'0f2)+f2f\(fi'0 i
§) To4=£jzi(Cj'0ci)ﬁ(fif\(fz'ﬂfj))-
Ei(ci'Ocl)O(flf\(l’z'Ol'i)+f2r\(fl'® 7))
£1+81 Wy =L, (e)ep)@ (il +E; eprei'@fif2" +
I, eiei®fifa'+I;ejei® fpfy -
Leifje(fpefn)2-cyfj@(f’e ) +e @ (fz'e )+
Lieifie(fy'efy)/2+e)'['e ([ @ p)-¢c ' e (M '®f3)
o R =afe) ool ®l+cpoijelizelr)c ®ie(lef))-
ey'efre(fr'efl))-
croc @(fief])-2c ey ®(f|0()) - ep0cqe(izaly)] +
blcy®f'e(fy'el)+rcoof'0((3'0[)). ey @iy’ o(l|'®f )
epefy'e(fy'els)-
cyece(f'ef')-2e)'®ex'o([|'®y")- epocye(fr'eiy)]
35 Rij =c|0(f1'Af2')Cf22+e120f1'.(f2'0f2)—cIZOFO(I'I‘O )

.



To interpret the supergravity in the same way as we have treaied the
Finstein  cquations [LPS], definc the supergravity equation as follows, On
Aaf(N), thc stationary subgroup of a point (which coincides with AG)
preserves

e ®voldep, where e and ep are spinorial metrics on the left and
right chiral superspaces [0S] and vol is the volume eclement preserved hy
SL(N).

Now sct similarly to (EEg)

R = Ag) ®volecp. (EE5(R))

The tensor R depemrds on a parameter, the ratio afb which runs the
projective line Pl Physicists call this parametet the Gaires-Sigel parameier.
Notice immediately, that before considering (EEg(A)) we must vanish
all 8Fs of lesser orders. This gives us the constraints:
Ti=0 and Tej =0.

Analogues of (EEgc) seem to be [to wrile a dilferential cquation from
the above data is a separatc problem that will be dealt with in a scparate
publication] any or the both of the equations

Rij =0,
which are weil-defined as inlegrability condition provided the constraint
Wy =0

1akes place.

Different choices correspond to  different  supergravities  (minimal,
Mexible, ctc.) The calculations arc pretty bothersome and will be
published elsewhcere;, in the continuation of this paper we will list  SFs for

M(N) with N<9.
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