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It is observed that the fundamental theorem of calculus does not hoid in general for
real superdomains of even dimension one and nontrivial odd dimension. Similarly, it is
observed that the theorem of the rank of elementary calculus does not generalize to
supermanifolds unless some modifications are made After dealing with some
concrete examples, it becomes clear the importance of developing some simple
algebraic criteria by means of which one can give definite answers so as to know
precisely in which cases the cenclusions of these theorems hold true. It is suggested
that the deveiopment of such criteria amounts to a generalization of the De Rham
cohomology to include in a nontrivial way the effect of the odd variables. This paper
is expository and self-contained; its purpose is to give an elementary and detailed
account of these problems.
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{ Motivation: smooth manifolds

One may approach the theory of C® manifolds the way algebraic geometers do;
namely, by defining a real c>{1) manifold as a ringed space, (M, C*y ), consisting

of a topological{2) manifold, M, and a sheafl of R-algebras: the sheaf C%y of
differentlable functions on M. Thus, If U CHM is an open set, smal! enough so as to
introduce a set of local coordinates {(x!, x2, ..., 2™}, f €eC™y4(U) means that the
coordinate representative f : Z(UYCR™ —Rof f, is a c1rférentiable map in the

sense of calculus; ie,

f=f(z, 22 ..., 2m) eC®(x(U)).

We recall that the staZk of the sheal C®y at the point peM, denoted by C®y_p,
15 the set of equivalence classes corresponding to the relation {Vf eC™y (U],
gEC®(V)), T ~g += (IWCHM, open; peW), such that phy(f)=pY(g)>); in
other words, it ts the direct limit, Lim ;, ,C%y (U), with U ranging over the open
subsets containing p. The eguivalence class In C*y p of an element  €C™y (U),
with peU, Is denoted by f,; it is called the germ of f at the point p. Thus, by

definition, the stalk at pis the set of germs at p, that 1s,

C®% . p=1{fp ] 1 €C®y(V), pevCM)

(1) Real enalytic, complex, or algsbraic menifolds are similarly defined.
{2) HausdorfT, paracompact snd with # countable bese.
(3) pUyy stands for Lhe restriction morphism C%(U) — C™{W); iL is defined whenever WC L.
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This set can be given the structure of an R-algebra by defining the operations of

adaition, scalar muitiplication, ang proguct, pointwise. One notes that C®y, plsa
local ring; that is, it has only one maximal ideal, q,: the one consisting of those

germs of functions that vanish at the point p.

Morphisms between C* manifolds are then del ined as morphisms of ringed spaces
that preserve, at each point, the unique maximal ideal of the staik. Thus, a c=

map, ¢ : (M, €% ) — (N,C%), s apair (@, ¢") consisting of a continuous map
@M =N,
and a collection @* = {¢"y : UCN, open ] of morphisms of R-algebias
@°y s CPN (U} — C%y (91 (U))
satisfying the following two conditions:

(i)for each pe @' (U) CM, with U CN open,
9 5(p) (Mg py) C M,
where @"5(p) (1 3(py) V5 defined as

¢ 5em (Faepy) = (970 (1)),

{11} for each pair of open sets, U CV of N, the morphisms ¢*yand ¢°y
commute with the restriction maps ply : €%y (U)—C*®y(V), and

PP (g (yy 1 Co (P! U)) — €= (@1 (V)); that is,
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(‘}'v ° pU =p*¥ (U);-l(v) ° q).u X

In other words, condition (i) says that the coilection ¢° defines a shedf
homomor phism

@° D CO% — 9, C%;

@4 C% being the direct tmage sheasf of the sheaf C*® under the continuous

map @ :M — N{(&), on the other hand, (1) says that ¢° has to be Zocal on each
statk.

An important consequence of this definition, when taken together with the fact
that there can be no non-trivial R-algebra maps {rom R into R, is that for each

open set U CN, and each I eC*®y(U) (cr., (18)),
Pull)=feq

that is to say, a differentiable map ¢, as defined above, is completely determined
by the set of values { @{p}: peM}of its underlying continuous map.

The tangent and cotangent bundies over a given C* manifold (M,C%®y) - and in
general, any C* vector bundle of finite rank over M - are defined within this
approach by making them correspond with locatly free sheaves of C*®y -modules
over M; namely, with Der C*)y and Hom (Der C®y , C% ), respectively. The question

{4) This is the sheaf over N defined by means of the essignment, U -+ {9, €% U = €=y (91 (U)), for
sach open subset U CN.
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then arises so as to find

(1) new topelogical manifolds, TM and T *M, respectively, equipped
with structural sheaves that makes them into C* manifolds,
and
(ft) airrerentiable maps (actually, submersions),

Ty :TMH—M  and  T7pey (T —N,

in such a way that the corresponding sheaves of local sections of these maps
become (somorphic to the sheaves Der C™y and Hom (Der C*y , C*®y ), respectively.
But there is a genera! and well known construction that produces a C* vector
bundle over M (in the geometric sense) out of a locally free sheaf of ™y - modules
over M(ct., [19] or {20]). The main tdea consists of relating the free C*=y - modules
obtained over any two overlaping open sets, say U and W, by means of an invetrible
matrix with entries in C®4 (UNW). The collection of matrices obtained this way,
for all the possible pairs (U,w) with non-empty Intersection, represent the
transition functions for a vector bundle. It turns out that the sheaf of sections of
this bundle 1s naturally isomorphic to the locally free sheaf of C*y, - modules over

M one started with.

In analizing this construction one realizes that the crucial steps are provided,
first, by the existence of a natural correspondence,

C®y(U) «— setof C*maps (U,C%|,)— (R,C%R)

= - —

T——
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In the sense that each f € C* (U) defines a unique C*map, I = (f.1*) trom the
open submanifold (U,C%],) Into the very spectal manifoid (R,C™g). Second,
the C™y-module operations on a direct sum of the form C%u(U}®
€2 {U}® - - - ® €O (U) are defined componentwise and therefore, the ultimate
point 1s to be able to define them In C*y (U); there, however, the definitions are
straightforward, for we can simply use the ring structure of R to define, for any

twomaps T, §:U—R, themaps T +3 :U—R and 7g:U—R,by letting,
(vpeyw) (T+gip)=T(p)+g(p) and (T3)p)=T(pglp)

For example, when we apply the construction to the locally free sheaves of
C* - modules Der C*°y and Hom (Der C*y , €™y ), the topelogical manifolds TH and

T *M have both the same dimenston; namely, twice the dimension of M.

The exterior algebra bundle of M, AT*M, Is constructed from the exterior algebra
sheaf AHom (Der C®y ,C®y ) viewed as a locally free sheaf of C %y -modules over

M. It is naturally decomposed into the direct sum

AHom (Der €%y ,C% ) = G)k AkHom (Der C® ,C% )

which in turn, yields the Whitney sum of vector bundles of the various exterior

powers of AT *M; that is,

AT™M = @t AKT®M  (Whitney sum).
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The sheaf of sections of this bundle - usually denoted by U +— Q(U), Instead of
U — T{U, AT*1); U CMopen - gets decomposed Into

() =@, oxv)

The elements of Qk{U) are called the differential k-forms over U. One notes that if
the bundie T *™ is trivial over the apen set U, then,

QK (U) = C= W)@ ARLe, €5, - . E et b

where [e,,€,, ..., @4,n ] denotes the {dimM)-dimensional vector space over R

generated by the linearly independent set (e, ,e,, ..., €gmn )

The submodules Q¥ (U) together define the De Rham complex of the manifoid M, as

the sequence,

d d d d
0—QoU)~— QHU)— - -+ — QIMA(}) - 0

given in terms of the operator of exterior differentiation. We recall that the
operator d 1s completely characterized by the following properties (see, for

example, [5]):

(1) df =3, 8, (f)dx, VIeQoU)=C®W)

(i) d{wan) = (dw)an+ (-1)*wa{dn), Vwe*{U), neQl)
(i) ded =0
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Due to the third property, one has,
(Vkz1)  Imd]gk-1gy) CKerd|gq).
Therefare, the cohomology of the De Rham complex gets defined as,
HE(U) = Kerd ] gkquy 71md | gk-1(y).

It is well known that the special manifold (R, C*g ) has trivial cohomology and
since the De Rnam complex of R terminates at Q! (R), Kerd |qipy=Q! (R). I then
follows that any t-form on R can be integrated The technical device behind this
assertion is, of course, the fundamental theorem of calculus. In fact, given the
1-form

w=rdr, feC*™(R)

there 1s a O-form g €C*™ (R), such that, dg = w; namely,

z

g:x [ f(s)ds.
a

This situation, in which any 1-form over the speclal manifoid R can be integrated
Is to be contrasted to what occurs in the theory of supermanifolds.
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2. About the prefix super

Before going into the theory of supermanifolds, we would like to say a few words

concerning the terminclogy used in the subject. It 15 now a standard convention to
let super mean Z,-graded (cr., [2)). Thus, for example, 3 supervector space V

{over the real field R, say) is an ordinary real vector space V, together with a

prescribed direct sum decomposition

V=V,8V,

Elements of V, are called homogeneous of degree | (also called even if |1=0
and odd if =1} and the degree of a homogeneous ¢lement v €V is denoted by | .
It 1s understood that the map v | vl 1S defined only on the disjoint unlon of the

sets ¥V, and V, and takes its values inthering 2,

If V and W are two given supervector spaces, the ordinary vector space Hom (V, W)

of linear maps from V into W can be naturally graded over Z, as follows:

Hom (V, W) =Hom (V,W ), ® Hom(V, W),
where,
Hom (V, W), = (f eHom(V,W)| F(V,)C W, ;vel,)

Thus, Hom (V,W ) becomes a supervector space itself. The maps from Hom (V, W},

(that is, the even maps) are of special importance themselves: they preserve the
gradation. In considering a category whose objects are supervector spaces, the

morphisms are forced to be the elements of Hom (V,W ), (cT., [6)).

e W

AT
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Just as there 15 a natural way of Z,-grading Hom(V.W) In terms of the

Z-gradings of V and W, there is also a natural Z -gradation in the tensor product

V @W of two supervector spaces; namely,

Vow = (VOW)OQ (VOW),
where,

(Vow ’A"’me"uwv

Thus, if veV and weW are homogeneous, v®w is homogeneous, and | v8w| =|vl +| wl

An assoctative R-superafgebra’® A 1s a reat supervector space A=A ,BA,,
together with a distinguished element (&), 1, €A,, and a distinguished morphism

meHom(A®A, A),, such that

(vaeA) Tm(,®@a)=a=m(a®i,)
and
ne(n@id) = ne(id@m)

As usual, m(a®b) is denoted by ab. It is then clear that, labi =lal + 151.(7

An associative superalgebra A is calied supercommutative if and only if (8)

(va,b e A, homogeneous), ab =(-1}llblpa

{5) k-superaigebres, for sny field k, sre similarly defined.
() Lot us recall that, Lo give & distinguished element, 55 € A4, is the same o5 Lo give s distinguished algebra
morphism (ses 83 below), K& Hom(R, A); Lhe relstion is the following: (YAER), k{A) = A1y .

(7) The Lypical exatnple of an wssociative superaigebra is End¥; the morphism T is just composition and Lhe gradstion

is the one of Hom{ ¥, V) given shove.
{8} The typicsl exampls of & supercommutative suparaigebra is the exterior algebrs, AU, of an ordinary vector
space U, reistive Lo the Z,- gradation (AU)g = @) AZKU, (AU), = @ AZKH1 Y,
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If A and B are two given associative superalgebras, a morphism $:A—B
between them 15 an element $ eHom (A, B),, such that
b{ 1.‘) - 1,

and
®(ab) = d(a) (b}

The tensor product of two superafgebras, A and B, 1s thelr tensor product A®B
as supervector spaces, endowed with the superaigebra structure given by letting

laep =149 1y
and (%)
(2,®b,)(a,®b,} = (-1)1P1113;1(a,2,)@(b,b,),

for all homogeneous b, € B and a, € A, and extending the def inition by bilinearity.

Let A be a supercommutative superalgebra and let V be a supervector space. 7o
give a (left) A- modute structure on V s to specify a superalgebra morphism
¥ A — EndV, The etement W(a)v Is usually denoted by av, for all a€A and VEY.

It should be clear by now how to proceed with further definitions and concepts In

Linear superatgebra We shall refer the reader to [17)for details.

{9} This Is snother example of tha so called Guillen's rule [9) (see definition of supercommutativity sbove; see
aiso [4] and (61): when something of degree p moves past Something of degree g, the sign
{-1)P4 appears.
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3. Review of Supermanifolds

Vartous forms can be found in the literature of getting at the notion of
supermanifold, but the approach that seems to be more popular among
mathematicians is the one that goes within the spirit of algebraic geometry. Thus,

a realsupermanifold is basically defined as a ringed space (M, A, ) consisting of
a topological manifold, M, and a sheaf of supercommutative R-superalgebras, Ay,
defined over it. The various conditions imposed on Ay yield the various

definitions found in the literature (cf., (10] and references therein).

Thus, for example, the approach we have followed in previous works ([ 14}, [15], and

{16]) is the one of Leites and Manin {cf.,[411 71},
’ Manin defines in [7] a real

smooth supermanifold as a ringed space (M, Ay ) as above with the following

conditions imposed on Ay:

123.

tet Jy = ({Ay), ) be the sheaf of tdeals generated by the odd subsheal (A ), over
MU Then, on the one hand, we obtain a sheaf of commutative algebras over M,

GroAy 1= Ay /]y, @and a sheaf epimorphism
A:Ay —> GrtA,

defined by the canonical projection onto the quotient. On the other hand, we may

consider the ]y, -adic filtration of A defined by,
Ap =]yt DJy2 D Jy* D+ v -

and form the corresponding sheaf of graded algebras associated with it:

Gray =@ . crkay; GrrAy 1= Jyk/)yk*

(11) That is, over an open subsel U C . Apy (U)= Ay (U3 @Az (U, 30 Jpg{ U) is the idesl goneratad by Apy (L),
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Under the usuai definittons of addition and muitiplication performed on germs,

each GrkA,, becomes a sheaf of Gr®Ay-modules over M. In fact, when viewed as
a sheaf of Gr®A 4-algebras, Gr Ay 1S generated by Gr'A . Furthermore, it has the

structure of a sheal of augmented Gr®Ay-algebras over M, with augmentation

map given by the sheaf morphism

8 :GrAn _’GroAn

defined by the projection of GrAy onto the direct summand Gr®A . Moreover,
since Ay (U) 1S supercommutative, GrAy isinfacta homomorphic tmage of the
sheaf of GrOA -algebras over™, Ag oaGrlAy. Itisa straightforward matter to
check that if the filtration is finite (i.e., if there is some k, such that Juk=0),

then Gr A, 1S actually 1somorphic to Ag,.oa GriAy.

Thus, when we are given a supermanifold (M, Ay ), we always have the following

morphisms of sheaves defined:

Ay GrAy
A\ /6
GI'OAH

In these terms, the defining conditions for a real smooth supermanifold are:
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(1) For each X €M, the stalk Ay , 1s a local super-ring.

(1t) The sheaf Gr°Ay is isomorphic to the sheaf C*°y of real smooth
functions over M.

(1it) GrtAy s a locally free sheal of Gr®A,-modules of finite rank over M
(and the rank 1s called the odd dimenston of the supermanitold),

(tv) For each point x €M there is an open neighborhood U of x and an
isomorphism of sheaves of supercommutative superalgebras over U,

gy :Anly —6rayly

such that, Ee ¢, = A

A supermanifold morphism from (M, Ay) into (N,Ay), is a pair $=(¢, ¢*)
consisting of a continuous map
¢:M—N

and a sheal homomorphism

which is local on each stalk.

it s a well known fact (c.f, [3], and {4]) that a supermanifold morphism is
completely determined by the superalgebra morphism that the sheaf
homomorphism gives rise to; that is, by

9" Ag(N) — Ay (97H(N))

Note, in particular, that every supermanifold comes equipped with the
supermanifold morphism
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A (M,C%) (M, Ay)
uniquely determined by the canonical projection
Ag{U) = (Ay 7}y M) =Coy (L) ; f i T

This morphism is useful in evaluating any T €A, (U) on the points of M, in the

sense that for a given peM, there is also a supermanifold morphism
Ap:((«},R}—> (M, Ay),

the object ({+],R) being the supermanifold consisting of a single point and the

constant sheafl R, the reals, over it. Bp Is defined by,
(VF€A W) a,°t =T(p)

Note that {{«},R) Is a terminal object; the unigue morphism from any

supermanifold into it is the constant morphism

Cin, ap) : (M, Apy) —> ((5),R)

determined by the unique superalgebra morphism R — A (M),

(VheR) C(".AH)‘A = RlA"(n)

i.e., the one that comes with the definition of any superalgebra over R.
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4. Specific differences and analogies

wilh smooth manifolds

In order Lo compare with the theory of C*® manifolds, note that if U CHM is an open
set, small enough 5o as to find a definite isomorphism @y = Ay [y — Gr A, |y,

then,

AU) =C= ()AL, (3, ..., 0L

where ({2, ..., ("} is a set of free %y (U)-generators of Gr!Ay over U; they
are an example of what is called a system of odd (Local) coordinates {ie, only
defined over U). Thus, once an isomorphism ¢y is given, any super function, i.e.,

any element T € A\, (U), can be written uniquely in the form
f= f“+Z[u I +wa qhgy +Z fupo CHCVEO 4 o v o b, (102 ogn

WIth £ f 0y Ty oo T n €0 (U) Thus, superfunctions over U look
exactly as sections over U of the exterior algebra bundle of a vector bundle. As we
shall shortly see, however, this does not mean that supermanifolds are just
extertor algebra bundles of C* vector bundles. Let us only pause here to note that
I U as above Is furthermore a coordinate neighborhood In the usual sense, local
coordinates {x*,x2 . _, M) may De introduced in U, and the collection
[1", X2, M 00 02 . I} becomes an example of what is called a system of

local (supercoordinates over UCM for the supermanifold (M, A5 ). In this context,

P
et
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the collection {x!, 22, ..., ™) is refered to as a set of even coordinates and one

says that (M, A, ) is an (m,n)-dimensional supermanifold.

Now, one of the most important points to bear in mind in the theory of
supermanifolds is that even though the structural sheal A, may be locally
Identified with the sheaf of sectlons of the exterior algebra bundle of some vector
bundle over M, the morphisms on the supermanifold need not be morphisms of

vector bundles. Thus, for exampie, an automorphism of (U, Ay \U) is not required

to come from any map of C™y (U}-modules. AH what 1S demanded is that the map

¢U. AH(U) —"A"(U),

that deflnes t, be a morphism of superalgebras. This means that |{f
{28, 2% ..., 2™ {0, C3 ... (") is a system of supercoordinates of the spectal kind
consldered above, we shall be able to write

%'Ii =1 + Zf'uv TREY + ) (W)

and
@’ o _Zp\u ] +Z fhuw v e "'JN(U)S

and in general, the functions f ‘nv i "‘“w, , etc. do not have to vanish. Therefore,
the category of supermanifolds admits, in principle, more general morphisms than
vector bundle maps. This observation makes it clear that a more general definition
of a coordinate system is needed The one accepted within this approach is the

origina! definition of Kostant { 3] (see aiso [4])

A supercoordinate system for the supermanifoid (M,A,) over the open

neighborhood UCHM, consists of 3 collection {ri,r2 . 1m} of even super-
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tunctions (e, Ti€(A,(U)),), together with a collection (', (..., {°} of odd

superfunctions (1.e.,, {* € (A {U)), ), such that,

(1) the collection of C= functions on U, {71, T2,...,T™), forms a coordinate
system (in the usual sense) for the open set U CM, and,

{#1) the collection (&1, ¢2, ..., ("} is maximal among al! collections of odd
superfunctions with the property that {1 {2- - -{* #£0

vector bundles within the category of supermanifolds may be approached in
exactly the same way as in the C* case; the only technical detail that has to be

taken care of 1s to realize that the rdle of the manifold (R,C™g) Is now taken Dy
the (1,1)-dimensional supermanifoid R'!* = (R,C®®A[{]), as It was emphasized

in[12], [13) and { 14}

Thus, one may prove that the sheaves Der Ay =(DerAy),® (DerA, ), and

Hom (DeF Ay , Ay ) = (Hom (Der A, Ay ), @ (Hom (Der Ay, Ay )y, where,

(Der Ay ), = {sheaf morphisms X : Ay —> Ay | vf,g €Ay W), f homogeneous,

X{rg)=(X1)g +(-1)rIfrXg}
and

(Hom (Der Ay , Ay, )}, =(sheal morphisms :Der Ay —~> Ay | 0((Der Ay ),) C (Apdyey)

are locally free sheaves of Ay,-modules over M of rank (evendimM,odddimM)
= (m,n) (c.1.,, I3} or [4]). One may also produce two supermanifoids, (STM,5TAy)

and (ST*M,ST*A,), each of dimension (2m+n,2n+m), together with
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supermanifold morphisms

“5"1 : (STH,STAH ) — (N,An)
and
‘TST‘H . (ST ‘M,ST.An ) -t (M,An),

so that the sheaves defined by assigning the sets

I'(STM ) = {supermanifold morphisms 0 :(U, Ay Jy) — (STM,STAY) | Tigpy ° 0 = td )
and

T(ST*M) = {supermanifold morphisms o: (U, Ay |y) — {ST*M,ST*Ay }| ngray c0 =id}

to each open subset UCM, become Isomorphic to Der Ay and Hom (DerAy, Ay ),
respectively. The procedure for doiﬁg this mimics the one followed in the C*®
case®d). This time, however, It 1s cruclal to realize that the supermanifold R*!t
¢an be endowed with the structure of an abstract ring in the category of

supermanifolds (c.f, [ 1} for definitions and exampies); that is, that one may define
supermanifold morphisms

g:RINXRIH gl and u':Rllllell_.Rlll

called supersum and supermultiplication, that allow the standard construction to

go through (see [14] and for applications and further results on linearity and
bilinearity, see [15]).

{12) As tan be seen from the definiLions, C%°-menifolds occur as specisl casas of supsrmanifolds. Morphisms batween
smooth manifolds are specis! cases of supermanifold morphisms, Loo. Thus, the catagory of £™°-manifolds gets
sibsumed es & full subcatagory of Lhe category of €% -supermenifoids; namaly, ss Lhe one defined by Lhose
objects heving odd dimension equal 1o zers. Bul now, If we are givea any such supermenifold, say (M, €% ),
wa can apply our general construction Lo produce ( STM, STC™ ) and {ST*M ., ST*C®y ) which we
supsrmanifolds of nontriviel odd dimension; they are (2m, m)-dimensional. Then, the zero section {a nolion Lhat

- makes good 3ense in the theory of supervector bundies, a8 can be deduced from the foundations layed oul in [14]),
delinea an embedding of Lhe original smooth manilold inlo any of these supsrmenifolds.
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The construction of the De Rham complex of a supermanifold follows essentlally
the same steps as in the C*® case. An important difference, however, is that the

presence of odd coordinates prevents the Q' (M, Ay )-s from being the zero module

at some stage. The reason is that the sheaf of sections Q' (M, Ay ) looks locally

like

Qi (U, Ayly) = Ay (BN [{d, d22, ..., dz" ) @ (dL}, a3, ..., 4 )]

where A[{dx!, ..., dx™)@{d{!,...,d{"}] denotes the supervector space

corresponding to the 1 extertor power of the (m,n)-dimensional supervector
space spanned by the even generators {dzx',...,dx™} and the odd generators

{dg, ..., d¢") Let us recall that the general definition of the Z,-graded exterior

algebra A (V, @V, ) associated to the 2 ,-graded vector space V =V, @V, is given
by (1., foetnote (9)),

AV, 8V,) =B V0V, )4y generated (z®y + (~1)\=1W!y®1| x, ye V homogeneous)

Then, one proves that

A‘(V09V11=$i,m A (V) @St (V)

and therefore,

Q (U, Anly) =AH(U)@{$|.IH A ({az8 DSk ({ag2 )},

Since, odddimM >1 implies, dimgS* (€a{2))>1 for all K £0, It follows that In
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general, ©'{(U,Ay]y)#(0) for all 1€N. Let us point out that the modules

Q' (U, Ay |y ) have a Z,-grading, too; In fact, we may write,

O (U, Al = (Q' (U, Ay y)), ® (U, A U )),

where,

© WAl =®,_ {agun,o{® _  Acazenestiarey) }

A=+V =

and

{®_,, nuasnescaaen) =@ _ | {Adaanest oy},

=]+k =4k

-®,_.. (o, (e, e s sen,}}

The exterior derivative for superforms can be characterized as in the C* case by
means of the following properties {(c.f., {3] and [4}; however, one must insist this

time in using the right A,-supermodule structure, as emphisized by Kostant ).

(1) V1 eQo(U,Aply) =ApWU), df =2, dx8d.a(1)+3 ,dz? 3pn(f)
) Ywe (@I, Ay ly))y, neQU,ALlY)  dlwan) =dwan+ (~1)iwadin)

{tityd2=d-d =0

where, acp ts an odd derivation; that is, that for all homogeneous € A (U), and
allheAyU),

Bcb {fh) = acb (T + (-1)My acb (h)
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Again, the third property allows us to define cohomology in the usual way for the
complex obtained from the Q1 :s. To give an example, let us look at the De Rham
complex of the special supermanifold Rt!t = (R, C®=a ® A[{]). The reader will have

no trouble in convincing himself that,
Qk+1 (U, Apfy) =dx (8K @AQ(U) @ (d0)F*1 @ Ap(U)

One notes that in general, a given {i-superform, say w=(dx)f +{d{)g, with

f.g eAu{U ), is not the differential of a O-superform (1., a superfunction, say

FeAglU)). In fact, if we write F =a +b{, witha,b eC*(U ), then,
dF = {(dx)(a’+b"{) + (d{)b

Hence, the 1i-superforms m={d{)c{, wtth ceC™(U), can never be exterior
derivatives of superfunctions. Nevertheless, talking at the level of cohomology, we
can eastly prove that Hx+1 (R#!1) = (D). Indeed, the most general (k +1)-superform

can be written as
w=dx(@*(@+bl) + (@ (a+pL)
witha,b, a, g €C* (R). Then, Its exterior derivative Is given by

dw=dx(d)* (e’ + (1K) + L1+ (1R (dQ)R*2p

Hence, w €Ker d[gk+s (R111) If and only If a’=(~1)*b and p=0. That is, If and

only ff,
w=dx{dl)* @+ (-1)ka’{)+ (@) a



134.

In such a case we can certainiy find a k-superform, say
N=dz{d* (A +B) + (d()* (0 +T()
such that, dn=uw In fact, we have

dn=dz (@ (6" + (-1)*B}+ "L} + (- {dg)k*iT

so, we simply put T'=({-1)ka, 0+ (-1)*B =a, and A arbitrary. Thus, any closed
superform on R'™M {s exact.

What 1s at issue here is a general fact already pointed out by Kostant in his
ploneering work (3] and explained in full detail in (18143} The cohomology of
superforms on any supermanifold 1s isomorphic to the De Rham cohomology (of
ordinary differential forms) of its underlying smooth manifold. In certain sense
this is no surprise at all, since the De Rham cohomology gives nothing else than
the topological (Cech) cohomology and the approach to supermanifolds we are
following here does not change the underlying manifold. It would be desirable then
to develop new criteria that allow us Lo uncover phenomena such as the fact that
not every {-superform on R!M is the exterior differential of a superfunction
there. From the work done In [8] and [11) we may expect such criteria to be
cohomological in nature; furthermore, it would come as a pleasent resource Into
the theory to be able to detect other peculiar properties of supermanifolds through
the calculation of some appropriate cohomology supergroups {14,

(15) Wa sra indebted Lo H. Boseck for bringing Lo our stlantion the wark of T. Schenitl.

{14) For sxample, in the theory of complex menifolds, the different complex structures on a given manifold are
parameterized by the slements of certsin
defined on it (The junior sulhor would like Lo thank R. Vil for {lluminating Lhis and other points in supsrmanifold
theory through helpful discussions of known axemples in cormplax manifolds).

groups of halomorphic sections of s suitable vecior bundle
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Another problem, where the development of some additional algebraic criteria is
needed, 15 the supermanifold counterpart of the theorem of the rank of elementary
calculus, For the sake of comparison, let us review first the situation in calculus:

suppose that we are given a C*-map

$=(9,¢"): (R™,C®m) — (R?,C%p)

and introduce local coordinates, say {x*, 22, ..., ™} on the open set U CR™ and
{4 ... 9™} on the open set V CRP, with PH{V)CU, so as to express each
¢"y' as a differentiable function of the coordinates (z!, 22 ...,zM) The
jacobian matrix of & is the p xm matrix (+8)

[ 29°y 2¢°y 8¢°y )
EFL dr¢ . . - 3z®
29°YF B¢ 29°y
]J® = ax! 8z° . ozxm
o'y a¢'y a¢°y
| 2zl 312 ar™ |

The probler of the theorem of the rank may be roughly Stated as follows: can we
Tind some change of local coordinates InU CR™ and V CR?, say

a:UVCR™— U CR® and B:VCRP — V'CRP,

in such a way that the morphism p« &« a has a jacobian of the simplest possible

{15) It ia cloarly a matrix with entries in C™gm (U). One noles thal nol svery matrix M& { C™gm(U) }P*®
.cmbclhcjlcoblmmtriuorarrmm.(:lwly.nmmywuﬂﬂonfnrﬂ-(l”)lnhu:.jlcoblm
of some C°° map R™ —+RP, Is thal the p 1-forms defined by W= 3 j M| 0T} be all clused; that s,
dwj=o,forall k=g, ..., p. This condition Is by no means suffickent alther; but, If IL Lurms oul that on the
opensat U, dwj=o Hwj=dn;, with 1 ¢ CPgpm(U), {2 question amswersed try cohomology! ), then
the matrix M is indesd the jacobian matrix of the merphizn defined by the squetions @° 17/ = ;.
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form? Since JB(u):RP ~+RP and Ja{v):R™ ~~+R™ are linear isomorphisms for

all weU’ and v €V, and the rank of a given matrix must be an invariant under

isomorphisms, we seek for @ and # such that, at some point z, €U,

1kxt 0
Jpedoaldlatiz)) =

where k is the rank of the matrix J& at x,€U. As a remarkable fact, the theorem
of the rank asserts that this form of the jJacoblan is actually achieved throughout
some open netghborhood Ucuor 1,, provided the rank of J¢ Is exactly k on 0.

Moreover, when k =p =m at the single point x,, one may conclude that the same

property prevalls throughout an open neighborhood of it, In which case, the
morphism & is easily seen to be an immersion there.

One may approach the problem algebraically; that is, one may ask whether or not
the given matrix ] with coefficients in the ring C=°gm (U} may be brought to such
a triangular form. in fact, one notes that the elementary operations on matrices
with entries In C®um (U} correspond to well determined coordinate changes. In
these terms, the theorem of the rank of elementary calculus asserts that any

Jacobtan matrix can be so triangularized.
This situation is to be contrasted to what occurs in the realm of superdomains.
There, we have the notion of jacobian too (cf., [4]). It is constructed in exactly the

same way as above; namely, assume that we are given a superdomain morphism

& =(9,¢"): (R™, Crm @ Aln])— (R?,C¥gp ® Alg])
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and assume that local coorginates have been Introduced, {x', ..., z™; (', ..., ("}
on the open set UCR™ and {3, ..., ¥® &' ..., £} on the open set V CRP, with
Pt (V)CU, so as to write ¢°y' as an even superfunction of the coordinates
{xt, . ..,2™; ¢, ..., (") and @"E¥ as an odd superfunction of them. Then, the

superjacobian, } ¢, of the morphism &, is the (p+q) X {m +n) even matriz(ie),

24"y g’y 3¢'y 29"y
ar ... Axm Bt T4
20 20 a9y ad'w
J¢ — axl P BII'H acl . acn
dg*t ae'l a¢'H dg'tt
31 .- - azm w arn
29°%8 0% 0"t 29"k
k dx! agzm art - afn ]

In order to give a meaning to the notion of rank of this matrix at a given point, say

1,€U, one must evaluate it at x,. But now, evaluation of any superfunction of

C®rm (U)®Aln] at some given point x, (or more generaily, of any matrix of
superfunctions) has to be understood in the sense explained in §3; that is, by
projecting onto the algebra C%gm (U) first via f — T, and evaluating at 1 inthe
usual sense afterwards. Since the antidiagenal blocks of this matrix have entries

in the ideal generated by (C™pm (U)® A[n]),, they both project onto btocks Tilled

(18} It ia # matrix with entries in C®pm (U) @ Aln]. Since the 3 1 are even derivalions of this supersigebrs,
agite'plre(c®gmiuv) @Al = COpm(U) @ (Alnlgend 351 (@ EV) € (C¥pm{U) @ AlnD),
= CPpm{U) @ (Aln)), . Similarly, a5 the 2,11 are odd derivations, a¢u(¢'y1 Ye C®pm(u) @ (Alnl),,
while 2,1 (9°¢Y) € CPgm (V) @ {Aln})o- Thus. the px m and the g n diagonal blocks have even entries.
and the remainig antidisgonal blocks have them odd. This is, by definition, an sven matrix.
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In with zeroes. Hence, upon evaluation of J¢ at x, €U, we are only left with a
block-diagonat matrix. The rank of J$ at x, is then by definition the pair {r,s) if
the rank of the block {{8.i ¢ (x,)) is r and the rank of the block

(3 ¢"C¥T(z)) 15 8.

it Is still true in the theory of supermanifolds that the elementary operations
performed on columns and rows of ¢ correspond to multiplication from the right
and from the left by the super jacobian of well determined supercoordinate changes
on the domain and codomain, respectively. However, It is possible to have a
superdomain morphism ¢ for which the rank of )& 1s everywhere (r,s), but no
supercoordinate changes on domain and codomain ( a and B, respectively) can ever
be found so as to bring J{B+dea) to the form

0 0

4] »
0 0 14,

0 *

{»)

(=T = I = =

as a matrix with entries in C®m (U)® Aln] The reason now is that matrices with

coeffictents in a ring where nilpotents exist, are not in general triangularizable in
this way. They are always triangularizable in the following way (cf, [ 1])md(19) below

le 0 0 O
0 s 0 = (»)
0 0 fexy O
0 % 0 »

»

but this form is useless for the most interesting theoretical purposes; for
example, not betng able to produce zeroes in the rematning starred blocks amounts
to not having found appropriate coordinate changes in domain and codomain so as
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to make ¢ look like the standard focal embedding,

W =x If 1=fsr ;P =0 If r+isjsp
QY =F 1 1ZfvEs . @V=0 T s+1sviq

This phenomenon was first observed by Leites in [4]); what he did there was to go
around the problem by defining constant rank, not by the property of having the
same rank at all points of a given neighborhood, but by the property of being
diagonalizable ¢!7) throughout that neighborhood. Although these notions coincide in
calcutus, they need not coincide in supermanifold theory as the following example

will now show (1)

Let us consider the superdomain R2!2=(R2, ®212) with its standard coordinate

system {(z, y, £, { } Suppose we are given the supermanifold morphism
¢ :R212 — g2I2

specified in terms of the given coordinates by means of

' r=1+9¥8L; f,0eC®(R?) ; ¢°E=at+bl{: a,beC™(R?)
P'y=h+kE(;, hKEeC®(RZ)  $*(=cE+d{; c,deC™(R2)
Wwe shall rurther assume that,
(1) h isaconstant; that is, a,h = dyh =0

{it) d=0, identically.

(47 1L i3 ensy Lo see thal once @ malrix has been brought Lo the form (#), slemenlary operstions performed on rows
an] columns make it poasibla Lo even bring it Lo the disgonal form disg {1 x. 0. 1 55 5. 0 ); 0n the other hand,
i is impoasibie to achieve such a diagonal form from (%),

{18) It is worlh our whils 1o nots Lhat sn example has been given in [4] of a non-disgonalizable matrix with coefficients
in & superalgebra of the form C®pm (U) @ A[n). Unforlunately, such a matrix is not the super jacobian of any
marphisen (see our footnote (14) sbove); hence it does nol illustrates the phenomenon.
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(ttt) 9,7 1s nowhere zero, but 8,7 =0, igentically.

(tv) a is nowhere zero.

under these assumptions, the superjacobian matrix of & is:

drf +8,9E( 8y9 £ 9¢ -9¢
Bk EL 3k EL kg k& -

{8ga)E + (9,0} (aya)§+(ayb)c a b

(8,C)E (8yc)E C 0

Its rank is clearly (1, 1) at all peints. On the other hand, it is a straightforward

matter to check that this matrix is elementary equivalent to 9

3,1 +08,9EC 0 0 0
0 (B k + katdya)Eg 0 -k{Et+aib ()
0 0 d,, 0

0 (aycAca"aya)F,—(a“‘cayb)c 0 -a“'bc¥g(d f)ta fatbclEl

(19) It i5 easy Lo see what Lhe generat result should be; sssume Lhat we are given an even matrix with the following
block decompesition Ay Ay By By2
Ay Ap By B
Yu Yi2 Py Dya
Ya Yz Do Dap )
The A and D blocks have even entries, Lhe B and ¥ blocks have odd entries, snd only Ay snd D, are invertible:
Lhal is, the resi of Lhe blocks have purely nilpotent entries. Then, by elementary operations, this is aquivalenl to
Ay 0 o0 o )
o Xy 0 Xy
o ] d,, ©
0 Xy 0 Xy
and the !(1] +5 are explicitly given in terms of the original entries s follows:
Kip={Ag—Ag Ay AR Y E(Bo - Ay A7 By )0 T (Y2 - Y AT Agy)
Xia={Boo-Ap Ay Do) - (Byy — Ay Ay 18y Yy ™ (Dypt vy Ay~ Byp)
Ko = (Yoo~ Yor Ay PA) ~ (D 3y Ay 718, 0y T (- Y Ay 7T Ayy)
Yoo = ( Dopt Yoy Ay 1 B1p) - ( Doy £ ¥ay Ay 1By Yy 7 Dypt ¥y Ay 1By ).
Wa should warn the reader: upper signs resull from matrix mulliplicetion sctording to the rules of linesr superalgabrs
for lefl modules (as explained th [17]), whereas lower signs result from the ususl malrix multiphication.

14]1.

The point Is that unfess

k=0, b=0 and c=ae¥{D),

for some smooth function ¥ depending only on 1, the superjacoblan matrix of ¢
wiLL not be diagonatizable That (s, If any of these conditions is not satislled,

then the morphism ¢ will not have constant rank in the sense of {4].

What s certalnly desirable here is to have algebraic (and presumably simpler)
criteria that can give the answer at once about the d1aganalizability of the given
super jacobian {or any matrix for this matter) and to have certain means so as to
measure the obstructions for this to be possible in general. Again, it seems that

such criteria would have to be of a cohomological nature.
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