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Trieste Course on Qceanography of Semi-Enclosed Seas April/May 1991

Shallow marine sediment trapsport and deposition

Lecture 1. Geological Setting and General Principles.
Lecture 2. Tidal and Wave Driven Transport and Bedforms.

Lecture 3. Sedimentation in the Adriatic Sea.

Lecture 1. (Prof. I.N. Mclave)

Origin of continental shelves and shallow semi-enclosed seas - e.g.
N.Sea, Baltic, Adriatic, Gulf of St Lawrence, Gulf of Paria, Java and
Timor Seas, Gulf of Thailand, Yellow Sea and Gulf of Bohai, M. Bering
Sea, Persian Gulf, Hudson Bay, Gu!f of Tongking, Gulf of Carpentaria,
etc. Post-glacial sea-level rise of ~125m since last glacial maximum
at 21 ka ago has flooded continental margins. Sea-leve]l has been

approximately constant for the last 5 ka..

"Relict" sediments are left behind on the shelf resulting from earlier
conditions - e.g. beach sands at the shelf edge, river channel sands,
drowned coral reefs, deltas and sand banks. These were partly re-

worked during rising sea-level.

Areas dominated by modern supply are mainly in areas of (a) abundant
sediment supply (b) shallow areas nearshore. Many areas of the world
have little medern input at all, e.g. N.W. Europe, E.N. America,
Africa, Australia. Supply is dominated by a) relief of land,

especially near the sea and b) rock weathering.

Size of sedimentary materials supplied : Gravel {>2mm}, Sand (2 mm -

63wm), Silt (63 pm - 2 pm) Clay (< 2 pm) - sizes are nominal grain

diameters. Silt-plus-clay is termed "mud" and is usually cchesive,

whereas gravel, sand and pure silt coarser than 10 um are non-cohesive,

Control of material size supplied is again climate {controlling type of
weathering, chemical vs. mechanical) and rebief (controlling stream
velocities and ability to move larger material). Nearshore sediment

size reflects latitude (climate}.

Basic transport properties of materials are shown by behaviour 4at
inciptent motion (critical) conditions, and mode of transport after
critical conditions are exceeded. (a) for non-cohesive material the
critica) erosion stress can be experimentally defined as f (size} for
uniform sized material on a flat bed; mixed sizes on rippled beds are
more difficult to specify. (b} for cohesive sediment there is not yet
agreement on a single parameter that defines the behaviour of the
material under a given stress; some people think the yield strength of

the material to be a good parameter.

When moving, material may be supported by conmtinuous or intermittent
contact with the bed, "bed load", or by the action of fluid turbulence,
“suspended Toad". Varijous arguments lead to the conclusion that the
bedload flux (ML'T™!} is proportional to shear stress to the power 3/2,
or flow speed cubed. Suspended load flux is to a higher power, exactly
what is uncertain, in the range of flow speed to the fourth or fifth
power. This steep power dependence confers great importance on

relatively rare events of great magnitude such as large storms.

Under uniform flow with increasing speed ripples appear on the bed soon

after critical conditions, and at higher flow speeds larger periodic

s

g ——

e



10,

11.

transverse bedforms termed dunes occur. Ripples scale in height and

wavelength on the grainsize of the material whereas dunes scale on the
dimensions (height) of the flow. These bedforms constitute the
boundary roughness offered by the bed to the flow. At higher stress

dune bedforms can be washed out and the bed becomes flat again.

In suspension transport the sediment is distributed with height above
the bed according to the ratio w/xu. where w, is the still-water
sett1ing velocity of the particles, u, is the shear velocity (Tolp)* and
k is von Karmarn's constant (0.4). For medium sand and coarser (> 250
um, w, > 3 cm/s} suspended sediment is concentrated in the lower few
metres of the water column. Finer sediment 1is more uniformly

distributed.

Fine cohesive sediment behaviour in suspension is affected by the fact
that it can flocculate or be aggregated by biological agencies and so
form maltiple units of greater settling velecity than their components.
Because collision frequency goes up with concentration, settling
velocity also rises - to a maximum of about 0.2 cm/s. Aggregates also

break up in the high shear zones close to the boundary. The settling
velocity distribution thus varies according to the state of shear in

the flow.

Sediment deposition occurs for bedload at stresses a little below the
critical movement condition when it simply stops rolling. We can
define a critical deposition condition for suspended load, which is
thought to be equivalent to the critical erosion condition for nen-
cohesive material of the same settling velocity, but transport can

continue for some time below critical deposition conditions because the
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water column takes a while to clear, the precise time depending on

height of water column, boundary shear stress and particle settling

velocity.

controls lead to a huge range of sediment types and bedforms in shallow
Their occurrence is complicated by the range of variability shown by

movements on time scales from seconds to seasons.

Lecture 2. {Prof. I.N. McCave)

Tidal currents: M, and M, companents and their superposition. Modelled
boundary stress distributions. Inequalities of peak stress on ebb and
flood tides leading {in general) to net sand flux in the direction of

maximum stress.

Tidat bedforms: occurrence where tidal reworking of the bed is
constant and thus dominates wave effects; with increasing flow
ripples, sand waves {dunes), sand ribbons and sand banks. Tidal and

sediment flows associated with each type, for ribbons A/h =~ 4, for

banks A/h = 250 {1 = bedform spacing, h = water depth).

Fine sediment transport by tides: net flux in direction of net water
ftux (differs from sand)}, action of tidal currents in trapping sediment

nearshore in tidal flat areas and estuaries.

Wave-driven sediment transport: the problem of a rapidly fluctuating
stress and the application of sediment transport formulations for
steady flow to time averaged oscillatory flow with a weak superimposed

current. Impirical results for wave-driven transport near-shore., New



results showing differing transport directions of mean <U C> and wave-
fluctuating <G“Ew> companents, (U is flow velocity, C is sediment

concentration, subscript w denotes waves}).

Wave-generated bedforms: mainly ripples of various sorts, their

stability fields and transition to flat bed at high stress.

A simple magnitude/frequency approach to wave driven transport and the
definition of areas of shelves dominated by sand and mud when under

active modern sediment input.

Shelf sediment facies and the overall control of the distribution of
gravel, sand and mud resulting from glacial history, sea level change,

sediment supply, wave and tidal current dispersal.
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tfilled circles) compared with A. paimata age-depth data® {open circles) for
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Fig.11. Tidal transiation of peak wave effecliveness zonus across the terrace. (A ) High-
energy terrace at French Creek (47, EF = 46 km) with &« tidal range of 5.0 m. (B} low-
energy terrace at Cordove Bay {24, EF = 12 km) with a tidal range of 3.8 m {wave duta
from Lund).



