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. 1. Shallow sea oceanography
1.1 Introduction

These lectures aim to highlight those processes in physical
oceanography which are specific to shallow seas. By shallow seas
are meant water bodies of less than 200m depth and usually much
less than 100m deep. They include continental shelves whether
wide (as in Northern Europe) or narrow (as in the Pacific coast
of U.S5.A.) and partially or fully enclosed seas like the North
Sea and the North American Great Lakes. Changes in sea level
relative to water depth are not negligible and the wavelengths
of the dominant motions are much larger than the water depth.
Vartical velocities are relatively small and usually negligible.
This topic is well described by Csanady (1982}.

It is intended to put forward specific examples placed in
their general context. The eguations of motion are derived with
suitable approximations for shallew seas., Various types of model
are discussed before concentrating on numerical models, and in
particular finite difference models. Some details of finite
difference methods are discussed, followed by detailed
application to storm surge modelling on the UK continental shelf.
Finally, a range of examples of numerical models is given,
modelling different processes and using different technigues,
each of which is described briefly.

1.2 Derivation of eguatjons

The fundamental equations may be expressed in either an
Eulerian or a Lagrangian frame of reference. The former describes
motion relative to a fixed point in space while thre latter
describes the movement of individual particles. We will use the
Eulerian frame of reference exclusively for the following
derivations although the Lagrangian frame is particularly useful
in particle-tracking dispersion models, as discussed in $4. The
Cartesian coordinate system used generally is shown in Fig. 1.L
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Here, x and y are orthogonal axes in the plane of the undisturbed
water surface, z is positive upwards and t is time.

The Cartesian coordinate system will be used for simplicity,
however it is only a special case of an orthogonal curvilinear
coordinate system. The derivations will be given first in vector
notation, which is independent of the coordinate system used,
before being recast in the Cartesian system for clarity. Other
coordinate systems may be used (see §3}.

The law of conservation of mass, stating that a local change
in mass is due only to a divergence of the mass flux may be

stated
% +¥(ea)-0 1)

where p is the density and g‘the velocity vector. If the fluid
is incompressible density differences are much less than the
effects of valocity gradients in shallow seas then this reduces
to

SZ'E* = O (l~2)

which is often called the continuity equatjon.

' states that acceleration is equal to

the force per unit mass, i.e. in a fixed frame of reference

gy <<Le-Lr v E (9
whare d/dt is the total acceleration = d/dt + ¢q.V, The right hand
side is the sum of the various forces aciing on the sea,
including the body force (or long-range force),6 pVe, and the
surface {(short-range) forces due to the pressure gradient Vp and
the shear stresses, F. In a Newtenian fluid the shear stress
is linearly related to the velocity gradient by the molecular
viscosity, u. Equation (1.3) becomes (sec Ratthelor, 1967)

¢23 = V9 -Tp +2(Z U ~2R(PT-a)+ Tx [nTxg) (+4)

Introducing the continuity equation (1.2) and assuming the
molecular viscosity to be a constant (which is the case if the
temperature differances are small as they are in the sea} we get

' dg = ¥§ -Fp ~»V7q s)
? P
using V"'Sf = _V_(Zr_g.) —¥x|(Tx i)
and defining v = p/p, the kinematic viscosity.

In a frame of reference rotating with angular velocity
equation (1.5) becomes -~

- '_ o £ .

%l} +2%xq = v -Yp +'9V} (-6)
e

where # = ¢ + g x ;jjz, with x the position vecter. The second

part of this term comes from the centripetal acceleration Ox(Qxx)

(Pedlosky, 1979, p.19). The surface of the Earth is an

equipotential surface, i.e. #' is a constant, and the body force

is usually due to gravity alene., V&' is then the effective
gravitational acceleration, ¢, which includes the centripetal
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acceleration due to the Earth's rotation, hence the equation is
usually written

A4 v 2 xa = q-Yp +vVig -7
21 v 2 xq g tﬁF EP' ( )

The 'apparent' acceleration in the second term on the left hand
side, due to the rotating frame of reference, is called the
Coriolis acceleration. The equation (1.7) may be written in
Cartesian coordinates

dh — 2pvan W= - 18 +Tx 1.Ba
ﬁ ( * 3 ) ?éx_ L )
v~ 2(9,w-Rpu) i Jp 4 vV ()
de ¢ 9y

dw — 20 u -5 v} g1 + wViwr (qu
5% -3 e 5

where n,., f, and fl, are the components of the Earth's angular
velocity in 'the x, 'y and z directions respectively.

1.3 The hvydrostatic approximation

In shallow water in particular, the vertical wvelocity
components and accelerations are much smaller than gravity, for
example,and the Coriolis acceleration is also small, The vertical
equation of motion {l-3c¢) reduces to

[ dp = - (1-9)
* & 3
which is equivalent to the balance of forces in a stationary
fluid (hence 'hydrostatic'),

Similarly the vertical velocity in the Coriolis terms can

be neglected so that we have y From (.8a)and (1-Bb)
c{ﬁn\c‘r= "'—%P +9Viu {1.10a)
. 8
%&—&F«A-——id@ + Wi (- 108)

L - .
wrking [ = 1m9m¢, the (or?&fgqummefer'; w:IS,?_.I\ & v lakitude .

1.4 Time-averaging and the Reynolds' stresges

The scales of motion which we want to examine are much
larger than the molecular scale and it is usual to separate the
dependent variables intc mean and fluctuating components and
average the equations over a suitable time interval. The
following derivation is given without consideration of the
complexities of the averaging procedure, assuming the mean flow
and turbulent flow time scales are well separated.

Let u = [u] +u', v = [vl + v', w= (w] + w' and p = [p] + p'

where [] denctes the time average, [u'] = 0 etc.
The equations of motion and continuity become

Ad + HA 4 3 -0 (1)
5y

e Sz
QU3 =~ ~Lofp)+ L § 3% +3%ue « 22 } vy
By \IJ o gE%J Q{bx a"‘) ahl e Y
dif+flu]= -1 L3ttt @Tyy+ 9 (g
1‘{] [u _?_%?_] +?{S_19 6\13‘1 aztﬂj}'
9 = —ta;[;’{] , {(t-nd)
Y A, Do)
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Fox P L' T (348 o),
p[u'z], plu'v'] etc. are called the Reynolds' stresses or

turbulent stresses. In shallow seas the flow is usually
turbulent at least in the surface and bottom boundary layers,
which form a significant fraction of the water column. Whether
or not the flow is turbulent may be determined from the Reynolds
number for a given flow, R, = UD/v, where U anq D are
characteristic velocity and length scales. This describes the

ratio between the turbulent and molecular stresses.

In order to solve the equations for the mean flow the
shear stresses must be related to some properties of ?he
mean flow, either directly or by including further conservation
equations in the turbulent quantities. This is a difflcu}t
problem with no exact solution. The simp}est .approach is
given here, other treatments are mentioned in §4.

The most commen treatment is to relate the turbulent
stresses to gradients of the mean flow, introduc;ng a guantity
called eddy viscosity, analogous to molecular viscosity.

This gives

c&? - {»u‘ = —_l___a__E + o (’\Lxg}i) fgy(”:jq;)-t(;;_l( 1‘?5“) Q-'29

?am o 3
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These cquations are CONW'\Or\Ly desertbed as He Challow wake,
eqmations.”
Here N, and N, are components of the horizontal eddy viscosity

and N, is the vertical eddy viscosity. These are not constants

but alse vary with the mean velocity gradients seo N, is the
larger, since the vertical scale is much shorter than the
horizontal. Eddy viscosity is sometimes set to a constant value
to obtain a simple solution, but this is not very realistic.



1.5 The Bougsinesg approximation

Density wvariations in a shallow sea may be regarded as
perturbations about a mean level p = pg(l+e). Density variations
are typically of the order of one part per thousand.

Integrating the hydrostatic pressure formula u-nﬂ-.rﬁsyecth z

P = Pa I: eq dz (1143)
ek fage 0w

WJhere pa = afmospherc Pressure, z=$ in the frta Suifuce edevution
p, the surface density = p, 80

Lie - tgma gl [Tagrd (=3

ignoring ¢ except in the density gradient term. This is called
the Boussinesqg approximation.

1.6 Density equations

conservation laws for temperature and salinity may be set
up from which the density is calculated in an equation of state.

Thus
g -2 (s

T is temperature, Q is the heat flux including Reyneclds' fluxes
[u'T'] etc., < igTspecific heat.

ax S¥
where S is salinity, s is salt flux including Reynolds' fluxes
{u's'] etc.
Eddy diffusivities may be introduced analogous® to meolecular
diffusivity as for eddy viscosity.

The cquuhon & Stare gspehies dentty O a Panchen of S
and T, Pressuie Yfeds om denily can be (gaéred VA Shadlay water,

R =R (T‘,S) Q '8)
1.7 pdvective terms -

The total time derivative is

%'-_tl_ = %j-é +u56r-_«L+wBu _H‘d%ﬁ_

= aa’f " %‘)«ra%w).. a%_,g)

where the nonlinear terms containing the flow compeonents are
called advective terms, transperting momentum Wwith the flow. They
are generally small and in some instances can be neglected. In
particular this may be true when the Rossby number {(the ratio of
nonlinear to Coriolis terms) is small. R, = U/fL where U and L
are appropriate velocity and horizontal length scales. In near-
coastal high-resolution models the Rossby number is typically
of 0(1) and the advection terms cannot strictly be neglected,

but useful solutions c¢an be obtained by linearising the
equations, so they are often omitted.,

1.8 Depth-averaged ggquations

In particular in shallow seas the vertical length scale is
much smaller than the horizontal scale and for some wavelengths
of interest e.g. tides and surges, is much smaller than the
wavelength. Large tidal currents causa mixing which reduces

stratification, leading to little vertical structure and in many
applications the vertical structure is not required. It is then
useful to integrate tha equations through depth, simplifying the
problem. The overbar has been used in the following derivation
to denote depth-averaged quantities

-9 g =g'j<kud1‘ where D=t

Integrating equations (1.'a), (1.J2a) and (1.2b) over depth and
ignoring density gradients we abtain

%_K(Da) - %(b&) + Eg,’_ =0 (1199

g_%‘-r&%_i‘)-ebgi;‘v)-p\r:—_gg{-é% + %‘s {1195}
OF 4 ) + A7) +fu = g ~LOp + Gs-Gg (119
A '559) 8y edy ¢b )

D ={(h + C) s thetotal water depth. We have used the kinematic .
boundary conditions . b
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2. Models
2.1 Tvypes of Model

A model is an hypothesis, an approximation to the real world
which attempts to capture the essence of a physical mechanism.
Several types of model may be constructed, from the simplest
mental image or back of the eénvelope calculation to a very
sophisticated Prediction system including as much of the physics

as possible. The main types of model are analytical, physical and
humerical.

mechanism of the water Movement but the equations usually have
to be simplified and hot all equations of interest have exact
solutions. Simple topography ji.e, boundary contigquration anad

depths are usually required. Sope examples of analytical models
are now given.
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2.3 Physical Models

These have the advantage of direct reproduction of physical
processes without parametisation of sub-grid scale physics in
particular. However the benefits are counteracted by problems of
scaling and the expense of producing such a model. Large scale
models of specific estuaries and harbours are being increasingly
replaced by numerical models. The model typically is designed for
a particular application, however general-purpose facilities such
as wave tanks may also be considered in this category. An example
?f such a model is given in Falconer and Mardapitta-Hadjipandeli

1987).

_l“
e q D | |
TR e
= -rr:r.rla-_.— I |
: rees
"
Yariable :1 Eecch, Ebb | l
Sidewails q - \
L
- 2 1|
Yooz —|m Weir
. _ Drive
2 | Ll |5
il A
/ ‘
Ve Ll
{a) Plan Ballles Osci::li):\g
Weic
Overllow

Diffuser] Channel

H :

o |\
o T2 RS

{t} Elevation

Scale
[ —— _ — ——————]
[+ I | 2 3 4 feet

Detaile of Laboratory Tidsl Tank and Harbour Configuration

Fay 2.4



2.4 Numerical Models

These have the advantage of being able to tackle'eguations
without analytical solutions. They can be sippllfled_ and
idealised models to examine an aspect of the physics or highly
complex to produce the best forecasting results. The problems can
arise because of the approximations which have to be nmade to
solve the equations numerically. Many techniques may be used
which have individual merits and demerits. We will concentrate
on this group of models. Note that physical and analytical models
are very useful to test numerical models and vice versa.

2.5 Types of Partial Differentjal Equation (p.d.e.)
The generalised 2-dimensional (2D) linear pde is

A, +2b -+ Cua.’% ldu,‘+.‘leuv+{1u=|'\(1,j))(2.(=)
Lolth w any dependend uriable . o
Xt b’-ac < 0 the equation is elliptic,
bi-ac = 0 the equation is parabolig
bl-ac > 0 the eguatjon is hyperbolic,

Some common elliptic equations are:-

Fu +2u +Au =0 @7)
x>

2w -0l +A% =~q (x,4,2) (), 8)
al-t. 5:1—1» a-a\-

These are generally steady-state bounary-value problens.
Methods of solution include iterative or direct matrix

inversion. Finite elemnt methods are particularly suited teo this
type of problem.

Laplace's equation

Poisson's equation

Parabolic equations:~

e.g Diffusion equation du =K(§'1_A LOL = d;}fu.bm (M’thuint)
ok et

This may be used in the wvertical dimension in particular in
transport models. Scome finite difference solution nethods
include Crank-Nicholson and Lax-Wendroff.

Hyperbolic equation:-

e.g. Wave eguation a_‘_"_g\ —c? @:’_u - 3(:) @_q)
o™ &
which may be written as a system of first order equations
8_5 = cov 4 bg
3¢t ax (.10)
W = cgu
ot dx

if c is a constant phase speed. These are time-evolving preblenms.

Specific solution methods have been developed for each type of

problem. We will mainly be locking at the soclution of
hyperbolic equations.

2.6 Finite element methods (FEM)

A variational approach is used to transform the equations.
The solution is approximated by a weighted sum of selected basis
functions, which is solved effectively by minimisation of energy.
The domain is divided up by a grid with an arbitrary distribution
of nodes at which the solution is obtained. The method is not
described in further detail here, but examples are given in §4
of 3D models which use the FEM (termed the Galerkin methed} in
the vertical dimension.

Some advantages of the technique are variable element shape
allowing good boundary fitting (triangles are often used} .
The variable resolution means that a fine grid can be applied
where needed and a coarser grid elsewhere. However it is
generally more time-consuming to set up and more expensive in
computational effort than the finite difference method.
The solution is built up out of simple basis functions which
makes it smoother than the finite difference solution. For tidal
modelling the time variation can be removed by transforming into
the spectral domain using the tidal periodicities. This converts
a hyperbolic problem to a set of elliptic equations (for which
the finite element method is mare naturally suited), For an
example of the FEM and a discussion of its capabilities see e.g.
LeProvost ({1986). Some of the results of this are shown here.

The improvement of the solution, when using finer grids and highet
dagree Daiic elemants,is clearly fllustrated in Figurels.
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Figurel5. Examples of steady state gsolution for the Stommel's linear
Case with dissipation by bottom friccion (¢ = 0.03) and slip Doundary
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2.7 Finite Difference (f.d.,) Methods

In this case the solutjon domain is divided into a uniform
grid of discrete points. In each grid-box the solution is assumed
constant. The partial derivatives are replaced by differences
between the scolutions at nearby grid-points. The smaller the
grid spacing, the closer the approximation should be to the real
solution. Various options are available as to how to calculate
the differences, whether centered or biased to one side or the
other and selecting the right combination is essential ko
obtaining a correct solution. See Noye(MTR) for a thormuah (o,
As an example we will look at the 1-D diffusion equation for
which the grid is shown in the figurel2-b .
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The approximation may be derived from a Taylor series expansion
of the solution near the point x,t

T(x, 6+ a8 = T(x,b) + m(%gx o %%ZB:{L]M& + O(b) (212)

This 1is «called a forward-difference approximation and
has truncation error O(At) i.e. it is first-order accurate.
We could have written T - T
t - J

which ia a backward differ?nce of the same order or .

ar = T[Ty i'fi"**ﬁ*[g—TT* Av? @lTJ-* ape)

of At bt t), 21|t ,

n A AR T'\ e )
—77+ prt- aefErf e )

This is called a 'central-difference!' approximation because it
is centered in time and is of the ordar (At?) which is smaller
than errors of O(At).

The second order derivative can be approximated in the same
way, by examining the Taylor ser:ies'Z

2.4, P55 o T‘;""' 277 + T 2.4
: [&7‘5 G (@

which is a central difference approximation with error o(ax?) .

When all the partial derivatives have been replaced in an
equation by finite difference approximations the solution becomes
a problem of solving a set of simultanecus equations (matrix

algebra) éf!’ﬁ? =M. XY (2_.15')

A possible finite difference approximation for the diffusion
equation would be

T s (T, 41 ~duAt VT (e
J B Gt 10+ (0 “@_ﬂ) 3 ( )

fay

which is the classical forward in time, centred in space, FTCS
method.

2.8 Consistency, Converdgence and Stabiljty

A useful finite difference scheme must satisfy the criteria
of consistency, convergence and stability.

Consistency implies that in the limit as the grid spacing
reduces to zero the finite difference equation must become
closer and closer to the original p.d.e. i.e. the truncation
error tends to zero as Ax, Ay, Az, At tend to zero.

Convergence requires that the solution of the difference
equation must converge to the solution of the p-d.e in the limit
as the grid size is reduced to zero.

Stability is a very important requirement of the finite
difference scheme, and is concerned with the propagation and
accumulation of errors as the calculation proceeds., There will
always be some humerical errors due to rounf-off in the computer
because an infinite number of decimal places cannot be retained.
In some f.d schemes which can be produced the errors can grow to
the point where they completely mask the solution.

Lax's eqivalence theorem states that convergence and
stability are equivalent for a consistent f.d. scheme, providing
that the initial value problem is well-posed and that the problem
is linear. Well-posed implies that the solution of the p.d.e must
depend continuously on the initial conditions.

Stability Analvsis

Various methods are available for testing stability of a f.d
scheme, which examine the amplification effect of the finite



difference equations on introduced errors, some directly, as with
the discrete perturbaticn method or the matrix method (which
examines the eigenvalues of the matrix produced from the finite
difference equations). The most commonly used method is Von
Neumana s analysis which looks at the Fourier components of the
error distripution. However it gives no information on the
influence of boundary conditions which the matrix method can
give.

Looking at the diffusion eguation again
Hoen 0 n
T =Ty v % 2 .
1 io-l'k-.{—mwan'[\"-"mﬂ.wfj
2k d] - N n ~
TN e s O TR ¢ (259" | w5 = oLl

~yi n n - Axy-
- QJ =s(§_;_.*‘§5*.)+(\—ls)‘§_’- E?.I‘?
write the error as a s;@ of Fourier components
S 7 3 amexp (LmW;00) e

(;3 ia the initial error). Studying one Fourier component is
sufficient since the problem is linear. Therefore we introcduce

an error of the form
vhere e:, = 3TMax

[a) [l i&'
-gj = Ale ™I
Substitution into the f.d. equation gives

Aﬂi—l = A" (ge-tb -+ (l—'?-g)*fﬁti&) 5 (v N1 Q. \8)

Define A™' = G.A" with G the amplification factor. The method is
stable if |G| < 1 for all B.
In this example

G = \-2s+s(¢‘&+e.“';e) = I-bsswntép (g.tq)
For stability —1g 1-4s s ®/2 < | :

This is satisfied if s < %, i.e. At s 4x® / 2a.

2.9 Explicit vs implicit methods

The example FTCS method shown contains only one variable at the
higher time level so the new value can be calculated from
previously calculated values. This is therefore an explicit
scheme. However more complex schemes can be devised which
contain more than one variable at the higher time level. These
cannot be solved point by point but require other techniques to
invert the matrix. The advantage is that implicit schemes are
more stable and can use longer time-steps. For example the
classical implicit method uses backward differences in time.

T T e et g
By be)‘

Stability analysis shows this method to be unconditionally
stable. The matrix is tri-diagonal and can be solved using the
Thomas algoritm [Thomas (1949)] which is more efficlient than
inverting the whole matrix e.g. by Gaussian elimination. Other
methods include the DuFort-Frankel method

Whiee¥T;" 0 the numencal agpmcimakan

ntl o a-t n nrl o _n-) n
G- ‘“iT_iH"(TJ +Tp ) 5-'} (2-29
abr (!513”
This is central in time but need 2z previous time levels; another
method e.g. FTCS must be used for the first time-step. The
equation can be rearranged to solve explicitly and is
unconditionally stable, however At <« A4x is required for
consistency. The Crank-Nicholson for 1-D diffusion can be useful
to get high resolution in the vertical dimension. This uses

central differences centred on a point midway between two grid-
points.

ntl n

Al Ll d] Al
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In multiple dimensions other methods are needed. Some
implicit methods use iteration to obtain the solution e.g. 5.0.R.
{successive over-relaxation). The alternating-direction-implicit
technigue also uses the Thomas algorithm to get a fast solution
while retaining the advantages of longer time steps.

Thus Ina.hJoLs‘wupu of Ha £.d. methods Mmy
be consbueted "4 gwe Qn Weo g the posscbillas cnd
the dmﬁm:ks,pcwhiulnrty I wadng o fUSE ~quem

CLPpnmm4h,

s



3. Flaire difference Moddldg_l,

3.1 An expller 2D Eide fSurqe model

We Wil (oncgntrabe here on  te expliclh £.0- method
' applfzd 1o the deprk -Cw(,m.jei eﬂ/u-a.hm's for tudes
and suMes on the (pattneatal shelf. Lde WU dosaiss futher
detals of fande differente rechnigues relevunt 4o L‘mpgmwm
St the QK. Surge For'ecubt}\j model.. Pevelopruenr of tis model
has iwtted variws peple ab P.O.L, (prevemsly T0.5. Bdgon)
over L in portitder Normaw etnd Flather.
The UMPf—fkﬁ‘fﬂﬁmmauei P;;n.cl (now Leang cmu( Q:r;-\u maak)
*E

10U 0 10
...‘ = z----
2l [t} * n oo
5 —— 50N
A
KV,
RN ERE gt B0 T
L - Pa H }
ﬂ i g1
v H |
L. AL ! . Sa8A I
& ]‘ ;
Qs s P N
! T G E
e . E 1. « - 3 . .
-
¥ 2 ] ;
.. . A P
. |
| . o w|le JIAAITF « =« & =« «
PRI - o o 7 <
T
R A ). 5 - PR
receuessis NN
H S0°N
O FRhae » s s v s & u w @ LI
------- L] [} ll-lll—Illl 3
F i
...........
............ d!ﬂh:...------- .
1071 Qs 10°£

Fu??.'l Foifi diffoence geid of o sprafional thobm cange forecec
odal Wit gremiuee Ta-&h Cud .ﬁ e Tab. ORUce
5 - taal el 'M‘JG"\'M maclel

s Shawm  n e 3.

The eguafioms to he chued are Han -Fu)b\, nerdineayr
dep#\—cumrnggd eq,tmh'nns. o} Mokan and Luv\b{.uitj_
In Cartesinn coordinales they are

W x O 3% =0 (3.1
aj_a‘)f,c%v)*g‘it

3

du —fv +qd% = —13pa «Fsts 4 Ax kg.‘z)
dk % £y QP
dvr 4+ fu 33_‘! - -._Lég._._ +C15-El.g -{—-A«7 (?.?)
d* % R oy Qb

(The verbar du\.d}-mg duptt - Gweruged ks has

leen MC&QA). Ase ,q.,, Ore l’tm;jowhu slheay Shress
termy. '

3.2 (sordunac S\.}sl-cm

For an area Gn Wge 0s fu Ule rwhicatl
S\A.M.ﬂ\}innwsanj}ofahmaw(ihgmﬁh'ﬁ
et This moans Har Ha Caresian coovilisake Sifsien
ta Mo (wmru adagmatc . R nasre appprite 01‘1"-"3’“‘4/
cv\:fdAA:‘dt Sqsrem L fp pdlar coorinates,
In rma case the egauatow (2:1) w@z}ﬁt-cm

O e R

O+ U U + U W prutnag] - - Opa + & -5 .
3 Rusg ¥ ROy AN R }Rc%_f’ng QJTQM,“‘éhi+ SQDBH%L(?;)

QU+ . dy +udq4 u{frutand)s-g 3¢ -1 Op. g +A, (34
Y Rundé{c £ {HLTQ;} é}g;szqaa%*%;“ 7(1)
Where A O lngihde and @ o (Oliede -

2.3 Nowlan \wQ}Fod'_ 3

b wbuaad qo0 Wae & Aanbneas ‘v\lh-;\': termn T )
teo Siazpe model fecanme e bnea feeme v unMalshc
n Shatlew wade  walt \.W Q‘Cdf‘.l__w wWhieee
F«fa{-&h a Uery Umpoitont Tl Pathm  term S dusaassed
i & 3.9




Other rumlineprinis Oue o?hWCed mu\ﬁ‘ﬂuu fofal coaker
d{ﬁﬂm D= AT h e Gmtnuiy equalitn s the frition term Cnd by
Ouning the advectue tems. " labrodicung aonluaeas terms v the fuale

Wwhe The schems reasmain Stabls Qnd cortailn
have betn e fd hond iy tha newlinear termas. Thg
%akm&mm,b«.una Maltzvﬂfwdﬁ'-“'waﬂmm
e A 05 WElL 05 Simplpying the £.d. Solution. Linch
Yerms an be Yrued can be tested érjd.w\e:uwnM )
The teran

. : Ot e Gasred ov Haa Sh Sc_aJ;-

bt m_{—m-w_sctuﬂonm smaels t:’ka, Moy be u‘“P;"lle.

rynw:ou?\ &::tt‘; frechan terua teguices Sealing tHie Commtant
o -

by altpa lret,c-cmj ijmu.uiu Hha ﬂh,hﬂal'zmpl-dudp_) to

Bh initdal aad boundany coneitians

kol fu-\c.. ger&d&i&mhj o t—f.t‘\ne_—S'l-cpp.}\ﬂ problom an
el Stake . end Ent varableS sMunl ke Speeipad,
The tatead comdifiens  Showld Cnmu.j ke O3 acturate qa
possrle hoadews tnikial emors dant :

tads o Qanp bum oub I yive tidal sowbim onde, &

UVI.dI.f o
Mo criligol . Tl aptems  ara i) cold start (uav—.(;'“:o)
(1) reskart (use firal vahis
o ..'HVT""‘PNJENSM'
uu) inthialiseg WAl aasimil
g da i avaiioble
AAAAN EN‘\ﬂ‘_h\" ~
L_’;) ’DCrCck%et M\dit&umf:-. l’m Specipid o= ruognied:
00 Nevmann condliiim (. the homeal dorvative ) Has boundan, i
| S‘Ptu-kiul o "
N partcwlar F w waual o Sik ".c|nl',,
Mg\nn'l;mk‘{- {l’u_caml—,mbe‘—l;;o. o & land
_te- g.n -0 G
where n e Hae veder poraaad e Hae st Tre CrasHine
bs ML.:.JA‘:) Speciped o . c.-"st-u.ZrCM.n.', PM? cL modal
Grasriang nwwqj Contidont with  ta read TaraaHae

‘3'
reonl
mstlel

Fiy3.2

buk pre SphiaNiared  mathorly can be abimpted ihchoding a

PMATA ine chue o tandiahon ol NG 4 Whith W Al

pel cn’:: Fv:-fwad\un;vtmc-;mtui Mﬂ(ﬂ.h:%. SFImH\er ang Hubbert {l‘i‘\y. :‘
Tre cpen bowmdeny comdlitm 8 Quite o dfféutr preblem.

The leal

v perfectly tomparta b alt Waveldng tos

ciking o 4t ot were Gmncded v e exrermal vzuo |
Mam’ bl Hun anndt be qehizved and bewndong (ondings
mtobzmuatdbswdpm&um,uamsw L
@Ak Gms e Peerd] by Rged x Gope ((G56) ‘ :

seveed fypes o Tl im

Lol lrin, Atrorod from tha Somdufetd

bY

FAdabon “mhinm Somnefeld [dya) stuhag it

Qt - C-Q Qn (5';;)

btre B e dependont yanable Gag v tha phonesped
oyl«;zwm Nm.:u ‘@

Tha ¢ Mol woes g .bu-v-r\dwycmit}':ﬂ | ;
() eﬂm(m wm:":!)pu&pi&}&d.

ot &

() o mdiaben Comilibon il (g = Jgh Hhe gk 2

s
13

e (With deals Wi o o Hh owrging 2nany '
47 o TN

y . Tha Y tuken b the chall edge.
wt\twm, t w ;:%:Mm.,hwmtgansq,

vnkeoen

thww—{opmidebw%

WLk umS  fov  Hw fany motel . iAswd-L, Haw thfremaanin Lh

bramsfer o ova - bur  Ydynsiaae neshky’ Gun be
umf:w LWy Ay )

u)

Whitre te Hoe- l)’DM.AA)'j Cr\d/) L W ’
sUs 2. [.);‘,Mfo o nahoald hq«:ygm

¢ Shedd  be Hu QIO dunie ;
Compuiker c.mpa:jh, (2. hgh readhaim moted ace of f\-u_au-:}y

wwued —ara  frecawse iLj o.re_myrt_fwe-—cmnwhj



2.5 (rd sele drion

Tae depondent  Lanakles aeesd ot alt be ¢oodfiid ab
the Some Gra-pomt  ctnd n buor shjaimg‘ﬂuq can (Bad
to Umproveaear ¢ oo ooy q F-\.qu: dufference
fovhuatonm f"* O q\}uer\ I‘E/!Wd‘f"’ Qﬂd’g‘pa.dnj, Trer
Stndard grid layowdt Gre Weattbad  (Mesrige 2 Ankana, 1974 )

o o o o o o g9 % v 4+ ©
+ + % * %

o
o) © © °¢ ©° o t, o t+ o
T x % *x
A- qrd B - grid C-grd

o = 'g-PoC.-\l— 4+ = W ar (ulu')-lpo-n# X = W -point
F_LE‘MJWL e
For ths lomtartacol Ao f‘v‘hbh)\a eoprehons  the C—gf‘a w
prefermble - —

é}' 4 kt_i& + kcé_cr -0 LB.H)
ot ML 6-1

Qu &+ 3(?_'5 + Ku = O

ot 3K

P Sa_f + Kv =0

ot 37

res wj the L nearesh \Fpm}:h owbr a u-pav\ni"aﬂd
b€ yedSo,

W ho beea ond o Wher aploeds fo tmportany

the @. cjn‘ji v "me,}(,nd:u, G Jases ([cu;q),
The gid Slag smasst e Sl 2rrigh to PMeadhrr tha s
ere sk (,U\(j: L %CL s o). LD grud pokt per wmlo&jhpiu’
chnied . (mserahion musr Also e mada 8 tesdubhion o Hlevim

3.6 Tudes anlk Swwmes

Tiken owe o pu-u‘d‘ & Mot doen by T qm/{rahaa\ wd
(Lthaehm d dac Fua cnd moon and, Wnked (ho Hae
perutiidriey o) thady orits la. Shallzw ceas the hikes
Are rwumty Aruen by pressuice g dionbk cey up by
the ozeanic, Rier | Hhe Quredr ﬂfia—%zwdwj —frree
Mﬁ negllglile, Thereor the hdes necd to be speifued
amu,y on. Hae bmANiCuL aﬁF,u, +tdal Aol
WRSK&UMSQW_TLR cenrrend  Showad aho
he .‘;PMA»}- Led [F paS&LU.L,MlRAcl tha red arem \aG‘w-\dwj

A~ Qrhronemce al

Swges oure caivaed oy % ,
mMarly mucorsligial foruag. There o alo o raponanl
Atfined an Sunde L:nM~ dal rerduol) whith . dae
+e  noulireas hlerribont  rebuecs sufgyn.cmi +ide . Tls
rareoryleacal {c-rumﬁ‘ v parmnvunt o swge prediitum.
3.7 Winad frrecng g cdbvosphenc premure chu T,

N (}\anéz. in odmmphanc prevuce G.H-ah

. .‘;CA(JLUC(
Thes v Called M\G\w_m: beutmoter 2 - Th.gkcady
ctolc  schutimn awe/) M

_32{—’%—?: =° G.r:)
9% -~ 13p =0

Yy C gt,j
W (86 + pa = Comstunk

P b (-l«-ov%u. tn edvorphanc press w1 oem Seq foued

}—hr\;\rcuc; e aand .-§*er COqraes \""LVJ}’_'O’ 'H\A—
Suste renponse. Wiid e wst.m,uj perumebged
A Swwihar Wuy o bty fithem e

Fo = ?_\'C\” W, lw;+w;' }: a

B = Q—"‘* ?0’3

qs = ?R CD W\1 ;wx‘L.{’Jw,\"\— R ( )
L\AK\QKH«\» d@MU'\j e air and Coa._dn\-? bk,
Lo » nft & awhud b vhereatey waft Gand speed,
Vars podeds pre waed fov (_Ab.n’fzh)\c; taid §hves.
For tas Sunyy medel o fotuandle. Sk, (ed R anhe. (JQ‘I.T)
Aae hern  feaed c{‘apmoru\ﬂ-c te. Cy= (063 + 0066 lW]).w‘;

—~



QMW.MPGW w Shallowe wake G May he Seen
/(_’w Thae ZWS
(2&& ':__fg L
ot oP
n i MEAMS  nd ~diwen d.f,pf"\—dmfbﬁe)
MMMP ‘oall off the conknenal Sbeld. i o
Suffrcieny 4o prencrisle- tha hyarostohe €loveabhm (diwte
Clron piniie pfe/nwcc) ari'ku_buvu\.d.my Ond Y wand dndea
fuw v hkemod to fae ngdel | TR s o cohnenia
ghelf edge e lnabarsd’ bownadow; wa-t«ﬂ_suqz_madd-

3.8 Fratin

‘H Evamon poraruat fnadom of the botf o frickimm berma |
15 the Quadratcc \M'mmd fk‘_st-rvniv#\.c_d,a.ptkuwmndy

FB = keum y Gg= ka‘W 'k='m~€hmi'
i . eo.00%%
Thas formalaton o comtubent Lath vha eddy Jsasuy oppich
for thu hhemad SH&SH’A/ MM 'Mim*'h MMI 'Idaar‘mddw&
TP de rans Ha L wai 5 Mgt
M,M"”ﬁdt e fha ATy m.pzf the bdbzm ,‘ﬁw
ws#-wu,w p\,&Stom.ar—lrcaLwﬁz_dkmbun
etended o use depHi- meas corrents o} necemihy, (See §4).
oW = L(\E‘_f_l'}_) o the Stndard rgarthaie (3.8
. Ze
e pear gea-bed | 2, v g mghnem leagh Cliumcleisin
Wsanbcd,:h:h&‘wbgiw 4 mxﬁm 2
ot =0, l:a-«h»t\j Ny =L"‘6u/a'4 L:I(;_fk)a,‘m.‘p;ﬁj
2 we have
)

TL‘LL—’"*Z") =QN7.%";"L =‘l}g-§,3h = ruﬁ" @.IS)

M+

3.9 finde dillerence < diudion
Some feaburs of the pundre difference scheng
dre_ as TS

Q) An U ’n)nv,s(}-eppd\ pns‘c.o_d-u.rc_; waed .
_hnmwwma.m mm&%%w@@ U_M-j
0 Fweal fl,ﬁv\t-’srtppl:hj ) cemired cpalidl dorirakue, .

U_':) The L\A.DP‘UAV wae Lewel relorokes ouwnldebl, ase wared un i
Dol P [t ot & — pownt aam—mgu\j)lm oviles
d dadarins L regung ok hme —Sren.” Diwea New

- b I ﬁuy Quewaed Lh thae
Wmmj \/——Qﬁy\,«a_hw ound VILE verIa . The revtetal o over

1"‘«4«1\9 the centnd velowy b e luaghe’ e
Can  thap Lo fesmganined and Crill Cobured
24, dooteu v -

~

“g a sunpliesod X TPV
é‘—l-'-l 2 - ku. ;;'Lw"'
ot
y ni L QD
We Lo w

Th Gan be e wvisten

) -

The 6?\_& nusren;

'\j Sngt'C"" '-.) S"\_&\,\/\’\

¢

R FGue 24 connp,
3'@, (W !

frov He mpqu Gmer 4 o s
f‘e{—éf‘r;n.u o tta Repatim
F\_Eam 3.5, ‘FU-U
o B :cl;.—q.
o 0 I _J,'j
-y -y -I‘ e l II‘-
- . ] i ! """" _"T:.
I '
FIrerre.
el i
-‘!K H 1] 1] L
INENaN
il ol
N
ff_',_i_i&i_'_ ........ ]
S i e ]
L. =
Fijuee 3.4

-~ . [
ek _rl [ T N P

P crempurahaw | showm

e T T



Continuity
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