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LECTURES ON CHAOS
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LECTURE I

CLA3SSICAL CHAOS

1. INTRODUCTION

It is well known that the weather cannot be predicted
accuratsly. ¥Why is that? Henri Poincaré stated the problesm alresdy
in 1910:

¥hy have msteorologists such difficulty in predicting the
weather with any certainty?. . . Ve ses that great
disturbancsa ere generally produced in regions where the
atmosphere is in unstable equilibrium. The meteorologists see
very well that the equilibrium ia unstable, that & cyclone
will be formed somewhere, but exactly where they are not in a
position to say. a tenth of a degree more or less at any given
point and the cyclons will burst here and not there, and
extend its raveges over districts it would otherwise have
spared. Here again, we find the same contrast bestween a very
tritling cause that is imapprecisble to the observer. and
conslderable effects, that are sometimes terribles disasters.

Huch of what I want to say in thess lsctures is there in that
quotation, explicitly or implicitly: in particular apparently
erratic behaviour when in some ways a physical situation is well
underatood. the possibly damaging effects of that beshaviour. and
implicitly in the rsference to cyclonss, the fact that the erratic
phenomena. although unpredictable, can nonstheless be seen to be an
essential element in the physical systen.

Fluid dynarics, the scisnce of meterorology. is based on



Newton's equations of motion in the form of the equation of
conservation of momentum known as the Ravier-5tokes equation, and
on well-established theories of thermodynamics. V¥hy are the
solutions not as definite as the equations?

Solutions of differential equations alsc depend on initial
conditions and boundary conditions.

Initial conditions and boundary conditions in asteorology and
oceanography are not well known., There are not enough surface or
upper air observations to defins them - remember that threse
quarters of the surface of ths Earth is see.

If that were all then bigger computsrs, more apacecraft, more
weathsr ships, might enable ua to do better.

But that is not the whole matter, as was agein recognised by
Henri Poincaré:

A very small cause that escapes our notice determines a
considerable effect that we cennot fail to see, and then we
say that the etfect is due to chance. Jf we knew exactly the
lavas of nature and the situation of the universs at the
initial moment, we could predict sxactly the situation of the
same universs at a succeeding moment. But eéven if it were the
case that the natural laws bad no longer any sscret for us. ve
could still only knov the initiel situation approximsisiy. It
that enabled us to predict the succeeding situation with the
same approrimaiion, that 1s all ve require, end we should say
the phenomena had been predicted, that is, governmed by law.
But is is not alway2 so. it mey heppen that smsll differences
in the initial conditions produce very great ones in the fimal
phenomena. A small error in tha former will produce en
encrmous error in the letter. Prediction becomes impossibls
and ve have the fortuitous phencmena.

Fortuitous behaviour we now call chaotic, atrictly, classical
chaoa.

Aln of lsctures:

To indicate general nature of chaos and how it comes about;
To show some examples in oceanography.
To mention some other consequences of non-linear dynamics,

Z. DYNAHICS AS HAPS

Dynamica is study of evolution of a sysytem in time, that is
of correspondences beotween states at different times, or maps of
one atats upon another.

The equations of motion of dymamics. vhether Newton's laws, or
the Lagrangien equations of motion, or Hamilton's equationa, give
general rules for the mapping; the maps in particular cases require
empirical forms of the force in Newton's equations, or of the
Lagrangian or Hamiltonian, which have to be found from the
particular physics.

A state of a physical aystem can be represented by a vector of
positions and momenta - (q.p) (6 components in all for N point
masses). The rate of change with time is given by

iq/it = aH/dp. dp/it = -dH/iq.

Diagrammatically. represent all vectors by point B, in 2-D, and

mapping by change of that point to Py. What sort of maps may there
be? Poincard guides us.

a) As ve start from different P,. the range of P, that ve reach
is of the same order as that of Py
b) The range of P, is much less than that of Py and may shrink

to a single point, en attractor;
c) The range of P; greatly exceeds that of P, - chaos.

In the first tvo cases, useful predictions can be made about
the mapping. but not in the third case.
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Inportant wvariant of the third case, in which the state vector
traces out orbits closs to some asymptotic orbit but with random

varistions between them: the asymptotic orbit is cailed a siramye
attractor,

3. CONDITIONS FOR CHAOS

Consider a linsar differentisl equation with constant
coesfficients

agx(t) + ax(t) + ax(t) + ... = f(t),
where x(t) is dx/dt
The Laplace transform i»s
(1 + ay80a,xp + 8% + ... + (8p+ a8 + a,8% + . )(3) = ¥s).
where X, X, . . . are the valuss at t = D, (s) is the Laplace

transform of x(t) and §(a) i» that of 2(t)

The trensform of the aolution is»

by - D (L+m3imzg + u1
Hs + a1t by tas
vhence ifi = —-—-ze;,
Xy a,a” + a8 + &,
& 1+ 8,3, .
oz “azaz va,s 8y

These results show:

variations of x(t) are proportional to the initial conditions;

the variations are proportiomal to functions of time that are
indeperndent of the initisl conditions.

Non-linear equations:

Even very simple equations show quite different behaviour.

Consider the simpls equation
dy/dx = ny"

> ¥ = Yo/{l - ayex).

vhere y, = y{x=0).
Then 37/dyy = 1/(1 - aygx)2,
which 13 infinite at z = 1/ey,.

A more complex exemple - the logistic equation
{originally a model of a bresding poulation subject to predators).

In difference form: x,,, = rx, (i - 1),
equivalent to ax/dt = (r-1)x - rx3,
solution: I o= xg oR[1 - (Leslyxg(1- eft)).
Soma of the main features of chaos are shown by the solution.

1) rel, »«<0: x> 0as t -> =, vhatever 2.

x=0 is an attractor

2) r»1, a0: x> 8/{(1 +8) » {1~ r'l) as t > e
x = (1 - r'!) is en aztractoer

3) Stability:

Suppose x is perturbed by e, and that consequent
perturbation in (x + dx) aefter time dt is e'  Then from the
difference squation,

¥ +dx +&' = r{x + e){1 - x - e).
But r=mdy = rx{(l - x),

and so et = r(i - 2x)e,



whence je* /el > 1 if |r{1 - 2x)| > L.
At the limit, x « (1 -1y, |r{t -2x)| = |2 -1x|.
and i3> L 1f r » 3.

Biturcation: It r » 3, there sare two attractors and the
solution oscillates between them, depending on the value of the
random variable e. (amalytical solutions are possible. but
numsrical ones are aimpler).

¥ith increase of r further solutions occur in pairs, vith
oscillations between them and eventumlly a random distribution over
the whole range of possible states. The behaviour bas some
similarity to turbulence in fluids.

4 SUMMARY
Some non-linear differential equations have solutions with

attractors - wvalues to which the solutions tend. Attractors
are not nacesaarily points ~ in more than one dimension they mey be
curves round vhich orbits circulate in a raniom manner.

randon switching between quasi-stable states, stimulated by
randen fluctuations - reversals of the magnstic field of the Earth

are probably an example, for the dymamo eqi:nt.iona that govern the
field are highly non-linear.

devalopment of o vhole renge of random states - in fluids,
turbulent motlon.

6§) SOLITONS

Solitons are not chaotic, indeed highly coherent, but are
another consequence of non-linear dynamics, first noticed in fluid
wechanics but now widely ussd as models for many phencmena in
physics and otherwviase. -

Recall: gravity waves on the surface of a liquid satisfy a
linear boundary condition st the surface for amall displacements
from the undisturbed surface, vhile in the body of the liquid there
is potential fiow.

In conssquences there are harmonic waves proportional to
expli(wt - kx)},

with @’ = gk tenh kH.
(g is the value of gravity and H the depth of the water).

In deep water w’ tends to gk.

In shallov water, tanh kH becomes kH and the velociiy tends
to v(gk).

The assumption that the displacement of the surface is small
is often not realistic. Furthermore, viacosity has been neglscted.
Vith a displacement that is not smsll. the convective acceleration
ard viscosity have both to be included, and it can be shown that
the asurface slevation in a narrov shallov channsl with waves
travelling in one dimension satiafies the equation

&, %
ot Caxr
Nota: non-linear acceleration through convective term t%:;-:.
0%
balanced by diffusion —
ox
(the Kortveg-de Yriea equation)

All conatents, such as density. gravity and viacosity have
been teken to be 1.

We try for e »solution representing a wave travelling with a
velocity v, that is with an argument (x - vt), the displacement
proporticnal to f(x - vt), with a peak displacement X. say.



It is found that the equation ia satisfied by
f(x - vt} = sech?{vl/Z(x - vt)},
vith v = X/3.

The asolution represents & single hump travelling at a speed
proportional to the amplitude of the disturbance.

The width of the disturbance alsc decrsases with greater
amplitude. Consider the points at which the »second derivative
vanishes:

2
9—25 =0 at ¢'’sinh% - %

o
d
vhere ¢ - vV%x - vt) and ' = d_: = v
o2 13
Hence ainh“% = 2 - 2}

Thus the hump is narrower the greater the amplituds.
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LECTURE 2
CHAOS IN HYDRONANICS
1) INTRODUCTION
Previous lecture shows {¥c aspects of chaos:

8) General rendom motion - en example is thermal wmotion in
gases,
b) Erratic shifts betveen quasi-stabls states - bifurcationa

Both erise from non-linear interactions eand extreme
sensitivity to initial conditions, which may sometimes seem like
InsepsitIviey to initiel conditions.

Generally there is a competition between e non-linear
interaction generating an effect and dissipation reducing it - the
Kortveg-de Vries equation is a characteristic example, which
applies to many physical phenomena.

The aim of this lscture is to show how chaotic effects arise
in hydrodynamics.

2. NON-LINEAR TERMS IN FLUID MOTION
Fluid motion satisties conservation of mass end of momentum.

Conservation of mass density: .

i
m + pdive = 0.

Shall generally take water to be incompressible, so that

3—2:0 and thus dive = 0.
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Newton's Second Lav, conservation of density of momentum:

LAd ‘ . %
P plv.grad))y = --= + wiv

(the Mavier-Stokes equation)
Origin of the terms in the Navier-Stokes squation:

s) The rate of change of momentum density:

The total change with time at any point {d/dt) is equal to the
variation in time at that point (d/4t) together with the change due
to convection in the tlov of the tluid, (v.grad).

b) The force density:
equal to the divergence of the stress temsor; the components
of the stress tensor are

potential energy: POy

. ayy %
viscous streas: n Fvy + —a-x— .
X i

The divergence givea

D osy = B
axk(pb“‘) gradp

3 (iﬁ fk] _ a(avk)

Toe \ax, " %) " Moxgm, © Maxlox,

The second tera vanishes bacause. divw = 0 for an
incompressible liquid.

It the convective term can be ignored, either beceause the
velocity is small or because of geometrical constraints, the
Navier-Stokes equation reduces to e linear equation that is
ordinarily soluble. The forcing ters is -gradp and the dissipative
term i» the viscosity times the Laplacian of the velocity.

The convective acceleration 1s inheremtly non-linser and is
often not small. ‘

11

3. 50ME USEFUL FORMULAE

There is a number of useful transformations of terms in the
Navier-Stokes equation.

{v.grad)v:
%qxad(vz) = %61:1( e VD

= v,iv + v—a—v + vﬁ—d*-v
ox, + 7 Tdoax, 1 Fax ¥

- (vi-)- f vy - v
tay 1T Max 3 Moxy !

R vy
axy dxy

= (v.grad)y + vcurle) - v(curlv)
= (v.grad)v + wx (curl w).

The result enmables (v.grad)y to be vritten in tarms of the
density of kinstic energy. that ia, the density times v2/2, and the
curl of the velocity.

The curl of the velocity is also known as the werZicityand 1s
& measurs of the local rotation of the fluid, for

Lv.dl = Iculv.ds.
5

The integral on the left is known as the circulation
curle, the vorticity. is denoted by @ .

An equation tor the vorticity is obtained by taking the curl
of the Navisr-Stokes egquation:
a
pi(cnrlv) + curll(v.grad)v] = —%cuﬂ gradp + nVicurly.

Then using the rslation for v.gradv obtained above. amd the
identity
curl grad p = 0.

s
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aa%n - peurlivx @& ) = nV"a .

But curlivx @ )= v div.e - @ div. ¥
+ (W .grad)y - (v.grad)e .
vhile div.¥ and div.e@ are both zero in incompresible fluids, so
that

p%az— + plv.grad)e - pl@ .grad)y = 7V .
Another form of (v.grad)v:

2 2 a,
(v.grad)vy - Vit T sx—k(ﬂ\'k) = Vi ox, )

But (dvy/dx,) 1a the divergence af the velocity amd is zero, 80

that
(v.grad)y = 3(v,v)/3x,.

The total stress in a liquid is thersfore made up of the
stress corresponding t the potential energy and proportional to the
preasure, the viscous stress, and ths extra tera equal to the
density multiplied by the symmstrical temsor {v,vy).

4. SEPARATION OF HMEAN FLOV AND VARIATIONS

The behaviour of a liquid can often h'! described as a smooth
flov on which are imposed fluctuations; but vhat are fluctuations
and what is & smooth flow depend on the times and distances over
vhich averages are taken.

Let LA A /]
the suffix m denotes the mean flow and d the tluctuating part,
such that averaged over some time and distance v, is zero.

Then Vivy = (Ve * Vail(Vay * V)

= ViVx * VaiVax * Vmi¥ax * YaiVax:

13

On teking mean velues. the second end third terms vanish. Thus
V> " Vaier v YeiVar>

The part <vyv,> is called the Reynold's stress and will be
denoted by R, It vanishes if the velocity components are

uncorrelated and consequently is proportional to the correlation
coefficient of the components.

Now form the mean of the Ravier-Stokes equation to give

[

5Tt (v,.grad)y, + div R, = —binqrndp + v,

The eqmtion_tor the fluctuating velocity ias

)

d
m G—H("m"-x ¢ Ya¥a) = NV
] L) d 2
or Evﬂi + v“;);; Vg * vﬂa; v = Vv

Thess wsquations show, first that the Reynold's stress
contributes to the development of ths mean flow, and secondly, that
the fluctuations are emplified by convection in the mean flov.

There is a related equation for the mean vorticity, for taking
the mean of the vorticity equation., wve have
) 2
p—i + plr.grad}eé = nV'e .

whers in this squation both ¥ and @ stand for mean values and

the mean value of @ .grad has been taken to be zero.

A turther decosposition follows from the result that any
vector field cen be written as the sum of the gradient of a scalar
potential and the curl of a vector potential. We write

v = gradd + curlk

Hence
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The Navier-Stokes equation will then become

plgrad) + curld) + %p"lﬂYz - plwx cuxlv) = -gzadp +
+ Vigrad) + curld)

Nov take the divergence of that equatlon, using the result
that

diviwx curly) = diviex @) = & + v.curle
to give
vl 1o @t - VP4 Py

:—tcurlb—v.cutlcutn = nVieurll.

Again we ses that the fluctuating flow reacts back on the mean
(potential) flow through the aquare of the vorticity. If the
vorticity and viscosity are zero, the equatiem for the potential is
the Laplacian of Bernouilll's eguation.

The equatien for the vector potential alsc shows in the secord
term hov convection in the potential flow develops the rotatiomal
flow.

5. INSTABILITIES

The MNavier-Stokes equation leads quite generally to unstable
random motion, sxd the devsloped form of that, turbulent motion, is
the subject of the next lecture. In the remainder of this lecture
ve shall ses thres particular weys in which instabilitiea develop.

A. Density inversion - Rayleigh-Teylor Instability.
A atate of aftairs in vhich a denses layer overlays a less

dense ons ia unstable because of gravitatiomal overturn, but it may
be stabilised by viscous resistence.

16

The general way in which this and other types of instability
is discussed is to assume a small harmonic displacement from
oquilibrium and to see if it increases or decreases in time. That
1s & 1linear procedures and wvhile 1t ylelds the conditions for
initial instability, it will not bs applicable as soon as the
motion becomes finite, a0 that it cannot be used to follow the
development of the unstable motion.

The problem of the layer of dense fluid upon a less dense onhe
can be considered in terms of the gravity waves that occur at the
bouwndary between eny two layers, internal gravity waves. Suppose
that the upper aml lower layers are both very deep.

Let the density of the uppsr layer be p, and of the lower
layer, p,.

Assune an harmonic motion proportional to exp{i(wt - k. r)j.

Then

2 P2~ Pi]
W = —.
m(pz M

Evidently the frequency is real and the motion is an barmonic
wvave if the upper layer 1s less dense than the lower. while if the
density of the upper layer is the greater, the fresquency ia
imaginary and ons of ths solutions corrsaponds to sn harmonic
variation in space {not a progressive wave) growving expcnentially
in time. .

Yiacosity has been neglected in the calculations that give
those results and vhen it is included, a critical condition for the
onast of the disturbance will be obtained.

As the disturbante grows, fingers of high density penetrate
the lower layer until the layers are inverted commonly with
turbulent mixing.

B. Thermal Convection

The onset of thermal convection is a classical problem first
discuased by Lord Rayleigh, subsequently by Sir Harold Jeffreys.

T
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Suppose that a fluid ia heated below. The density decrsases
with temperaturs snd ths temperaturs falls with height at a rate
that depends on the thermal conductivity. The difference of density
drivea the motion of the fluid which ias opposed by viacosity. Ve
again use exchange of stebilities to determine when the wmotion
begins to increase exponentially with time.

Let the density in the stéady state (v = 0) be p, and 1at the
temperature be T, Let the deviatioms bs p' and T' when the vslocity
is w

Let the coefficient of thermal sxpansion be [ so that

P o= -pfT.

Put n/p = w.

Then when the velocity aml deviations are asmall., the
Kavier-Stokea esquation reduces to

Wiy = g-qudp' - pT'g
0

Take the z-coordinate to be in the vertical direction. In the
steady state, the temperature is proportiomal to z:

Te = Az + const,

The equation of heat conduction in & moving fluid. including
the convective term. is -

pcp(:—: + (v-qudﬂ‘) = KV

¢, 18 the specific heat at constant pressure and K is the thermal
conductivity.
¥ith JT/dt equal to zero, and 3T/dz equal to A.

Av, = LV"I"
P

¥We azsume. as usual, that the fluid is incompresasible, divwy
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The deviation of temperature then satisfies the following
squation:

wy'r - Lo
1
vhers V. denotes the two-dimensicnal Laplacian in the horizontal

plane., y and 1 are constants.
Suppose that T' has an barmonic variation with position r in
in the horizontal plane

™ - explik.r £(z)].

The equation for £{z) is then

a? 2 ’ ¥
{&‘_2 -k ] £(z) + Ft(z) = D.
4

The bebaviour of {£(z) 1is determinsd by the Grashof number,
G = BgiiT /vi

¥Yhen G 1i» small, there i1» no motion and no deviation from
the ateady temperature T,.

Yaen G 1s about 100, stesdy motions begin in simple cellular
patterns in the horirontal plene (Bénard cells).

Vhen G is greater than about 1000 the wmotion bezcomes
conpletely chaotic.

C. Kelvin-Helsholtez instability

Eelvin-Helmholtz instability occurs when twe stresams of fluid
in contact, ot different density. cne abave the cother. are moving
ot different velocities, for example, air over the surfece of
water, or water from a river entering the ses.

An approximate treatment depends on Bernouilli's equation, by
vhich the pressure is less in the fastsr astreem. But the pressure
rust be the same on the two sides of the boundary and the
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diffsrence is balanced by the displacement of the boundary in the
gravitational field. The displacement of the fluid must alsoc be the
same on the two sides of the boundery. The equality of pressure amd
displacement are the boundary conditions for the solution of the
egautions of motion.

Let the motion be supposed harmonic with a wavevector k
parallel to the boundary.

Let the velocities of the streams (parallel to the bourdary) be
u, and wu, and let the densities of the streams be p, and p,.

Instability sets in vhen

ppik.(m, - llz)]z > kg} - pd

Examples of Kelvin-Helmholtz instability are waves driven by
vind on the surfce of water and the herring-bone clowd patterns
that fora at the boundary of two atreams of air et great hsights in
the atmosphere. Like other forms of inatability, it may lead to
completely random turbulence.

In sach of the types of inatahility censidered ahove the firast
notion is some cohersnt harmonic disturbance, but that is only
sustained if the conditions are close to the boundary between
stability and instability. HNore generally they develop into
superpositions of many harmcnic motions of random phase which
finally become quite random.

REFERENCE

Landeu, L D and Lifshitz, E M, 1982, Fluid Nechanics, vol. 6 of
Course ol Theoretlical Pliysics (Oxtord stc: Pergamon)

19

LECTURE 3

TURBULENCE

1. INTRODUCTION

Turbulent motion is & pre-eminent case of chags, in which
thers is no orgeniaed beheviour but essentially rendom variations.

‘At any one point in apace the velocity varies in s random manner,

although the mean aquare varietion may be atable. There is usually
some correlation betwveen components in different dirsctions and
betwesn velocities at different points. A4ll such correlations are
hovever essentially atatistical.

¥o sav in the laat lecturs some ways in vhich instabilities
can arise in fluid motion and how they can pass into fully
developed turbulence.

We also saw hov in general rotational motion ia sustainsd by
the steady flovw.

¥e nov lock at developad turbulence more generally, and also

ot some of the consequences of turbulence. It is important to

realise that there is still much that is not well understood about
turbulent motion.

2. THEORIES OF DEYELOPHENT OF TURBULENCE
A.Cascades of harmonic quasi-modes
The fluctuating part of the Navier-Stokes esquation ia
dv .
%t v, gradv, - (dive)w, = W,

-divw, laa been vritten for divw, in the third ters because div(w, +wv,)

1s zero.
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If w, is supposed to be given that equation is a linear
differential equation (actumlly three squations) for w,. It will

therefore have an harmonic selution, either growing or decaying
according to the relative magnitudes of the forcing terms and the
diasipation.

However the ssparation into mean flow and deviation is not
complete - it only applies approrimately when the non-linear terms
in the full equation ares small. In particular, if the fluctuating
flov has a term with some speed, the Reynolds streas will have a
part with twice that speed, and that will generate a cooresponding
ters in the mean flov and 8o in the fluctuations through the
copvective terms in the equation for the fluctuations.

The same point can bea seen directly from the convective
acceleration, (v.grad)v, for if v has an barmonic component with
some speed, the convective aceleration will have a component with
tvice that speed. Hore generally. compenents of two speeds in the
velocity will generate components with the sum and difference
speeds.

It follows that the Navier-Stokes equation cannot be satisfied
by a single harmonic term but only by an infinite aet of terms.
Thus we think of turbulence as describsd by an infinite set of
quasi-modes which will in general have ramdom phases. That is the
landau model pf turbulence in terms of a casceds of quasi-modes.

The modes are called quasi-modea becauss there is mno
geomstrical constraint that determines either the frequenciss or
the phases.

Ths Landau reprasentation is in terms of harronic waves but in
view of the importance of vorticity it might be better to attempt e
deacription in termas of caacades 0f vortices.

B. Bifurcations

We saw that the logistic equation dy/dx = ry(i - y) has

2l

single stable sclutions up to a certain wvalue of r, then two
solutions with reandom changes from one to the other driven by small
external fluctuations, and then an infinite sequence of pairs of
aclutions. Initially the bshaviour of the system is quasi-periodic
in svitching beatwesn the states, but az r increases with more and
more bifurcations, the mnumber of atates becomes effectively
unlimited and the chenges betwsen them random.

The Feigenbaum model of turbulence is based on the hehaviour
of the solutions of the logistic equation.

The model makes a specific prediction about the amplitudes of
succesaive modes, namely, if A, is the amplitude of the n't mode,

then
N Apy = Ay 1

L A, - Ay  2.5029°

C.Thresa-mode model

A famous ast of three coupled equations was derived by Lorenz
from the Navier-Stokes equation on the asumption that the flow of a
liquid could be roepresentsd by just the three slowest gquasi-modes.
The solutions bave scme very strange propsrties and have often been
used as examples of cheotic behaviour.

The squations are

dx

a - oy - Ox
dy . _ -
dt XZ + Iy - Y
dz

T -xy - bz.

r is a control perameter, its magnitude determines the
character of the solutions.

The solutions have for the moat part been obtained numerically
and again have been used as models of turbulent behaviour.
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Each of the three models makes a prediction about the apectrum
of turbulence which can therefore be checked against observation.
The results are not ‘varr clear. The initial spectra. wvhen there
are very few quasi-modes or bifurcations ars distinctive and it
sesus that the Landau model does not correspond vwith any
observations. Neither of the other two models seems to agree with
all experiments but each does sesem to represent some cbasrvetiona.
Thus with fluid floving betveen concentric cylinders rotating
relative to each other shows diatinct peaks in the velocity
apectrum corresponding to quasi-modes and followed by broed band
noise as the turbulence develops; the model with three couplad
modes (C) seems to give reasonabls agreement.

On the other hand, the spectra of heat trensport in liquid
helium seems to bes better represented by the bifurcation model (B).

There aseems at bresent no theory of general applicability for
the apectra and cospectrs of fully developed turbulence.

Empirically. lsminar flov breaks down and gives way to
turbulant flov at a velocity u determined by the balence between
the convective acceleration and the viscous disaipetion. as
neasured by the Reynolda number, R: ’

ul

o= B2
n

wvhere p 1s the density, 7 the viscosity end 1 a characteristic

length -

3. NATURE OF TURBULENCE

Purely random spectra do not describs motions completely:
there are structures. sddies or vortices on & wide range of scalss,
from something comparable vith the scale of & mean tlov down to
very ssall dimensions.

The velocity at any point is the resultant of many superposed
eddies.
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Three points can be made here. First., eddies are
self-containad structurss with some persistence in time. Secondly,
energy flows from the mean flov into the large eddies end from them
to succassively =maller ones until it is dissipated as heat in
molscular friction. Thirdly, turbulence shows aspects of fractal
geomstry.

Fractal geometry is a consequence of non-linsar dynsmics. It
is the repetition of the same structure at difterent scales of a
phenomenon so that things lock the same vhatever the magnification.
Structures in turbulent fluid flow often show fractal forams.

There are analogues in ostatistical mechanica to the
description of turbulemce either in terms of harmonic modss or in
terms of sddies. The thermal motions in solids are most nmaturally
considered as normal modes of elastic vibration that interact
veakly, yet osufficiently to give ths equilibrium Boltzmann
distribution of energy.

Gases are hest described as assembliss of almost isolated
nasses that interact only 1in colliding. and thus aecquire a
Haxvellian distribution of velocity.

If we knev how to describe the interaction of eddies, it might
be possible to set up a model of a turbulent fluid as & collection
of eddies rathsr than as a set of quasi-harmonic wodes. i
difficulty with all approeches is probably that, in contrast to the
asolid atate or the classical gas, the interactions between modes or
eddies in a turbulent fluid are not vesk. It is also not clear what
would be the equivalent of thermal equilibrium.

A further question, which will be taken up again in the final
lecturs, is wvhat determines the ensrgy in the turbulent part of a
flow.

4. TURBULENT TRANSPORT

Recall that the motions of molecules in a gas are rendom vith

g -
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e distribution determined by the temperature but sometimes
superposed on a mean motion. Thus if there is a gradient of
momentum in a fluid, molecules passing from a region of high to low
nomentum have & momentum that on the average exceeda the mean
noxentum vhere thsy meke thsair next collisions. Thua they carry
monentum from the region of high to low momentum - the random
motion of the molecules transports momentum down the momentum
gradient. It 1is that treansport that appears as viacosity in a
fluid, specifically. it is molecular viscosity because the momentum
is carried by the molacules.

In a similar way we think of the sddies in turbulent metion
carrying fluid from a region of high to low mesan flow momentum amnd
20 transporting mean momentum down a momentum gradient. Thus we can
detine a furbulent viscosily which will depend essentially on the
aspectrum of turbulence.

The turbulent velocity gives us en empirical wey of writing
the Reynolds stress which has the same form as the molecular
viacous satress, in fact

Wy ¥
Ry = nt[_ + —]

2
o, o1, 3P

vhere 10, is the turbulent viscosity and [ is the turbuklent
kinetic energy equal to R,,/2 and Ry, equals v:.

This form for the Reynolds stress is Xnown as the Boussineaq
approxisation. The turbulent viscosity is an empiricel quantity of
order 1 du/dn, wvhere 1 1is a characteristic length over which
tluid i» mixed) the mixing length, of the dimension of the largest
eddy, and du/én 1s svaluted in the directjon of the nearest
boundary,

Molecules in a fluid also transport snergy down a gradient,
leading to molecular thermal conductivity: it is likewise posaible
to define a turbulent thermal comductivity end imndeed other
transport coefficients in turbulent flow. :
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The important fact is that turbulent viscosity and turbulent
heat conduction are often much more effective than the wmolecular
processes.

6. S0ME EFFECTS OF TURBULENCE
A, Yelocity profile above the sea bed.

At the aea bed, v 1s zero, while the atress on the solid
surfece is

(av, avk]
N3z * 5
ox, d%y

vhich determinies the rate at vhich momentum flows into the sea bed.
Let that rete be j. Now the rate of change of v, horizontal
velocity. with depth, z. has the dimensions of (t.in)" trom vhich
it follows that

1
a - ()b

b is & numerical constant.

Put po= pr.
dv Va
that 2 . =
o0 de bz
A 1
nd th - =
a en T b In{z/2zp)

vhere Z @ constant of integration, is a scele height.

This is the logarithmic velocity profile, the acale of which
is given by v, wvhich in turn depends on the viscosity. molecular or

turbulenbt according to circumstances. If the flow is turbulent,
then turbulent viscosity will determine the scale of the profile.
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B. The Ekuwan Spiral

The preceding analyaia seys nothing about the direction of the
flov in the horizontal plane, but in general the rotation of the
Earth (which gives rise to Coriolis forces) must bes taken into
account.

Suppose thet the wmotion is driven by a pressure gradient,
gradp. The direction of flov then swings rourd from the direction
of the pressurs gradient far from the sea bed to one determined by
the Coriolis force close to the sea bed. Again, the direction of
the tlow in the sea driven by a wind blowing over the surtace
changes in the upper laer of the sea. The fora and scale of those
spirals, the Ekman spirals, are determined by the wviscosity,
commonly the turbulent viacoasity.

¢. Friction at the sea bed

Here we are concerned with the work dons on the sea bed by the
frictional streases exerted by the moving water. It is simpler to

consider the flow over a flat solid plate that is oscillating in a
viscous fluid.

Let the motion of the plate be hnn'onic with a velocity v in

the x-direction equal to :
Yocos wt

The velocity in the fluid at distance ¢ trom the plate
satiafies

[N .
t it

the diffusion equation, which has the solution

v o= v, exp[i{u—i)(—;';) z - ut]].

The stress on ths plate is n:—:~|, -0

1
2

1
that is volump) 2 coa(ut, + %)
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In consequence of the phase shift of n/4 between the stress
and the wvelocity of the plate, work is done on the fluid by the
plate, or, if the fluid 1s oscillating and the plate stationary,
work is done by the by the fluid on the plate.

The case of particular interest ia the oscillating flow driven
by the tide-raising forcea. Here the plate, the sea bed, is
attached toc the whole Eerth end the work done on it produces a
torque about the polar axis that slows down the spin of the Farth,
the by now well known effect of tidal friction. Here again the
viscosity that is significent is the turbulent viscoaity.

Since the powsr of the frictiomal forxces is proporticmal to
the squars of the velocity. and also increeses with the turbulent
viscosity which itseltl increases with velocity, the grestest eftasct
by far ia in shallov sses vhere the tidal flows are strongest. G I
Taylor. as long ago as 1915, (first realised that friction in
shallov seas might be sufficiant to account for the observed
aloving down of the Farth, and a0 it now seems to be.

PRI

d. Transport of solid material

In stationary liquid or fluid flowing steadily without
turbulence., solid particles asttle at rates given by Stokes'a law.
Turbulence, with substantial upwards velocities, keeps particles in
suspension. It alao increaseas the local velocities at the bed of a
river or sea that bring particles intc suspension or move them by
saltation. Turbulence is therefors important in moving benks of
s0lid material, especilally in shallow water where velocities are
greatest
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LECTURE 4

NON-LINEAR BEHAVIOUR OF SEAS

1. INTRCDUCTION

My aim in this lecture is to consider hov wuch 1is known of
non-linear and chaotic effects in seas and hov far and in vwhat
senses they may be predictable.

¥e have some direct knowledge o0f non-linear and chaotic
behaviour of the atmosphere. The atmosphere 1is reasonably
transparent, so that we can see turbulent motion, by plumes of
smoke., clouds, leaves blown about and s0 on ¥e can see
instabilitiea, auch as EKelvin-Helmheltz instability. tevealed by
cloud formation. ¥e can see the effects of thermal convection.

¥a can alap sees (fractal phenomena. for example in the
astructures in clouds which rapest over a very wide range of scales
in the same cloud.

On larger scales, there are sufficient observations of the
atmosphers (preasure, temperature, humidity. wind) for eddy motion
to be described aml, in particular, for cyclones to be
characterised as semi-parmanent structures =moving with little
change of form, rather like solitons. though of course much more
complex (S5ir Harold Jeffreys, many years ago. called attention to
that propsrty of cyclones, but dealt with it in a linearised
manner}

A featurs of cyclones that is surely related to their
non-linear structure is that they can behave unpredictably. When a
cyclone develops in the Gult of Hexico the United States Weather
Service makes many chservations of it and issues predictions of its
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course. Quite often those predictions are fulfilled, but sometimes
they are-not. [Example of Hurricane Hujo, 3Septexber 1989). Erratic
changes of course are characterisitic of non-linear instabilities.

On a continental or global ascale we see weather patterns
established over & fev years suddenly and unexpeéctedly change. In
the last two or three years in ¥estern Europe there have been very
dry springs and summers which have persisted beyond forecasta. i
similar sequence occurred about ten years earlier, but such
episodes are not really exceptional, for there was a aimilar
exceedingly hot dry period from England to Switzerland in 1900.
¥hat distinguishes these occurrences is that they succeed
immedisately to periods of quite differsnt weather. A turthsr
instance is the present weather in Celifornie where a period of
tive years near drought has just given place to heavy rain storms
a2 & high pressure aystem over the Pacific breeks down.

Yet again, the weathsr in northern latitudes is the result of
waves circulating around the polar regions. but subject to
apparently srratic changea of amplitude and meen position.

It may be argued that all these instances of apparent sudden
change could bes pradicted if only we had enough data and big enough
computers, but it may alaso equally be the case that they are cases
of non-linear instability es first identified by Poincaré.

Leaving aside the question of the dypamical nature of some
atmospheric phenomena, the fact I emphasise hers is that they can
be obaerved directly in various ways and on various acalss.

Observation of asimilar dynamics in the oceans is much more
difficult because sse water is not transparent over asignificant
distences and because there eare tar far tewer contionuous
observations of the seas and oceans than there are of the
atnosphe're.

In consequence there is bound to be a very great deal of gusas
work and aspeculation vhen we try to ldentify non-linear dynamics in
the aeas and oceans, and much appeal to arguments that because the
mathenatics says so, such effects must be there to be found.

31

2. HNON-LINEAR HARINE PHENOMENL
f

¥With the foregoing reservations in mind, ve try to identify
some non-linsar phenomena and chaotic behaviour aspart from
turhulence, which comes up again in the next asction.

A. Solitons and shocks

Solitona were tirat identified by J Scott Russell on a canal
in Scotland. they have subsequently been seen in more open water

(Examples]

Shock waves on the surface of water are sudden changea of
height - it is possible that solitona could be considered as two
shocks back to back. known alac as hydraulic jumps or bores (in
eatuaries). The detailad dynamics of shocks is quite complex but
important results tollow from simple arguments of conservation.

Consider water in a channel of constant width. Jince water is

incompressible. ignore the density in the equations of
conservation.

Let the depth of water in front of the shock be h and behind
it let it be H. Suppose the shock front. the sudden chenge of
depth moves into stationary water at velocity v while behind it
the water is moving with velocity {v-u). Imagine the shock brought
to rest by giving the whols aystem a velocity -v.

Then water enters the shock with velocity v sesnd lsaves it
vith velocity u. Conservation of mass then gives

vh = uH.

The momentum of the water entering the shock is v per wut
volume, 30 that the rate at vhich momentum enters is v2h while
the rate at vhich momentum lsaves is similarly wfH. The difference
is equal to the difference of the integrals of pressure over the
depths of water, namely g(H® - h%)/2; g 1is the value of gravity.

W
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Thua
vh - v = g (2 - B%)/2.

The two equations determine two of v, u, h, H if the other two
are knowmn.

The velocity v is v/[gH(H+h)/2h) and so is greater than the
spead of gravity waves on water of depth h (¥gh). but approaches
that speesd as H approaches h. u is equl to v[gh(H+h)/2H].

The rate at which kinstic energy enters ths shock is v?h/2 end
it leaves at u’H/2. The differencs is fixsd by the previous
equations and is greater than the work done by the flow of water
egainst the difference of pressure. the excess ensrgy (Joes in waves
on the surface of the water, and turbulence in the flow.

It 1s 1likely that shocks and solitons occur in channels
croasing shallow lagoons and may be involved in, for example, the
acqua alts in Venice.

B. Tronts

¥eo knov that much of the weather is associated with movements
of fronts, the boundariss betwveen mesaes of air of different
humidity and temperaturs. Decause pressure changes across & front,
Coriolis forces cause winds to have components parailel to a front,
giving conditions for Kelvin-Helmholtz insatability.

Fronts also occur in the oceans. As with other oceanic
phenomena it is not easy to sse them. but there is one place where
they have been atudied, at the western entry to the English Channel
vhere the depth of the water bascomes rapidly less at the
continental shelf. The boundary of a front between cold Atlantic
water and wvarmer inshore water can bs mapped by observing plankton,
which differs in thv two water maases, amd by the infre-red
observation of the temperature. The front moves in and out with
the seasons, but seems to do so in a somevhat erratic way. The
positions of fronts offshore are strongly controlled by geography
in & way that weather fronts ere not, but they astill fluctuate
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Yet another example is the E1 Ninc phenomenon. an upwelling of
deep water that occurs off the coasts of S Africa and S America.
Every nov and egain it fails. which has & bad effect on the
offahore fisheries. It is pelieved that El Nino is driven by, or at
least closely related to the surface wirnds. but nonetheless it
seens that vhether or not it occurs is not well predicted.

3. AMPLITUDE OF TURBULENCE,

Amplitude of & turbulent motion means the root mean square
variation of velocity {or other persmeter). The mean square
variation gives the kinetic energy of the turbulence; in that it ia
analogous to the kinetic snergy of thermal motion in a gas.

The equations of motion we have had sc far do not determine
the axplitude of turbulent motion. The squetion for the fluctuating
velocity wvas seen to be

d d
et Ex_k(vdivlk * Yg¥y) = Vg

or, since diviwv, + ¥y 1s zero for an incompressible tluid,
? ? &,
oV F (HALY WV + V() + iV W, 4 \rmc——li = szvdl
at axy ax,

On multilying by vy, and teking aean values, we find

:—tvj - iYWV = v vV,

This is a linear for v,2 without an independent forcing
function. and cen be satisfied by & mean aquare velocity of

arbitrary msagnitude becauss -divw, 1is equal to divy, and 20
independent of v,.

Thus the Navier-Stokes equation, together with the
incompressible assumption, do not determine the magnitule of
turbulence and some other conditions must be brought in 1f a
definite value i3 to be established.
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There is one very important case in which the turbulent
auplitude is .determined. About sixty years ego, S5ir Harold
Jeffreys showed that cyclones are an essential part of the general
circulation ot the atmosphere and not just parasitic upon it. The
argusent turns on tvo points, that without surface friction the
general circulation, which is driven by zomal ditferencea ot
tewperature, would be indeterminate, end that es a consequence ot
surface friction, eangular momentun would mot be conssrved in the
genmeral circulation. There has to be a way of transporting angular
momentum across rones and that is what cyclones do. Consequently
there must be a relation between the intensity of cyclones and the
strength ot the general circulation ot the atmosphore such that
nomentum is conserved.

Cyclonea ars however an example of chaotic motion, for where
and when they start seems to be to some extent a matter of chance,
as Poincaré obaerved. There must be something in the dynamics that
ensures that cyclones do start up and develop 3o that on the
average they maintain the balance of angular momentum.

Cyclones sre well known. It is only quite recently that
similar systems, gyres, have been identified in the deep oceans. in
particular on the Gulf Stream., which is & major feasture of the
general circulation of the North Atlantic. Like cyclones, they scem
to originate in the region of the Gulf of Hexico. The general
circulation of the deep oceans is much wore complex than that of
the atmosphere on account of geographical conatraints but it seems
clear that the general thrust of Jeftreys's argument must epply
here also and that the magnitude of the gyres in the deep oceans ia»
deternined by conservation of angular momentum.

In smaller sess it is likely that Jeffreys's argument would
not apply, at least not in the form in wvhich he set it out, for it
depends upon the existence of the Coriolis force, vhich is not so
important in small basins. I suppose therefors, that some other
mechanism must operate there to determine the turbulent amplitudes.

K1

4. PREDICTIONS

Much of the behaviour of seas and oceans is predicteble. Tides
are very regular, the general circulation i1s quite stable. the
temparature of the sea often varies in a regular wey. One of the
reaschs for that state of affairs is that the dynsmical and thermal
inertias of the seas are very great, so that the amplitudes of
seasonal variations for example, are modest. Yot there are some
events that are far less predictable and can do great damage. asuch
as tidal wvaves, storm surges, hydraulic jumpa, while the transport
of sediment depenids upon the turbulence in a atreanm.

One perameter that it would be very desirable to predict 1is
the greatest amplitude of some phenomenon such as a weve in a great
atorm or an hydraulic juap. The mean aquare amplitude, averaged
over some period of time, 1» not suificient for planning defences
against exceptional events. The mean square amplitude is hovever
vhat ve do want to know when thinking about the turbulent regime of
aone flow.

¥We would also like to'knnv something of quasi-periods. For how
long may wve expect a certsin weather regime, wvhether in the
atmosphere or oceans, to last before changing to some other, seven
fat years and ssven lean, or somes other numbera?

To make succesful predictions you need a good theory of the
dynamica but you also need good observations. The sees are a
particular physical system., particular forces act on them. Theory
can organiss empirical observationa, it cannot produce then out of
nothing. As we learn more of the types of bebaviour that non-linear
dynamical systems undergo, we can see how to understand some of the
data, but wve still need the data and a» I have emphasised, it is
much more difficult to obtain it et sea than for the atmosphere.

We are far from being able to make wuseful predictions of
chaotic aml non-linear behaviocur in oceanography.

ry

sy



36

5. CONCLUSION

I have aet out in these four lectures some account of what ve
aean by classical chaos and why chaotic bshaviour may occur in the
dyhamics of the oceans. I have also described some other examples
of non-linear dynamics. such as solitona.

I gave a cursory account of the main features of turbulence in
fluid dynemics and discussed briefly how the lsvel of turbulence
might be determined dynamically.

In this last lecturs I have called attention to difficulties
in observing the behaviour of the oceans amd consequently in
obtaining date from which it might be possible to make useful
predictions of chaotic or other non-linear phenomena.

The inertia of the oceans 1s great. changes in behaviour
probably take very much longer than changes of the etmospheric
weather and if we are to obtain good ideas of the inherent
variability of the oceans we nesd observations extending over
considerabls periods, That will be the subject of my lecture on
historical oceanography.






