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Chapter 1

Introduction

e piigproses of these Jectnnes is to introduce the Lasic mechanisis of the interacon hetseen
carlace waves and oecan currents wid toshow it pravtical relevance.

On one side 1he weean carrents atfect e surface waves hecause their presence inodifies
e medin across which the waves propagate. The speed of the mean curtent enlers ex-
phicit ]y the wave dispersion relittion. and therefore current variatious mudily the frequency,

the wasclength and 1he amplitude ol the surface wave. Moreover, in shallow scas. the de-
preasdence o the variable water deptl Wit s assoriated with tidal cucrents, must be added
1o the explieit dependence on the carrent velocity, The equations deseribing the dependence
ol Trequeney amd wavelenpth on the current are derived by the standard Ray theary (see,
Whitham (9713 ‘Fo complete the deseription of the effect of e cursents on the waves an
enation for the wave amplitude is needed. Vhis 15 provided by the wave action couservallon
cquation (Bretheton aud Garrett. 1969). Wave action conservation is nore lundamental
thiuy eneegy OF Talienl 1R Convervatiol, Lecanse it holds also in not homwopgencous and not
stationany tiedia, where, respectively, monwatum and energy are respectively nol conserved.
T hiese lopies are ilroduced i the secoud section,

On the other side there is alse an eflect of the sarface waves on the mean flow and
on the mean aca level, because waves have energy, monwniuimn and they transport mass.
[ herefore the thines of energy. mamentuin and mass, that are associated with the presence
of ~urface waves. enter the overall encergy, niomentum and naass conservation equalions.
Average energy, momentin and piass transport ina surface wave and tHeir offect on the
mean current sl vu 1he wean surface displacement are intraduced in the third section.

As an example of the practical implications of this the “set-np” s discussed. This is
o phenomenon which 1akes place near the coast, when the loss of momentmn associated
witle the wave breaking is halavced by a gradient of the mean sea leavel, The Tset-up™ is
iprortant luving stormms. when it gives a relevant contribwtion te the sea level inerement at
e roast.

The preciction of e 7set up” needs the availability of {he wave spectrun olfshore, This
cant e provided by aowave model, Uhe prineiples of wave mudelling are biclly presented in
the Tast scetion. where as a practival applicition, a computation of the “set-up™ in front of
Veniee in e Nortle Adtiatie Sea. duting a very infense storns, is also given.

Chapter 2

Surface waves in presence of currents

e fusndanental equations deseribing the surlace wave motion are he mass copservabion
equattion for an incompressible fluid, .
Vu =0, {r1)
and the momentun equation where viscosily, earth rotation, Buoyancy are peplected and
the motion s assuined irrotational (VAu=0]
; 2
i " i D]
f—+Vr—|_l + V- +g:)=0 {2.2)
ot 2 p
As the matjon is assanied irrotat junal, the velocity can be expressed as L pradient of the
velocity potential ¢, vy
u=V¥o. {2.3)
pedncing Hhe continuity equation (2.1} 1u e Laplace’s egualion

Vi = 0, (1)

which holds in the region occupied by the tluid, e, fur I <2 <n, \\‘Iu-lv'H is 1he sea botiomn
atcd oy the free surface, The Laplace equation has a unigue sulution. that 1= determived '“.} the
boundar conditions. At the bottom the velocity component orntal to the bottom vanishes.
For & at hottom this gives -
¢;*Uif.‘:—” . (2.0
Here and in the following expressions underscripts denote detivation. .\l.lh(- free surface the
situation is inore complicated because the position ol the surface itsell |:~,.m'l\.1u|.i_\' a ])i.ll"‘1 of
the solution. Therefore two conditions are needed 1o cluse the svstem. The first condition,
called kinematic boundary condition. requires that the component of 1he fluid speed noral
to the [ree surface vanishes: ”
¢ = TuoV iy =t (2.6)
where Uy denotes the horizontal gradient 0/ + Jofiy. The second condition, ("allvd
dvnamic boundary condition, 15 derived by ntegratmg the monmentum equanon (2. It
requires that 1he pressure on both sides of the air-sea interface is the same
Vol 9
o+ LT + gif = Patm + Pat- ‘"7}
Note that e surface boundary conditions {2.6) and (2.7} inply that the prulﬂ:-m in unnln.;—
car. Anyway considering only small amplitude waves, 1.0, Tetaling vnly the linear tenins m
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e bamd C27) the sustenn of cgnations becomes:

To=0 il -1 (2.8)
o, =0 = -1 (2.9)
o= Ly (2.10)

ortgn= -~

where miy,, s the contibution of the surface tension 1o the pressare and o ds the stirface

Drension cocllicient, Seehing o solution in the forin

o= gadl ) explUke — whl). {2.11)
y = nLexplilker —wi)). (2.

 the Laplaces equation (2.7 aud the bottom boundary condition (2.5) pive

o{z) = cosh{k(z + H)). (2.13)

DSubsatituting, (2010 (2.12) and (213} in the surlace boundary condition one uhlains the

| eispersion relation

W= k(14 M) tanli(k 1), (2.11)

where 12
T (2.15)

gp

D which is a measure of the rlative importance of gravity and sarface tension as restoring

force (i the gravity wave it £ — 0). The phase speed € bs pivens as

('{'f,l = %(] + Bytanh(k i) (2.16)

and the gronp velocity €0 s niven as

RIS | + 34 )
- —— (
sinh 2kh L+ B

e
-1

O
)= B

Until now 1he oflent of currents has nol heen taken indo acconut. Obvieusly in an ineriial
peferenee Trame moving, with the current 710 he solution for a surface wave 15 the same as we
alteady Toumd, But 1o a slationary ohserver the wave appears fo have a frequency . which
i~ citlled absolute frequeney,

w =, 4k (2.1%)

. - g L P e Y
D where w s called telative Trequency, or Dappler shifted Tregaeney, and it s given by (2.11).
DT he varation of wave lregueney and wavenumiber in the presence of a current varyig
D space and time can be deseribed by the Ray-theory, approximating the solution p{r.t) as a
dnnsoidal ware w hose amplinade, wavemunber and frequeney vary slowlhy i space and time:

plr ) =y fa esplrOLe th (2.19)

with wavernmber and Tiegqueney defiped as

P V. 2H))

w o -0

84
—

sl sy the consistency relation

by i Voo UL (2.

tnterpreting A as a crest density and was a coent o, couation (000 states that the b
ol crest s coarrerved . Using the dispersion velation (216 ane abtains the equition ke the

wavenmmber and the frequency

d " X
B P A o T 2y
ot v o ( )
d ) . -
mo‘: +Lk it I, (221
where (he operator d /dt is
d él
— == | - AL
di i Gt (29
The equations {22203 and (2207 deseribe the varation of frequeny atd wavenmmber along,
a ray path given by the equation
e (2.26)
—_— o .20
dt ‘

IT the medimm is homogeneous in space. ie. I and If do pot depend on oo then the
wavelwnsmber is conserved along a ray; il the medinm does not depend on time, jeo [
and I do aot depend on £, then the freguenes is conservesl adong a ras .

The ase of the dispersion relation and 1he Rayv theory does not provide any equation for
the wave amplitude. As it will e shown in the nest section the wave enerpy is proportional
1o the square of the wave amplitude. An equation for the wave amplitnde could therefore
be detived from an equation for the wave energy. but in peneral, the encrgy is not conserved
for a wave traveling in a medium that vacies i time, 1 has been proved that there is a
quantity, the wave action, whose conservation s more Tumlamental, hecanse it holds also
for ncdia that are not homogeneous and not stativnary { Bretherton and Garret 19693, The
wave action A s related to the wave encrgy Ias 4 = E e and s conmervation is deseribed
I the equation

o

— =10 207

df { )
which follows elegantly from the average Lagrangian approach introdoced by Whitlame 1

derivation is anyway beyond the scope of these lectures. Note that il the frequeney wis con-
stant then the wave action conservation cquatinn (2.27) terlnees 1o the energy conservation
cguation. As s evident from equation (2.210) this i oa case Tor a stationary mediz

The validity of cquations (2.24), (22100, 0227) i< restricted to slowly varving wave trains,
e when amplivnde, wavenumber and Trequency vary over o seade that i~ mnch lavger then
the wave period and the wavelength. I the edinm varies over a seale conparalile 1o the
wavclenpth or the period of the sought sinnsadal wave solution. the idea ol a sinnsoidal
solution itsell is not applicable and the solution cannot he approsiomated by (2000)0 with
(220 el g220).



Chapter 3

Wave energy and momentum fluxes

[ 1his sevion we investigate the propertios of the surface waves, as they are described by
(e Linear system (29), (210} and (2.9} that was introduced 1u Lhe previous section. The
selution of the linvarizead cquations is:

i == 4, exp (ks — wt) (3.1)
=g cosh(AH + 2)yexpe(hr — wt) (3.2
oy 118 (3.3)

“ T o cosh(kH) T

L he Tundaental season because surface waves affect the mean flow is that they transport
energy. womentun and mass which enter the overall halance equation. Exanining the prop-
erties of the flow associated with (3.1). (3.2). (3.4). it is clear that the lucal fluid energy,
momentum and speed vary with the wave profile. Anyway we are not directly interested
in the local values, but in the mean quantities which are left after averaging over the wave
oscillations. Of course positive defined guantities, like the kinetic energy, have a non vanish-
ing average value, 1t is less ubvious that oscillating quantities, like the momentun and the
sy lux du not average to zero, implying that waves have momentum aud transport mass.
l'o determine e average quantitities related to the presence of surface waves the Eulerian
expressions lave to be vertically integrated and, successively, they have tu e averaged over
the phase of the wave or, equivalently, over a wave period.

There are three contnlmtions Lo the wave energy E: a kinetic energy conteibution £y, a
potential cuergy contribution £, and a surface tension contribution Ky, “The wave kinetic
energy Is given by

Wl
B =< ] 2 plulds > (3.4)
-2
which, substituting the lincar solution (3.1}, with a little algebra gives

. 1+ B
E, = pyufT. (3.5)

The contribution of the wave motion te the potential energy s

. " v L
t, =< [ u pyzids >~ j:H pysdz = T (3.6)

Finally there is the contribntion frowm the surface teusion, acting as a massless elastic men-
bane {Morse and lugard 196G3):

. i "
b= 3'”'(1”'-' B (3.7}

The total energy density is then given as

1 .
E=E+E, 1+ b, = :—}py:fj(l + i) 13.8}

The same provedure can be applied to determine the momentum density 170 By retaining
the Jowest order term one obtains:

P =< fﬂ pidz ==« /" puds > puy - (3.9)
-H u

Substituting the linear solutions (3.1) oue obtains

'k
P = ghusll + B]Ii (3.10)

1
BV
20 ph
The muomentum is in the direction of the wave propagation. Comparing (3.5} sl (3.10)
one immnediately uotices that energy and momentum are related by E = 0”0 Note that
becatise of the oscillatory nature of the flow the only contribution tu the sl momentum
cones frotn the region between crests and troughs, where there is no halance between forward
and backward moving fluid. The wave mowcntui can be written as 7 = Uy, being i
this wav associated with a mean velocity Uy,

2

Uy = ,_)éf,:h"“(l + H). {(3.11)
This is not only a mathematical interpretation of the equation (3. 14]. because the motion of
the fluid particles does not follow close orbits. In fact, since the horizontal veloeity decays
with the depth, a larger distance is covered during the upper part of the orbit than during
the lower one. Therefore the average velocity of the fluld particles is not zero but it is given
by the Stokes' drift velocity {/gq

wk

f‘ I e———pn
Use 2sinh? (k1)

1 cosh(2k(H + 2)), (3.12)
which, integrated over depth, averages to {'yy. This average motion implies a transport of
nmass due to water waves.

As surface waves have momentum and energy, traveling across a medinan, they produce
moentum and energy fluxes. The energy and momentum fluxes can be obtained by repeat-
ing the previous procedure of vertically inegrating and plase averaging in the momentum
and energy equation. Cousider the horizontal momentum equat ot

Ju, du; d i
du, | du A 3.13)
p— + ——(pb,, + puu;) + opuiw =0 (3
at o oar;t Y Y -
where e is the vertical velocity. The secoud and the third terms represent a omentnn Hux
whuse divergence balances the local vanation of moementum. The coutribution [rom wave
mmotion 1o this flux is

i

n . {+]
T, :(j phijdz > + < /“ piagi Mz > 45, — j“ pg=d: (3.1
-M - -

e Y, represents the effect of capillarity. acting like a stretehing membrane at the water
e, and the tast term is the hydrostatic pressure, which is subtracted because it s
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fdependent from e presenee of the wines Assuming that the wave propagates 1n the

Lo .
115
(U o ) (3.15)

The second ternn in (4.11) can be computed by direct substitution ol the linear solution,

replacing g with as upper Tonit of integration, 1o retain only the lowest order contribution:

; (1o kH
g [. st e ( k(g + ,Gnmzku,) g ) (3.16)
Jo

sedirection (A orse ol Tnard 1968)

To determine the irst contribution, note that, on the average, the flux ol vertical momentnm
st be balaneed by the weight of the fluid:

<ptpat >z —pgz=p, (3.17})
therelfore
- @ | 194
e e T =l — Ay s Bl b 318
[41(" poids =< ./_.u puids = Bl-g + S o) (3.18)

Only the computation of [ pds is missing to conclude. At lowest approsimation the pressure
near the surface is the sum of the hydrostatic pressure apd the surface tension contribution

Fifey !

y 7 !
. L pidz e L (puly — 2) + okiy)dz >= & Ty l {3.19)
Mdding, all the contrilbtions, the final expression for the flux of momentun is
281 1+38
—=— ; 0 "
,ru _ 1_’-( 5|nl|[£Hn']“ W+ H) L ) {320}
S (2KTT

The quantits 1, is called raliation stress,  Theeelore surface waves are associated with
a lorward o of forsand momentum, represented by Tiyo and sideways flux of sideways
directeal monwntune represented by Ty Both are norwal stresses. Note two limits: for

(ic'r‘p Walt'l Wates

T, = h,,F,‘zt ;’:% (4.21)
and for sravity waves y
T, - ( T.\ﬁt"i—'p +3 __S,__ ) (3.22)
(28T
Frallv Ton adeep water eravity waves
T,=Tu=0,01 (3.23)

Analogonshy there is an energy flux @, which can be derived by repeating the previous
procedure for the hnctic energy equation

TR ] I, .

=gt g A o Sput gz, = 0, (3.24)

aplop +pas) s, [(r+ 50 g

producing the froal resalt

&= F (3.2%)

As surface waves transport energy, nass ol momentone it s evident thit these are twa
contribnions o the overall eanservation cquations: one o he mean flow and one from
the surfoce waves, Consider first the jnass conservation

Nl 4 u)= 0 {4,260

where I 7 is the wean flow aud i the flow associated with sinlace waves, Vertically integrating,
and averaging (1.26) gives

17}
— % "+ M) =0 3.27
,nm<1f>+ i P+ 8N {4.27)

where W ois momentom of the current. This shows that variation in space of The wave
mornentum, because of the related mass transporl, can produce vartation of the mean water
l(‘\'l']A

Hepeating this procedure with the overall Tiorizontal momen i equation (3.13). inte
grating and averaging one obtains:

a4 ., a " . . L ad<n>
UT” + M), I-F)I—J[I.,+ < ]—H pludl 4u,l ,)r]:+f_n pUL s =] - pg( cda > ) .
(4.28)

This represents the overall momentuin balance. To obtain the anvent momentwm balanee,
the equation for the wave momentum alowe mnst he subtracted oo (L2850 The wave
momentimm batance is derived by the wave action conservation eguativn {22271 and the
wavernnbeer equation {2.24), using the relation £ = Ak, which gives
RIS 0 3 . _ y oy o
B—t’ +\,‘T}(!({ "'(w:)t)“ _’t ’J (Lz')

v,

Sularacting {3.291 from (3.28) one obtains
. "
M+ = </ Dl ds e —pal- g > A=y - 4] (:3.30)
' r, H E N vty

\\'hl‘]!‘

P 4 O, P =Ty [" () 4 gpd 1] (3.31)
JoM '

ry

represents the mean force exerted by the wave on the mean How. Vhis s Che Tasic eguation
deseriling the effect of the surface waves on the mean flow.

As applications we consider a more simple, one dimensional sitnation. i.e. a sitnation
whicti is homogencous in the y-direction, tn whicl there s no mean flow in the alsence of
waves, In this case the gquantities like < 4 2 and {7 are of order 4 Retaining, anky the
lowest order terms, assmning the mean curvent, that is gencrated by the waves, 1o be depth

mdependent. i steady conditions the momentum equation (3.28) hecomnes

i} <y 3ok
Gen> 4 Ok (1.42)
ir 2an dr

When waves approach the shore Lhey reak and their height can e grather enristically, on

a dimenstonal arguiment ) assunted proportional to the water depthe o o ol Therefore the
Wave elnerpy s
L Vg qr
E= - pga (4331
which, by aobstitation e (3.82) gives
TR 3oL
CILA Tl {531
ihe 2 i



Uhis equation inplies that o rise of the tean sca level corsesponds to the wave breaking

near the shore. Ty practice the gradient of prossure asseciated with  shepe i the seasurface
st balanee the foss of wave mometibum.

When equation {3.32) is applicd seaward the point where waves begin breaking. e, Lo the
sit wation in which the wives experience the decreasing water deptd, bt they do not break,
a lecrement of the sea levelis predicted. This is a consequence of the docrease of the group
velocity as the wive approaches the shore. Anotber effect of the waveson the mean flow is the
peneration of a mean llow to cotpensats the mass that is transported by the waves towards
the shore, determining a complicate sitnation in which concentrated "rip-currents’ interfere
with the incotiing wares. Ina bidimensiopal situation in which the angle of incidence of
Uie incotiing waves is nol 907 also a longshore current is generated. According to (3.27),
the variable radiation siress. Lhal is associated with wave groups, prodices variation of the
niean sea leved, decreasing it upder the large waves and enhancing it between groups. These
phenomena, vers brielly mwentioned in this last paragrapl, are special cases ol the geueral
cquations (328 and (327). Their detailed preseutation can be found in the vriginal paper by
Longuett-Higgins aud Stewart (1964) or in the buok by Lellond and Mysak (1975). together

with most of the material presented in these lectures.

Chapter 4

ocean wave modelling

This chapter aims to bricfly introduce the itstraments that can be used to deseribe the
evolution of a wave field over an oceanic scale. This is a completnentary tupic with respect
1o the content of the previous chapters, in which the properties of the surlace wares and
their iuleraction with the mean fiow have been presented.

Surlace wave modelling does not provide a deterministic description of the wave tiled,
but 4 stalistic one, describing the evolution of the wave spectrun. The two possibilitie-
are to consider the energy spectrumn, or - equivalently - the surface variance spectium, w
1o consider the wave action spectrum. The surface variance specteun is delined from the
surface displacement 5(x. 1) as

. 2
S(k,w) = Jim glz,t)exp (ks — wt)dtdr|s (.1}

1 T/
oo ('szr)l*l'..zTi .[-T,r-z

whicl. for a stationary ergodic process. is the Fourier transform of the antocovarianee

P(ror) =< gl dp(d + baret +7) >, L,
I'ir,r)= fﬁ'(k.u;)(-xpi(l.-i' — wr dkdr (1.2

It follows then that )
<yv= /,\'{k,u:]dkd.u (1.3)

Because of the dispersion relation, the frequency can be expressed as Tnetion of the wavenum
ber awml therefore the spectrum is actually bidimensional: 5 = Sik). Siwe the envrgy of
a sinsuidal wave is proportional to the square of the amplitude the energy spedtrum i
actually proportional to the spectrum of the variance and the Lotal energy Lyis

Er= /_—lj-,uy."b'(“dl' (L1)

As alieady discussed in the previous sectious, in the presence of variable depth and carrent
the energy is wot conserved, and Uie convenient conservation equation is the wave action
conservation equation (2.27). But, duriug the development of the waves in the ocean, the
wave acliun is not conserved oo, because of interactions. There wre interactions with external
liehls hikbe the wind and the bottom producing respectively a gain and a Joss of energy for
the involved wave component. Wave breaking is another phenomenon producig the decay
of the wave energy. Morcover the nonlinear terms, which are present in the equations (2.6)
and {2.7) and that have been neglected in the [ollowing part of the preseatation. determine
an exchange of energy among wave components. The nonlincar interactions are cnergy

oy
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conservine. e they doonot modily the overatl energy content of the wive svstenn, bat they
deternune positive or negative transfer rates for cach involved component. The eqnation o

Lo solved for the wave action deasity

PNk
Ath) — 228 (1.5)
has thevefore the form
DAY+ VO, + VAR = G 4 G+ Gop + Gy, (1.6)

where the terins on the right hand side represent sources and sinks due, respectively, 1o the
witkel fuput, the vonhinear mteractions, the bottom friction and the wave breaking. Each
of them s actually a funetional of A(E) and of the external fields that are involved. The
wavenuniher equation (2.21)and the frequency equation (2.21) must be added to (4.6} in
order to complete the system. Attempts to model equation {1.6), (2.2} and {2.24) are
recent {Tolman 31990). Previously the energy transport equation,
SFU VIO, + OS] = 8w+ Sne 4 Sip + S (4.7}
1o which equation (1.G) reduces in absence of variable currents, was solved. The representa-
tion of the souree functions amd the methads to solve the balance equation depond on the
specilic model that is considered,
Although the energy transport equation (1.7) had been proposed already in PIST (Gelci
et al. ) the lack of proper knowledge of the source functions prevented for a long time its
salislactory solution. First generation models, developed in the 60%s and carly 70°s. mostly

I retained only the wind input source term in the form

S= A+ BEF(f,0,3.0), (1.8)

follenving 1he carly thearies of Phillips and Mites. The growth of each component was stopped
when a saturation devel defined by a universal equilibrinin distribution (Phillips 1958), was
reached, Fist generation models were forced to overestimate S, hoth with respect to the-
ories anck 1o observations m order o agree with the observed rate of growth of the low
frequencies, When open fichl experimments, mainly JONSWAP, stressed the importance of
the nonbinear interactions, it was realized that they contribute substantially to the growth of
the low freguencies and that Ltheir proper inclusion in the computation conld rednce the wind
iput in agreement with the observations. The inplied coupling among different {requencies
is the commun characteristic of second generation models, While o first generation models
the physies was incorrect, in second generation models the troubdes came inostly from the ou-
meries, In Tact. although the expression of Sy was known (Hasselimann 1961), unfortunately
its exact computation is even nowadays too time consumning in the operational framework;
therelore second generation wave models were forced to parametrize the spectral shape {(e.g.
JONSWAP spectrumy} or the source Funetion itsell. This approach was not possible for a
swell spectrin where the nonlinear coupling ts negligible, and the wave energy propagates

Pwithout relevant interactions. Consequenthy second generation models have difliculties in

describing the transition from windsea to swell.
The flaws of first and second generation wave models were analysed inan intercom-

Cparison stndy (SWANDP 19333, after which an imternational growp of soentists (the WAM
CGroupd decided 1o develop aothird generation moedel, where the energy transporl equation
Cwas explicitly rolved, To such parpose an ellicient approximation of the noenlincar transfer

St andl a specitication of the substantially unknown dissipation S were required. Here the
structure of the source funetions n the WAM model is briclly descriied.

e . . .o .
T'he exact expression for the nonlinear energy traunsfer is given by the Boltzmann integral

Sop= JwDER A kg - kg - Aday dany —ws - W) {1.9)
[(.‘114’1)[:1;1 + A) - ‘;'1(l| + AA](IL,J#_..J‘&;,,

where w denotes the circular frequency, & the wavenumber, P the interaction cocfficient,
and A the wave action. In the WAM mode] an oflicient way to evaluate the integral (4.10)
1s obtained substituting it by the discrete interaction approximation ( Masselmane and Has.
selmann 1985) which retains the structure of (he exact expiession (1100, but it linmits the
namuber of the configurations involved in the compntation:

Sa= Y0 AgeltA A ALY = ALACA AL (110

1=1.2

where the index 7 indicates smnmation over selected configurations,

The other reynired step was the specification of the dissipation source Tunction which
previonsly was not explicitly required in a wave model. An approach snitable for implemen
tations 11 a wave model was proposed by lasselmann (1971). Argning that the process,
although highly nonlinear locally, is weak in the mean, hie proposed a guasi-linear souree
function, proportional 1o the spectrum with a coetlicient depending s mean spectral parans
eters. Moreover from the small seale of the hreaking event Hasselnwn derived a quadratic
dependence on the frequency. The final expression in the WAM madel s

Say = i F {4.11)
A i -
5= =235 10 (— !
apry

where F s the total energy, g the constant of gravity, apay = 137 1077 and & = Fuw'g?
The coeflicient 4 was obtained by tuning the WAM odel to reproduce o Pierson- Moskowitz

spectrinn as a linal stage of the growth { Komen et all 1981 ).
For the input source function the formuta derived from imeasurements by Suyder el al.
(1981) has been adopted, scaling it with the friction velocity u. = /7p° ' { Komen et al.

1981 3: :

Sapo=  aF {1.12)
), .
d= wmar (0,025 (287 ot - 1]
P c
where 1, is the angle between wind divection aned wave propagation divection, e is the wave
phase speed, g, and gy are air aud water density respectively. I the wined speed s used as
input. then w, is derived using the drag coctlicient €9, ¢

wo= Ol (1.13}

where {7 is the wind speed at 10m level,
Fueally the bottom friction S has been taken fron the JONSMWAR <tudy
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The description of the WAM madel can be found in the paper by the WAMDL group
pLass ) and extunstive descriptions ol il anl second generation wave models can be found
e SWANE (1950, Without enteriang iute any further detail abont wave modelling the
cemaining aitn of this section is Lo show The results of o wave model Dplementation in
relation 1 the description ol a “set-up” event in fron of Venice, in The Addriatic Sea.

A WAM imodel iy Las been carried out, producing the description of the evolution of
the wave field over the Adriatic Sea, The spectra are computed in cach point of a twe-
ditnensional grids they are representative of the wave condition in the open sea and not
of the condition close Lo the shore, Starting from the hindeasted wave condition offshore,
the “set-up™ in Tront of one of the inlets of the Venice lagoon lias been evaluated with a
one dinnensional model of the “sel-up™. The set up wodel assuines equilibrium couditions
awd it computes the sea Jevel from the point where the wave spectrun has heen produced
by 1lie wave model antil the shore. This evaluation of the set-up his been added to sea
Jeved enhancenent thit was predicted by a storm surge model Lo obton the overall sea level
variation. Fig. a) shows the recorded and astronomical tide at Venice. Fig. b) shows the
pecorded storm sarge level (difference between the two graphbs in the previous figures) and
the prediction af the stor surge model. Vig, ¢) shows the wave height produced by the
WAM model, the evaluated and the recorded set-up at the lagoon inlet. Fig. d) shows the
recorded storm surge level and the correspomnding mode] result, obtained ailding Lo the storm
surge wodel prediction that is shown in L) the evaluated set-up that is shown in ).
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Fig. 4. a) Recorded and astronemical tide at Venice; b) recorded
storm surge level (difference of the two graphs in a) and model
grediction; c) wave height at the tower, evaluated and recorded
ser-up at the harbour entrance; d) recorced storm surgeé level (same
as b) and correspondine model result (adaition of prediction in b)
and recorded set-up in'cl,

6 Cavaleri et al.
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