I F INTLRS ~1T1IONAL ATOMIC ENFRGY AG:nCy
é‘ ESOTED NATE 8 EDUCATIONAL, SCIENTIHNC AND CULTURALDRC =50 LTION

D—L—“’—-"’ INTERNAT ONAL CENTRE FOR THEORETICAL PHY»ICS

LCT.P, PO, EOX 886, 34100 TRIESTE, ITALY, Captl: CENTRATOM TRILSTE
.

\:"-—‘-5’ U '\I] LD NATHONS INDUSTRIAL DEVELOFMENT ORGANIZ: ‘s'l IU !

e CLSTRL BOF TR et F DO SIER rE i ULV VIR U T S T CORRATDRD Box g TR & ] e

SMR/H48-10

Course on Oceanography af Semi-Enclosed Seas
15 April - 3 May 1991

L\']lR‘\ATIO\‘AL (l-\TRE 1OR SCIL\CE AND H]GH 'Il(,l{\(JI O(JY

T e ate |

"Notes On Geophysical Fluid Dynamics"

Allan R. ROBINSON
Harvard Usniversity
Division of Apriled Sciences
! Cambridge, MA

1 USA

Please note: These notes are intended for internal distribution only

Notes on Geophysical Fluid Dynamics

Allan R. Robinson
Gordon McKay Professor of Geophysical Fluid Dynamics

Department of Earth & Planetary Sciences
Division of Applied Sciences

April 15, 1991

For the Course on Oceanography of Semi-enclosed Seas
International Centre for Theoretical Physics
Trieste, Italy



INDEX 1. Conservation Equation of Geophysical Fluids h

The besis is chssical mechanics {Newton's law) and thermodynamic:
I

(the first law and the Equation of State) cast in a foru appropriate to the

Fundamentals Huid continuum. This requires also an explicit statement of the couservatior
1. Conservation Equations of mass {which is not required in particle mechanics).
2. The Boussinesqg Approximation
3. The Thinuess Approximation The CONSERVATION EQUATIONS:
4. The 3-plane Approximation )
5. Geustrophy ) - . 1. Conservation of Momentum based on Newton’s second law o
6. Hydrodynamic Iustability 6
7. Convection and Salt Finger

: 2 F =ma a=4v

8. Turhulence and Reynolds Stresses ' di \
9. Ekman Layers and Sverdvup Flow

3. v = {u eastward, v northward, w upward)

Quasigeostrophy 4. Conservation of Mass p, density 5
10. Potential Vorticity i ' _ .
11. Homogeneous Shallow Water Model 3. * Conservation of Energy (Heat Equation): Since Iuternal Encrgy
12. Quasigeostrophy ,
13. Eucrgetics e~ pe, T ¢

G. * Conservation of Salt: § usually expressed as wass of (dissolved) sal
Notes and References '

per mass of seawater. Salt density ~ pS.

7. Equation of State: p = p(T, S, p).

* Under many circumstances of interest, these equations can be cons
biued, using 7, to a single equation for the conservation of “Density” nd |
the same as 4 or Apparent Temperature or Buoyuncy, cspecially for large

‘

scale motions., +



Acceleration, etc.

We require for the fluid either an Bulerian (field) description
Pl 1) = pla,y, 2.4}

ar

Lagrangian deseription

r{rpi) v =q
ry

particle trajectory

“Mark™ the fluid particles at an initial moment and follow trajectories,

et

ro = (4o, Yo, 20) at t=0

Find a(ao, yo. 20,1}, ¥lao. yo. 20, 1), ete.
... Floats, tracers ...

Total derivative following the motion {Substantial Derivative}

4 orir = e i ge  dy dg gz gy
,“'?-(I(l()yf)J) =35 O +U.'n‘ 51 Tt 57 T AT
i I w 1
Dy
=, ey .+ ¥
Dt - o N
advective rate of local rate
change of change

Thus a component of the ecceleration is

Du o+, +ou, +
— = u; 4 un, + v, + wi,
Dt v

and vectorially the acceleration is:

Dv  Ov 1
E—aﬁ-(VXV)XV-{':é‘VV'V)J

rH V- vvll
Rotating reference system

The earth is rotating relative to an inertial reference system with ap-
proxiately coustant angular frequency 2. Newton’s law F = ma holds tn
au inertial frame of reference amd the tinie derivative of vectors in an iner-

tial reference systein (%): and a rotating reference system (fixed to earth)
(d d
— ] == + 2
dt/ dt /
d
v;=((-~) +ﬂx)r::vn+ﬂxr
dt / o

o= (@), r o) (), r o)

=an+ 20 xv+ O xOxr
R

(‘}rj )n are related hy

In particular

and

Coriolis  Centrifugal

Mass Conservation:

Mass in a vohune V = [, pde



Rate of change ol mass iu voluwe V

. g
il-:y- = i pdo = / bl dv
dt dt f, v

No internal sources of mass ouly surface finx pv

dAS
o / pv-nds {n outer normal)
dt av

=—f V- (pv)do
v

divergence theoren

1.t
0= / (% +V. (pv)) dv all volumes V
dp _
= a*‘v‘(l’v)—u

Internal Energy {Temperature) and Salt Conservation
If scalar ¢ is now internal energy ¢ or salt §

Rate of change of scalar 2 in volue V

dd d / ) / aup[
—_—— sdu= ——dv
di ot Sy ' ’ 3t

Iuternal sources ¢, surface Huxes
PV advective

-V, diffusive
we pet
iP
2 uf (v + AV -nds +f g dv
dt av v

=-/ V-(pv—I\'Vp)dn-l—/qdu
Jv Jv

4

all volumes v

9 .
a—f+V-(PV)=V-(I\Vp}+q
(ln water Jp/Ot ~0, V.v =1
\ ar .
for e: a+v-VT=D=q+\7-(I\-;-\7T)
é]
for §: a—f+V-VT=D3=V-(1\'5VS)
K # Ky )

Force Description:

Internal Fluid-Fluid Forces arc represented by the pressure aned by

stresses (viscosity).

hydrostatically —p is force per unit area

1L {;2
n.b. P_ f,; —,-%,- =
P U il t

Newtonian friction

du
w=wz) .. e Sy

force per unit area
applied to lower layer

T = ?.E .]'-l-—v kin ’l.' Tyt :
=M EY, p = CMALIC VISCOSHLY 7

External Forces commonly derivable from a potential function (carth

pravity, sun and planets pravity)
Fext = -V

5

. T . e

g

W
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Mbdel Equations

R

Momentum :
Mass :
Energy :
Salt :
State :
ermarks:

o = gyd:

Fext = —Ui'

Dv

L peopotential @ in the rotational reference systen associated with carth
avity (whose constant surfaces are called level surfaces) is dominated hy

svity with a small distortion due to centrifugal effects. With ¢ direction

p-b?+/)?§2xv+;){15+VP=F (1.1,2,3)
W T () =0 (1.4)
ot Py '
pT
T = 2 = 1.5
T4v.ST=— =D ) (1.5)
D> _p, (1.6)
D
p=plT, 5 ) (1.7)

o Scawater is almost incompressible. density changes are only ~ 1/10°.

- Buovaney effects ele. can nonetheless he of primary  importance

BUT other aspects of density varidion are trivial and can he totally

igrored.

G

(Mass) Equation (4) becomes

Viv=u,+v,+w.=10 {1.da)

¢ Equation of State (1.7)
Two versions:
(i} p= 2 =potl —o x 107%)
T, 8, p) = «(0°¢,35.00%,, p) + 4
= ags0,,t 0
in terms of a the specific volume and & the specific volume anonaly.

Real Seqwater complex nonlinear subtle behavior.

(i1} The Theoreticians “GFD” OQcean
p = poll — (T —To) + B(S — So))

(v = @ cte.
o1 o,

Boussinesq Approximation

p = po everywhere EXCEPT in term pg? (the buoyancy eceeleration)



2. The Boussinesq Approximation

The densily of scawater is aliivs L constant, with fractional vanations
O(1073). For the scales of motion of iuterest the kinematics effects of cow-
pressibility are uepgligibly important L oth qualitatively and quantitatively.
However, the sinall deasity differenc 's which ocour are of zero-order cou-
segiience in that they give rise to one of the largest and most hmportant
driving forces for ocean currents awl circulation, the buoyancy forces as-
soclated with differential gravitational acceleration. Boussinesq first recog-
nized this in the late 19th century and introduced an approximation whicl
lie stated in ad hoc physical terms as the limit of & — 0 but the product ay
rewsaining finite, where a is the theral expansion coefficient and deusity
ditferences were assuined to arise oniy from temperature differences with a
linear equation of state. We will deriv.: the Bousiunesq approximatiou from
the full Navier Stokes equations via a formal perturbation expansion iu the
franework of modern scale analysis. [lie key idea s that two independent
nendimensional paraineters involving Ap, the maximum density difference
i the fluid will occur, one chiaracterizing buoyancy accelerations and the

othier characterizing kinematic effects. For buoyancy driven flows, the for-

nier paramieter is set equal to unity while the latter is the small parameter

of the expansion, To illustrate the physics a two-dunensional (vertical and
one horizontal) nonrotating version of the mowentuin and mass conserva-
tion cquations (1.1 1.3) are sufficicut. We will not explicitly consider the
heat and salt equatious (1.7) and (1.8) which do not involve p direetly but

st ply assune constant kinematic diifusivitios.

Asswmne a linear equation of state of the form

p=po[l — a(T — Tg) + (S - So)] = po[l + €] (2.1
where
- _@ P % . Ap
- aT s - ar TP ‘ " o

and 1 is an order unity nondimensional density anomaly. Note that the b

oniission of pressure dependence in the equation of state is eguivalenmt to

assuing infinite sound speed and serves to filter sound waves from tlhe

tesulting approximate model equations. For simplicity we scale both cour-

dinates similarly with scale L, the time advectively with LU, the velocity

cowponents by Up and express the pressure as
PD = "POQ”-"*‘POPOPND(-I’aUaZ,f} . (-)2)

We will use the same symbols for dimensional (D) and nondimensional (NE))
versions of the same fields and drop the subscripts except for occasional

clarification.

Nondimensionally then the #, z momentum egnations and the continu-

Iy equation appear as

I
2 P :
(1+en) [uf(u, + wuy + wu.) — %Vzu] + —EP-PJ. =0 (2.3} 1
wd Vg g Iy
(1 4+ ey) —L—(w, + ww, + wiw, ) - —E"-V w] + yey + Vi =0 (2.3,
e+ efuny + wn )+ (1 + ), +w.) =0 {2.5¢)



Iy

= A

1¢

“

% The term gey in {(2.3h) is the basic driving force. Now multiply (2.3a.1)

i ].I’O_l andd choose

A
P0=Lgr=yL—-—p =ul (2.1)
o

il define the Revnolds munber Ly R = Lugr™". Then

(14 en)ey + vu, + wu; — R+ P =0 (2.04a)
{1+ ey + vy + 100, —,R”IVQW} +1n+ P, =0 {2.50)
e + el Hwn ]+ (1 +egfu, + ) =0 {2.5¢)

ow as is necessary and usual iu perturbation analysis we assumne that all
1ds are smooth functions of their argunents, ie., an order unity upper
e exists for the function and all derivatives so that the size of the
dividual terms in the equations is indicated by their coefficients. The

efficient of the Tmoyancy driving, term, g, in (2.50) is 1. The pertirbation

spansion for all ficlds is :

2
w=ywot e+t

wl to zeroth order in e (2.5a,b.¢) become, dropping the O-subscript on all

:Iw

dels.
w, + i, 4w, — ROINu 4 P=0 (2.6a}
wy 4wy +ww. — BTN w0 44 P = (2.6D)
u, + . =0 (2.6¢)

e [nick is driven by buoyaney but otherwise jucompressible,

3

Note that (2.4¢) to first order in € appears as

ot + uotor + Wolloz + g + Wy, =0

| ]
=1

so that density is not conserved following the motion as a consequence of
(2.3¢). This is sometimes misstated for the Boussinesq approximation. Den-
s1tv conservation statements i;o zero order must conie from a consideration
of the temperature (and salinity) equations. The extension to three dimeu-
stons and inclusion of rotation are straightforward. The simple statement
of the result is that it is correct to treat the density as constant everywhere

except in the gravitational force term.



3. The Thinness Approximation

The fact that the océans and the atmosphere are thin shells of fluid
whose vertical extent is much less thn t:ll(‘il‘ lhorizoutal extent leads to an
important approximmation in their dymaunics. Many large-scale, synoptic
seale and esoscale motions of interest are in approximate hydrostatic bal-
ance. In order to illustrate this fact, prior to a full treatment of the ocean
hasins geometry on the earth, we consider a simple two-dimensional {ver-
tical scale H, horizoutal scale L) Cartesian coordinate system that has an
extremne aspect ratio

H
f=/\<<1 . (3.1)

We retain ug for the horizontal velocivy scaling but introduce an indepen-
dent. scale wg for the component. We retain the expression (2.2) for the
pressure and the scaling Po = v2. Then the nondinensional form equations

(2.6) hecome

) 2 2 .
wy + uug + wol wu, — R --a——- + A'20— u+ P.=10 {3.1a)
du?

uoH d:2
woH wé _1 [ weH 0* _p 3%
( uzL ) (wy + i, )+ (é) ww, — R} ( u(;L ) [W + A 2(7:5} w
YT T (3.1D)
Pollg
wol \ _ .
uy + (UOH)JU:—O (3.1¢)

Cousider first the continuity equation (3.1c¢). The upper bound physi-

cally scensible sealing for the vertical velocity is that for which the vertical

1

divergence and the horizontal divergence are of the swme order of magni-

tidle, Thus we chioose

ugH

(3.2)

Wy =

If w0 were larger than this, the larger derivative in the thin direction ()
could not be balanced, there could only be a trivial thru-low. Note that
this choice of scaling ensurus. that the vertical and horizontal advections.
i.c., terms in the substantial derivatives, are of the sanie order of maguitud-.
This will be true for ell conservation equations. Equations (3.1a,l,¢) now

appuar as

82 32
g + uty, + wu, — B! (W + A'zﬁ) u+ P =0 (3.3a)
9% d g pH
A% Ly + ww, + RV a2 Y yord =)
¢+ uw, 4 ww, pye 52 wl + P 4 P.o={
. {3.31)
Uy +w. =0 (3.3¢)

For A2 << 1 the viscous and inertial terms in the vertical moment i
equation (3.3b) are much less important relative to the vertical pressure
gradient than are the corresponding terins relative to the pressure gradicent
in (3.3a}). The thin system is in approximate hydrostatic balauce

(gf_\pH

2
Poitg

) n+ P, =0 (3.-5)

In essentially all cases of interest the Reynolds number and is large R='\2
will be small. The almost hydrostatic approximate model equations ure

known in meteorology and oceanograply as the primitive equations. The

2

rE



A . T : o 4. ;>-plane Approximation
et lll‘l‘illl?.il”()ll to L]ll'(‘(' (lllllCllhl()l]H 18 t-l'l\’l'd]. If th(“ notions are l)l'l[ll'(ll'll_\' '

govancy driven then

uy = gdppg ' H Q = Qcosbt + Qsin bz

s

nppropriate. 1 = tangential to Earth surface (horizontal)

vertical

A special case of considerable interest are the homogeneons density Z

(1] = 0) ideal Huid (R — oc) in three dimensions: the shallow water equa- o )
) ( ) For latitudinal range L < Rg radius of Earth 8 — 6 small and

tions:
Wy b i, - wuy + I =0 (3.5a) ' sind =~ sin g + cos (8 — 8p)
[ =20sind = 2Qsin g + 2Q cosfoy/Rg
4w, +ve, +we + 0, =10 {3.5h) ’ y = Re(f — 65}
| O1n sphere |
P.=0 {3.5.¢) ds? = RLd6* + (Rg cos8)2 dA? -+ dr?
Rodf = dy

et oy Fios =0 (small @ - ) = Rg cos@d) = Ry cosfod = Re dz

Sinee 9*Pf0rd: = J*P[dydz = 0; the vertical structure of the flow is

dr = d:
constant horizoutal velocities with a vertical component that varies linearly
Vi .
w = wgla.y, t) + (2, gy, 1)z (3.0) C ; g ’GV\Q\ (c)()*ft‘tl\"'\"-“k'eg X “SMC"’O{ o
e PRI\ )
whenee (3.5a.b,d) hecome P S'M('Glff, Lﬁ - northw owvd o~ '({'v Sav &CG awd 2
wet e oy + =0 (3.7) vevrt c.qllk’) WPwa»rdQ. The reault ol e Cavbesian.
v+, o, + P, =10 3.7 . . ;
: o+ 0y (3.7h) ok varging  ver Heal Dotatlon, viz
o4 e,y =10 {3.7¢)
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Upward

z
‘ y o Northward
r Eastward

1
v+ uvy + vy, +wu; — fU+;Py =Fy

. 1
u,-l—u-ux+vuy+wuz-f'v+;p1.=.T,_ 4.1a
H2a

1
g4 = pe=0 ¢, 3a

P
U ¥V $UW5 =0 4. Ha

where

f=fo+ Dy
= 2{)sind
fo=2Csinéby ,
o
¥y

X

- Buwt §+a\r‘t'\v\j Po'mf \S

The Coriolis Parameter

20 cos g

B=—5

ONLY Remzining effect of earth’s

curvature
sp\mr Leal ec\uq‘\\‘ s

2

v Wlo i Fava,

g+ 84 Uy 4 (bl twW{ryl. - )
R4 ™ T rewe b R ) Yo
—Zﬂvgbﬁﬂ@' +l—D.‘-U(,(L)9‘ P’R%Q ?\
Vi 4 %ka +¥ Vo +%)(n¢), * lan® #2050 O {JRE;Z L/:a:h
Calt 1D . .
U_}t RC{O&U‘%\‘* 9_ + W - {V ’Z-ng/ ""p. 7?, ‘]3 L/.ZCI
o vnag<S
oy A (vews), +1 (Ffw) =0
Rt * T Rewb > il e H2d

.(Ca’( x‘tj_:')!' 3 - H a4,v “—)Uo w —= Ua,E{

Th  scaled variablec ave uSed o gef Up tho

ND @?ua'h'ang cenel ) QSSMWp‘h‘oV\&

AR H
gal (L’QYAI HM&){E «1 = zel ,Zdn%a-l

,Reclu(a f:ollm’h'dv\g H2 41
—ﬂfb_ amx\m’f\“m\&‘ aye (‘ﬁeow’f‘ﬁral - We Se?qm'ft

Alj Vi w{\fq\ Ve PD’DX'\MQT\.U\A_? .

3,
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5. Geostrophic Hydrostatic Motion of an ldeal Fluid

L

wg + uit, + vy, + wu, — 2QV

Cojpare typical term uu, to 20V, Ratio is

2
uu; ug Uy

2V T L Wmg 2L

Bosshy number 32 << 1.

2011

il

lorizontal extent of iotion. Then womentun equation

PAx o+ pyi+Vp=10.

V-ov=1(
Also,
DS DT . .
B = ] Bi = 0, implying
Dp
i 0.
1

ldeal. In (1.1 3.56) F = D = Dg = 0 i.c., no momentum dissipation,

ieat or salt sowrces. Coriolis Acceleration dominates relative accelerations:

Pressure gradient balances approximately gravity acceleration. A key

hoint s T <<1 where H is the vertical extent of motion awd L s the

Geostrophic Hydrostatic Motion:

i) The “RReal Ocean”
—fo+ap, =10

fut+ap, =0
g+ap, =10
Go from u, v, p dependent variables

z, ¥, z independent variables

to u, v, » dependent variables
x, ¥, p independent. variables
If: F(.I.‘,? yrpor Fle,y,ple,y, z))
dF = Fody + Fydy + F.d:
= (Fe)pdx + (Fy)pdy + Fudp
= (Felpde + (Fy)pdy + Fylpeda + pydy + podz]

= {(Fe)p + Epplda 4+ {(F), + pydy + Fop.dz .

Thus,
((')F) (BF) +(0F’)
o =\ 57 nm P
Ox vz dx , dp -y
ar
(a_y)m‘; = (FJ')]) + (Fp).rp.'f
aF
( 2: ) =ops
ir F =p,

Pe=0+1-p;.

2



Wi =:

=

(:-.r)y,: =0= =+ <plr
U=z, zppy
T=zp:.

We pot p, = — 22,
oy

“Real occan” equations

|lr

—fe+a

fu,+(1f(
+

)
1

II

1o
z,  a
Thus (recalling d® = g dz):
—fo+gz, =0 ~fo+€, =0
fu+ygz, =0 fu+@,=0
a+yz,=0 at+d,=0
(S —
where ¢, = (%)y,p etc. ...
aul
U ! ] .
vy, = =<y, = —— b
: f fo-
1
u, = +-},- by, .
3

Dynamic height:
Concept gz = ——’—lidp = d.

Units 1 dyn = 10 m2572
1 dyu decim = 107} dyn
1 dyn cm = 1072 dyn m

1 cm?S—% = 1074 m?8-2

I

1 dyn em = 10~ 1n28-2,

dD = Qsep dp ,
dyn - (%“—;; = f‘o—:') decibars.
Also
dD = &9 dz ,
(m S%) )
v = 1 av
{m/sec) (s) (Ely—i:,—l-ﬂ)

Rewewber: 1 ton = 108 gm
ldyne = 1 gm 255
1 bar = 108 dyne cm™?

1 decibar = 10°® dyne cin™2

=



The GFD ocean
p = poll = aT)

1
—fo+ —p, =0
fo
1
fu+ —p, =0
o
1
—oyT + —p. =0
. !’U
P.g., due to pp is subtracton

[‘:;] y and To =00 Also, v, + vy fw, = 0.
Case a
T=i3=0 w, = =10
flop +u)=0 = w.=10

{ Taylor Proudiman Theorem).

Case b
T=10 flag + 0,04 Br=10 )
= fr, Planetary Divergence
Sverdrup Dynamics
Case ¢ ng g
=10 n. = —="1T, . = — T,

“Theral Winds’

Case d Gerneal o, b hold with f = fo + 3y and

P gy JF ) )
= Lo “Thermochue Dynamies”

9.2 7 f7 e

[ly |

. out, henceforth also “f;” is called “p7

6. Hydrodynamic Instability

T'he noulinearities inherent in the advective terius of the substantial
derivative form of the acceleration ete. which characterize our description
of the contimnun nature of fluid physics result in profound effects includ-
ing spontanecous internal instabilities and tarbulence. Unlike more familiar
hranches of linear physics, solutions of our wodel conservation equations
are not necessarily unique, and a given exact solution may or way not he
ubserved in the laboratory or in nature nnder the reguisite parametric con-
ditions.  Again, for simplicity of exposition only, we will illustrate some
concepts for the two dimensional flow of a Boussinesq fluid. Two very sim-
ple hut very important exact solutions exist for a fluid contained between
two infinite paralle] plates separated by distance H in the vertical. The first
is for 2 homogeneous fluld driven by a coustant pressure gradient p,. = Gpg.

The How 1s a steady parabolic sheet symmetric about the midpoint.

e . HG
L—_—.EZ(Z-_H). w=0 and Us= 5

(6.1)

with nonlinearities identically equal to zevo. The second exanple is for
the two plates held at constant temperatnres, Ty at the lower plate aud

17+ AT at the upper plate. The exact solution here is hydrostatic witls
Z :
T:T;‘+ATT{-—, w=w=1{ (6.2)

which is an exact solution of (.1, .Ga,b,c} and

T — KV?*T +uT, + uT. =0, (6.3)



for all AT positive or negative. The parabolic How is sometimes observed in
the Taboratory and sometines 19t for large Up and H, or small #, the How
i turbulent with a flatenned protile. The hydrostatic state {6.2) is observed

for positive AT, but for negative values, convective motion eusues.

The nonlinear physical processes arve very difficult to deal with con-
ceptually and theoretically. Lack of uniqueness means that the physical
model is inadequate as constructed, and requires additional physics. The
tirst consideration is to address the question of when a given exact solution
of the model equations will or will not be realized or observed. The classical
approach is to test the stability of the solution to jnfinitesimal disturbances,
[ the cireumstances arve stable, a slight perturbation of the state of the sys-
tent, from the noise which is always present in nature, will decay away in
tie. If such a disturbance were to grow, due to its triggering the release
of energy via au nternal dynamical process, then the instability would in-
dicate that under these circumstances the solution would not be observed,
without necessarily indicating what thic new state of the. systewn would be
at the near finite amplitude equilibrinm state. The initial value problewm for
thie small disturbance is linearized in the perturbation amnplitude, thereby
reducing the mathematical difficulties, although most stability problems

remadn quite ditficult,

Let us now assume that there is, i general, a basic steady state whose
stability is to be investigated given by Uz, ), W, P, T which satisfies the
steady muodel equations. Now let the total or compuosite (¢) fields be written
as

w = Ule, ) tule, 2t) w'=Wahw, p'=Pip, T°=T+T. (6.4)

2

Now equations for the (lower case) fluctuation contribntions are ohtaiued by
substituting the composite fields into the momentuin, mass and heat con-
servation equations and subtracting the mean field conservation cquikions.

Vi

1
wy — vViu 4+ Uug +ulUy + wlU, + e +wu, + — P, =0, (6.75a)
fo

1

w, — V3w + Uw, + uWy + wW, +vw, + ww, + gy + -~ P, =0, (6.5b)
0

uy +w, =0, (6.0}

T, — KV T+ UT. +uT,+wT, +WT. +uT, +uwT. =0. (6.5¢)

So far there has been no approximation., The stability cquations are ob-
tained from (6.5a-d) by neglecting the guadratic sclf-interactions of the
fluctuations but retaining the fluctuation-mean field interactions which are

geuerally non-contact coefficient but linear in the fluctuation fields.

The basic state fields satisfy all forcing functions including any in-
homogeneous boundary conditions. Thus, the distuwbance problem is an
initial value problem with homogeneous boundary conditions. We may now

assttiue simply that all fields vary exponentially iu time i.e.
a(e,z,t) =, 2), w=e" ', p=etY, T=e'T. (66)
Iuserting these expressions into the lincarized form of (6.5) we obtain

ou— vV + Uu, + ol + wll, + Wu, + iPx =0, {6.7a)
o

3

e

-



g = o Uy + ulV, 4 oW o W gy + LP_, =0, (G.7h)
o

w. + . =0, {6.7:1)

% el = KV2T 4+ UT, +uV, +w¥. +WT,=0. (6.7¢)

The problew is in the nature of an cigenvalue problem with eigenvalue, o,
Lie growth rate. Assuine, as is often the case and in any event provides an
{uteresting exawple, that o is veal, Then, the only cigenvalue of mterest is
he value g = 0, which indicates the transition from ¢ < 0 (a stable flow
sitwation) to o > 0, an instab’lity, The trivial solutrion of zero fluctuatious
hways satisfies equations (6.7a- d). For a noutrivial solution to exist for o =
). there must be an eigenparameter identified from the physical parancters

o the Huld.

Consider the simplification of a homogeneous density fluid and a one

limensional hasic state U7{z) only. The stability equations are

»

1
wy — NP+ Cup+well, + =P =0, (G.8a)
I I)
‘ 2 14 1
w — vV + Uw, + -1, =0, (G.8b)
P
u, +w.=0. (G.8d)

Form the energy equation by nwltiplyving (6.8a) by u, (6.8b) by w and

wlding. Thus,

. . . B 1
K, — :/[uvzu +wNVi| 4+ UK, - wwll. + —1— (P, + —(wl). =0, (6.9)
o Po

. . 3.3 . .
with K = 1‘—'21'# Integrate over the closed volume of the fluid and impose

the homogencous condition of no flow through the boundaries. Then, the
3rd term (advection of K') and the last terms (rate of pressure work) will
vanish, and the 2nd frictional term can be integrated by parts using the
ilentity

V (¢V¢) = (V) (Vo) + ¢V . (6.10)

Then,

(WY =-® — {wwll.), (6.11)

where (-) = [-dVol, and @ = v{Vu- Vu+ Vw - Vi) is the positive definite

dissipation of fluctuation kinetic energy.

Equation (6.11) shows that a net growth of perturbation kinetic cn-
crgy, or instability, can occur only if the fluctnation components are so
correlated as to {uwl,) négative, and that the source of the cnergy of the
perturbations in this case can ouly be the shear of the mean flow. It can be
shown easily that a necessary condition for a shear flow to release enerpy
to infinitesiimal perturbations is the existence of a point of inflection in the

profile of U, Introducing a scale speed ug and leugthh L, {6.11) becomes

non-dimensionally and with g—! =7,
(R = —R™YVu - Vu+ Vur- Vo) — (wwll,), (6.12)

with R = uoLr—'. Thus, at ¢ = 0, the Reynolds number is the critical
cigenvalue for which the rate of release of encergy by the shear can overconwe

the frictional loss to dissipation of the wotion.

A



7. Convection and Salt Fingers

As an example of an hydrodynamic instability problem, we will consicder
the sinplest case of thennal convection between two parallel plates, starting
with the Huid at rest (6.2) with uniform temperature gradient (AT)}H ™1
The plates are assumed kinematically rigid (@ = 0), but incapable of sup-

porting tangential stress (V%‘z—‘ = 0). Then, (6.Ta d) with ¢ = 0 becowne

-\ + i1'3‘,. =0, {(7.1a) ,
Po
2 1
-vVw -agT + —F, =0, (7.1Db)
fo
g + w, = 0 y (71(')
-KV3T + 9}-{?- w=0. (7.1c)

Equation (7.1d) implies a streanfunction 4 such that
u=4-, w= =, . (7.5)

Iu terms of the streanfunction and upon eliminating the pressure between

{7.1a,b)

vV - agT, =0, {7.2a)
AT
KV3T 4+ —¢, =0, (7.21)
o
with boundary conditions
T=¢=v¢..=0 at :=0,H. (7.2d)
1

Problem {7.2) is solved by

., ams ., nw .
P = Asin —— sin — 2 (7.3)
H H
. axre | Nw
T = Bcos —— sin —= z
H H

where nis luteger and a is unspecified. Then, (7.2a.h) become

4

V%(n2+a2)2A+ag%B=0, (7.4a)
4
A
-K 4 (% +a*)B+ ?T— Za=o, (7.41)

whicl yields in terms of the Rayleigh nuinber

Ra = crguﬁfFH2 _ 4 (n®+ a?)®
Kv @2

For instability, AT nust be negative and large enough to overcome frictional

dissipation and the tendency of the perturbation to be diffused away. For
i = 1 the critical value of the Rayleigh number Ra(a?) is determined by

the minimuwn condition

O(Ra) 0=3 (1+a®)? (1+a%)? oL
fal T T a? - at ’ (7.5)
The result is
9w 4
a? = % ,  Ra= 2:” . (7.6)

These are two-dimensional rolls. Rectangles, trisugles and hexagous
are close packed plan forms in 3-D and hexagous are obscrved in laboratory

conditions.

—pt i T (7.4d)

e
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wl

it

mt

I3

a1l

Tl
lif

Z
S‘:SI,+AS‘E.

np = —ayT + 3¢5,

-yl + 395,
[ thns the last term of (T.4a) is modified to

am

I ylaBd — 3 .

Tusive version,

agAT  3gAS
Rappy = T T

|
—.[\"_qu.q +{AShe =10,
li
S=0 at Z=0.H,
t now
S=Cum%%5n%%,
o (7.7¢),
2
R )+ BE T 4
My e (rn* + e} + H i A=0,

ause of (7.71); the twisting term in (7.2a) now has two terms

| .

Double dittusive effects can cause convection to oeccur i the ocean
[er conditions of a stable density gradicut when warna, salty water overlies

ler, fresher waker, SUll under the Boussineq approximation, bnt with

(7.7a)

(7.8a)

(7.8h)

e et effect s shnply to replace the Rayleigh nmnber by the double

Now with positive AT and positive AS, Rapp can be negative. This pos-
sibility is favored by the fact that Ky < A for sea water by aluiost two
orders of magnitude. The diffusivities do not, of comrse, enter the basic
state density diference po{~aAT 4+ SAS). What happens is that the heat
is essentially diffused away, and only the density difference due to salt re-
tnains which is then unstable. In actuality thin coluinns (salt fingers) occur.
The base of the Mediterranean outflow into the Atlantic creates snch favor-

able conditions.
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UBTROPICAL AND SUBPOLAR GYRE MODEL EXAMINING THE EKMAN,
S!L_E)LRUP AND GEOSTROPHIC TRANSPORT IN A HOMOGENEOUS OCEAN

Gur mathematical model consists of the three fundamental (time-averaged) balance

equations for Jarge scale flow in the ocean:

o

—(VUl)z*‘fV"' Pz =0 (la)
—(WVy)aH JU+ P, =0 (1b)
UV +W. =0, {1c)

The Physical Picture of the situation we are attempting to study is

1. = applied surface windstress

S a_'mﬁg'_t&ﬁer e
IR
Gzﬁi}:"ngh-c. Q__:tb
A
4
X v B
Bottorn
Zmp =H-+h
and h/H << 1
Zp=H

R ).

Vo= rt/“)H 2/
v 2 +TI)
T2 v el T, 4

ASSUMPTIONS

One of the primary quantities of interests is the vertical transport at the boundary ol
the Flinan region in terms of the applied surface stress 7, and r, at the ocean surface.
The vertical transport is obtained by integrating 1) with respect to z within the Ekman

Layer and invoking the conditions
i}y z=ry=0 at z=2g
(i} & =0, %% == 0 within the Ekman Layer

(iii) The eddy stresses 7: = vU, and T3 =vV, and satisfy the conditions 7; =7, =0

at z=1zp
(lV) "Vl.up =0

A very important feature of this problem is that the latitudinal variation of the Coriolis
parameter is necessary due to the large horizontal extent of the general circulation in the
gyre regions. The variation in the Coriolis parameter can be adequately described by 2
linearly varying Coriolis parameter. This approximation combined with approximating the
spherical geometry by a planar geometry {centered at a particular mid latitude) constitutes
the so called S plane approximation for the general circulation in the ocean. Strictly
speaking, this is not a good approxima.ﬁon since (L/R)? ~0(1) and not a small quantity

but for our illustrative purposes the planar approximation is sufficient.

EKMAN SGLUTION

Integrating 1) in the Ekman Layer and invoking the assumptions (i)-(iii) gives:

—1e{z,¥) |===--:- - fVg=0=2Vp= ?_E—;-]-fz[:c,v) (2a)
1
_-ry[z,y) '|Z=n.,, +fUg=0=U= —ﬂy—}ry(z,y) (2!))
oUg 9dVg
Gt Wiep —WE =0
oz T oy TLRTE
=0



where we have defined
Teop

{Ug,VE) = [

g

(U, Vidz andWg= W |z - f(W)=S0 + Boly — wo)

Equation 2) can be simplified to oltain a statement conerning the vertical Ekman

velocily:

=E-(6xf/f) (3)

In other words, the vertical Ekman velocity is equal to the vertical component of the vector

curl of applied surface stress divided by the Coriolis parameter.

Application to a “double gyre”:

Ty
1y 20, 7; =108 (_f)

= Vg = —?%5 cos (%) | (2a)

=>U,=0 . (2b)

B X )
= +-'? sin (ELE) . % + i%,tficm (-’%)

2 [ ) ()

Characteristic Values are L =5 X 10? ¢cm, f =1071 cml“c fo = 1074 sec—! and

To = 1:'—.“—:;. Plugging in Values gives:

Tom _ 13 _ gx10mt=6x10"" =
fL ~ 10-4-5.108 5ec

0-13.5.108
ﬁTL— = }'T"_T— =16 % 10~} ~ .16 ~ .20 for practical purposes
'n‘ - .

The above expressions become

104 wy\ cm?
E= {31077 (y - w) 05\ T ) ec (mass flux modulo the density fa)
Ug =0

Wg=6x10""° [sin (I—L!!) -+ +2¢ cos (%)] cm/sec
Note:

Regions where Wg > 0 represent horizontal divergence and regions where WEg <0

represent horizental convergence, The Results are plotted below:
J
L

P

. W e
- %peufmﬂb“"} EPG;
it
[
shess L
“T. A
X
) - - ‘/\ji"' W I’\.ﬂﬁa.hlf&
W,
-

X
-y T )
Note: Wy has a slight phase shift due to the additional 2¢cos(ny/L) term and is

oblained from the dotted line by shifting the dotled curve downward a little bit.

i) GEOSTROPHIC SOLUTION

Up to this point we have discussed only the Ekman flow and not the interior
geostrophic flow. To determine the Ceostrophic flow we demand that the fundamental
balance of forces be between the pressure gradient and Coriolis force discarding the small

correction due to eddy stresses in the interior. Thus to first order in the Rossby number

we abtain
ar
—IVG =- oz (43')
arP . .
U, = - where g is shorthand for geostrophic (1b}



U, AV, W,

dz 6: 3z
ar
— =0 4d
32 (1d)

The Geostrophic relation {4a, b} imp'irs

(fU)+ (IV}—O

3U aV,s
= f + 22 gy, =0, (4e)
oz dz -
since for the problem at hand f is not a constant. Mass conservation 4c) implies that
6” SEA %‘{’l = w%“—:'- 50 (de) reduces to
aw
v, =f L 4f
16 7 f 32 ( )
Since —-— = 0 = P is independent of z and differentiating 4a) and 4b} with respect

to z

gives —aa-‘fl _Balj,_ = 0, hence ¥; and U, are independent of z as well {Taylor

Proudman Revisited again!). Differentiating 4f) with respect to z gives fWyzz=0=W,

is linear in 2! Neglecting the bottom friction layer and assaming W =0 at z=0 gives

W, = (z/H) R(z,y), where R is an arbitrary function. Matching the solution with the

Lkman solution at z = I = zp requires R{x,y} = Wg so that

W, = (z/H) Wg : (4e)
W, % |, (7Y gL myy | -
V, = f/ﬂ_HE = ﬂOLH [sm (T) + -;fcos (T)] (4h)

To determine U/, we use the continuity equation and solve for U, by quadrature:

au, _ v, W,

dz 61 dz
AL .
- sz}rfz (L) ,GTEI'?T%' S'“(%)
‘?%?E' ( ) ’If? (Ef{)
:—cos(ﬂy) [ﬁH{ /. ) + ;ofz]
4"%4“(,011( 228 +f2f1) °S(W_f)=°

5

Integrating in £ and imposing the condition that 7 =0 at z =L gives:

U, =(L-z ){M( /Ly +f§’f1}cos(”_;’)

Il SVERDRUP SOLUTION

The final aspect of this exercise is to relate the Ekman and geostrophic solutions
to the Sverdrup solutions. The Sverdrup Solution is commonly referred to as the “total
transport solution” since it is obtained by vertically integrating the fundamental balance
equations la)-1c) from 2z =0 to 2z = z0p. In this integration we cannot neglect the
horizontal pressure gradients since they are a primary field quantitity in the geostrophic
region: The Geostrophic region accounts for the major portion of the ocean in the vertical
and neglecting the pressure gradients in the vertical averaging procedure would lead to

serious errors.

-

Integrating Equations 1) in the vertical gives the Sverdrup Relations

—fV,+ P =0 (6a)
0+ fU,+ P, =0 (assuming 7y << 712} {6b)

au, v,

3 + 5 =0 since W =0 at both z =0 and z = zp {Gc)

Cross differentiating 6a} and 6b) to eliminate the vertically averaged Pressure yiclds:

a BV
+ =T + ﬂv + =0
dy
\.._._..\,_4
zero by 6c)
-1
= V=7 . 7
5 3y (7)

This result implies that the zeros of ‘%r, in the meridional coordinate correspond
Lo the gyre boundaries since the net vertically averaged northward transports are zero on

these meridians.



Substituling our expression for 7z into (7) gives:

V‘, = ”%% (Tg (Y] Eg) = +%—%sin (%) '

sothatfor y > 0=V, >0 and y<0=>V, <0

We anticipate thal the Sverdrup weridional mass transport is equivalent to the sum
of the geostrophic and Ekman meridional mass transports. To show this explicitly we note

that V, isindependent of z sothat V; = [ vy de = HV, therefore

L
V9+VE=H-V,+VE=HTM[' ay B ry] To (wy)

m SIHTL—'F;'!"COST —-TCOS

= %ﬂn(wyﬂ.) + -TfEW(wy/L] - Ifgcos(wy/L)

~
serol

10. Potential Vorticity

A gencralization of vorticity conservation: Sumplest example 15 2-d

howogencous fluid

u +uu, +vuy+ P =0
vtl+'uvr+vvy+Py=0

ty 4 vy =0
Cross-differentiation of momentum equations:
d
E(v, —uy) + wlv, — uy)s +v(ve — uy)y + (U _,i,_ vty —uy) =0 or

[4)

v, — uy = V3  vorticity
v Y

D -
Dio=0 ¢
where v = ¢, u =~ If % =0,uV(=J(, V) =0and V¥ = F('J')hi

is a frst integral.

There are mauny extensions, generalizations and special cases in GFD
- useful for rotating, stratified, thin spherical shell, etc. fluid situations

{not so obviously related to each other and not all in same units).

Generally are variants of ERTELS Theorem:  if

D I'.
F‘; +2x v+ VE4 % VP=10 (3-d Euler equations) and h
Dp
Dt +pV-v=0

AND “s" is a conserved scalar, 1.e. -‘g% =0,

Then
D [(20+V xv)

= | " \g] =
Dt [ p S] |

e



1.

Shallow Water Approximation: Homogeneous, Hydrostatic

Layer on Variable Depth /i-Plane
7= fo
Eqnations are

ty + ey + g Fwe, — (fo+ Syl + Pp=10

vt uv, +ovg+we. 4+ fud Py=10

o
ty + vy + e, =0

)
“shadlowness” is basis of almost hydrostatic ¢ ({2) + P, =1

rz=D+nxy)

— T

Fluid

(11.1)
(11.2)
(11.3)

(11.4)

BC. is P=0 at z=h{zx,y,t) =D+
and g 4 un, + oy, —w=0 at z=1h (11.5)
and uB. +vB, —w=0 at =20
Then
P=gnh+D-:], Pp=gn, ete,

w is a linear fit of z and u, = v, = 0. Then cross-differentinte and eliminate

a.. d,.._ 8, o
E(Z) - 5{;(1) = -(:_E(Lz —uy)+ ua;(q;x - u,)

0
+ Ua’;('vx —yy) + [(ve — uy) + flu, + vy + A =0
D
—(CH 1 (CF f=w.) = 0
; —_—
the so-called STRETCHING TERM

D 9 a o o
E:5+u5—[-+10_y C—"U.r_“y (—LTXV)

(11.6)



Then integrate {11.6) and iuvoke {11.5)
D . .
Hp(C4 f) = lolh) — w(B)[C+ S =0

i DB

Dt |{Dt Dt
or
Dy DI D sy
pod 2 o “Z(4Y=-p
Hpy—vpr =% = Df(H)
Cunservation of
PPotential Vorticity
whewn
y=C+f
——
(but “f&
is irrelevant
Explicitly
i d a v, —uy +By| _
[a+“aﬁ”aﬂ[u+o—a =0
where

ve — ty = relative vorticity
dy = planetary vorticity
i = sea surface distribution {(negligible)
D = mean depth

B = bottom topograply

y = planetary vorticity

i} There 1s o “quasigeostrophic version”

Introduce the approxiation
P, gy ‘ b,

Y %" “TTh

and evalnate the full nonlinear expression

VLI
H -

9,.P0 PO
ot f oy foor

A nonlincar proguostic equation for the geostrophic pressure
ii) Relative Vorticity is negligible

(Ff(iﬂ_j) is conserved following the motion
:'y
. (geostrophic contour flow)

i) Linearized Version. From (11.7)
H(( + pv)— fly—uB, —vB,] =0
Or with (11.8): AND ASSUMING B, =0
d o2 13 v, 1o _
T [V T oH P+isd4+ HBy P.=0
NOTE equivalency here of 3 and B, -

B, is positive if slope is upward to the North.

Let g+ %By s {3 ~ constant,

{11.8)

(11.9)

(11.10)

{11.11)

-
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12. Quasigeostrophic Approximation

We first sketch a derivation that emphasizes the physical basis of the
guasigeostrophic approximation for continuously stralified fluids in the -

plane with the hydrostatic, thinness and Boussinesq approximation imylied.

1wy + wy + Uul;, +wu, — (fo+By)v+P. =0 2.1
ve + uvy + vy + wu + (fo+ Bylu+ P, =0 (2.2)
gL+ =0 12.3)

Po

= [JU[]. - E‘V{T — To) + /5(5 — Si.)]

E‘)(:) + oz, ,z,t}

(12.3)) = g(1 - )]+ P(z) =0

arel. with

P=P+p Pe=p. Dy=p,
—go+p. =0 (12.3)
Uy + vy + 1w, =0 §2.1)
ap +uo, + g, +wS(z) +wo, =0 12.5)

a0
S(z)= (ﬂ—-)
9z adriabatic

(tadl 5) are the starting point version of the ideal fuid, F-plane, prinitive
13,

cgnitions.



Synoptic/Mesoscale Motions are alinost fo geostrophic, alinost hydro-

static over alimost, horizontally nondivergent; e,

—fory + e =0 : (12.1a)

Jouy + Py =0 {12.2a)
—yog+ ). =0 (12.3a)
g, + vy, =0 (12.4a)

Cross-differentiate and combine (12.1a, 12.2a) to get
fO(“y.r + Uyy) = () (12()(L)

which agree with (12.4a) but {geostrophic degeneracy) has no information

cantent. It is a frivial vorticity statemceut.

What dynamics governs the evolution and distribution of the

geostrophic pressure field, £,?

Answer: 1t is the (small) geostrophic momentum balance, and (small)

horizontal divergence. That gives a nontrivial vorticity equation.

Now consider perturbations from geostrophy:

= uy+uy+-- P=-Py+Pl+"'

w=04uw;+

2

first in the momentun equations

Uy + gy R (“’g F+u;+ - ')(“g.u + e+ - )+
+ Uyt + o+ 0y (g g )=

- folvy +-+) = By + iy =0 (12.1LY
where we have subtracted the geostrophic balance, (12.-lu).
(12.1b} is similar to (12.1a).
Urg + U1y +wy, =0 (12.ib)

The largest ageostrophic terms are the acceleration and advectious by the

geostrophic motion: Thus approximately by (12.1a) and {(*122b) become
gt + Uglige + Vgtigy — fovr — Bug + pr. =10 (12.1b)

Vgt + Ugltgs + Ugyy + four + Bug + pr, =0 (12.2b)

Forming 3‘%(12.2-}:2) - %(1‘2.1&) and invoking (12.4a) we obtain

(U;ry -___“yy)t +uy<'.|: = UgCy + fat’y + fO(“l.r + 'Uly) =0

¢
or
Dy
e ¢+ 8Y — farr: =0 {12.6h)
where
1
=g —ugy = (. + Fy,,)
Jo
and

Du_0,, 0., 0
Dt — ot Yox Uy(')y

3

Ty

o

L&l

-
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1

e

1)”

-D_.'U) Py

s ean also write (12.6h) in the form

10 consistent approach is to neglect the vertical advection of o,J by uy

Dy

Di —=(C+ f)— fowr: =0

v, bo find ey, in terms of the g{eostrophic)-Helds:

Consider the density equation

Tt oyt (ugtugd o )t oe k) R vggog, + e

+un S+ gloy. +- ) =0

BLT

8]

¢ vertical advection of the hasic stratification by w; acting on S{z) =

A%

)

CIETR . sl o
adiabatic GO glected

Thas. approxinately:

Ty + 0Ty + 0y '* wpS =0

" :————1 p—iu =—&r- la
TN TR Dt \ S

= ¢S5 N Brunt-Vaisala frequency]

4

(12.5h)

dlidive to the horizontal advection of o, Iy the geostrophic velocity

Thus

BTt |a:\S Y

This has the alternative expression via (12.3a)

‘ _ Dyild 1 _ Dyl a1
e =Ty [o—,—s‘P ] ="Dr [a_ vl ]
S0 (12.6h) becomes

e+t [ 2] =0

5l ()

whicl is the conservation of (Quasigeostrophic Potential Vorticity or ( Psceudo

IPotential Vorticity).

“ tH

Droppiug the subscript we state our final results:

Dy c‘) & or -
v = 2.oin
Dt [ HER [N2( o) T =0 (12.70)
whoere
Dy _[8 P8 P, a] -
Dt~ [ fody  fodu (1.1
ael
r, P, P, -
U= ——= U= — 0= — 12.7¢
fo fo 4 (114
D” 1 o=
w=-2n (mpz) (12.7d)

Thus we have a progunosis equation {12.7a) for the geostroplic pressure
¥

' which acts as a single scalar from which wll fields (12.7¢), (12.74) are

derivable.



Formalize this derivation as follows:

L horizontal lengih ~ eddy size  ~60 km
o vertical length ~ thermocline depth ~500 m
fo  time scale
g velocity ~ cddy velocity ~0.5 m/s

(.I', U) = L(J’Js y’)a <= Hl:, t= tot’

Density is split
p=poll ~O(z) —alx,y,3,1))

A(.r): horizoutal aud time average of (1 — pfpo)
o: Huctuation

amt scale:

- '“UfDLo_f
gH
N%:)= NNy = N§ (-—y@)
- odz f oy

Ng: characteristic Brunt-Vaisala frequency.
The total pressure is shnilarly split

P=ypo f (©(z) — 1)dz + popovo Ly’
0

with

.!'b = UOL‘J’"

(12.8a)

(12.9)

(12.8D)

(12.8¢)

(12.84)

{12.8¢)

is the streaufunction

L
(u,v,w) = vp (u', v, Ew') (12.51)
1 Jf
= 14+ —py' | 8= Lto— 12.8g
f fo(ffofoﬁy),a o5 (12.5¢)
Boundary conditions:
At surface ' =0 w«' =0 rigid line (12.10a)

At bottom 2/ = —Hg/H w' =d'VB' hnperieable (12.101)

(:=-Hy + B(€x.y). Taylor expansion)

(12.10b) determines the strength of topography appropriate to QG expau-

sioll.
The QG expansion is usually made in terns of a basic Rossby nmuuber,
Ro =Vo/(fol) <<1

mt we will adopt a somewhat more gencral approach which will reduce to
the usual approximation when the time scale is advective. Here the QG
expansion is made in terms of the ratio of the inertial time scale 1/fo 10 a
scaling time #g:

# =1f{tofo) . 12.11a)

This ratio should be small for problewns for which this model is formally

vitlid. The scaling time will be defined in terms of

o = toft, {2.11h)
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ratio of sealing time to the advective time scale L/Vp = ¢, and

3 =ty/t4
rafio of the sealing time to the planetary wave time scale

te=1/(%L)

(12.11¢)

(12.11)

When o is nnity the traditional expansion is regained. The strength of

dification is charactertzed by

. fEH?
=D

(12.11¢)

T8 {12.8), using (12.9) and (12.11}) into (12.1- 5) dropping primes to sct.

el + aluu, vy +wu )] = (L+edp)e + 4, = Fy
elen 4+ alur, + we ) + (1 + eIyl + ¢y, = Fz} )
a—y. =0,
e +oy+w. =10,

1
o+ ofur, +rvo, +wo)|+ - w=0Q
' 2

(12.1¢)
(12.2¢)
(12.3¢)
(12.4¢)

(12.5¢)

“Mlow variables are represented by a perturbation expansion ¢ = @ +

+oe

The zeroth-order equations are geostrophic

o = o,

8

(12.14))

( iz, lco)

—Ug = L"’-'OU
G = fi‘"():
Ugg + oy + wo, =1
—uwp =0
g

The first-order equations are
tior + a{tgln, + Votloy) — 1y — Sy = —4y,

gy + ”'(”0”0.::) + vglgy + uy + Byug = —thy
oy =1y

Uy + U1y + wy, = 0]

2

_ N
Tor + ofupTor + Voog,] + TZ 1= 0

(12}

\ 2. lC“

{ )

12.2
\2-2(4
(12-3¢49)
‘1-351
(12:d0y)
114¢,
12.5¢,

%
From the vertical mmomentum equation (12.%}. and the eguation for

#

conservation of density, (12.

<y . , . .
"'!'l'}), we obtain an equation relating the verti-

cal velocity to the change in the vertical gradient of the stream function,

(dropping now the order subscript),
D
r2 -b%('t;’;za) = —n

where as before

Dy a(4) Jda b
2u ) gk {dey = 2090 dadb
Dt = Tl (e b =



relerred to here as the thermal equation. Define the relative vorticity as
=10+ .‘l"slm and € = iy + ¥y, + I'f(o.): - §2.13)
'Cl 2c

i , 4oy
Cross-differentinting {12.1¢ry) and (12.2¢1y) and using (12.4¢ny) gives an

equation for the evolution of the relative vorticity:
D
€=+ e =0
or using (12.13)
D
e =10 . 2.14
iy £+ By 42.14)
Equation (12.14) may also be expressed as

D

5;‘1=0;

wlere g, the quasigeostroplic potential vorticity, equals the swm of the

relative, thermal and planetary vorticities:
¢=Vip+T%ay.). + (1 + PBy) . (12.15)

When computing model diaguostics {12.14) will be expressed as

&+ ad (0,6 + T3ow. ). + P2ad (v, (o)) + B¢ = 0
(1) (A} (C) (D) (B)
where
(T) is the local vate of change of relative vorticity

10

(A) is the advection of relative vorticity

(C) is the local rate of change of thermal vorticity
(D) is the advection of thermal vorticity

(B) is the advection of planetary vorticity.

Together equations (12.13) and (12.14), along with (12.10) appropri-
ate and lateral boundary conditions, formn a complete set of equations tur

determining the evolution of the stream function and vorticity.

In open ocean models the horizontal boundary conditions arce of the
CFvN {Charney For von Neumann) type. The stream function is specified
along all four boundaries and the vorticity is specified along inflow points.
The houndary conditions at the top and bottom (12.10) are used to defer-
mine w in {12.12). The integration of {12.5¢) given heat sources @ if any,
provide ¥, {12.3¢). Vertical velocities imposed by Elkiwan pumping in the

surface layer and bottom layer can be imposed replacing (12.10) with

At surface =0 w=-~wg=—curl (TWIND) (12.10a)
. rof
At bottom ' =-Ho/H w' =u'VB'+ E¢ (12.101)
11
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13.

Energy Analyses, Baroclinic & Barotropic Instabilities

Consider Equations QG (1)-(5)

write w=V+u, v=v, w=a
I ‘ '
- 1=0z)+y) +o
fo
av .
geostrophically f o = —gily -
‘ P A AV,
So \ =+7/ Iy + Voly)

Dropping the primes (awd in the “spirit of the QG approximation™)

g+ Vi, +oVy ~ fo+p, =0, {(13.1)
v+ Vg 4 futp, =0, (13.2)
o+ Vo, +re, +wS5=0. ) (13.3)
Also
wy + oy + =0, {13.4)
—qo +p. =1. (13.5)
Multiply (1) & (23 by aov & add.

P TE ANt a9 w40t
Jt 2 + dr 2

S——

+ mﬂ'u +up, +up, = 0.

= I\

Aud in the same vein, —gwo+wp, = 0. Adding we get the “pressure work”
(up) e + (vp)y, + (wp):. So, integrating over a closed domain
(K + (uwvV,) — (gwo) = 0. (13.6)

Multiply the houyancy equation (13.3) by o
ooy + Voo, +voldy + owS =0.

For simplicty, assume § = constant, multiply by g and divide then by S

J go? V@ ga? g
— e — — ¢ =y =0.
o1 25 T 9z 25 Y Uolvteow=0

N’
= “A” available (gravitational) Potential Energy
Now integrate over the closed domain
(A) + (%wﬁy) + {gow) = 0. (13.7)
Interpretation  {—uvV,) Barotropic Instability makes “A™
' {better, V).
(—42vod,) Baroclinic Instability makes “A™
(better, Ag).

{yow} Buoyancy works, converts between k' & KA.

NEB: Vy=¢,=0, 13.6 and 13.7.

, ) o a Lo
W)+ (4y=0.



“level” the distorted deusity surfaces. Most connuon is Mized Instabilitics { Open Donain Problems).

More generally “Mixed Instablility,” finite amnplitude version of the

PProcess, 2111(1

N=K,+kLp

A=A4A,+ Ag

(r§)

K » K
A [
{(pd) (pw’)
¥ Y
A SN
’ -
[} II]Q
\VP cy
K K {Negative Viscosity)
Baroclinic )
Instability
A > A
K— K
Barotropic
Instability y &
A e A’




