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1. INTRODUCTION. EXPERIMENTS ON CLUSTERS OFf SMALL OR
INTERMEDIATE SIZE'

Sodium vapour , or other alkahne elements, can be expanded
supersonically from a hot stainless steel oven with a fine exit nozzle,
resulting in well focussed cluster beams. The oven can be pressurized
with excess argon to improve the performance. In the tiny expansion
zone, terminating some tenths of a millimeter beyond the nozzle,
clustars form as a result of collisions between Na atoms. The clusters
will warm up because of the heat of condensation, and so there will be
a tendency for evaporation from the clusters also. As the expansion
proceeds, collisions between Na atoms cease to take place and now
the tendency for evaporation will dominate. Each cluster will loose
mass and cool as time goes on. In the evaporation chains, clusters
with low evaporation rates, i1.e. strong binding energy of the least
bound atom, will tend to pile up. After entering a vacuum zone and a
fught of about one millisecond duration, the clusters can be gently
ionized with ultraviolet light, and mass analyzed.

In 1984, W.D. Knight and his coworkers in Berkeley performed an
experniment of that kind?. They found an abundance distribution as
shown in Figure 1. There are prominent abundance maxima and/or
steps at N = 8, 20, 40, 58 and 92. The arguments given above indicate
that clusters composed of 8, 20, 40, 58 and 92 aloms are especially
stable. Since Na is a mongvalent atom the number of electrons in
these clusters is 8, 20, 40, 58 and 92 respectively. Similar
experiments have confirmed the same magic numbers in the mass
spectra of other alkaline elements (Li'. k*, Rb* and Css). Furthermore,
measuremants of the onization potentiaﬂ, IP, of Potassium clusters
as a function of size N show that the value of IP drops abruptly from N
to N+1 at precisely the values N = 8, (18), 20, 40, 58 and 32, that is,

the magic numbers, with the addition of N = 8 (see rig. 2). The
ionization potentiai, which is the energy necessary to extract the
least bound electron from the cluster, will be discussed in detail
elsewhere. Fig. 2 thus shows that the electrons are more tightly bound
in magic cluslers.

One can also infer cluster stabilities from dissociation energies
in fragmentation experiments(’. {n a typical photodissociation
axperiment, cluster ions like NaltJ are excited by laser light to a highly
excited state (Na))’

Nas +hv — (Nay)*. (M
The excited cluster can evaporate a neutral alom {or in general a
fragment Nap)

[Nar'q] - Naﬁp + Na, 2)
if enough excitation energy is localized in a single vibrationa! mode

so as to overcome the binding energy Dp of the fragment:
= N N - +
Dy~ E( Nay,, | + E[ Nap | E[ Nay |>o0. @
Starting from the excited cluster (Na;l)' in which the internal
excitation energy E° is randomly distributed among the s = 3N-6
internal vibrational modes, the classical expression for the

probability of localizing enough energy into a single mode so as to
overcome the fragment binding energy D, is (E-D,})/E |*' and

the rate of dissociation is given by

S [ . D E¢]5~1
k=1 -vgtl(E o) e (4)

In this equation g is the number of surface atoms and v is their

vibrational frequency. v is the reciprocal of the dissociation time.

This equation can be used together with experimental information on
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the fraction of dissociated clusters to obtain the binding energy Dp‘

Figure 3 shows the results obtained by Bréchignac et al® for the

dissociation energies of Na& and Kr;. An important point about this
Figure is that the dissociation energies plotted are those for the
lowest dissociation channel. This channel corresponds to the

evaporation of the fragment (Nap or Kp) with the smallest binding
egnergy, which as eq. (4) shows is the most probable dissociation

channel. For the clusters studied, Na’ and K, this is the monomer
{Na,K) in most cases, and only in a few cases with small N the least

bound fragment is the dimer (Na,, K,}). However, the most relevant

conclusion obtained from figure 3 is the occurrence of abrupt drops ot

the dissociation energy between Na*g and Na"O and between

Nah, and Na,, and similarly for the K case. Notice that the

photodissociation experiment is performed on ionized clusters, In

which the number of electrons is N, = N-1. Thus, high binding energies

occur for clusters with 8 and 20 electrons. The dissociation
experiments, tirst of all corrcborate the magic numbers obtained in
the abundance spectra and, second, unambiguously indicate that the
magic character is associated with the number of valence electrons in
the cluster, and not with the number of ions. The same conclusion is

evidently deduced from the ionizaticn potentiais or from the mass

spectra of clusters directly produced in an ionized state” .
Dissociation experiments have also been performed in which the
excitation is produced by collisions with rare-gas ions. These lead to

the same conclusions as photodissociation expernments.

2. SHELL MODEL
The magic numbers observed in alkali clusters are completely
different from those observed in inert gas clusters. On the other hand

we have seen at the end of Section 1 that the former ones are due to

electronic  effects. Knight and coworkers® noticed that their
experimental results can be explained by a shell-model. Figure 4
shows the energy level spectra obtained by solving Schrédinger's
equation for electrons confined in some simple three-dimensional
spherically symmetric potential wells: {a) a three-dimenstonal
isotropic harmaonic oscillator, (b) a three-dimensional square-well
(inside the well the potential has a particular constant value, and
outside it another constant value), {c) an intermediate potential
between them. The figure shows that confinement of the electrons to
an spherical region leads to shell structure. For a three-dimensional
harmonic osciltator model the energy levels are equally spaced;
degenerate levels are separated by wide gaps. A similar result is
found for a three-dimensional square-well potential, but with
unevenly spaced energy levels.

In generai energy levels for electrons bound in a spherically
symmetric potential are characterised by radiat and angular
momentum quantum numbers, k and | respectively. k - 1 is equal to
the number of nodes in the radial wave function. The successive
energy levels (and their degeneracies) for the square well potential
are 1s(2), 1p(6), 1d(10), 2s(2), 1t{14), 2p(6), 1g{18), 2d{i0), 1h(22),
3s¢2), 2f(14), 1i(26), 3p(6), 2g(18),... Fixed k and |, the magnetic
quantum number can take the values m =1 1I-1, .. -I, and the spin
quantum number two values s = + 1/2 and - 1/2 This gives the total
degeneracy 2{21+1) for an (k1) level Hence. as electrons fill the

shells, closings occur for total electron numbers, 2, 8, 18, 20, 34, 40,



58, B, 90, 92, 106, 132, 138, 156 and so on. In clusters of alkal
metals each atom contnbutes one valence electron, and shelt closures
occur for clusters containing the number of electrons in this series.
We know from atomic physics that closed-shell configurations are
stable, because of the energy gaps between electronic shells. The
same elfect cerainly operates in the case of the simple models of
Figure 4. In the list of shell-closing numbers of the sguare well
potential we already recognize the magic numbers of the alkaline
clusters, plus other shell-closing numbers not observed in the
experiments. Two reasons contribute to the discrepancy. First, only a
large gap to the next shell enhances the stability of a closed shell.
Second, the simple square well is only an approximate model. A

potential intermediate between the harmonic oscillator and the

square well, like the Woods-Saxon potential7 produces a level spectra
with improved features, for instance a much smaller gap between the
1f and 2p shelis.

Although the shell model is familiar from the atom and nucleus,
it is remarkable how well it works for clusters of the alkaline
metals. This is however, not too surprising. Solid state physicists are
familiar with the free and nearly-free electron models of simple
metals®. The essence of these models is lo realize that the effective
potential seen by the conduction electrons in metals like Na, K, efc. is
nearly constant through the volume of the metal. This is so because
{a) the ion cores occupy only a small fraction ot the atomic voluma,
and (b) the effective ionic potential is weak. Under these
circumstances a constant potential in the interior of the metal is a
good approximation. Electrons cannot sponlan;vusly escape from the
metal. in fact the energy needed to extract one electron through the

surface is called the work function, W,. This means thal the potential

rises abruptly at the surface of the metal. Now if the metal piece is
microscopic, one sees that the potential seen by the electrons in a

small alkali particle is like that given in the middle of Figure 4.

3. SPHERICAL JELLIUM MODEL'

The model potentials discussed in Section 2 already give a
qualitative explanation of the magic numbers observed in alkali metal
clusters. For more quantitative purposes ane needs a better, self-
consistent, potential. The spherical jellium mod3sl provides a simple
way to generate such a self-consistent potential. in this modei the
background of positive ions is smeared out over the volume of the
cluster, that is, we consider a positive charge censity distribution

) n, , r<h
n{r} =

)] , r>AR. (5)

Here R is the radius of the cluster, related to tha number of atoms N
by the equation

4 3
- aR = N,
3" (6)

where (@ is the volume per atom in the macroscopic metal. The

constant positive density n, is related to 2 and to the valence Z {(Z = 1

for alkaline elements) by
Z=ny (7)

This posilive background provides the external potential V,_ ,. Density

functional themy‘3 is thenused to calculate the electronic distribution
of interacting electrons in this external potential This is achieved by

solving the single-particle equations

AR TN o

which lead to the electron density
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niry = :

(9}
The effective potential in equation (8) represents the average effect
of the attraction from the ions and the repulsion from the other
electrons. It is given by

VeV 4V 4V, (10)
V,, is the classical electrostatic potential of the electronic cioud

Vi, =I ) d’r )
rerl

(11)

and V__ is the exchange and correlation part. Exchange takes care of

Pauli exclusion principle which forbids that two electrons
simultaneously occupy the same quantum state. The correlation piece
takes into account electronic correlations beyond the Pauli principle:
tha electrical repulsion between electrons has the effect that one
electron forbids the presence of other electrons in its close
neighbourhood. Exchange an correlation effects can be visualized as a
hole around an electron (indicating that other electrons are missing
from its close neighbourhood} which accompanies the electron as it
moves through the system (see Fig. 5)

Normally V_ (T) is calculated using the Local Density
approximation (LDA). This means that V__ at point T is assumed to

depend only on the local electron density at f, that is, n(f) (see
technical details in ref. 9).

The jellium model has been applied to alkaline metal clusters by
many authors (see ref.1). Figure 6 shows the selt-consistent electron
potent:al calculated for a spherical sodium cluster with twenty
atoms. The degenerate levels are filed up to electron number N= 20. In

a spherical cluster with 21 electrons the last electron will have to

fill one of the 1f levels above (dashed lLne). This etectron is less
bound, by at least 0.5 eV, compared to the 20 th electron, and should
be easier to remove by photo-ionization. This explains why the
1onization patential drops with the opening of a new shell (see Fig. 2).
The total energy of the cluster E(N) can also be calculated (see
technical details in ref.9). The total erergy per atom, E(NVYN, is
plotted in Fig. 7 for Sodium as a function of cluster size. It is a
smooth curve except for kinks at N = 8, 18, 20, 34, 40, 58, 92,
where the total energy changes abruptly. The bulk limit is expected to
be around -2.2 eV. To examine the abrupt changes in the total energy
we define a quantity

A (N) = E(N+1) + E(N-1) - 2E(N), {(12)
which is related to the second derivative of the energy with respect
to N, and represents the relative binding energy for a cluster with N
atoms compared 1o clusters with (N+1) and (N-1) atoms. If an energy
level is just filled by the electrons in a cluster of N atoms and the
next available level is separated from this filled level by a
perceivable energy gap, the total cluster energy will have to jump
from E{N) to E{N+1). This gives rise to a peak in A, (N} A peak in A (N)
then indicates that a cluster is relatively stable. The stability
suggests that this cluster shouid have a larger abundance in the mass
spectrum than a cluster with N+1 or N-1 atoms.

In Fig 8, the calculated AZ(N) for lithium, sodiwum, and potassium
is shown for N up to 95. The peaks in A, (N} appear at N = 8, 18, 20, 34,

40, 58 and 92, with the filled orbitals indicated in the tigire. This is
consistent with the experimental mass spectra discussed above.
To clese this Section we show in Figure 9 ionization potentials of

Li, Na and K clusters calculated in the spherical jellium mode!, These



predictions reproduce the drops associated wilh the closing of
electronic shells (see tigure 2). However, the jellium  predictions

averestimate the oscillatons of IP with size.

4. SHELL EFFECTS IN LARGE CLUSTERS
Shown in Fig. 10 are the charge density, effective potential and

energy-level structure tor some Sodium clusters with filled shells,

obtained by Ekardt'?. The gaps between energy levels become smaller
as the number of electrons increases. Eventually these energy levels
will evolve into the energy bands of the solid when N is sufficiently

large. When this occurs? or, in other words, when shell effects are not

discernible any more? Some estimations'' indicate shell effects to
remain important up to a size of a few thousand atoms. Recent
experiments shed some light into this problem.

The mass spectra of very large clusters yield anomaiies which
still can be explained as a consegquence of the filling ot high

electronic shells. Figure 11 shows the abundance distribution obtained

by Bj¢nrho|m‘2 for large Sodium clusters in an adiabatic expansion
using Krypton as carner gas. The spectra has a beil-shaped envelope
modulated by a sawtooth like fine structure. The envelope reflects the
global kinetics of cluster growth during the high-pressure phases of
the expansion, while the fine structure is interpreted as being due to
shell structure. The sawtooth sleps become gradually more rounded as
one proceeds towards higher masses. First of all, with an increasing
number of sheils, confined to an energy interval about equal lo the
Fermi energy (3.24 eV for Na), the gaps at the closed shells will
diminish. Secondly at finite temperatures elecirons can be excited
across the gaps, and this tends to smear out the shell structure. The

local features of the abundance spectra can be displayed more clearly

by taking the loganthmic derivative of the intensity values, d In

Iy/dN. This is shown in the bottom panel. The magic numberss

determined experimentally in this way are indicated in the figure. To
the series already known one must add N = 136, 196, 2604, 34414,
44042 and 558:8. The uncertainties are due to the reasons discussed
above.

Results for even larger sodium clusters have been obtained by

Martin and coworkers'>.Two mass spectra are shown in Fig. 12. Notice
the strong dependence of these spectra on the wavelength of the
ionizing hight. The first three step-like features in the top spectrum
correspond to sodium clusters containing 340, 440, and 560 atoms. By
successively increasing the wavelength of the ionizing light, the
cluster signal for low masses disappears and the step-iike features
at high masses sharpen. Although the first two steps in the mass
spectrum taken with 400 nm laser light are quite well defined,
features at higher masses are characterized by rather broad minima.
There features have been identified in the figure. Martin's experiments
reveal the sharp decrease of the ionization potantial (increase in the

number of counts} which occurs between Na, and Na,_, when Nay is a

closed-shells cluster. In the range below N = 600 Martin obtained
agreement with Bjprnholm. Furthermore, addit onal anomalies were
obsarved at N = 700+15, 84015, 1040120, 122C+20 and 1430120 (see
Table 1 for the complete list).

An interesting observation in figure 12 is that the magic numbers

appeat at approximately equal intervals when the mass spectra are

plotted on a N'/3 13

rather than N scale (N gives the linear dimensions
of the clusters). This behaviour can be explzined by the following
argument. When the number of electrons in the cluster increases, also

the number of electronic shalls increases, (see Figure 10). Theoretical
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calculations have shown that the energy levels group together in

bunches with empty gaps in between'*'*. One can already see this

effect in the simple examples of Figure 4. The 2d, 1h and 3s levels of
the square well polential bunch closely together and substantial gaps
"only" occur between this group and the 1g shell, 0 between this group
and the nex bunch of levels, formed by 2f 1i and 3p. But, do
theoretical calculations for large clusters produce the precise

bunching of energy levels required to explain the magic numbers

observed by Bjernholm'? and Martin'*?
Handling such a large number of electrons makes the calculation

rather difficult. Two theoretical calculations have been performed

which (a) lead 1o the bunching effect, that is, the N'/*

periodicity, and
{b) give magic numbers in rather good agreement with experiment.
These two calculations are now briefly dicussed. The results of
the first calculation, performed by Nishioka et al'*, are shown in Fig
i3. This figure gives the energy for electrons moving in a spherical
Woods-Saxon potential with parameters appropriate to  sodium
clusters. Of course, the volume of the binding field is proportional to
the number of constituents N in the clusters. Adding the single

particle energy eigenvalues of this potential leads to a sum E{N):

N
EN =Y ¢ =By (N) + Eg (N,
=1

shell

(13)

where the main trend is a smooth part. E__{N), which is the sum of a

negative volume term, proportional to N, and a (positive) surface

2/3

term, proportional 1o N Superimposed to this is an oscillating

term, kE (N)y. This E_ [N} is the energy actually plotted in Figure 13.

shell
The downward cusps represent shell closings, occurring at magic

numbers.

The results of the second calculation, performed by Martin et

12
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are included in Table 1 under the heading "jellium”, and also in
Figure 14. However, to obtain the required sequence of magic numbers
(reflected here in the drops of the ionization potential) the jellium
background had to be dsformed a little, by making the clustars more
dense in its inner part. This is a'so indicated in Fig.14, and the
wistification for this model will be provided later on in these
lectures.

We can understand qualitatively why shell structure should occur

73 scale. Notice that an

at approximately equal intervals on an N
expansion of N in terms of the shell index K will always have a leading
term propoertional to K®. One power of K arises hecause we must sum
aver all shells up to K in order to obtain the total number of particles.
One power of K arises because the number of subshells in a shetl
increases approximately linearly with shell index. Finally, the third
power of K arises because the number of particles in the largest
subshell also increases with the shell index. then

x4
N - K (14)

where N is the total number of particles needed to fill all shells up

to and including K.

The bunching of subshells is also observed in other problems. For
instance, in the hydrogen atom subshells for which k+| have the same
value are degenerate. Subshells of the sphericai harmonic oscillator
for which 2k+| have ihe same value are also degenerate. For this
reason it is said that these systems have quantum numbers A+l and
2k+| that determine the energy. The results in Table 1 indicate that
3k+| is an approximate quantum number for alkali metal clusters. The
total number of particles needed to fill all shells k up to and including

K = 3k + | is not difficult te evaluate, although the resull is rather

13



awkard to write as a generat formula. The leading term is

2 .3
N, = §K + o (15)

that s, cubic in K as expected. Table 1 shows that the shells in
sodium clusters do not obey exactly the rule K = 3k+l but that this is
however, a good approximation. These qualitative arguments give

support to the more quantitative resuits of Figures 13 and 14.

5. THE SPHEROIDAL MODEL

Apparently the detailed configuration of the atomic arrangement
in simple metal clusters does not seem to play an important rele in
the sludy of their physical properties We have seen that the spherical
assumption 1s very successful in correlationg the prominent features
of the mass spectra. However, there i1s evidence of many small
features which the spherical assumption is unable to explain.
Whenever a top-shell is not completely filled (N=+ 2, 8, 20, 40, 58, 92},
the electronic density becomes non-spherical, which in turn leads to
an ellipsoidat distortion of the ionic background. This Jahn-Teller
type distortion, similar to those obseved for molecules and nuclel,

leads to a spliting of all electronic spherical shells into spheroidal

sub-shells'®

Ellipsoidal clusters are prevalent for open-shell
configurations.
Assuming major axes a and b for an eilipse, a distortion

parameler n can be defined

N = 2(a - b
a+b (16)
Clemenger” has studied the efiect of the ellipsoidal deformations for

alkali clusters with N less than 100, using a modified three
dimeansional harmonic oscillator model. The model considers different

oscillation frequencies along the z axis (taken as axis of symmetry)

14

and perpendicular to the z axis. The model Hamiltonian used by
Ciemenger also contains an anharmonic term. Its purpose i1s to flatten
the botton of the potential well and to make it to resemble a rounded
square-weH potential similar to those shown in Figs 4 (center) or 10.

The deformation parameter n describes how prolate or oblate the
cluster is. This distortion parameter is determined by minimizing the
total energy calculated by summing the electronic eigenvalues of
occupied states. For alkali clusters with N less than 100, values up to
n = 0.5 are estimated for open shell clusters. This modal appears to be
adequate to explain many of the features of these systems. The main
first-order effects of the ellipsoidal model are energy shifts that are
proportional to n. These lead to fine structure in the mass spectrum.

The stability function A,(N) obtained in this model has, in addition to

the peaks that appear in Fig. 8, many smaller subshell-filling peaks.
These give rise to fine structure features at N = 10, 14, 18, 26, 30,
34, 36, 38, 44, 46, 50, 54, etc. The results are plotted in Figure 15,

where they are compared with experimental abundances.

Thermodynamic arguments establish the relation':

2
T )
et I KT (17)

where |, are the detected intensities and T is the nozzle temperature.
Consequently, instead of plotting just the intensities I, {as in fig.1}

we have plotted the left hand side of eq. (17). All the fine-structure
peaks predicted by 4,(N} are abserved experimenially (except N = 18},

and socme additional ones (12, 17, 23, 43). Some examples of the
agreement in Fig. 15 follow: The fourforld patterns in the 1f and 1g
shells appear correctly, and the twofold patterns in the 2p shail
correspond to the filling of a prolate subshell at 36 and an oblate

15



shell at 38.

The spherical jellium model described in Section 3 has been

recently extended by Ekardt and Penzar'®'®

to account for spheriodal
deformations. In this model the ionic background is represented by a

distribution of positive charge with constant density and a distoried,

spheroidal, shape. The advantage with respect to Clemenger's model'’
is that the spharoidal jellium model is parameter-free and that the
calculation of the electronic wave functions is performed sell-

consistently. Results for A,, ionization potentials and dissociation

energies of Na clusters as a function of N reproduce well the
experimental frends. As an example Fig. 16 shows the unimolecular

decay of Naj — Na . + Na.

6. FORMATION OF VERY LARGE CLUSTERS. TRANSITON
TO THE BULK?

The recent experiments portormed by Martin, Bergman, Géhlich
and Lange's, just described in Section 4 above, give additional
interesting information.

We have seen that when the mass spectra of large Na, clusters

are plotted versus N”3

, the magic numbers appear at approximately
equal intervals. However, Fig. 12 already shows thal the period of
appearance of these feaiures changes abruptly in the size region
1400-2000 atoms. A new perodicity then appears which can be
observed in the size region 1500 < N < 22.000 (see Figures 12 and 17).
According to Martin this new sequence reflects the filling of shells of
datoms. For small clusters there is no problem in imagining that the
cluster shape changes each time an electron is added, that is, the

shape accomodates to the electran configuration and wviceversa. This

16

is the essential message trom the spheroidal model. However, as the
size increases, changes in global cluster shape become more and more
difficult. A new growth pattern must emerge. The clusters most
probably grow by adding shells of atoms to a rigid core.

The number of atoms contained in a growth shell is dependent on
the preferred coordination and local symmetry of the atoms and on the
overall symmetry of the shel. If we assume that the sodium atoms
are close-packed, or nearly so, and that the outer form is that of a

cuboctahedron or an icosahedron, then the total number of atoms N, m

a cluster containing K shells of atoms is2°

N, =2 (10K - 15K + 11 K - 3)

o3 (18)
These numbers are in very good agreement with the set of minima
observed in the mass spectra of large sodium clusters (Fig. 17).

On the other hand it is believed that structures in the mass
specira obtained by Martin reflect size dependent variations in the
ionization energy of the clusters. The reason for this is that these
struciures are dependent on the wavelength of the ionizing laser light.
How can the atomic shell structure be related with the ionization
energies? A very simple argument is the following. Clusters with
closed atomic shells have high symmetry and therefore highly
degenerate electronic states at the Fermi energy. If the symmetry is
lowered by adding a partial shell of atoms, the degeneracy is lifted,
splitting the states at the Fermi energy into higher and lower energy
states. Therefore, clusters with closed shells of atoms have higher

ionization energies than clusters with partial shells of atoms.

Why might one expect a transition from electronic shetl structure
to shells of atoms? For very small clusters the atoms are highly

mobile. There is no difficulty tor the atoms to arrange themselves

17



mto a sphere-like conformatien if this is demanded by the closing of
an electronic shell. That is, small clusters behave like dropiets. Each
time an atom is added, it is absorbed into the dropiet. At a size
corresponding 1o about 1500 atoms under the experimental conditions
of Martin's experiments, the cluster solidifies. Thereafter, each newly
added atom condenses onto the surface and remains there. Further
growth takes place by the accumulation of shells of atoms. The magic
nuimbers observed in Martin's experiments indicate that these shells
could be either cuboctahedra or icosahedra. Notice finally that bulk

sodium is body centred cubic but an hexagonal-close- packed phase

has been prepared at very low temperature 21
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CAPTIONS OF FIGURES
Figure 1. Mass spectrum of sodium clusters showing shell structure.

Figure 2. Experimental K cluster ionization potentials. The bulk work

function is 2.4 eV.

Figure 3. Dissociation energies of the lowest dissociation channel of

Kf; and Na,:i (obtained from photodissociation experiments).

Figured. FEnergy level spectra tor three spherically symmetric
potential wells: a three dimensional isotropic harmonic oscillator
(Ieft), a square-well potential {right) and a potential intermediate
between these two (center). The energy labels (with degeneracies in

parentheses) and the total number of states are given.

Figure 5. Due to the Pauli principle and to efectrostatic repulsion,
one electron creates a hole around it, that is, a region where other
electrons have difticulties to penetrate. Here we show the pair
distribution function in a homeogenecus electron gas characterised by

r, = 2.r_is related to the density n of the homogeneous electron gas

by (4/3) m t2=n""

Figure 6. Self-consistent electron potential, calculated for a
spherical cluster with twenty atoms. The single electron tevels are
also shown. Filied circles indicate electrons occupying the lowest
leveis. The open circle shows where the 21st electron would have to

go. The jellium model was used in this calculation



Figure 7. Calculaled tolal enurgy per atom in the sphencal jellum

mode! for sodium as a function of cluster size.

Figure 8. Relative stability function, A,(N}, versus N for lithium,

sodium and potassium. The labels correspond to filled shell orbitals.

Figure 9. lonwation potentials of Li. Na and K clusters calculated
using the spherical jelium madel. The values for a semi-infinite
jellium {planar surface} are 3.37, 3.06 and 2.74 eV for Li, Na and K

respectively.

Figure 10. Electron charge density, effective potential, and

eigenvalues for two closed-shells sodium clusters. Calculations were

performed by Ekardt'® within the jeilium model.

Figure 11. Top panels: abundance distributions for sodium clusters
produced by adiabatic expansion and measured by time -of- flight
mass spectrometry. Botton panels: logarithmic derivative of resuits in

top panels.

Figure 12. Mass spectra of Na, clusters photoionized with 400 and

410 nm light. The y axis denotes the total number of counts

accumulated in a 40 psec time channel after about 10> laser shots.

Two sequences of structures are observed at equally spaced intervals

/3

on the N scale.

Figure 13. The periadically varying contribution from  valence
electrons 1o the binding energy of a spherical sedium cluster. Magic

numbers are indicated.

22

Figure 14. lonization potentiai calcuiations using an inhomogeneous

jelhum  model.

Figure 15. (a} Measured neighboring cluster ¢bundances, compared

with (b} total energies from the spheroidal modei’.

Figure 16. Comparison between theory andt experiment for the

binding energy D (in eV} for the unimolecular decay of
Nay — Nal ~+Na. Al major shell closings are clearly seen.
Experimental resuits are from Bréchignac et al'?. Theoretical results

are obtained by the spheroidal jellium model of Ekardt and Penzar'®.

Figure 17. Averaged mass spectra of Na, clusters photoionised with

415 and 423 nm light. Well defined minima occur at values of N
corresponding to the total number of atoms in close packed

cuboctahedra and nearly-close-packed icosahedra (listed at top)'s.
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FIG.13. The periodically varying contribution from valence

electrons to the binding energy of a spherical sodium cluster.
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