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The Dislocation Loop in an Anisotropic Medium and Its
Interaction with an Interstitial Atomn
By
N. Mussxerl), E, J. Savixo?), 1. RO Winns?), and R, BriLovan

Several exphieit exprossions for the distortion ficld of wn elliplienl didovation leop in
a general anisotropic medium are presented. Thess are aned o evalunte the interaction
energy between an interstitial dislocation loop in copper and a nearby inteestitiol atom.
The interstitial atom ik represented by cither a simple spherienl inclusion or by realistic
Kanzaki forces for its dumb-bell configuration. The effects of both the mieroncopic unisot ropy
of the noint defect and of the elastic anisutrapy of the body on the form and magnitude of
the interaction energy is thus exposed.

Einige explizite Ausdricke fiur dis Verzerrungsfeld ciuer elliptischen Versetzungeschleife
in einem ablgememen anisotropen Mediton weeden mitgeteilt, Diese werden benntat, um
die Wechselwirkungsenervie zwischen cines Zwischengitterversetzungsachleife in Kupfor
unel einem benachbarten Zwischengitteratom zu herechnen, Tas Zwischeugitteraton wird
entweder durch einen cinfachen kugcelfarmicon FansehluB oder doreh pealistiselie Kanzaki-
hrafie fir seine Hantelkonfyration dargestellt, Sowohl der KinfluB der mikroskopischen
Anisotropie des Punktdefekts als anch der elasteschen Anisotropie des Vodumens anf die
Form wnd GroBe der Weehselbwarkoangsencre wird ~o darvgestells.

I, Introduetion

When self-interstitial atoms are ereated by dinplacement eventsin an ireadiat.
cd material they frequently cluster to Torm planar nggrogntes or interstitial dise
loeation loop<. The subsequent imteraction between sueh loope and the remaining
or newly ereated point defeets pluys a crneinl role in the development of redia-
tion dumage. Thus, for example, any neutral sinks (sucel ax smabl gas bubbles)
with grow into discernable veaids if the interstitial loops have a preferential
attraction for interstitials compared with vacancies and the presence of sieh
a preferential attraction forms the hasic hypothesis of the present theory of auch
void growth (sec.for example [1]). FPhe spatind form amd mngnitude of 1his
interaction are thas important ancd are edenlated in the present paper, o See-
tion 2 cxpressions for the displacement and disfortion fields uround an ¢lliptical
dislocation loop in an arbitrary anisotropic hady are deseribed and diseussed
primarily aceording to their relative case of nnmerieat evaduation. The Toeal
ansl non-locad foree models for the splitedwn b bellimtersttinlare given in Section 4
together with specific Kanzaki forees [2] for copper. Finally in Section § the
interaction energy between a civcular interstitial loop and a self interstitial is

1) Attached from the University of Surrey. Guildford.

) On leave from Comision Nacional de Energia Atomica, Departamento de Metalurgin,
Argentina: with a Fellowship from Conscjo Nacional de Fnvestigaciones Ceatifiens v
Teenicas, Argentina.

3) 8chool of Mathematios, University of Bath.



140 NoMesaner, 1 Savesosd 1 Winne, and RO Braeran

caleulated for eopper. Copper wis chosen both to demonstrute the offects of
fairly high anizotropy anid beeause the point defeet forees for the dumb-bell have
been previously obtained 131 A fenture of the ealeulation ik thint the orientation
of the axix of the interstitinl is not necessarily constrained 1o particuinr - 100]
direction but is allowed to change its orientation to minimise 1he total energy
of the loop-point defeet system. The vesidis confirm the presenee of & significant
attractive interaction between the interstitiad loop und the interstitinl atom and
thus support the void growth hypot hesis and imply a preferential drift flow of
the interstitials to sueh loops. Such fluws can be deduced as the orthogonal
trajectories to the various iso-interaction encrgy contours presented.

2. The Elustic Field of u Dislocation Loop

The displacement field u(x) produced by an arbitrary dislocation loop of
Burgers vector b in an anisotrapic medium is given by the well known Yolterra
result {4]:

ﬂ'(c'r) ! b)'( ',,'..n("u.a("r' - J') d‘\"t("") s (l)

where § ix a surface bounded by the distocation line and the subscripts refer
to the Cartesian components of the various quantitios; Cig. are the olastic
moduli, G, (&' — &) are the components of the elastic Green's function and the
comma notation means partial ditfcrentintion. Differentiation of (1) yields the
distortion field () = u; ;{(xr) and by a simple application of Sluke’s theorem,
Mura [5] has shown that this field has the form

Bil@) = = P eabgCpnnir ol — &) day ()
oM

where the line integral is taken over the dislocation loop, coincident with &8
the boundary of the surfeer S.ir' i~ a print on the loop and g is the Cartesian
permutation tensor.

By Fouricr transformation it can he shown that the Green's funetion has the
explicit integral form

Gr‘r(m) = s:r'j./fdkl |”\'3dk-_] J”"“t') ¢ e (3)
In (3}
N (k)
Midle) -= DKy 4)
where -
Nik) = (L710k))ir DUKY D(ky - {LAK)], {5)
and
LK) = Cimpalemk, . (6}

On substituting (3} into either (1) or (2), the problem of evaluating the clastic
field of an arbitrary dislocation Joop is thus reduced to that of multiple quadra-
ture. By transforming to spherical coordinates in k-space and integrating over
the radial variable and then projecting from the unit sphere on to an appropriate
cylindrical surface, Willis [6] has shown that the distortion ficld (2) can be writ-
ten in the mor¢ explicit form

1 S0 RYN(RY) s
Pole) =y et Cors 2 I 'u'gs o o (kY ey oipt ()
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whore # ik the loop normal, Lois the auet ciccke in Kewpace perpendicalur to we nd
kY- L --nZy, (%)
£ being restricted to he on Loand 25 (V102,31 vre the three roots of the
sextic eguation
O nZzy o {9}
which have pogitive imaginary pari= 1 the point @ lies in the plane of the
loop then the summation can be brought inside the integral and the expression
somewhat simplified.
When the disloeation loop i elliptieal (or cirenlar) the integration over 8
can b performed by a procedure analogous to Willis 6], and the displacement
field has the form

fab kY .r

u¥) = — 5 Cigimbme ¢ ds f..k)} (ke - 1) 4 b3k - M) -
b
X etk - D bR — (R e g T (0)

where

S REN (RS
fra;iff"') = 2,‘ ”‘ ,( ) 5 (llJ
N v

}
SN
y E‘A',,“ )

b

a ard b are the major and minor axis of the elbipee {the minor axis b should not
be confused with the Burger's veetor B0 fir o n) v 8 constant for .m0 0
with a discomtinuity ataer - n - 0, The corresponding distortion field was shown
by Willis [6] to be

tub l
‘ T ope =oe= (,‘ 7 A + . 2
fit@) = 1 2.-z|"”‘ """"‘gs""’"“(k) leith - 1 | Bk g (eN )R (2

In these expressions (I, . a) is an orthogonal triad of unit vectors with # normal
10 the loop and I and me are in the ptane of the loop aleng the major and minor
axes, respectively. The numerical cvaluation of the inteprals in (10} and (12)
requires the accurate solution of the sextic () at the set of points on L defined
by the overall accuracy of the quadrature. Do addition eertain unavoidable
smgularitms arising from both degeneracy of the sextie in cortain k dire fimm
and from the small vaiues taken by the irrational dpnominators in {18) and (12
necessitates special techniquer with the quadratures. In particular, whenor ir-
in the plane of the loop and outside it, the denominators in (10) and (12) beeame
exactly zero for certain k and (12) can only be interpreted, e the sense of distri.
butions, as the limit as & - » tends to zero, while (10} exists as an improper
Riemann integral.

Expressions for the displacement and distortion fieldx equivalent to (10) and
{12). which avoid having to solve a sextic equation and also are free of singulari-
ties when @ - » = 0, can be obtained by substituting the Green funetion (3}
into (1), so that

a () = — Q-:ﬂ € oteshthy fri.w(m')f[[(lk, kg clhy Mgk koo -0 (13)

~
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It j= convenwnt to reduce S tea virele by st retehing the eoordinates wlong 1
and i =0 that
», {nl 4y b Wl (14)
with inverse
¥ (e W0 D Yy | wang) g (15
80 that N ix mapped onto the uniteirele g0, (G - 0 0 (oo 1 Then,
if k' is related to & by (15]), =0 1hat

IS (WA b Yy by kL (1)
(13) redduees 1o
(i) — h'ir" G I 8y / / f Ay bl Ak MR Ky wetow | (1T7)

Changing to spherical polar coordinates wo that
by A5 by IR AL L

where 42 i< an element of the unit sphere, and integrating with respeeel to [h').
using the homopeneity of M, (k) gives

(r) Tt ' NGy a0 Motk b (14
T o I of o A2 ) - gt :
g3 P I WU e ;
: *
The integrats with respeel Lo g’ may now be evalnated by setfing
g Aleex ) ] rin 0) {20
#o that
ds(yy  AdAdn, 25)

The intecral with respeet 1o A i clementary aned {he integral with respeet o f)
ean he evalnated by a method viven hy Willis [ ], 1o vicld e result
, i a M)k,
AL : ."’J'rn’; 3 “Suj ,
WE) g Gttt / (D21 (R e
1
l -y
x 1 - [ e , u . o i
[k -y 0 0 (K DR (K
and, by differentinting (22) with respeet to 2y, bearing in mind that k' . g - R -r,
; i ' 1 "jﬂl,‘,—ut'} .’.',
AU ('lﬂ"l Ly . . ' i
p'}{ "3 472 ket ¥ / |”.,r .y | "”g ~ u‘, , ”g (,.. . ”')lj'”'

(24)

(23)

The integrals in (22) and (23} are singubnr and the singularity o (23) s =0 severe
that the integral oxistn only in the sense of distribotions.  For computation,
therefore, nn alternative in needed and this is developed for the Jatter below.
We project the integend over the unit plane in (23) onio the ricfaee (F of the
envelopitg eylinder whoke genertors ire purallel to g that is, onto

T VAL I (24

where ¢ is a2 unit vector adong g, The integrand i homogeneous of degree 3ol
l‘|1\'

102 ; (20

' iy )
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so that {23) is unchanyged except for the replacement of d£2 by (X, Integration
by parts aleng the generators of € can be effeeted by setting
R o=k - fln - o) - oy T on (26
for inatance, in terms of which
dS = di, ds, - (27}
where ds is an element of are on the eross-section of . Integration by parts
twice with respect to k;, then gives, after re.arrangement,

1 d& Im [(K° - ¥+ 00— (k1 — (R m)}|ire
ﬂs’j(-‘l‘) = I‘-!E Cpl—ub,,'ﬂtyiymf ¢(k') - #
C

EH
oy (R MY R 28
%E-lqckm(’ |()a) {28
where .
plk’) = [{&" -1 — k2 + (K -m — kn,)?| |yt — (K m—m kD (20)
in which
I, =14 (30}

and so on. The insertion of the “imaginary part” symbol in {28) is justified
because the real part of the square root can be shown to make no contribution
by a symmetry argument.

Equation {28) is valiid so long as (k") does not vanish on € and it may he
noted that. in the representation (2e,

gik') - {13 - m;j) {74t — ((;': 1 m;':,)} 1 ﬂgn;‘;} . 3

Excluding the ease I, = m, = 0, and assuming also thut », 4 0. o that .r i~
not in the plane of the loop, (k') vanishes only wheu y - f- 0, which implies
that k' is not on C, 8o long as

lyl® = & - wy (32)
As & tends to the plane of the loop, », tends to zero and ¢ th’) vanishes when
¥ = (1, Bo that values of § ecan he found for which k Ties on O, for vaeh k,. The
formula (28} still applics, however, subjeet to (32), sinee the imurinary part of
the square root is zero in a neighbourhood of p = 0 and #, — O independently
of k.

Equation (28) thus provides an alternative to (12), for uxe particulariy whon
& lies outside the loop, when, in contrast to (12), it contains no wingularity.
Although the integration by parts could also hawe been performed uning the
original variabler & and k, to yield a formuln similar to (28), this alternative
in fact contains singularitics for some points.r outside the loop so that, from this
view point, the iransformation (14) iw vesential. 1f the loop is circular, with
a = b, (14) is, of course, trivial, and may be accommaodated by meawsuring x in
units of the loop radius, a. It may be remarked finalty that, since the inte.
grand in (28) ix homogeneous of degrec —3, the integral ean, if desired, be
projected back onto the unit sphere without any change of form. The represen-
tation (22) of u(z) could be treated similarly.

These distortion fields will be used to disouss the elastic interaction between
interstitial atoms and a circular interstitial dislocation loop. However before
doing 8o we must define the representation used to define the interstitial point
defect ; this we now do.

4
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3. The Interstitial in Copper

The configurstion of the dumb-bell interstitial for a face centred cubic metal
such a8 copper is depicted schemsticaily in Fig. 1. The forces on the nearest
neighbour atoms and their displacements have been calculated by Bullough and
Tewary [7] uaing the method of lattice statica with the perfect lattice Green’s
function for copper. This Green’s function was obtained by fitting directly to
the phonon dispersion data [8] and does not require the arbitrary restriotions
to short range force constants implicit in the usual Born von Karman analysis

Table }

The unrolsxed positions 8¢ of the twelve nearest neighbours to the {100] dumb-bell inter-

stitial in copper snd their displscements di®), The superscript (k) in related to the neighbour

type in the left hand column. The rolaxed atom positions are given by () + d(t), Results
for interstitials of other (100) orientations aro obtained by obvious permutation

neighbour T anrelaxed atom !

1

'

e stom displacements " force in relaxed positic;n
—_— positione ‘ ‘
k| type &i0 | dab i Fb (eV/a)
Lo e .. _ o .
1
10 4(110) + tay(110) | 4a,(0.0282, 0.0945, 0] + ﬁ-(l.sl?ﬁ. 6.6886, 0)
' | v
o | -
2 ! +(110) l Sog(110) | $a,(0.0252, —0.0845,0) |+ = (1.5175, — 6.6885, 0)
1 | %
: 1
3 : 100D | £a(0D) | +al.082,0,0.0046) & 5 (1:6175,0. 6.6085)
! '
|
t

1

4 ! +{(101) | +a,(101) +a,{0.0282, 0, - 0.0845) ‘4 o - {16175, 0, —6.6085)
b

i ‘,8
- |
5 ‘ +(011) +a4(011) +a4{0, —0.0154, —0.0154) { + %(0.—0.4383,-0.6883)
6 | +(11) +a,(011) +a(0, - 0.0154,00164) |4 i%'_ {0, -- 0.4383, 0.4383)
! . ; - |

Fig. 1. The four nearest neighbour atoms to the

{100) dumb-bell interstitiol in an {.c.0. lattios. The

dumb-bell stoms are indicated by x — x. 8 {110}

neighbours, 4 (011) neighbours, 4 (002) meigh-
bours, 2 (200) neighbours

D
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for the dynamical matrix. The short range interatomie forees required for the
actualdumb-bell atoms were derived from the Born-Mayer potential and theana-
lvsis of the defect region of the crystal was achioved by the ususl matrix parti-
tioning of the defect Green's function with appropriate gronp theorctiesl roduc-
tion.

The forces and displacements of the 12 nearest neighbour atoms are given in
Table 1, where the position vectors of the various atoms are referred to the
centre point ( of the dumb-bell shown in Fig. I. These quantities will now be
used to discuss the interaction encrgy between wuch interstitisl atoma and
& nearby interstitial dislocation loop.

4. The Interaction Energy between tho Dislocation Loop and the Interstitial

1f the centre of the dumb-bell interstitial is defined by the veetor  relative to
the dislocation loop, then if uL(x) is the displacement field of the lvop at thet
point, the interaction energy between the loop and the point defect is

L
E@) = — J [ui(@ + 8¥ + d®) FO . ulir — §® — gy Fh) | (33)
k=1 '

Thie exact expression could be evaluated using the exprossions for the Inop dis.
placement field given in 8ection 2. However for all practical purposes the
vectors § - d will be small compared to o and therefore the displacement
functions in (27) may be replaced by a Taylor scrics expansion and the first
derivative term only retained; thus we obtain

i}
E = 2 3 Blite) [ | dpyFim (34)
k-1

where Bf(e) is the loop distortion field at the point & and the vector components
89 and d¥! are given in Table 1.

Occasionally an interstitial atom is madeled by a spherical inclusion and we
shall refer to this crude representation for comparative purposes only, Thus if
2a,{1 - &) ts the inclusion radius and & i the misfit parameter then

E@g)= —6 [ pilrdV, (35)
tnelumlon

where ph(x) is the stress ficld of the toop, related to the distortion field by
Hooke's law
- PHE) - Contblitr) (36)
and the integration is over the volume of the spherical “atomic’” inclumion.
When the body is isotropie the funetion pli(.r) in harnonic and thus the intogral
in (35) is simply equal to the value of pli ot the centre of the spherical region

multiplied by its volume. Hence

E(x) = — ; n 8albpli(a) . (37)

The magnitude of 4 for an interstitial in copper has been estimated by equat-
ing the effective strength of the dumb-bell interstitial with the forces in Table 1
to the strength of the spherical incluwion: this yieldws the resulta 4 - 0.087 and
this value has been used in the ikotropic computations. Sinee the inclusion is
small compared with {X| (37) is alseo & good spproximation for an anisotropio
body. Thus when the interstitial is represented by a simple spherical inclusion
(37) may be used to estimate E(x): when the body is anisotropic pj is computed

10 physica (b) 69/1
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from (36) using the distartion fields given in Bection 2, if, howover, the body is
isotropic then the Peach-Kochler resnlt (9] is appropriate.

The varivus cxpressions for the genernd distortion field given in Seetion 2
((12). (22), (28), and (28)) have boen amsensod for their case of numerical evuluu-
gion. When the field point ix not in the plane of the loop the expression {12)
has been found to be the mast convenient; for points in the loop plano and
outside the loop expression (28) can be used. In praoctice, however, the requirc.
ment of the large number of second derivatives in (284) makes the guadrature
in (28) a large numerical task and it was found preferable to use (12) to get values
arbitrarily close to the loop planc and to avoid field points precisely on the joop
plane. For certain applications, such as the intersetions between coplanar
loope, it would be necessary to evaluate the distortion ficlds precisely in the
loop plane; in such cases expression (28) munt be used and ita presentation for
such purposes is thus justificd. The quadrature in (12) foz & circular loop
required care to meintain reasonable accuracy and the procedure adopted was
& Newton-Cotes adaptive non-recursive schema {10}, The main advantage of this
procedure is that it imposes a convergency ocondition over the aheolute value of
the function and not, as is the case of moet formulac, over its derivatives;
Bimpeon’s method, with & convergeney condition on the 4th derivative, requires
impossibly short integration steps to achieve the same condition,

Tt is evident from the form of the integrand in (12) that the integration is not
equally convergent in every pub-interval around the loop. If rp =a =1 i
the radius of the loop L, then, difficult points arisc when

¢ = Re [(k" - 2)?) (38)

that is when the irrational denominator approaches zero. In addition, however,
the derivative of D{k) in the denominator of f..(k) can vanish since in certain
symmetry directions the sextic equation degeneraten and has double roots,
Tn this situation 8 spline fitting procedure used in the present Newton-Cotes
scheme fails sinco the function is not sufficiently smooth over the double root.
It is thus essential to locate the positions of the donble roots before fitting the
splines (such double roots arc easily located by the routine used to solve the
sextic) and then, once located, a spline is fitted outside the point but not aoroma
the interval containing it.

The intoraction energies between an interstitial atom and a circular inter.
stitial loop were obtained for the loop shown in Fig. 2. The interaction energy
was calculated for a grid of points in the two orthogonal planes (112) and (110}
passing through the centre of the loop and from this mesh of values contours

i
]

B g
¥Fig. 2. The cireular, pure edge interstitis] disloco-
tion loop with Burgors vector & = J{111] used to
iy walculste the interstitial loop interaction in copper
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of iso-interaction energivs were computed. The results for the various O PTERen -
tations are presented in Fig. 3 to 9. In Fig. 3 these contours are shown for the
simplest caxe of an isotropic point defect near the loop in an isotropic hody
these encrgies have been cvalueted using (37; with mean values of the shear
modulus and Poisson’s ratio for copper of g = 546 x 10 dynfem2 and v - 0.32%
(11]. In this represcntation there is complete axial wymmetry about the Joop
normal and therefore sll planes through the [111] axis of the loop will have
identical contours and the complete interaction is thux described by the eon.
tours in Fig. 3. In contrast we show in I'ig. 4 and 5 the corresponding contours
in the (112) plane and the {110) plane respectively for the isotropic body when
the interstitial has & dumb-bell confignration (as defined in Section 3) with its
axis paraliel to the [100] direction. In this Iatter situation we see that though
the contours in the (112) plane are only guantitatively affected by the miero.
scopic anisotropy of the point defect the correnponding contoursin the (110) plane
are qualitatively changed by the point defeet anisotropy.

The results computed using cxpression (12) for the full anisotropic body
(copper; when the interstitial has the {106} dumb-beil configuration are given in
Fig. 6 and 7 for the respective (112) plane and the (110) plane, Finally, there is
of course no reason why the axis of the interstitial should remain parallel to
a particular direction as it drifts towards (or away from) the loop and we have
therefore ealculated the interaction encrgy at cach grid point for cach of the
<1003 orientations of the interstitinl andl then adopted the orientation that yields
the least total encrgy at that pariicular point. These renults for the anirotropic
body (copper; are presented for the (112) and (110) plancs in Fig. 8 and 9,
respeetively.

Several features of these contours may be noted ;

I. Both the microseopic anisotropy of the interstitial and the anisotropy of
the body have a marked effect on the form of the interaction energy bet ween
the loop and the point defect (compare Fig. 3, 5, and 7 for example).

2. When the complete anisotropy ir included the interaction iw very complex
{(Fig. 6 and 7) and when the point defeet in aowed to reorientate its axis there
can be quite a radical change in the contours: thus the area of attractive inter-
action is greatly increased in the (112) plane (Fig. 8) compared with the fixed
f100] orientation (Fig. 6).

3. Perhaps the most important obscrvation is that, in general, anisotropy
greatly reduces the drift path length that any interstitial wonld have to take
to be captured by the interatitial loop (and thereby increase its wize). Thus if
we compare the completely jnotropic results in Fig. 3 with the econtours in Fig. 9
for the anisotropic body and arbitrary orientated dumb-bell we see that at any
point in the latter plane the interstitial path (orthogonal trajectory to the iso-
interaction energy contours) to the loop in always very short. Whercas in Fig. 3
when the interstitial is located in the volume above the loop area very long
drift paths are required. The qualitative conclusion in that anisotropy leads to
an enhancement of the efficiency of interstitinl capture by an interstitial loop.

4. Finally we note that the attractive interaction energics arc large; at a
distance of half a loop radius from the perimeter of the loop the energy in still
(.05 eV. In addition the contour lincs are compact, thereby implying & high
drift velocity and again indicating an important interstitial-loop interaction.

1u*
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Lattice static Green function for an hep lattice
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Two different techniques for calculating the lattice distortion under a unitary force, the lattice Green function
(GF) at 2er0 frequency, are discussed. One is based on the classical Fourier inversion procedure for a finite number
of points within the first Brillouin zome, i.e., periodic boundary conditions are assumed. Eaplicit formutas which
take full profit of the hep lattice symmetry and allow for a fast and relatively simple caicuiation of the GF are
deduced. An extrapolation procedure is proposcd in order to evaluate the GF for a lattice with infinite boundarics
This procedure aliows one to differentiate the lattice dnpervive contributions to the GF from the continuum ones. A
second calculation technique, called semidiscrete, is proposed. This is based on sssuming that the atoms located
beyond a given distance from the lattice point where a force is applied are displaced like points of an infinite elastic
medium under that force. Both techniques are applied to calculate the GF for some points of an hep lattice held by
two different interatomic potentials adjusted to some Mg parameters. The dispersive contribution 1o the GF values

19K

is found 10 be potential dependent and relatively small.

I. INTRODUCTION

The displacement field induced by a point defect
in a crystal lattice can be calculated via the latiice
Green function (GF) as reviewed by Tewary.! The
defect is simulated by a distribution of effective
forces which induce the lattice distortion through
harmonic interactions. The method was originally
developed by Kangzaki? in 1957 for the calculation
of the distortion induced by a vacancy. In 1962,
Flinn and Maradudin® showed that the GF can be

calculated only once for the perfect lattice and
used for any defect symmetry. Its correct eval-

uation may be, therefore, of paramount impor-
tance. This perfect lattice GF is defined as the
lattice response to a unit force at the origin., Then
for relatively short distances it should be influ-
enced by the discrete character of the lattice,
while at large distances it should converge to its
continyum counterpart, the elastic GF.

Defect distortion calculations via the lattice
static GF method have been mainly tackled in crys-
tals with cubic symmetry and generally with one
atom per unit cell. Analogous caiculations in the
hexagonal close-packed lattice have been relatively
neglected except for the work of Popovic and Car -
botte' and the more recent ones by S8ahoo and
Bahu® and Tomé ef al.® Popovic and Carbotte
developed in their paper the lattice static
formalism for that structure and did some calcu-
lations for the vacancy configuration. Their ap-
proech is similar to Kanzaki's® and it does not
involve the explicit calculation of the GF. This
is calculated by 8ahoo and Sahu® through the usual
method of Fourier inverting the force-constant
matrix in a lattice with periodic boundary condi-
tions (BC). However, those authors do not con-
sider the influence of these conditions on the GF
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values. Periodicity imposes symmetry restric-
tions to the GF values at the boundary of the super-
cell and may also affect the values inside it. Then
the convergence of the lattice GF, calculated by
impoaing those BC, to the elastic one is nol cer-
tain for any region of the crystal, Schober ¢/ a!.’
have also shown that, in lattices with cubic sym-
metry, even for atoma relatively close to the ori-
gin and a large periodicity volume, the BC have

a significant influence on the caiculated values

of the GF. Those authors calculate the infinite
medium GF by the Gilat-Raubenheimer method

of numerical integration over the first Briilouin
zone (BZ) and compare their results with previous
calculations where periodic boundary conditions
were agsumed. In this paper the GF is firat cal-
culated by the somewhat simpler method of sum-
mation over a finite number of points in the BZ.
The corresponding direct-space representation
wonld be a set of periodic Bupercells. The super -
cell eize’s influence on the results is systemat -
ically studied by varying the number of points
included in the summation. The infinite discrete
Ixttice response is obtained by an extrapolation
procedure based on some physical insight of the
boundaries relevance. This approach allows us

to differentiate the contribution to the GF of the
boundary conditions from the lattice dispersive
one. Previous analysis of this last econtribution
did not separate it from the first one.*

AB an alternate approach to the Fourier -inver-
sion method the lattice GF can be calculated in
the direct-space representation. This procedure
has been applied by Tomé et a/.® for generating
the GF used in their defect calculation, and one
of the purposes of this work is its detailed deduc-
tion. The method is based on imposing, for dis-
tances beyond a certain range, the identity he-
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2 LATTICE STATIC GREEN FUNCTION FOR AN hep LATTICE

tween the lattice and continuum responses, i.e.,
there the above-mentioned dispersive influence

of the lattice is neglected. The resulting response
is called “semidiscrete GF.” This approximation
aseems particularly suitable for hep crystals where
the elastic GF can be caleculated analytically.”

In Sec. [T the semidiscrete GF method is de~
scribed. In 8ec. Il the Fourjier -inversion method
is applied for calculating the lattice GF of an hep
lattice with periodic BC. Full advantage of the
crystal symmetry is taken in order to reduce the
BZ summation to a 24th part of zone. Only simple
expressions which are explicity given in the Ap-
pendix have to be evaluated. The BC are discussed
in Sec. IV. There an extrapolation procedure is
outlined to deduce the GF values of an infinite lat-
tice from a set of GF calculations with periodic
BC. In Sec. V numerical values of the GF for
Mg obtained by either method discussed above
and by using two different potentials are compared
among themselves and with the elastic GF. Final-
ly a detailed discussion on the validity of the cal-
culation methods and the previous numerical re-
sults is dealt with in Sec. VI.

1I. SEMIDISCRETE GREEN FUNCTION

As was said in the Introduction this calculation
method is based on neglecting the lattice dispersive
influence on the GF values for atoms located be-
yond a certain distance from the origin. A finite
region in the crystal, hereafter called region ],
is surrounded by atoms embedded in an infinite
elastic medium, reglonl/. The GF can be obtained
as the ensemble response to a unit force applied
at the origin, assumed to be located at the center
of I. Within the harmonic approximation the dia-
placement J(n) of an atom » under a force Fim)
applied over m must satisfy the equations

[2“ ftul] [i:]g[i‘::], ()
St Pus g
where ¢, 18 a 3N, X 3N, matrix composed by the
force constants ¢, (n,,n,) which relate the atom
n, of region J with the atom n, of X (J, K =1,1I;
w =L, N g SNl L N Ny @, BEXL Y, 8D,
In Eq. (1), Ny, may be effectively infinite. i, and
F, are the vectors of atomic displacements and
forces at the atoms in region J.' They are com-
d by three -dimensional vectors ¥{(n,) and
g:::). When a unit force in the o direction is ap-
plied over the atom n; =1, at the origin,

Fylng) =850,
and
Flny,) =0,

(2a)

2659

for any n,,n,,. According to the previous assump-
tions an atom in If displaces by

%, (n;) =Gyling,1), (2b)

where G*! stands for elastic GF. The correspond-
ing displacement of an atom in J is

4, (n) =Gy (n,,1). (2¢)

G* is the semidiscrete GF, which 18 now defined
by Eqs. (1) and (2). Equations (2) are replaced
in (1) and the following system of equations is
obtained: )

Do (117)GE(0]1) + &y gy, )G (g 1) =8, 8y1y (32)
¢"(";|”;)G::(”:n +¢n("!l”;!)c:1-(nl'll) =0, (3b)

where the Einstein convention applies for summa -
tions. Equation (3a) states the equillbrium of
forces in region / and the semidiscrete GF is
obtained from it as

Gh(nfl) =(¢, -;)M{“;nl)[ulcan‘l = Oy nyny )Gy, (1) I
4)

This expression allows for an explicit caleulation
of G** for a lsttice held by a relatively short-range
potential. Owing to the dispersive character of
that Iattice, for a finite-size region / the elastic
GF at the atoms of I/ would not correspond to a
configuration with null harmonic forces. This
means that Eq. (3b) does not vanish exactly upon
replacement of (4) for G*%. Ita vaiue can be iden-
titied with forces applied over the atomes of region
Il in order to keep them at the positions imposed
by the elastic response. These forces have an
inverse dependence with the size of region /, and
a convergence criterion for the GF calculation
can be adopted. The calculated ensemble response,
G* for region 7 and G*' for I/, 1a accepted as the
semidiscrete GF when the miafitting forces cal-
culated by (3b) are some orders of magnitude
smaller than unity {i.e., the value of the force
applied over atom 1 for calculating the GF).

. LATTKCE GREEN FUNCTION FOR hep LATTICES

The lattice-static GF is generated as thoroughly
described by Tewary' and Schober ¢t al.,’ by Fou-
rier transformation of G(g) =% () over the B2,
i.e., periodic boundary conditions are assumed.
The 6 x 6 matrix $(g) is the reciprocal-lattice
transform of the force-constant matrix. Both
$(¢) and G(g) have the symmetry'®

G- [ Gat) 9(12)] , (5)
G*(12) g*(11)

where G(kk') are 3 x 3 submatrices and &, k' refer
to the atomic sites (1 or 2} in the unit cell. Figure
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FX:. 1, Schematic representation of the unit cell and
hexsgonal and Cartesian axea in the hep lattice. The
origin is located at the inveraion center of the lattice,
the octahedral site, The full circles are drawn as lo-
cated a¢t a basal plane separated by 3 ¢ from the one of
empty circles.

1 illustrates the arrangement of atoms, the choice
of hexagonal and Cartesian coordinate systems,
and the atomic sites within the unit cell. G(11)
is in general Hermitian but in a model of central
forces it is real and symmetric. G(12) is sym-
metric. Owing to the symmetry of G, only its
two upper blocks need to be calculated, which
can be readily made from $(11;4) and $(12;4).
The Fourier transformation of Gig) is performed
by summing over one of the 24 equivalent irreduc-
ible polyhedra (IP) within the BZ of the hexagonal
lattice. For each § the equivalent terms in the
whole BZ are obtained by using the symmetry
operations (8) of the lattice. The expression for
the GF is then:

clan e =3 3 Lr an 1w, (6)

bl i hl

with

Cuth, 1030 =3 TOIC@I ) o

X g H T BN

! denotes the unit cell and # (1 or 2) the sites in
the cell. N is the total number of points in BZ,
i.e., Lhe number of cells in the periodicity volume
of the direct space. The sum in Eq. (T) runs over
the 24 symmetry operations of the D,, point group
of the hep lattice. The fact that for boundary points
of the IP there is a subgroup of order A, of opera-
tions that leaves the point invariant is taken into
account by dividing by k, in Eq. (8) (for A, see,
e.g., Table XV in Ref. 10), § is the 3 x 3 rotation
or reflexion matrix associated with the operation
Sand T(5) 18 a 6 x 6 transformation matrix which
adopts either the form

ba) = (53

The second one is valid for operations which tnter -
change sublattices 1 and 2. In (6) the contribution
of the acoustic branch for § =0 must be excluded
because this implies a rigid-lattice translation.'
#(3 =0) must then be diagonalized and only the
contribution of the optical eigenvalue included in
the summatory Detailed expresstons for
Tosllk,1'k';q), , are given in the Appendix.

IV. BOUNDARY CONDITIONS FOR THE GF
CALCULATION

InSecs. ITand llithe calculation techniques for
the GF of an hep lattice in the semidiscrete and
lattice approximations were discussed. This last
GF, calculated by Fourler inversion with a finite
number of points in the first BZ, gives the re-
sponse of a lattice supercell with periodic BC,
while the lirst, the semidiscrete GF, pives the
response of an effectively infinite crystal where
some dispersive lattice contributions are not in-
cluded in the calculation. In order to compare
both techniques, the function calculated with peri-
odic BC must be extrapolated for the case of an
infinitely large supercell,

The lattice G¥ caleulated for a supercell of N
unit cells can be written as

gN =Q' .'_le’ (8)

where G gives the response of an infinite lattice
and G'™ the image correction due to the BC. It
is illustrative to write the first term in (8) as

G (r,2)=(1/rA Q) +8(r,0)], ()

where §! defines the direction of the vector ¥. This
equation is only defined for the discrete set of ¥
vectors corresponding to the lattice positionas,
A (R)/7 18 identified with the elastic GF G*! at those
positions. H(r, (1) responds then for the dispersive
behavior of ¢~ imposed by the discrete character
of the lattice and it must vanish for r >-a (¢ is a
lattice parameter).

Imposing periodic BC for a crystal supercell
results in cancelling G" at the symmetry points
of the supercell boundary. As an average effect
the absolute values of G¥ are expected to be in
general lower than those of G~. $'™ must account
for this effect and in addition it must decrease for
a given ¥ when the size of the supercell is in-
creased. It appears convenient to wrile

C'™(r,a,R) =-1/R)A(®)+8'(r,2,R)], (10)

where R is the distance [rom the center to the
boundary of the supercel] in the § direction and



the same restrictions for (r,£) as in (9} must be
imposed. For r =R, B'(r,0,R) must be equal to
B(r,Q) at the above -mentioned symmetry points
and for any r this term spreads the influence of
the BC on the calculated values of G¥.

Replacing Eqs. (9) and (10} in {8) results in

ﬁ'(f,R,n) -.G.(rl n)[!_'l(ri nsnhlﬂl ] (11)
where

Jor, 0,R) = (4@ «g o, WA Q) 1B (T, a,R)).
(t2)

I f(r,Q,R) is nearly independent of R it is not
necessary to know its detailed expression, and
(11) provides the clue of how to extrapolate from
the calculated G” (r,R,0) the corresponding
G*(r,0). In Bec. V it is shown for Mg that f 18
independent of R, to a very good spproximation,
for R >3r (note that it still depends on 7).

BC may also affect the semidiscrete GF. In its
calculation, the dispersive terma outside a given
region I are imposed to cancel out. As a result
of this cancellation spurious contributions to the
caleulated function may arise. Though these con-
tributions must be small because of the conver-
gence criterion proposed in Sec. 11, they are not
null and we shall see in the next gection that some
lattice symmetries are alfected.

V. NUMERICAL RESULTS

The semidiscrete and lattice GF for some near -
neighbor atoms of the Mg lattice are calculated
by using the two interatomic potentials discuseed
by Tomé et al.® One of them is a spline-fit pair
potential fitted to some Mg parameters. It is rel-
attvely short ranged and holds in equillbrium an
hep lattice with & ¢/a ratio corresponding to &
rigid-sphere packing. The other potential has been
deduced from Appapiliai and Heine" optimized

als and the experimental ¢/a ratio

is adopted for the caiculations.

For the caleulations of G¥ & hexagonal mesh of
g points is generated with an equal number L of
intervals from the center to the boundaries of the
BZ in x and £ directions. The main axes of the
reciprocal lattice are oriented parailel to the
direct-lattice anes (see Fig. 1). The correspond -
ing periodicity volume in direct space 18 hexagonal
with basal and axial edges of dimensions R, =lLa
and R, =2Lc, respectively. The number of unit
cells included in this region is N =6L%. We shall
first try to extrapolate from the calculated values
G” of the lattice GF for different supercell sizes
the corresponding function for an infinite lattice—
G". Equations (9) and (11) suggest & convenient
way of processing the G" values for obtaining G"

N
-
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(Brev)
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FIG. 2. {r/a) @G¥ U001, 0001) va 1/L, wheze 7 is the
distanoe between stoms (001) and (0001); G is the GF
caioulated for N cells in the first BZ; Lis the maximum
value of [ within the supercell in the direct space. X is
the value of (»/a) rG*{001, 0001),

as follows: The behavior of ¥G*(r,Q, R} as a func-
tion of 1/R, for a fixed ¥, is analyzed for different
number N of cells in the first BZ. For all the
points and potentials studied and an far as R > 3r,
we found the function 7G* to be linear in 1/R. As
an example, in Fig. 2 rtrG”(», 01, R) is plotted
against 1/L for atoms located along the [too] direc-
tion (see Fig. 1). This linear dependence Indicates
that the function f(r R, ) in Eq. {11) is independent
of R for R>%. This result is very uaeful, since

i#t can be used to extrapolate, from the catcuiated
values fo the lattice GF, G¥, for different number
of cells N, the corresponding G®. The numerical
results reported hereafter show that G~ can be
obtained by this method for points near the origin
with very good precision. Also in Fig. 2, the ex-
trapolated values, rtrG™, can be compared with
the corresponding values for the elastic GF, rtrG*
=trA(Q), constant for every neighbor in a given
direction and indicated by a crose at 1/L =0, The
observed differences correspond to the disperstve
term B(r,0) in Eq. (8). 1t is apparent that the
dispersive influence of the lattice attenuates o8-
cillatory with increasing r. However, in the ex-
ample shown in Fig. 2, this term does not seem

to influence the G function values by more than
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TABLE 1. Some values of the lattice GF calculated by two different interatomic potentials
fitted to Mg parameters are compared with the long-wave, elastic values,

Ga:

Uk, 01)
/eV)

Empirical potential Paeudopotoential
LTI G o " c o c
©001)  xx 0.5723 0.5686 0.6009  0.6034
2 0.5699 0.5863 0.6100  0.6115
©002)  xx 0.1233 0.1242 0.1327 0,171 0.1278 0.1510
yy 0.1672 0.1640 0.1538 0.1760  0.1779 0.1764
2z 0.1936 0.1907 0.1806 0.2060  0.2094 n,227H
:: } 0.0404 00391 0.0291 0.0423  0.0405*  0,0182
(001 xx 0.2253 0.2216 0.2093 0.2297  0.2343 02442
vy 0.1382 0.1327 0.1329 61357  0.1408 0.1541
P 0.1282 0.1271 0,1303 0.1316  0.1354 .1550
v 0.0012 0.0021° 0 0.0029 0.0059" 0
yx -0.0012 -0.0001° 0 -0 .0029 0.0000" 0
1002)  zx 0.1049 0.1067 0.1180 0.0862  0.1082 0.1367
Py 0.0886 0.0976 0.1022 0,022  0.1063 0.1177
£z 0,1024 0.101% 0.1084 0.1001  0.1061 0.1302
:’:} 0.0066 0.0069*  0,0100 0.0014  0.0019 00130
:: } 0.0115 0,0120°* 0.0174 0.0023  0.0033 0.0230
:; } 0.0054 0.0079 0.0137  —0.0052  0.0016 00765
(0011) :: } 0.0823 0.0803 0.1228 0.0847  0.0K% 0411
£z 0.1246 0.1243 0.1337 0.1444 0,103 08,1600

SValue averaged between G3J and GJ2, which should be aqual by lattice~-symmetry consicd-

arations,

® The lattice symmetry imposes G2 = —G3 in this case,

4%. On the other side, the image term G*'™ in (8)
may greatly influence the calculated GF',- G¥, with
periodic BC. For example, in Fig. 2 it can be
seen that for the (400,1) atom, even when 162 000
colls in the whole BZ (L =30) are used for calcu-
lating G¥, the term G'™ accounts for over 10% of
the calculated G” value.

In Table I the values of the GF calculated in the
semidiscrete approximation are compared with
the extrapolated values for G°. The semidiscrele
GF, G*, 18 calculated for a spherical region of
21 atoms around the origin and the two above-
mentioned potentials are used for the calculations.
The previously mentioned loss of some symmetry
operations for the semidiscrete G** can be inferred
from the values marked with a or b in the table.
They do not fulfill the symmetry imposed by the
group symmetry at that point. For the sake of
comparison the elastic GF, G*, is also reported.

This function has been calculated by using Kréner’s

formulation® for the corresponding atomic posi-
tions with respect to the origin. The elastic con-

stants deduced from the correspondinge potential
in the long -wave limit'? are used [or the- caleala-
tion {see Ref. 6 for their values). Ou voine trom
the elaslic into either of the lattice GF'r (G7
G*), it can be seen that the difference amony; the
elastic constants used for the two G*' calculutions
has a larger influence on the values reporled for
that function than the dispersive term.

V1. SUMMARY AND CONCLUSIONS

In this paper two different calculation methorls
for the lattice GF have been proposed. The al-
ready classical Fourier -inversion miethod in o
lattice with periodic BC (Ref. 1) is applied to an
hep structure and explicit formulas {or the caicu-
lation, which take full profit of the latlice sy -
tmetry, are deduced. As discussed by Schober
¢l al.” the influence of the pertodic BC on the cul -
culated GF values may be quite important. This
problem is discussed and an extrapolation pro-
cedure is proposed tu calculate the GF for an

2



infinite lattice. This procedure has been proved
to be successful in obtaining that function for the
hep lattice. However, ae it is based on quite
general ideas about the GF dependence on BC,
we think it likely to be applied with comparable
success to any lattice symmetry. The observed
differences between the GF calculated for finite-
size supercells and infinite ones may be very
large as shown in Fig. 2. This fact has been sug-
gested previously for cubic structures by Schober
e? al.” but has not been taken into account in some
calculations reported for defects in the hep lal -
tice.® The relative importance of this error in
the reported defect configuration i8 reduced by
the defect symmetry as discussed by Laciana ¢!
al.} but it is still important when very few points
in the first BZ are included in the GF calculation.'
The semidiscrete method is appealing in the
sense that it does not rely on Fourier -inversion
and extrapolation procedures for obtaining an
infinite -lattice GF. However, some lattice dis-
persive contributions are neglected by this meth-
od and a set of spurious amall forces are imposed
on the boundary between regions [ and II. The
latter may cause some problems if the numerical
values are to satisfy all the lattice symmetries.
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The very close agreement of the &7 values re-
ported in Table [ with the G*¢ values Shows thesc
problems as being only mfr_lor, and it is a further
test on the validity of the extrapolation procedure
used for calculating ¢°.

From Table I, by a)mparmg the latlice GF val-
ues, G~ and G", with the clastic response, G*',
calculated for the same position, it can be con-
cluded that {a) even for the atom’'s first neighbors
to the origin, the dispersive contribution is within
a 20% of their main GF values, (b} ile magnitude
depends on the interatomic potential used for the
calculation, and (c) 2 comparable dispersion in
values is obtained when the (*!, calculated with
the elastic constants deduced from either potential
1n the long-wave limit, are compared amony them -
selves.
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APFPENDIX

Some symmetry operations of the D,, point group interchange blocks of the G matrix corresponding 1o
the two different sublattices. As it can be seen in Eq. (5), this 18 equivalent to a complex conjugation.
Therefore It Ls possible to handle the 3 %3 blocks of G separately instead of the 6 X6 matrices tnvolved in
Eq. {7). In addition, since inversion is an element of the group and interchange sublattices, there arc
twelve lattice-interchanging operations. Their corresponding terms in Eq. (7) are just complex conjugates
of the ones associated with the 12 remaining operations. Equation (7) is thus written as

18 .
Tk, 1'% ;q) =2 );'[c;,,(w,g)mgq oF) -G (k' Ssin(S B} , _ (A1)

where G'(kk’,5T) and G''(kk’,S) are, respectively, the real and imaginary parts of SGlkk’,d)S". Here the
S are the twelve oporatm that do not interchange sublattices (see Tables XIV and XV1 in Ref. 10). ¥
stands in Eq. (A1) for ¥(ix) =F(I'k').

Parforming the operations S with the Cartesian axes located as shown in Fig. 1, the following expres-
sions are obtained: -

I, =3C{A.(4CC, +[cCl) +3A[cC], +2V3A, lccl,
-B_(4C5,+[Cs]) - 3B,,[cs]. ~¥3(B,, +B )ICS] )},
T, =1C{A,(4C,C +[CC])+34A_lCC), -2v34, [cC).
-B_(4C,S,+[cs)) ~38_[cs). +VEB,, +B )lCs 1),
T, =8C{AC.C,+[ccl)-B.(C,S,+[csL), (A2)
I, =4s A ((cs]. -2c,5,) -¥34,lcs), +B ([cc), - 2¢,C) - VB fcCl},
r, ~45{-A,/(sCl.+25,C) -v3A lsC], +B,(Iss],+25,5) +VB Iss L},
r,,=3C{V3(A,, -AMSS]. -24,,28,5, +Is5])
+/8(8,, -B)ISC), -48,,5,C,+(B,, -8B )sCL},

Y
3

o



2664 MIGONL, TOME, SMETNIANSKY .De GRANDE

where A is the real and B the imaginary part of
G{g). We omit the indices (k") in A, and B,
and (&, I'*)In T ,. For k¥¥', T, = ru, but for
k=k', T, dtffers from I'_, in the signs of the B
coefficients. The C_ and §_ are cosines and sines
of g [7 (k) — 7 (I'k’'}] . We also define

lcel, =cic, =l Cy,

Al
Ic3],=C.s,+C)s; , etc., A3)

AND SAVYINO

where the prime or double prime corresponds

to the replacement of g, in the argumen! of cosines
and sines by the corresponding component of the
vector

a'z(%fh*}‘(a‘fpé'/ 3‘?' ";"qun) '
or

§=(-2q, 423, V3 +1q,,0,),
respectively.
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ABBIRACT

The core as well as tha long range slsstic displacements around N
octahedral interstitisl stoms in Ta and W are wodelled using the Creen
Function - Kansaki force method. The theorstical calculations are compated
with sxperimental attenustion factor and diffuse scattering dsta, reported
in the literature, for both R in M and W in Ta [1,2,3). It is shown that
& third neighbor radisl Kansski force model is needed to explain the
experimental findings, and the long rangs elastic dieplacement field f{s
noa~spherical. .

INTRODUCTION

Gas interstitials like N,C when incorporated into transition matals
like Fa,®,Ta aze known to occupy the octahedral interstitial sites of the
BCC lattice [2]. &As & result, o distortion around the octshedral
interstitial sites is induced. The displacemsnt of the lattice atoms can
be calculated using the Green function - Kanzaki force method [4). At
large distances from the defeact, the displacamants are well described by
the elastic Green’s function, solution for an equivalent force source. The
displacement of the lattice atoms causes ap attenustion and shift of the
Bragg peaks as wall as diffuse scattering [5). Kxperimental sttenvation
factor and diffuse scattering daza for N in W and N in Ta have been
Teported in the literature [1,2,3]. These data are used here to
theoretically determine the core snd long rangs displacements sbout the
interstitial defect. It is shown that a third neighbor redial Kansski
force model (three force model, from now on) explaine the experimental
findings wuch better than o second neighbor (twe force) model, in agreement
with the conclusions of Dosch and Peisl for X in W [2], For both ¥ in M
and N in Ta, the second and thitd neighbor forces are sbout one-third the
first in sbsolute valua and are opposite in sign.

THEORY

In the Green function model, the displacement of N or Ta atoms
around & N octahedral interstitial cen be written as (4]

L] n .n
].l1 ‘j[n G:; fj i
where 1 {i = 1,2,3) are the cartesian components of diaplscement of the
L] lattice atom, C is the Creen function matrix of the ideal lattice h

and £7 are the :n-.-r.“i.an components of the Kanzaki forces acting on the n
lattice stom. The Kanzsaki forces are pot only due to the defect-lattice
interaction but they alsoc model any anbarsonicity in the host lattice
displecement field. For points far away from the defect eq. (l) must
converge to the bharmonic, elastic solution:

el
Ve(E) = Gpy o (D Py (2)

*On leave from Departmento de Materiales, Comision Kacional de Energia
Atomica, Argentina.
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where ¢! stands for the elsstic Green function. In eg. (2) the derivative
of the elastic Green function is taken with respect to the k direction

(,k = 3/4x. ) and P, is the dipole tensor for a set of forces at the
origin. It can be deen that eq. (1) converges to (2) if the dipole tensor
is ralsted to the Kanzaki forces dy:

n .n

E L fj - Pij &)
wvhere r" are the cartesian cPpponents of the vector joining the
interstitial eite with the n lattice atom. The dipole tensor for a

{100) oriented N octshedral interstitisl in & BCC lattice can be written as

o0 o0 F

P o ¢
Io“ Pzz 0 |+ If radial Kanzaki forces are sssumed to act only on the first
and ucong peighboring shells arcund the B defcct, then ’11 - f“). and P

22
{(»
2 €24, Tor a thres force modsl, n, - AR L ki P T £,
(» /5
. 8f a.
/75

The stcenuation factor for thc'ltul, reflactions, ‘-IH' can be
written as [ 4]

M eln (e ™ wc<f U - cos2nBA™ > (@
n

where the sum goas ovar all lattice stoms sround a N interstitial, B = hl
+ "2"2 + ba. is & vector in reciprocal space expressed in terms of
reciprocal lattice vectors. Yor the calculstion, an average wust be taken
over the three possible octahedral interstitial orientatione (001, 010,
100). The macToscopic volume change due to & concentration, € , of W
defects is equal fo [5)

14
Voeog © 3Ty >
c 11 12
where Cl and Cl are the alestic conetants of the cubic cryetal, V is the
volume oi one ll%cice atom. Bince all three types of interstitial dites
are occupied with equal probability, the sverage lattice expsnsion along
the (100}, (010) and (001) directions are equal and the lattice remaina
cubic. For a small defect concentration a simpie expression for diffuse
scattering has been cbtained as {5]

by

2

lniﬂ(") - cwoqctml >
D

GRH) = £+ fu

+ 1 MHulq) )

L
1 expliznue®™) {axpl i2nMen®)-1-i27H ")
n=l

2TH = 211IIo *+q

The lu-utio?hil taken over the firet few L shells -rour:lra N defect.
Beyond the L™ shell, the exponential functiomexp({2nte1:) can he expuuded
in & Taylor series as & function of the displecesants, i'xp(‘ll"ll"-lln) -] + 121r}~|-y",
In the third term of eq. (6),u(q) is the Yourier transform of the
displacement field. 'o ocatas the (hkl) paint and q is & vector in the
first Brillouin zone. £ and f_ ars the atomic scattering fector of the
defect and the lattice atows, respectively. N is the total mo of lattice
atoms. At lov q values, G(H) is determined by the elastic displacemnt
field far away from the defect (Huang scsttering). At large q values, G(H)
is determined by the locel displecements avound the interstitisl. The
axponent of the attenvation factor, IZM, can be revritten a»

(
-
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2
= c<!1cq(n°)| 4q>

-cl <§1|c (1t (78
1 o=l
where
L
%, (6 = ) expl tq B laxpliZruou™ -1 - i2vg ™)

. mno'u(qn} (7%}

The eummation in eq. (7a) is takan over ll aqually spacad wave vectors ias
the fivst Brillouin sens.

ARSULYS AND DI1SCUSSION

In Pig. !, euperimental sttemustion factor data for W m (1.4 and)
obtained by Dosch and Paisl (1], 2W/C, are plotted against Ji- and compared
vith theoreticsl valuaa, f”““&) from boa) the 2-force and }=ferce Kansaki
‘wodels, BRadial forces, £, £ and £'77, used in the caleulations for
both the 2+force and 3-force models are given in Table I. Both the 2=force
and 3-force models satisfy eq. (2), unlike the 3-force sodel proposed by
Dosch and Peisl for W in W (2], Equation (6) which is emsct, was used te
derive the theorstical asttenuation factor veluss. In the papers by Dosch
and Peisl (1] arnd Metsger and Trautmann [3], it is sssumed that the
displacemsnts bayond the 4th or 6th neighboring shell have spherical
sympetry. This sesumption results in a sigaificent underestimate of the
contribution to ZM from these outer shalls.

FIG.1. Experimanta)} sttenuation factor dats (o) [Raf. 11, plotted
agsinst h.° and compared with calgulstions for the 2-force
«~ and 3-!orc£ models, for N in Wo. hl ' hz and hS are the Hiller
Int¢ices of the Bragg reflection.

Tha dispiacemeats of the Nb atoms vp to the (003) shell srcund a n
interstitial were calculated using eq. (1) snd the eighth maighbor forcs
constant metrix for Wb (6], The summation in eq. (7b) wes taken pp to the
(003) sbell. Bayond the (005) sheli, exp(i2when ™) =1 + 42mi-u ", and the

" comtribution from these shells is included in Bhe term i2nHeu £Q) of oq.
(7b). The Yourier transform of the displacement field was calculated Dy
taking the Kanzaki forces in reciprocal space and maltiplying those by the
Pourier transform of the Gresa function [5). The trensform of the Green
function is directly obtained by inversion of the reciprocal space force
constent matrix {4). All lattice atoms ware included in the determination
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Toble 1. Badial Kansaki forces, 1), 62 oat () 1 avea”, pering
on the first thres neighboring shalls around a N interetitial
in @ (a) and Ta (b), for the 2-force and 3-force modals,

® (& Ta (b)
| | | | | |
: : 2-forcs } 3-force | 2-force | 3-forca |
| | |
! { | i I
€Y s 1 2. | 498 | sas |
| ) i } | | {
[ i 0.9% | -1.08 | 1.5 i =1.01 |
I (3) | | | | |
: f : 0.00 ! 0.80 | 0.00 ] 1.00 }
| | f

6t 2K by an snslytical extrspolation, B+ = , in eq. (Ta). Frow ¥ig. 1, it
is clear that the I-force model puﬁcd 2K values that are

approximateély 202 less than the experimental values whereas the 3-forcs
model of Yable I, agress with the experimental data quits well. 1In Figs.
(2), (3) and (&), expariwsptal neutron diffuse scattaring dats [2) in
sbeolute units (tp e/ W ), at three different regions in reciprocal
space (Table I o it 121), are compared with the theorstical valuss
obtained from eq. (6), using both the 2-force and 3-force models. The
Beutron scattering lengths of N and W, £D and f., wers taken as 0.9 ond
.71 x 10 cms, respactively [7). Once again, the 3-force wmodsl fits the
sxperimental dats much better then the I-force model, though in Fig. &,
both the 2-force and 3~force models 60 not provide & quantitative fitting
of the experimsntal data. The sbaclute values of the coras displacemants
calculated from the I-force wodel, are voraally larger than those obtained
from the 2-force model, and therefore predicts larger sttenuation factor
and diffuse scattering values. The alestic displacement field far away
from the defest remains the same for both the models, since they are
determined only by the dipole tensor of the defect and the alastic
constants of M (eg. 2).

[

(1]

¥1G.2. Exparimental scattering along 718.3. Exparimental scattering along
a line in reciprocal space @ line in reciprocel space
connecting points 1 and 7 connecting points 1 and 2
(see insert) as compsred with (see insert) s compared with
theorstical calculations from theoretical calculations from
2 and d-force modals for N in 2 and 3-torce wodela for N in
R, in sbsolute units. M, in absolute unite.
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Figure % is s polar plot of the locus of selastic displacements of
constant magnitude. The tetregonsl axis is danoted bx c, and the directicn
of the displacements sre indicated #t intarvals of 10°. The elastic
displacemsnts were calculated using ey. (2). The effect of cubic
anisotropy in the slastic comstants of M on tha long renge displacemants
is shown by plotting the displacements based on substituting average
isotropic slastic Creen function which ie idenmticsl to results deaveloped by
Keating and Goland {#]. All of our rvesults clearly demonstrate that the
long range fisld does not exhibit spherical symmstry.

WTRONCE W oEnA === Wotader e

10 s ”"” n .0 ” oo w0y

PIC.4. Experimental scattering along
4 lins in reciprocal space

connecting pointe 1 and 2 F16.5. Locus of elastic displacemants
(see insert) as compared with ) of conatant magnitude for W in
theorstical calculations from — R,

2 ané 3-force wodels for ¥ in
W, in shselute unite.

In Fig. 6, the mxparimental 2WC values for N in Ts, wp to 1.8 at X
¥, obtained by Metsger and Trautmann [3], ara plotted and comparsd with the
valuss predicted by the 2-force and 3J-force wodels of Table I. The dipole
tensor for W in Ta is taken from refersnce [9) and the seventh neighbor
forcs constant metrix for Ta, from rafersnce L10]. PFigure 6 sbows that the
S-force wodal fite the expsrimental dats very closely vhereas the 2-force
modsel is inconsistent with the data. Experimental data beyond the (660)
reflection was mot used in tbe fitting procedure since the changs in the
maan squers thermal displecemants of Ta atoms around & N defect affect the
experimental data sigaificantly st thase large B values {11,3). At this
peint, tha thermal paramsters are not svailsble For the extended
calculstions. Tha magnitude of the core displscemsnts predicted by the
3=force model sre wormally larger than that predicted by the 2-force wodsl,
as in the case of W in M.

Figure 7 is & polar plot of the locus of the elastic displacemsnts
far ewsy from the defect, of constant magnitude, for ¥ in Ta, This hae the
sams non-spharisal appearance ss for M in Wb, bovever, st 100A (along c)
the dh:pl.aa-ns for M fn W is 1.5 x 10 A while for ¥ in Te it is only
0.537 x 10 "A.

{3)
(=



192

so- M la o

- THOBEN W Tt it S il
t it e

-t o R RO BOLUt R

~L. e e 18

FIG.6. Experisental sttenuation factor L
data, {#) [Bat. 3] 2M/C, plotted |
againet h.,” and compared with '
calculations for the Z-force and
3-force models, for K in Ta. hl' - “
h, and h, are the Miller Indices
oi the B%uu reflection.

PIG.?. Locus of elastic displacements
of constant magnituda for ¥ in
Ta.

COMCLUSIONS

In conclusion, wa went to stress the follewinag points:

(i) Attenustion factor and diffuse scattering messurements have baen
used to quantitatively determine the atomic displacemsnts at tha cors ol an
iaterstitial impurity. This has been shown convincingly for the systems, K
in ™ ond N in Ta, in this paper.

(ii) The Green function - Kanzaki force mathod sesms to be
appropriate for theorstically modaling ths core as well as the long ranga
displacement field abowt en interstitial dafect in a bec lattica.

(iii) Both the two force and thras force Kansaki models provide the
same long range displacamant field. As a result, they predict the same
smount of average lattics expansion, Huang scattering and internal
friction. To distinghish betwesn models giving diffarent core
displacemants it is necessary to msasure the 317 weak diffuse scattering
betwean reflections and (or} small oscillations or trends in the
attanuation factor. :

Tuis ressarch was sponsorad by Office of Naval Ressarch Grant Fo.
mWO01A-83-K-0750, POOODS.
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The morphology of planar vacancy aggregates in copper

E J Savinot and R C Perrin
Theoretical Physics Division. Building %9, AERE. Harwell. Oxlordshiie. Uk

Reccived 13 May 1974

Abstract. The morphology of small planar aggregates of vacancies in copper has been investi-
gated by computer simulation. Clusters of as few as six vacancies have been found 10 collapse
to form loops or stacking fault tetrahedra. This is consisient with the theory that vacknes
loops are nucleated directly in individual neutron cascades. Larger triangular clusicis
collapee and dissociate to form stacking fault tetrehedrn by the Sitcox Hirsch mechanism
Hexagonal clusters show a more complex rhombohedral relaxation with extensive dis
sociation of the Frank dislocationon {1 11] planes. This may explamn the fine structure obscrved
recently in electron microscope images of vacancy loops in copper

1. Introdoction

Vacancy clusters formed after ion bombardment or neutron ircadiation of copper are
generally thought to be in the form of Frank loops. The characteristic black white
electron microscope images obtained from these defects under dynamical two beam
conditions show some fine structure and this has led Wilson and Hirsch (1972) and
Haussermann (1972) to suggest that the Frank dislocation has to some extent dissociated
to form a Shockley partial and a stair rod dislocation by a reaction of the type

1113 = 4[112] + 4110,

However, this interpretation of the experimental images is purely qualitative since no
calculations have yet been performed of the images to be expected from such a dis-
sociated defect. Also, it is possible for complicated images to arise from simple edge
loops under certaih imaging conditions. Nevertheless, as has been pointed out by
Eyre (1973) in a recent review, the concept of the loops undergoing partial dissociation
may cxplain their unexpected stability in post irradietion annealing experiments at
temperatures as high aa 773 K (Makin and Manthorpe 1963, Barry and Eyre 1970) at
which they should have lifetimes of the order of a second or less.

Since the calculation of the elastic dispiacement field of the dissociated loop which
would reproduce the observed images is extremely difficult a more profitable approach
would seem to be that of using the technique of computer simulation 0 obtain the
atomic structure of the vacancy Frank loop and then determining the relevant electron
microscope images. This process has recently been successfully applied to the straight
Shockley dislocation by Perrin and Savino (1973) who calculated weak beam clectron
microscope images of the dissociated edge dislocation using the atomic coordinates

t Present address: Comision Nacional de Energia Atomica, Depariamentio de Metalurgia. Argenting

1889



1890 E J Savino and R C Perrin

calculated by Norgett et al (1972). A comparison of these images with the cxperimental
observations of Stobbs and Sworn (1972) and Cockayne et al ( 1972) cnabled Perrin and
Savino to predict that the stacking fault energy was at least 70 erg cm 2. A feature of the
calculations of Norgett et al was the introduction of the rapidly convergent conjugaty
gradients method for minimization, with a consequent reduction in the computation time
required to obtain the equilibrium defect configuration. This has made it feasible to
simulate regions of crystal large enough to study the morphology of small loops. We have.
therefore, as a first step caiculated the atomic configuration of small hexagonal and
triangular vacancy loops in copper.

2. Simalation model

Since we were concerned with planar vacancy aggregates on {11} planes the simulated
region of copper crystal was chosen to be a rectangular prism with a {111} face. The
otber faces of the prism were bounded by appropriate {112} and {110} planes. The
dimensions of this region in which the atoms were free to move was generally taken to
be 37(117) planes, 26 (111) planes and 33 (110) planes except in the case of the triangular
cluster of 36 vacancics when, because of the pattern of relaxation. the corresponding
pumbers of planes were 50 by 22 by 28. Thus the free region always consisted of over
5000 atoms. To stabilize this assembly and to enable all the interactions of the free atoms
to be evaluated this region was surrounded by a boundary region of fixed atoms. the
width of which was equal to the range of the potential.

The atoms were arranged initially on a perfect fcc lattice with the obscrved copper
lattice spacing. The vacancy defect was then created by removing the appropriate
atoms from the central (111) plane, except that the large triangular loop was placed on the
(111) plane at one third of the distance from the boundary in anticipation of the expected
tetrahedral relaxation. The boundary atoms were normally constrained to remain in
their perfect lattice positions but for the hexagonal aggregate they were given the elastic
displacements due to a circular loop of radius equal to the side of the hexagon. These dis-
placements which were appropriate to an anisotropic medium were evaluated in the
manner described by Meissner et al (1973).

The atoms were assumed to interact via the potential function constructed by Englert
et al (1970) to fit certain copper parameters including a stacking fault energy of 70 erg
cm - 2. This potential has been successfully used in calculations related to straight dislo-
cations in copper by Norgett et al (1972) and Perrin et al (1972). The equilibrium con-
figuration of the defect was then obtained by minimizing the total energy of the crystal
using the method of conjugate gradients (Fletcher and Recves 1964). Since this method
requires the evaluation of first derivatives of the function to be minimized (ie forces) it is
designed to guarantee convergence to the minimum of a quadratic function in N steps
where N is the number of variables. In practice we found that even with over 15000
variables we obtained the energy minimum to the required accuracy with about 150
function evaluations.

3. Resuits

3.1.Collapse of planar clusters
Before examining in detail the morphology of the largest triangular and hexagonal loops

"
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which we can simulate within our mode! we have determined the minimum size of pianar
cluster which can be considered to have collapsed into & loop. To do this we have removed
sucosssively increasing sumbers of vacuncies in the most compact configurations from
the osntral (111) plane of the crystal and calculated the reiaxation of the adjadent (111)
plapes towards this cluster. In table 1 we display the separation of the (111) planes
on either side of the dofect plane as & function of the aumber of vacancics. The separation

Table 1. Separation of (111) planes on either side of & planar vacancy cluster as 8 function of
the pumber of vacancies

No of vacancies Shape Separation
1 —_ 1-136
2 —_ 1088
3 Triangle 1-109
4 Rhombus oml
6 Triangle 0354
1 Hexagon 0614
10 Triangle 0-592
36 Triangle 03586
” Hexagon 0-5%

has been calculated at the centre of the defect by interpolating between the coordinates
of surrounding atoms where necessary. For a fully collapsed perfect loop this separation
should be the (111) interplanar spacing of 0:577a (a is the copper lattice parameter) but
the presence of the intrinsic fault prevents collapse to this value. The separation between
(111) planes across an infinite stacking fault has been found by Englert ez al using the same
interatomic potential to be 0-59a. Thus from table 1 we see that a triangular cluster of six
vacancies can be considered to have totally collapsed, the resulting configuration beingan
embryonic stacking fauit tetrabedron which can presumably then grow, in the presence
of an excess vacancy concentration, by the de Jong-Koehler mechanism (de Jong and
Koehler 1963).

An estimate of the number of vacancies at which a (111) platelet should collapse to a
Fraok loop can be made using elasticity theory and surface energy arguments (sce, for
exampie, Sigler and Kuhimann-Wilsdorf 1966, Bullough and Perrin 1969) and indicate
that in copper such a collapse should occur at about five vacancies. While such calcula-
tions cannot be accurate for clusters of this size it is encouraging that they are in agree-
ment with the simulation resuits.

Johnson (1967) bas considered the collapee of vacancy clusters in nickel using an
interatomic potentia! similar to the Englert copper potential but of shorter range. He
studied clusters of up to 30 vacancies and altbough complete collapse to & loop was not
achicved cxtrapolation of the results indicated that collapse should occur at about 180
vacancics. However, Johnson's calculations also show that the elastic energies of perfect
and Fraok loops arc lower than the energy of (111) platclets with more than about 16
vecancies. It is not clear exactly why Jobnson's platelets do not coliapee at this point
but do in the present caloulations. The longer range of the Englert potential, which
umumvemmbmmmwﬂdwmumem;mmx
differonce in the calculstions. We should perbaps stress that we have considered only
vacancy clusters which have already aggregated on a particular (111) plane and have not

=t
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studied the relative stabilities of compact three dimensional clusters (voids) and loops. as
has been done by Johnson. These calculations gave the void as the stable configuration
for small numbers of vacancies but did not take account of the fact that a significant
part of the vacancy formation encrgy comes from terms which depend on the volume.
Including this in the calculations would obviously increasc the likelihood of the loop
being the stable fofm.

The fact that relatively small numbers of vacancies do appear to collapse to a jioop or
stacking fault tetrahedron is of great significance to the nucleation of such defects in an
irradiation environment. In particular, it is highly likely that vacancy loops would be
formed by individual neutron cascades since calculations of displacement cascades (see,
for example, Beeler 1966) show that they contain compact vacancy clusters of this size.

3.2. Triangular clusters

A planar cluster in the form of an equilateral triangle with (1 10) sides of approximately
20 A was formed by removing 36 atoms from a (111) plane. The crystal was then allowed
to relax to its equilibrium configuration under the influcnce of the interatomic potential
and a complete collapse of the vacancy cluster was observed. This was achieved by the
atoms inside the tetrahedron defined by the {111} planes which pass through the sides

Figere 1. Atomic configuration of s stacking fault tetrahodron. (g} Orientation of tetrahedron
relative 10 cube axes. (b} Expanded view of tetrabedron. (c) Atomsic coufiguration of the tetrs-
bedron faces. The large circles correspond to atoms outside the tetrahedron, the smaller to
atoms in the faces. Unisulting can be seen at poiots marked U.
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of the triangle of vacancies dropping down to eliminate the vacancy cluster. This motion
which creates a tetrahedron of stacking fault can also be thought of as the passage of
#(112) Shockiey partials across three faces of the tetrahedron. leaving {1105 stair rod
dislocations at the edges—the Silcox- Hirsch (1959) mechanism. Such slacking fault
tetrabodra have been observed in copper after electron irradiation {Ipohorski and
Spring 1970).

Figure 1(a)shows schematically the tetrahedron resulting fromthetrianglc of vacancics
ABC on a {111} plane. Figure i(c) displays the atomic structure of the stacking faull
across the four faces of tetrahedron expanded as in figure 1(b). The centres of the circles
ropresent the positions of the atoms on the {111} planes on either side of the stacking
fault. The small circles are on the inside and the large circles are on the {111 | plancs
bounding the tetrahedron on the outside. It can be seen from figure 1(c) that a certain
degree of unfaulting has taken place, particularly from one corner of cach face markcd
U in the figure. This is perhaps more clearly seen in figure 2 which shows the plancs

Noiy—- -~

Figure 2. Atomic configuration of fae ABC of the tetrabedeon showing unfaulling a1 A.
partial unfaulting at B and complete faulting at €.

bounding the face ABC in full. Clearly, the atom at C is in the almost perfectly faulted
position while the atom at A has unfaulted to near its perfect lattice position. {Compare
the relative positions of the atoms with the perfect lattice in the corner of the figure.)
The atom at B is in an intermediate position midway between the faulted snd unfaulted
positions. The other three faces of the tetrabedron all show exacily the same features.
This apparent unfaulting is caused by distortion of the atom pianes outside the tetra-
bedron whercas the passage of a Shockiey partial would correspond to movement of
atoms o the {111} planes which have vacancies in them. It seems likely that this unfaulting
is a dislocation core effect associated with the changed coordination of the atoms in the
edges and corners of the tetrahedron and may not be so significant for larger tetrahedra.
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3.3. Hexagonal Frank loops

3.3.1. Morphology. We have created vacancy Frank ioops in the form of hexagons with
¢110) sides and diameters of 18 and 23 A by removing 37 and 61 atoms respectively
from the central (111) plane of the crystal. In contrast to the triangular loop there was
considerable relaxation on both sides of the loop plane. As the relaxation of the larger loop
might be constrained by the boundary we shall describe only the smaller one in detail
although there was no qualitative difference between them.

The principal relaxations were found to take place on the {111} planes which pass
through the edges of the bexagonal toop, the relaxation being on opposite sides of the
loop plane for alternate edges of the hexagon. The intersection of these plancs defincs 2
rhomboid enclosing the original loop, as shown in figure 3{a). Since the most likely mode
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Figure 3. (o) Rbomboid definad by the {111} planes which pass through the edges ofa(1lh

hexagonal loop. (b) Contour plot of the relative displacement of stoms in the {112} direction
AB across the face ACBD. (¢} The displacements of figure 3ib) plotted along AB. (All distances
arc expressed in units of the lattie parareter.)

of dissociation of the Frank dislocation hounding the loop is to split into a stair rod
and a $¢112) Shockley partial dislocation we have plotted in figure 3(b) contours of the
displacement in the (112} direction BA of atoms on the inside of the face ACBD rcla-
tive to the atoms in the (111) plane just outside. The complete passage ofa 1112} Shockley
partial causes a relative displacement of 0-41a. 0 the observed relaxations can be thought
of as the incomplete passage of a Shockicy partial across the face ACBD, with the 0-2
contour as the centre of a rather wide Shockley dislocation. This extreme width of the
partial dislocation has been found previously in simulations of the straight dislocation
in copper (Perrin ef a! 1972, Norgett et al 1973). It can be clearly soen in figure 3(c) where
the {112 dispiacement along the line AB bas been plotted. The displacement can be
scen to approach the full Shockley partial value of 0-41a at the loop L. On the other
side of the loop the displacement of 014a corresponds to the projection of the H1N0)
stair rod dislocation on to the (112) direction. The apparent extension of the sessile
stair rod towards A is caused by the Shockley partial dislocations on the intersecting

M
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(111) planes through ALC and AL'D in figure 3{a). The displacements associated with
these dislocations show up on the face ALL’ because of the small number of atoms in this
region.

3.3.2. Interaction with point defects. A simple estimate of the energy of interaction between
this loop configuration and point defects can be obtained by treating the interstitial as a

spherical inclusion or the vacancy as a centre of dilatation in an isotropic medium. The
interaction energy at a point x is then given by

E(x) = —$na’6P,(x)

where g is the lattice parameter, & the strength of the inclusion or dilatation and P(x}
s the stress field of the loop. The strength & for the interstitial has been given by Meissner
et al (1973) as 0067 and for the vacancy by Bullough and Hardy {1968) as 0-022. The
P, bave been evaluated from the atomic coordinates and contours of isointeraction
encrgies have been computed. These are displayed in figure 4 for a (110) section through
the centre of the loop. The contour values are for the interstitial interaction with the
vacancy value given in brackets. The lines AB, BC, CD trace the intersection of the pro-
jection plane with the {111} pianes which pass through the loop edges. It can be clearly
scen that interstitials are strongly attracted to regions such as BC where these {111}
planes intersect and also to the region immediately above and below the loops. Vacancies
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loop. The contour values, in eV, are for the interstitial interaction with the vacancy value in
brackets.
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are only attracted towards the loop in the loop plane which should promote the growth
of the loop configuration rather than any three dimensional form. Figure 5 shows the
equivalent contours for the interaction of point defects with the anisotropic elastic
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Figure &. Isoenergy contours for the interaction of point defects with the anisotropic clastic
displacement feld around a Gircular vacancy loop. The contour valucs, in eV, are for the
interstitial interaction with the vacancy value _in brackets.
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displacement field around a circular vacancy loop. A comparison of figures 4 and 5
demonstrates the copsiderable change in loop morpbology which exists between the
atomic and elastic models.

4. Conclusions

Using the interatomic potential of Englert et al to define the interaction between atoms,
ithuheemhownbyoomputeuimuhﬁonthuinﬁopperu 11) planar vacancy aggregates
ofuiwutixnamiumdilyeoﬂapntomubhoonﬁgmtﬁms&memy
dustersofthiniumlormedinthemdesproduudhy aeutron irradiation it gives
support to the current theory that vacancy loops are nucleated in individual neutron
spiker. _
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A triangular cluster of vacancies on a (111) plane relaxes via the Silcox-Hirsch mecha-
nism to become a stacking fault tetrahedron bounded by stair rod dislocations.

A bexagonal vacancy loop shows considerable relaxation on the (111} planes which
pass through the edges of theloop. The intersection of these planes defines a2 rthomboid.
The displacements can be thought of as the dissociation of the Frank dislocations into
sessile stair rod dislocations and Shockley partials which extend incompletely over the
faces of the rhomboid. This dissociation may explain the unsxpected stability of vacancy
loops in copper on annealing and be responsible for the fine structure observed in elec-
tron microscope images of such loops.
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The influence of local volume forces oa surface relaxation of pure
metals and alloys: spplications to Ni, Al and Ni, Al
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Department of Materials Engineering, 202 Holden Hall, Blacksburg,
Virginia 24061, U.S.A.

ABSTRACT

We present an analysis of the relative influence of the interatomic potential,
lattice structure and defect symmetry on the calculated and measured distortion

examined by comparing pure metals with ordered slloys. A Green function
method for surface relaxation is presented and used for the above anslysis as wel
as for studying the influence of different surface symmetries. Examples based on
computer simulation of Ni, Al and Ni,Al for some surface orientations are

presented.

§1. INnooucTION
A:mmmmeﬁmeuu:mwmnhmchwm-wy
of intermetallic alloys, with special emphasis on the Ni, Al system, mainly NiA] and
Ni,Al. The free-surface distortion of some of those alloys has been measured by
Davis and Noonan (1985), Sondericker, Jona, Moruzzi and Marcus (1985) and
Sondericker, Jona and Marcus (1986). These authors report for the (110) surface of
NiAl perpendicular distortions which oacillate in value as a function of depth and a
relatively large outwards displacement of the Al atoms at the free surface (0-22A).
For the (100) surface of Ni,Al a slight buckling is found with a small displacement
outwards of the Al atoms (0-02+0-03A) together with a contraction of the first
interplanar distance. Oacillations in the perpendicular atomic relaxations were also
observed in pure Al and Ni surfaces by Sondericker e al. (1986), Nielsen, Anderson,
Petersen and Adams (1982), Anderson, Niclsen, Petersen and Adams (1984), Noonan
and Davis (1984) and Adams, Petersen and Sorensen (1985). On the theoretical side,
sbove experimental results have been reproduced by the computer simulation
calculations of Chen, Voter and Srolovitz (1986), Foiles and Daw (1987), Farkas,
Bavino, Chidamabaram, Voter, Chen and Srolovity (1987). Jona (1978) and Gupta
(1981) showed that the above contraction of the first interplanar distance can be
feproduced by those calculations if a many-body interaction potential is adopted. In
the above mentioned computer simulations the energy of an ensemble of N atoms is
sxprossod as _ .
' Ehl =l rt U.. (I)
whare U, is a pair-interaction term and U depends on the local density at the stom
tAdjunct Professor Virginia Polytechnic Institute and State University, Materials En-

Department, Blacksburg, Virginia, U.S.A. On loave from Comision Nacional de
4 Atomica, Departamento de Materiales, Buenos Aires, Argentina.
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location. This expression (1} is the same as that used in the ‘embedded atom’ model of
Daw and Baskes (1984), in the ‘empirical’ model of Finnis and Sinclair (1984) and in
the ‘glue’ model of Ercolessi, Parinello and Tosatti (1986a) and Ercolessi, Tosatti and
Parinello (1986 b). We shall refer hereafter to all of these potentials as "tocal volume
dependent’. Ercolessi er al. (19862, 1986b), successfully calculated the measured
surface reconstruction in Au, providing a quantitative approach to Heine and Marks’
(1982) explanation of surface reconstruction as resulting from the opposition of two
types of forces: a pair-wise repulsion between the atoms and a multi-atom electron-
gas attraction. Therefore, the approximation of eqn. (1) for the energy has proved
quite successful in the numerical simulation of surface properties both for alloys and
for pure metals. Those calculations do not invelve any change in the energy function
at the surface except for the absence of atoms in one-half space. Also, in general, that
function is adjusted only to bulk properties of the material. The purpose of this paper
is to examine the relative influence of pair and local volume-dependent terms in the
energy on the different modes of surface relaxation, namely static oscillations.
buckling, etc. We expect the above-mentioned opposite character of the two kinds of
forces not only to determine the surface restructuring but also to affect relaxation. We
shall emphasize the different static distortions to be expected in alloys with respect to
those in pure metals. In that sense, we will advance the basis of a lattice model for the
static relaxation of the surface arising from force sources. This model extends the
previous ones of Gupta (1981), Jona (1978), and Allan and Lannoo (1973, 1976) o0
the case of a lattice with more than one atom per unit cell. Some computer simulation
resuits for the free surface of Ni, Al and NijAl are reported. These results are based
on the interatomic potentials of Voter and Chen (1987) developed within the spirit of
Daw and Baskes (1984) ‘embedded-atom’ model. The calculated relaxations, together
with those previously reported in the literature for the same systems, are discussed on
the basis of the lattice model for the static distortion developed below. Therefore, we
shall present a consistent analysis of the relative influence of the interetomic potential,
lattice structure and defect symmetry on the calculated and measured distortion for
the alloy and pure metal surfaces.

§2. LATTICE DISTORTION AT THE CRYSTAL SURFACE

For the case of point defects, Flinn and Maradudin (1962) and Tewary (1973)
developed a Green function approach for the calculation of the iattice relaxation. An
equivalent but simplified approach was reported for the atomic relaxation at the
surface of simple metals by Allan ef al. (1973; 1976) and by Landman, Hill and
Mostoller (1980). A more detailed approach, which takes into account the full lattice
and defect symmetry and is based on the validity of a general interatomic-potential
law, can be developed for the surface distortions even in the case of alloys. The
physical and mathematical basis of this approach is neccssary for the understanding
of the general pattern of relaxation behind the computer simulation results. In this
section we present the basic concepts of defect-source force and lattice response.

For small static displacements u(L) of an atom L or a cluster of atoms at the
lattice site L of an enscmbie, the energy can be expanded as a function of the

displacements as
‘ E=E?, —; KM(L)-uf{L)+1/2 Z @L. LudLyufL), 2)
! L.l

where E2, is the energy of the ensemble when every atom is located at the perfect
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lattice sites (for the free surface it corresponds to the energy of the unrelaxed half
space). KP(L) = — EQ,/du,(L) are the forces at the unrelaxed lattice site and ¢*(L, L)
is the force constant matrix for the defect lattice:

o*L.L)y=@(L, L)+ {(L,L). 3

Ineqn. (3) @, (L, L)y=0E,,/ou(L)0ufL’) is the force-constant matrix for the perfect
lattice and { includes the change in force constants caused by the defect. These
changes arise from the loss of atomic interactions and to the eventual changes in
the interaction constants. { also may contain terms of order higher than second
in the expansion of the energy, that is, anharmonic distortion terms. By analogy
to the approach of Kanzaki (1957) to the equivalent problem for the point defect, the
Kanzaki forces K are defined to contain the effect of that change in the force
constants: :

K(L)=K%L)-{(L, L) w(L). : “

The lattice relaxetion cun be obtaincd by imposing a condition of minima 1o the
energy in eqn. (2). It results in '

u(L)=G*(L, L')K%L") (5

where the Green function G* has been defined as the inverse of the defect-lattice
force-constant matrix, that is, G*=¢*"! Recently, Garcia Moliner, Platero and
Velasco (1984), Garcia Moliner and Velasco (1986) and Levi, Benedek, Miglio,
Platero, Velasco and Garcia Moliner (1984) have developed a general procedure for
calculating the dynamic Green function for modelling surface and interphase
properties. The above-defined lattice static Green function corresponds to the
zero-frequency limit of their dynamic one. The only retevant approximation in
their calculation is that the surface-induced perturbation of the force-constant matrix
is taken as refatively short range. Hence, within this approach, solving eqn. (5)
constitutes an alternative method for calculating surfuce atomic distortion to the
computer simulation used hereafier.
_ For the case of an alloy, a set of N, atoms is located at every lattice site L of a
Bravais lattice. The atomic positions associated with site L are thus denoted by the
pair of indices (/,k). The forces on the atoms are defined by the corresponding
derivatives of the energy in eqn. (2). Those forces and the atomic displacements are
related to those in eqns. (4) and (5) by the equations

w(l, k)= w(L)+ Aw(l, k), _ (6a)
Ko, k) = KO(L) + AK(/, k), (6b)

where the first term of the right-hand side is the symmetric, ‘scoustic’ mode of Farkas
et al. (1987):

wWl)=N! ; wl k), K°(L)=N;! ; K°(/, k).
=i, Ny ke[ Ny

The second term is the relative, antisymmetric or *optical’ mode for each atom at the
cell. :

Minimizing the energy with respect to the atomic displacements yields the system

<3
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of coupled equations:
N, - KoL) =L, Lyuf L)+ S* L IK) Aul k), (7a)
AKO(I kY= KUk, TKDAul &)+ OF Uk, L)L), (7h)
where

QUL L)=Y @*Uk. 1K),
k&

OLN(L, TK) = O Pk, L) =T @* (k. IK),
k

QX (lk, Lk =@*(lk, TK")

we defect lattice force constants ¢* are defined like those in eqn. (3) but the
Aerivatives are taken with respect to the relative atomic displacements within
~ontrary to eqn. (5) these equations include the dispersive response of the

jatuce «: jefined by Kunin (1982, 1983).

§3. EFFECT OF LOCAL-VOLUME DEPENDENT INTERATOMIC POTENTIAL
In §3 we summarize some general information about the local volume-dependent
potentials. In eqn. (1) for the energy it is assumed that the pair part can be expanded
as a sum over the atom pairs at the ensemble:

Up= 1/2 ; V(Ruu') (8
MM MM

where Ry is the distance between M and M’ atoms (in §3 M = (1, k). Also the local-
volume-dependent part can be expanded as a simple sum over the atoms:

Un =;f m(Pae)s ) v)]

where p,, corresponds to the local density at the location of the atom M. This density
is evaluated as a sum of functions dependent on the distance between the atom M and
its neighbours:

Pu™ }: @un'(Ruene)- (10)
MEM

Therefore, its value (10) is scaled with the number of neighbours per shell and the
function @, depends on the type of neighbour M’ but not on the atom M where the
density is evaluated. As done by Ercolessi et al. (19862, 1986b) in the case of only
first-neighbour interaction @ may be normalized 10 unity at the neighbour distance.

The source forces K°® (Kanzaki forces for the unrelaxed lattice) in eqn. (5) can be
evaluated for the free-surface defect. Those are obtained from the total energy of the
unrelaxed semi-infinite ensemble of atoms at the perfect lattice location ending at &
plane free surface. By inserting eqns. (8) and (9) into (1) and deriving the energy with
respect to the atom coordinances, the force on atom M is

Ko(M)= — uzu [(V+o'uSfut @ xS s R NRLLY, (n

where V' and @' stand for &V, ¢)/@Rus. and £ for 8f/3p. In the bulk, lattice

et
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symmetry imposes the cancellation of those forces for a finite-range interatomic
potential. Even in the perfect latlice, equilibrium results by the cancellation between
opposed pair and volume-dependent forces. At the surfuce. some atoms miss
neighbour atomic interactions. If M in cqn. (11) stands for one of those atoms, the
lack of the corresponding pair in the direction normal to the surface determines a net
force due to non-cancellation of the first term on the right-hand side of (11). Also
there is 8 change in the iocal density p,,. This, in turn, determines the existence of a
force on the surface atoms M arising from the unbalanced last two terms of the right-
hand side of eqn. (1 1). However, even those atoms M’ which do not jose interactions,
suffer a force if they interact with surface atoms M thal have reduced their local
density by being at the surface. Therefore, within this local-volume model, the
competition between volume and pair forces is built into the source of distortion at
the surface. As mentioned before, the change in eqn. (3) in the force-constant matrix
induced by the defect arises from the loss of atomic interactions and Lo eventual
changes in the inleraction constants. The latter are included within the local volume-
dependent potential model, contrary to the case where there is only & pair-wisc atomic
interaction which cannot consistently model a change in interaction constants at
the defect core unless imposed ad hoc, Therefore. in the local-volume potentials the
charge redistribution at the surface is included in the model within the spirit of the
description of Heine and Marks (1982) and Finnis and Heine (1974). This is an
important difference with the description provided by a pair-interaction model. In
addition, if the lattice is modelled as in equilibrium under soiely a pair potential the
forces (11) must cancel even at the surface. Surface relaxation in that case results from
the change in the force-constant matrix because of the loss of atomic interaction at the
surface and under the boundary condition of non-average crystal distortion. If a non-
equilibrium pair interaction is adopted with a Cauchy pressure applied over the lattice
(see Born and Huang (1966)) the source forces will be mainly determined by that
pressure. In the case of a positive pressure, like in Ni, Al and Ni,Al, those forces will
induce an average cxpansion of the first interlayer distances. in contradiction with the
experimental findings.

§4. Ni, Al AND Niy Al SURFACE RELAXATION CALCULATION

The local-volume-dependent interatomic potentials used for the calculations were
developed by Voter and Chen (1987). Those potentials fit exactly the lattice para-
meter, cohesive energy and bulk modulus of the pure metals Ni and Al; while they
provide an adequaic fitting to elastic constants and vacancy formation energy of
those metals and of Ni,Al. Also for that alloy the superlattice intrinsic stacking fault
(SISF), and the (100) and (111) antiphase boundary energics have been fitted together
with the lattice parameter and cohesive energy for that alloy and for NiAl. The
corresponding functions ¥, f and ¢, defined in eqns. (B) to (10) are plotted in fig. 1. In
- the plot for the pair part of the interactions and the density as a function of the
distance, the first-neighbour locations for Ni, Al. NiAl and Ni sAl are shown, It can he
clearly seen that at those distances, equilibrium is attained by a competition between
strong pair and volume-dependent interaction forces.

The relaxation in the surfuce region is calculated by means of u numerical
procedure based on DEVIL, the computer simulation program developed at Harwell
by Norgett, Perrin and Savino (1972). The program is based on a conjugate-gradient
method for finding the minimum of the energy (1} for a given enscmblc of gtoms.
DEVIL allows one 1o generate a lattice with up to six atoms per Bravais lattice sile.
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Interatomic potential functions for Ni, Al and Ni/Al alloys. Voter e af. (1987). Full and dotied
lines correspond to a sct of energy funclions related among themselves by the invanance
relations discussed by those authors.

The lattice coordinate axes are taken in accordance with the type of surface to be
simulated. Denoting by # the direction normal Lo the surface, periodic boundary
conditions are used in the directions perpendicular to 2. That is the location $ of an
atom M outside the relaxed region is uniquely rclated 10 an alom M?, within it, by the
translation

S(M)=S(M®) + mAx< +nAyy. (124)
where n and m are integers and Ax, Ay are the periodicity lengths. This implics for the
displacements:

(M) =1u{M®). (12h)
Therefore the free surface is determined by a simple square lattice in the xy planc

and is semi-infinite in the 7 direction. The conditions (12/4) mean thatl the square-
planar lattice cannot be distorted:

wM)i= T u(M)5=0 (13)
M=1.Nx

M=1,Ns

where N are the atoms located in the relaxed region. { If egn. (13) were not satished
the displacements in eqn. (12 #) would depend on n and min(12a).)

e
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§5. CATCULATION RESTTS

Chen. Voter and Srolovitz (1956, 1957), Foiles and 1% CRIST and Farkas o <o
(1987) have calcubaled some frec-surlice distortions lor Nt Al NiAL and Ny (AL by
using local volume-dependent interatomic potentials. For the sake of completeness
we shall briefly review their main results. For the alley NiALn contraction was fouind
for the (110} surface 50/50 NiAl wermination and for the (LY pure Nictermination
On the other side the (100) surface either with /50 NoAL or pure Nitermination
expanded. Also an expansion was predicted for the (111 )surface in thatalloy, Chen o+
ai. (1987) explain these results as a consequence of the reliative size of the Nioand Al
aloms. This determines Al to be under compression in Lhe alloys, while the Noaton
are under tension but to a smaller extent than the Al wloms ure compressed. Fhe
calcutations for Ni, Al generally show a1 small displacement of the first atomic layer
but always a rippling effect, with the Al mioms outwards with respect Lo the Ni atoms.
Finally, Furkas ¢r «f. (1987) show in their study of (111} planar defects in Ni Al
relaxations oscillatory in dircctions paralicl 1o the defect plane. Here, we shall repor
some simulations of the (100), (111) and {120) free surfuces of Ni. Al and Ni,AlL
These were done by allowing for the relaxation of more than 100 planes puralicl ta the
surface, Farkas ef /. (1987). The results will be analysed within the theory developed
in §2.

The (100), (111) and (120} frec-surface configurations of the pure metals and of
NijAlare shown in fig. 2. Arrows proportional 1o the Kanzaki forces at the unrcluncd
configuration and evaluated through eyn. (11) are plotted in fig. 2. For the pure
metals, those forces are perpendicular Lo the (100) and (111 surfaces. while they have
a shear component paraliel to the (120) surface. These shear Torces must sitthsly the
same equilibrium condition cqn. (13) as the atomic displacements. One can sce alao
that the perpendicular forces change sign as a function of the distance from the Sul-
face. While the existence of opposite signs in the shear forces is a conseguence ol the
surface symmetry. this change in the sign of the perpendiculitr lTorces results trom the
competition between the pair and (he Jocal volume-dependent part of the potential.
As discussed in §3 the existence of the surface ciuses some pair interactions plus
volume-dependent forces to remain unbalunced for the outmost external atoms, while
the change in the locai density of those same atoms determines density-dependent
forces to appear over deeper ones. For the alloy. even in the case of the (100) surface.
there is an internal straining of the lattice cell by small force moments. For the (16)
surface those moments are perpendicular to the surface and may give rise 1o rippling
For the (111) surface the internal straining and moments maty be either perpendicular
to the surfuce or within a 120" rotation symmetry sround o normal axis that contains
an Al atomn al the surface. For the (120) surface, the axis normal Lo the surlace is not
symmetry axis of the unit cell; the resulting strain by Kuanzaki forees is, therelore,
more complex. Those forces for the unrelaxed Jattice are shown schematicall yinfig. 2.

We summarize in the table the relaxation of the first layers calculated for the (100)
surface of (he pure metals and the two possible terminations of the Ni,Al alloy, as -
well as the predicted rippling. Thesc results agree with those obtained by Chen ef of.
(1986) with the same interatomic potential but using a somewhat different relaxation
procedure. Also Foiles and Daw (1987) calculated a similar relaxation patiern; they
report for the 50/50 termination of the alloy an outwards displaccment of the Al atom
of 0-06A, smaller than ours. Both calculated values are much larger than (he
experimental ones of Sondericker e af. (1985. 1986). In addition. the averape
contraction of the outer layers as calculated by us is ten times smaller thun the
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-(100) surface relaxation in units “per thousand' of interplanar separation. z Al-Ni is the
distance between Al and Ni atoms at the nth plane below the surface.

Ni,Al zAl-Ni zAl-Ni
Ad, .4y Ni Al Ni term (A) Ni/Al term (A
Ad, , —-10 -2 =0t — -3 009
Mx' 3 hand 5 - 8 —4 0'0 l - 4 —
M;‘4 SOT 1 30* - 201’ ﬂ'm

t Absolute value smaler than 0-5 per thousand.

measured one. This disagreement is also a consequence of the large outwards
-slaxation of the Al atoms predicted by the simulation; that is, the Ni atoms relax
ards by 005 A, agreeing with the experimental value (0-05£0-03 A).

. detailed set of results for the computer simulation of (111) planar defects in

1 has been reported by Farkas er al. (1987); those have been obtained by using
same interatomic potential and relaxation program as used here. In that work we
have slready separated the symmetric, ‘acoustic’, contribution to the atomic displace-
ments from the antisymmetric, ‘optical’, one. The first results mainly from the
relaxation of the body forces induced by the Kanzaki forces, while the second is
mainly due to the internal strain induced by the moments of those same forces over
the atomic cells. As shown in fig. 2, the body forces are in this case perpendicular to
the surface, and their main effect is to contract the first interlayer distance. The
moments induce a rippling of the outermoat layer, with the Al atoms moving
outwards with respect to the Ni atoms. Also, oscillations parallel to the free surface
appear. Those have the allowed symmetry of 120° around the Al atom and are mainly
located in the first and second layer below the surface, fig. 3. Therefore, the internal
strain results in a consistent outwards relaxation of the Al atoms at the outermost
layer while their nearest neighbour Ni atoms, move in the same atomic plane
_ outwards away from the Al atoms located at the second plane. The Ni atoms at

Fig. 3

Atomisdisplacements of the first two layers of a (111) surface in Ni,Al The arrows showing
the displacement are in units of lattice distance multiplied by 50.
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the second plane move by trying to compensate for the density change arising from
the large outwards displacement of the Al. The displacements are consistent with the
symmetry restrictions mentioned above,

As a final set of results we report in fig. 4 the atomic relaxation perpendicular to
the (120) surfaces. It can be seen that, except for the scale, the pure Ni and Al
relaxations are identical. For both terminations of the Ni,Al, by performing an
average over the Ni and Al atom relaxations st the same (120) plane, an oxcillatory
pattern appears very similar to the one in the pure metals. This pattern is, therefore, &
consequence of the surface symmetry. However, for the alloy, moments have a strong
effect and they impose, on the one hand, the relaxation of the Al atoms outwards with
respect to the Ni atoms at the outermost layer and, on the other, affect the pattern of
the average relaxations plotted here. For example we see in fig, 4 that, in the case of a
mixed Ni-Al termination, the plane interspace 2-3 contracts, while it expands in the

Fig. 4

Al

mmummmw(muﬁu. For the Ni,Al two
erminations ars shown. The full kine for Ni, Al corresponds to the avernge (120) plane
for the relative change in the distance of an atom in the

plane a 10 the displaced (x+ 1) plane.

Y
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pure metals. In the case of a pure Ni termination it expands even more. This difference
arises from the fact that, for the mixed termination case, the third atomic layer
contains Al atoms which tend to displace outwards with respect to that layer. The
opposite happens for the pure Ni termination, where now the Al atoms are located in
the second layer but none are in the first and third layers. In our calculation, Al scems
to impose severe internal strains. Another way of visualizing the importance of the
moments with respect to the body forces is by showing those strains in different
atomic tetrahedra in the surface. In fig. 3, we have joined with a dotted line the change
in the interplanar distances by the atoms 1,3,6,8 and that of 2,4,1',3' (see fig. 2 for the
numbering). It can be seen that the first of those tetrahedra, where Al is at the free
surface, is less strained than the second one, which contains an inside Al atom, Also,
displacements parallel to the surface, if allowed by symmetry, can be important in
relaxing internal moments, even for the pure metals, within those atomic cells. We
have found in our calculation displacements paraliel to the (120) surface of up to
0-015A in Ni, 0:038A in Al and 0-055A in Ni,Al For the pure metals the main

_ displacement takes place at the third layer, while for the alloy it does so at the
outermost layer.

§6. SUMMARY AND DISCUSSION

In this Paper we have studied some of the physical causes of the atomic
displacements from the perfect-lattice sites at the free surfaces of metals and alloys,
mainly pure Ni, Al, and Ni;Al In §2, we have established the basis of a force-
discontinuity model for calculating Jattice-surface relaxation. Within that model, the
displacement of the surface atoms from their perfect lattice positions was treated as
the response to a set of Kanzaki forces, as defined also in §2. In §3 some effects of
using local volume-dependent potentials for the calculations were described. Surface
distortions predicted by using those potentials were compared with those resulting
from a simple pair-interaction model. It was found that. for the systems studied, the
latter model is unable to reproduce even the measured contraction of some surfaces.
In §4, we have shown the influence of the surface and lattice symmetry on the possible
distortion modes of the free surface when restructuring is not aliowed. In §5, we
reported some computer simulations of the static configuration of free surfaces in Ni.
Al and Ni,Al. The interatomic potential deduced by Voter and Chen (1987) was used
for the calculations. Tt was shown there that very symmetric surfaces, like (100) and
(111) in f.c.c., allow only for perpendicular, however oscillatory, relaxation in the
pure metal. In addition, for the alloy, rippling was calculated, in agreement {(although
somewhat larger in value) with the experiments. For the (111) surface oscillatory
relaxations parallel to the surface were reported by Farkas et al. (1987). We
emphasized that this relaxation can be understood in the same manner as the rippling.
as arising from straining of the tetrahedra formed by the motive in NiyAl. Finally for
the (120) surface, which is less symmetric than those already mentioned, oscillatory
distortions parallel to the surface were found even for pure metals. Also the local
strain of different lattice cells located at the same distance from the (120) surface was
shown. We shall now discuss the consistency of the above results.

We shall first discuss the origin of the perpendicular relaxation at the surface and
the connection between the calculated outer-layer contraction and oscillations with
the assumptions of the model. We have shown in §3 that if a pair-interaction potential
is assumed for the calculation, a perpendicular expansion will be predicted for Ni, Al
and Ni,Al surfaces, in disagreement with the experimental fundings. On physical
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grounds, the surface contracts when the atoms at the surface, located at the perfect-
lattice site, try to regain their local bulk density, strongly depleted by the absence of
neighbours. However, this reiaxation implies that some inner atoms suffer an increase
in their local density because of the approach of those located at the immediate
neighbourhood of the surface. Thercfore, the system gains energy if those atoms
compensate the induced increment in their local density by relaxing outwards from
their inner neighbours. As the distortion is propagated into inner layers, this density-
compensation tendency changes sign and it is intrinsically oscillatory, hence the
oscillations in the relaxation. If the system is to be modelled by means of interatomic
forces, the above process seems to require the inclusion of many-body interactions in
the model. The quasi-analytical models of Allan and Lannoo (1973, 1976) and
Landman ef al. (1980) for the surface relaxation have also obtained oscillatory
variations of the interplanar distance as a function of the distance from the surface
and, in some cases, & contraction in the first of these distances. Within a simplified
description of those models, Alian and Lannoo (1973, 1976) included two quadratic
terms in the energy expansion as a function of the interplane -Separation, one
proportional to the product of neighbour interplanar distances (ad,, ., d,. taez)
and a second quadratic in those distances (8(d, , . ,)%; a, #>0). it is easy 10 show that
for a first-neighbour pair-interaction potential only this last term will appear; while
for & longer-range one the sign of a in the first term of that energy expansion will be
determined by the curvature of the potential at neighbours beyond the first. If only
one of the above terms appears in the energy expansion, or they are of opposite sign,
no oscillations in the relaxation will be predicted by those simplified models.

With respect to the influence of the surface symmetry and lattice structure on the
relaxation; we found, as said above, for the most symmetric surfaces, like (100) or
(111), displacements only in the direction perpendicular to the surface plane. For less
symmetric surfaces, (120), parallel displacements are also obtained. Those must
satisfy the condition (13). Therefore the distortions are oscillatory and, generally, of
shear type. However, their calculated magnitude is not negligible. For the case of
alloys, the possibility of straining the alloy cell adds new degrees of freedom to those
available for relaxation at the same orientation of the free surface. We have seen that,
as a consequence of that strain, rippling appears at the surface, with the Al atoms
moving outwards from the Ni whenever preseat at the outer plane of the Ni sAl alloy.
Also oxcillatory local-density changes sre found, even for high-symmetry surfaces,
like the (111). Their appearance is consistent with the existence of rippling at the outer
atomic layer. The internal strain of each atomic cell in the alioy depends on the cell
location with respect to the surface and that of the Al atom. In the (120) surface, we
have obtained a larger strain for those cells with an inner Al than for those where Al is
at the outer atomic layer. We can describe the effect of surface straining by the Al,
including the rippling, as the surface relaxing internal lattice strains or, equivalently,
as & surface-induced distortion in the electron density which, in turn, results in an
atomic distortion. Within the inherently empirical character of the interatomic
potentials, the surface distortion can be taken as a potential fitting parameter, The
fitting can be obtained through eqn. (7), where the atomic displacements are taken as
the measured ones. This fitting will mainly affect first sind second derivatives of the
interaction and it will give information about internal straining at the unit cell. This
kindofinfomaﬁonhmmﬂlyauihﬂeinthepropuﬁumdforﬂttingthe
interatomic potentials, except when the phonon optical modes are fitted.

We conclude that, in spite of the considerable success attained by using simple pair
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potentials for the calculation of the distortion arising from lattice defects, for the case
of free surface those potentials are not only unable to reproduce some experimental
results but, in addition, do not seem to contain some of the physical features relevant
to the surface distortion. The main limitation is that the competition in a crystal
between the pair atomic-interaction forces and multi-atom forces cannot be neglec-
ted. For the free surface, which is a large topological discontinuity, not only
restructuring, as discussed by Heine and Marks (1982), but also its relaxation scems
to be determined by that competition. We have tried in this paper to show the validity
of that assessment. We have also stressed the effect of surface symmetry and lattice
structure on the relaxation.

As a final point in the discussion we want to refer to our result that, for an alloy,
the dispersive character of the lattice and its influence on the relaxation cannot be
noglected, even in the elastic limit. The internal straining of the atomic cell seems to be
sn important mechanism of encrgy relaxation. This will affect the atomic displace-
ments at the defect core and its interaction with other sources of distortion.
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Oscillatory relaxations in (111) planar defects in Ni, Al
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ABSTRACT

Computer simulation results are presented for various types of planar defect
occurring on the (111) plane of the intermetaliic compound Ni,Al. The relaxed
defect structures produce oscillations in the static displacements, both per-
pendicular and paralie to the boundary plane. This type of relaxation behaviour is
related to the fact that the ordered lattice contains more than one atom per lattice
site. Therefore, two different types of stitic distortion mode are found which, by
analogy with lattice vibration modes, are called acoustic and optical. For the
planar defects studied here, these two types of distortion mode were separaled and
it was found that the optical distortion mode is of similar nature in all of them. The
acoustic mode is similar to that found in pure Ni and Al.

§1. INTRODUCTION

The present work is a detailed study of the static relaxation behaviour of {1
planar defects of Ni, Al. Ni, Al was chosen because of recent interest in the nature of
planar defects in this alloy (Liu, White and Horton 1985). This interest is attributable
to the material’s excellent high-temperature properties and propensity to intergranu-
lar fracture. Interatomic potentials which include a pair interaction plus a local
volume term, as proposed by Daw and Baskes (1984), have been developed for the
Ni-Al system by Voter and Chen (1987). Recent work using these potentials revealed
oscillatory behaviour in the surface static relaxation for a variety of free surfaces and
grain boundaries in pure metals and ordered alloys (Chen, Voter and Srolovitz 1986a,
1987a,¢). Savino and Farkas (1988) provided a framework for analysing this
oscillatory relaxation behaviour and they studied some free surfaces of Ni sAl The
aim of the present investigation is to examine the relaxation behaviour of a number of
internal interfaces on the (111) plane of Ni sAl {twin, stacking fault and antiphase
boundary interfaces) and the free (111) surface.

An important consideration in the study of planar defects in ordered structures is
that, for most orientations, atomic planes with the same index are different in nature.
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Atgmica, Argentina.

1Permanent address: Department of Materials Science and Engineering, University of
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This occurs for all surfaces containing even Miller indices (Farkas and Ran 1986). In
the present work, we restrict the simulations to defects in the (111) plane, where this
effect does not arise and the configuration of cach type of defect is unique.
Furthermore, (111) planar defects play a major role in the splitting of glide
dislocations, and they must be studied in relation to mechanical behaviour in these
alloys and as a necessary previous step to any dislocation study (Yamaguchi, Paidar,
Pope and Vitek 1982).

Since Ni, Al is an L1, (Cu,Au) alloy, it may be described as consisting of four
interpenetrating simple-cubic sublattices. One of these sublattices is occupied by Al
and hence. even in the perfect lattice, it is not equivalent to the other three. However,
each one of them may respond to an applied distortion in different ways. When such
distortions occur because of the presence of an internal defect, the response depends
on the defect symmetry. In cases where an entire atomic plane would translate
:niformly in a pure metal, internal distortion of the atomic planes in the ordered alioy

iy occur. Savino and Farkas (1988) described the defect-induced atomic displace-

s in lattices containing more than one atom per unit cell in terms of what they

acoustic and opticel components. The aet translation of the plane parallel to the
.. .«ar defect corresponds to an acoustical mode, while relative motion of the
sublattices corresponds to optical modes. In analysing our resuits below, we shall
apply that same distinction between modes of static distortion.

§ 2. THEORY AND CALCULATIONS

2.1. Numerical method

In simulating the interface structures, we employ the local-volume potentials for
the Ni-Al system described by Voter and Chen (1987). These potentials arc very
gimilar to the embedded-atom method of Daw and Baskes (1984), which has proved
successful in a variety of applications (Chen, Voter and Solovitz 1986a. b, 1987a,b.c.
Foiies and Daw 1987). The method is inherently many-bodied and divides the crystal
energy into two distinct terms: a local-density or volume term and a pairwise
interaction term. The local-density term circumvents the probiems associated with a
fixed-volume pair potential, in that major defects (e.g. free surfaces) can be treated in
spite of the severe change in density. The total energy of a homonuclear system of
atoms is given by

e=);£., {n

where the encrgy of atom {is

El"iEﬂN’u)*‘F[‘;ﬂl’(’u)]- ) (2)

Here r, is the scalar distance between atoms i and j, ¢{r) is the pairwise interaction (a
Morse function with cut-off; four parameters), p(r) is the density function (taken as
r[exp (- Br)+ S12exp (—2Br)]; onc parameter) and F is the embedding function,
which provides the many-body effect. F is chosen to give exact agreement with the
experimental lattice constant, cohesive energy and bulk modulus. A best fit 10 the
three elastic constants, the vacancy formation energy, and the diatomic bond length
and bond energy is found by searching in the five-parameter space (while requiring
E(fc.c.)<E(h.c.p.), E(bc.c.)) for Al and Ni. For an alloy system, eqn. (1) is modified
so that ¢(r), p(r) and F depend on atom type. A Ni-Al cross-potentiai (Morse) is
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determined by optimizing a fit to the latticc parameter and cohesive energy of NiAl
and Ni; Al as well as (o the elastic constants, stacking-fault energy and antiphase
boundary energies of Ni,Al and to estimates of its ordering energy and vacancy
formation energy. The resulting potential is capable of describing pure Ni, pure Al,
diatomic Ni,, diatomic Al;, and Niy Al (L1,).

The relaxed structure was obtained using a code based on the DEVIL code
developed by Norgett, Perrin and Savino (1972). This code 1s based on the conjugale-
gradient method and has been modified o allow for the local-volume term in the
potential. ForYhe calculation an atomic block is simulated by the atomic coordinates.
Periodic boundary conditions were employed in the plane of the interface. The model
contains at least 60 atomic planes parallel to the interface. The relative translation of
the two grains was determined such that a minimum in energy was obtained. This
implies that far from the interface the grains were strain frec.

§3. RESULTS
3.1, General results

Various (111) planar defects were simulated and their cnergies arc reported in the
table in some cases. Rigid-body displacements of atoms at one side of the fault with
respect to those at the other were observed. In the direction perpendicular to the (111)
plane in Ni;Al, the distortions consist of both acoustic and optical dispiacement
modes (Savino and Farkas 1988). For some defects (i.c. a twin boundary), only
optical distortion modes are observed in directions paratlel to the defect plane. In
these cases the Al atoms in the alloy were not displaced at all. Acoustic modes also
appear in directions paraliel to the (111} planc when the symmetry in these directions
is broken. It is important to note (see the table) that the cnergy calculated for the twin
boundary is indeed very small compared with the antiphase boundary energy and is

even smalier than that of the superlattice intrinsic stacking fault (these two latier
defects were part of the set considered in the development of the potentials).

Energies of various (111) planar defects,

Rigid-body
displacement Acoustic Optical Encrgy
Defect (units of @) mode muode (mJm %)
Surface, Ni, Al {111] All 1750
directions
Twin boundary, Ni, Al —0-006 [111] All 6-5
directions
Superiattice intrinsic -1+006 fet) All 13
stacking fault Ni, Alt dircctions
Antiphase boundary Ni; Al+ 0 2y All 142
directions
Twin boundary, Ni +0-0056 il 29
Twin boundary, Al +0-0163 8] - 40
Stacking fauit, Ni +0-006 It 59
Stacking fault, Al +0-02 11 - g1

t Defects considered in the development of the potentials.
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3.2. Twin boundary

For the (111) twin boundary, the (111) plane is a mirror plane. The twin has the
lowest energy of all the planar defects considered here. The rigid-body displacement is
—0-006a for NiyAl in the direction perpendicular to the boundary (i.e. there is a
lattice contraction with the twin). This is in contrast with the positive displacement
observed for pure Ni and Al (see table). Figure t shows that distortions perpendicular
to the twin plane exist in addition to the above-mentioned rigid-body displacement.
In this direction it can be seen that oscillatory distortions are superimposed on the
non-oacillatory distortion. As shown in fig. 1. the acoustic mode is of the same general
nature as but of opposite sign to that obtained in calculations for the purc metals, aiso
shown in fig. 1.

Figures 2 and 3 show the observed displacements in the directions parallel 10 the

= plane. The Al atoms, which are localed on sublattice 1. are not displaced at all in
wwese directions. The Ni atoms displace differentty, depending on their sublattices:
however, their centre of mass remains fixed, as expected on symmetry grounds. In the
[112] direction, the three Ni sublattices move, one of them with an amplitude which is
opposite and twice that of the other two. In the [1T0] direction the Al sublattice and
one of the Ni sublattices do not move, while the remaining two move with equal
amplitudes but in opposite directions. Note that in the [112] direction the oscitlatory
displacements of a sublattice do not change direction at the boundary, whereas in the
[1T0] direction they do.

Figure 3 shows displacements plotted for the twin plane and the planes immedi-
atety above and below. It can be seen as a contraction of the Ni atoms ordered into
groups of three in the twin plane. Each of these three atoms moves toward the centre
of the triangle, away from the Al atoms on the planes immediately above and below
the twin plane. Since the Ni atoms in the twin plane leave more space for the Al atoms
in the planes immediately above and below the twin plane than in the perfect crysta!
stacking, this defect can contract by a rigid-body displacement perpendicular to the
twin plane. Such a contraction is, in fact, observed (see the table).

3.3. Superlattice intrinsic stacking fault

The rigid-body displacement observed for the superlattice intrinsic stacking fault
in the direction perpendicular to the fault plane is a contraction of —0-006a. This is
again contrary to the expansion found in pure Ni and Al (tabie). Oscillatory
displacements pérpendicular to the fault were also observed as for the twin. When
separated into optical and acoustic modes, the acoustic part coincides with the result
for the pure metals.

The modes parallel to the surface are all optical and resemble those for the twin
boundary for which the local structure of the defect in the first planes adjacent to the
fault is the same. These distortions are shown in fig. 4 as a function of the distance
from the fault. Note that in this case the sign of the optical distortion changes at the
fault plane. This means that triangles at both sides of the fault contract (fig 5). As for
the twin, the optical distortions in the plane of the fault permit the contraction of this
defect.

3.4, Antiphase boundary
No rigid-body duplaoemem perpendicular to the boundary was observed for the
antiphase boundary. Figure 6 shows the calculated displacements plotted in the (111)
plane. This figure shows that, although the [112] direction is paraliel to the boundary
plane, a component of the acoustic type still occurs in this direction. The main reason

G



(111} planar defects in Niy Al 439
Fig. 2.

G007 T T T T T T T T T T

G008 o subiattice 2

00051 o guniattices 3 8 4 8
0004

0003
o002

Displocements along <110 > i units of ¢
o

0-001

=000

~-0-002
-0-003
~0004

-0-005
-0-006

-0-007

-0 -8 -6 -4 -2 8] 2 9 & 8 10
Distance from the twan i vrits of o

(a)

0004 —T— T T T T T 7 T T T T T T
0003 |- D Sublothices 28 3 -

0002 - © Subiottice 4

0004

Displocements along <||2>> in ynits of ¢

-0-001

-0-002

-0-003

—~0-004

-0-005

=0-006

-0-007

Distance from the twin in units of ¢

(b

Atomic displacements of Ni sublattices in directions paralie] to the (111) twin boundary (a)
along [170] and (b) along [112]. The Ni sublattices are numbered from 2 to 4.



440 D. Farkas ef al.

Fig 3
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[1:2] direction

Projection of the first two planes adjacent to a (111) twin boundary: O, plane above twin; A,
planc below twin; O, twin planc. The calculated atomic displacements are magnified

100 times and full symbols represent the Al atoms.

for this is that the defect introduces Al-Al bonds not present in the bulk. Relaxation is
such that the Al-Al bond lengths arc increased. The observed shear distortion
contributes to this increase in bond Jength. A similar tendency for increasing bond
length is obtained from the perpendicular displacements of Al These displacements
present both optica! and acoustic modes. The minimum Al-Al bond length is
increased from the 0:252nm in the unrelaxed boundary to 0-262 nm in the relaxed
structure. This is not the case for the Ni sublattices, which show little change in the
Ni-Ni bond length upon rejaxation. Whereas in the [170] direction only the optical
mode is present (fig. 7(a)), both acoustic and optical modes appear in the [112]
direction (fig. 7 (b)). The optical mode in the [ 112] displacements differs from those in
the previous defects, because the Al sublattice is now also affected by the oscillations.
However, if the Ni and Al atoms are treated separately, by computing the displace-
ments of the three Ni sublattices with respect to their centre of mass, the same
distortion mode observed for the other defects is obtained. Figure 7 (c) shows the Ni
acoustic mode in the {112] direction.

3.5. Free surface
Oscillatory behaviour in the direction perpendicular and parallel to the
Ni, Al(111) free surface was previously observed by Chen er al. (1986a) and Savino
and Farkas (1988) using the same potentials. This is different from the (111) faces of
pure Ni and Al which present no oscillatory behaviour. Figure 8 shows the parallel

€3
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Fig. 4.
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Fig. 5.
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relaxation of the first (111) planes near to the surface. While there is no displacement
of the Al atoms paraliel to the surface plane, the three Ni sublattices exhibit the same
oscillatory relaxation mode observed for the previous defects. It can be seen in fig. 8
that at the surface plane the Ni atoms in groups of three contract towards the centre
of the equilateral triangle that each group forms. Note that at the outer surface plane
the centre of the triangle corresponds to a position where an Al atom would be
located on the (111) plane immediately above in a perfect bulk material. On the other
hand, the displacements are such that the triangle of Ni atoms located immediately
below thessurface expands.

§4. Discussion

Savino and Farkas (I988) reported calculations of oscitlations in the static
relaxation parallel to a planar free surface in purc metals and alloys. These
oscillations can also be seen in fig. 2 of Chen ef al. (1986a, 1987a). Parallel as well as
perpendicular oscillations are refated to the fact that the energy of the system depends
on both the local-density and the pair ion—ion interaction. At the free surface there is
a change in the density due to the absence of atoms. Volume-dependent and pair
interaction forces appear over the surface atoms. Under both sets of forces the first
interatomic layers relax and, as a consequence, the density around atoms at inner
layers also varies. Volume-dependent forces appear on those inner atoms as a conse-
quence of this change in density. The resulting distribution is clearly oscitlatory in the
displacements perpendicular to the free surface. Even in pure metals, for free surfaces
of reduced symmetry, oscillations in the displacements parallel to the surface may
also appear. For the case of (111) interfaces only, perpendicular relaxations are to be
expected in pure metals. For the case of Ni, Al ordered alloys, we report in this paper
‘optical’ and ‘acoustic’ relaxation modes. The first of these is parallel and the second
may be both paralic! and perpendicular to the interface. The present study shows that
the two modes can appear together, but they can be separated. When this is done. the
observed acoustic distortion resembles that obtained for pure metals. The existence of
the optical distortion is due solely to the presence of an ordered lattice. The optical
distortions strongly influence the atomic configurations of the defect cores. For
example, the optical distortion in the twin boundary plan¢ is 2 major component of
the relaxation around the Al atoms in the planes adjacent to boundary. This results in
a rigid-body displacement that is different from those found in pure metals, namely an
average lattice compression instead of expansion.

Local distortions of the optical type may also have important implications for the
segregation of interstitial impurities to these defects. The present results indicate that
some interstitial sites will be significantly expanded. These sites can become preferent-
ial segregation sites. For cases where the defect is bounded by partial dislocations,
such modification of the segregation properties will have a strong effect on the Suzuki
locking of these dislocations {(Hirth and Lothe 1982).

The optical distortion modes in the (111) planc have a similar nature in all the
defects studied, namely, the expansion (or compression) of nearest-neighbour trian-
gles in the plane. This optical distortion is transmitted in an oscillatory fashion from
plane to plane in the direction perpendicular to the defect plane.
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CORE STRUCTURE OF STRAIGHT DISLOCATIONS IN NisAl

R. Pasianot, D. Farkas and E.). Savino'
Department of Materials Engincering,
Virginia Polytechnic Institure
Blacksburg, VA 24061

Introduction

In our previous work (1) we have simulated the atomistic structurcs for the core of the 1/2[1107] screw
superpartials bounding an Anti Phase Boundary (APB) on the (11 1) planc. For all the configurations tested
in that work, the structurc obteincd was non-planar, with the core of the partials spread in the (117) planc
and not in the (111) planc of the APB. In that work we used local volume interatomic potentials for Ni<Al
developed by Voter et al. (2). Using similar interatomic functions, Yoo o1 at (3) obtained & planar corc
structure, where both superpartials split intn Shockley dislocations on the APR planc. in addition to the
non-planar structure obtained by us. Those authors also claimed that the plarar structure i< the stahle one
This conclusion agrees with the discussion presented by Yamaguchi et a! in their alrendy classical work (4)
Those authors used pair interaction potentials for simulating the divlocation core plus lincar elastic thears
for inferring the minimum energy <hslocation configuration. Yoo (5) alwo calculated the clastic interaction
energy of the two screw superpartials in an anisottopic contintum approximation and found torque forees
on the superpartials. He proposed that a momentum force distribution must be applied on the APB piare
o compensate those forces. 1In the present work we tackle two main questions: the solution of the clasi¢
distortion field of the dislocations in cquilibrium with the corresponding piane fault regions of the civaind,
and the relation between clastic predictions and compuier simulated structures. Therelure, by using Stioh «
anisotropic elastic solution for the dislacation fields (6). we caleulate the cquilibnium confipurations for (=c
two 1/2{011] supcrpartials when they spht into the corresponding 1;6 112 - Shockley partials, Afterwargs,
we study, within a computer simulation appraximation, the above mentioned planar and non planar dislo-
cation core structures as well as others that can he abtained with different choices of the initial clastic con-
figuration used for the relaxation procedure. All of them represent possible minimum encrgy configurations
wl!ich_are consistent with the boundary Velierra elastic dislocation field.

Results

Elastic Model

Eiastic calculations arc performed for the several pessible configurations of the dissociated dislocation
bounding an APB region along the (11 1) planc. For model purposes, two pure wcrew nartial dislocations of -
the type 1/2[110] arc assumed. Furthermore, cach partial is dissociated in Shockles nnes with a Comnley
Stacking Fault ( CSF ) in either (111) or (111} planes.  Stroh’s anisotropic etastic solution for the straight
dislocation ficld (6) is used. The system equilibrium is obtaincd by minimizing the sum of the energy of AP
and CSF regions lying og compact (115) planes, plus the work done in creating tach distocation in the fiek!
of the others (6). Fig. | shows, in a schemalic way, the degrees of frecdom allmved to the whole strueture.
ie, X,Y, Zand W. Thesc are respectively, X and W: the CSF region width for the cotresponding super-
partial, Y: the distance measured on a (111) planc between the superpartial center and the APB plane and
Z: the APB width. Some results for the calculations arc reported in Table [ Y is not reported in that tabic
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hecaung it elther results Y =0 for the planar superpartials or Y = X/2 for the aon planar case. This situation
is clearly depicted in the insets and is a consequence of the exira encrpy needed to extend the APB arca
outside the (111) planc. The non planar core constitutes a zig-zag shape configuration. We perform the
calculations using differcnt values for the elastic constants and the APB/CSF encrey ralin. For the elastic
constants we usc cither (he experimental oncs, or thase fittext by Voter o al.’s interatomic potential. As it is
believed that for NisAl the CSF encrgy may be larger than the APR encrgy, in contradiction 1o the inicra-
tomic potential prediction, we aiso perform a set of calculations increasing that value. Some re<ults are
summarized in Tabie |,

Yoo (5) carried out clastic calculations and concluded that a torque foree appemis on the (wo 172011
supcrpartials. Qur clastic calculations are consistent with this result in that the above mentioned zig-2ap
shapc is obtsined as a minimum cnergy configuration, Thal shape is produced by the sliding of the partiats
driven by the competition between the torque force and the radial repuision . Whenever the torgue foree
dom - .~ the sliding is anticlockwise, whereas the clackwine sense is only allowed for relatively large radial
forces. For relatively large CSF cnergy, a small separation between the Shackley pantials will reduce that
force; therefore, on increasing this cnergy value, some configusations may a be found. tn turn the torguc
force is proportional to the anisotropy ratio A (A= 2e,/(r,, — . This implies that, tor relatively Jarge
vailucs of that ratin, the abave same configurations are not favored. sce Table |

Computer Similation Results

The computer simulations arc carricd out in the usual way (§). The atemic conrdinates inside a vrysal re-
gion 1, contairing the defect core, are allowed to relax in order to find an SHCTEY Minimum consisient with
the boundary atoms pasition al & region 11 where anisotropic elasticity s used. We sudy the configueatnms
1,2 and 4 in Table | and they are respectively calied hereafier planar, noa planar and mixed confipieation,
We first study the minimum required size of region |, where the atlomic conrdinates are free 1o relat under
the interatomic potential. A minimom size for that region is necded e insure that the elastic selution in the
fixed region [l docs not affect the cakculated corc structures. This size is determined by plotiing the enerpt
differences between the initial elastic configuration and the final relaxcd configuiation for two incicasinglv
larger cylindrical regions centered in the dislocation lines. Outside the core repiom, where the harmenic sl
ution for the atomic displacements is valid, this difference should approach a straight line corresponcding 1o
the relaxation encrgy of the APB. The method provides at the same time an exlimate of the core size. | he
plot corresponding to the non planar dislocation is shown in Fig. 2 amd it implies in this case a core size for
cach supcrpartial of 1.5 t0 2 am. The refaxation encrgy of the APR 15 very small and the skope is not detccted
in the plot of Fig. 2.

As already pointed out by other authors (3), even for calculations performed with over SO0 xoms in Tepion
1, the core centers of the supcrpartiaks do not scem 10 move during the simulations. One cxpects they woukl
do 30 by trying o converge towards a minimum cnergy separation. Actatly we alwivs find their beation
to:be determined by the elastic solution in region 1. Therefore, fin finding the equilibvium separation bye.
tween the partials, we compute the encrgy of the simulation blck, region 1, for different salues of that dis-
tance and add in each casce the corresponding clastic energy of a continvum osuiside the block, up 10 5 square
of 0.2 um. The cakulated encrgy values arc phwted in Figure 3. The optimum separmtion correspands to
the minimum in thase curves. On the other hamd, all the superpartial structures tested aplit by themvelves
into two Shackiey disincations, and the corresponding CSF width dies ot seem 10 be strongly dependent
on the boundary conditions. Also, as suggested by our clastic madel, for the non plana and mixed confip-
vrations the location of the superpartials must be varied on the {111) plane complementary to the API
plane. However, with respect to the location of the partials, we aole That, in a aon plana configuration, the
boundary conditions impose that they do not move 1o be at different heights with respect 10 the APR unbess
the APB is created with the corresponding zig-zag shape. This must he done in the siatting, elaslic, config-
uration for the computer simulation. Thercfore, we modily the initial clastic solution s that the branch cut
for the logarithmic term follows a chosen set of plancs hetween the dislocation centers. In this way the APB
shape is part of the input. The minimum cnergy relaxed configuration shows an asvmmetry in the partial
position with respect to the APB planc. Although this is not so pronannced as predicted by the elastic sol-
ution, it is shown below that it is still noticeable,

"
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The planar core i the owest energy conligaration amesg Urone tested . s shown i 1 e TGy e e s
and non-ptanar structures, we find respecti elv an extea enerpy of 601 eV nm and 0 oV no reliatie te e
planar core onc. The non-phanar core compated b our presions swork o 006 =0 o Lot Pha o
inenergy results by allowing the sioerpactinds ship ontside the APH Plase A o e b e 5o
culated separation among partial s about 6 om for the plana and moesd cores sed aben © % o Lon e
non-planar corc. This s in quatitative agreement wath the clastic resilis

From the relaxed atemic configuration the continmim stenm tenaog £ocan be valouinied e | TR IR RTOTTY
variants of that tensor aze plotied vaing comtour tine praphs. Fip 4. plots the guantety Moo fArand T
4.b plots E, + F} 4 217 Both quantities are invarant under rotatnone ahont the dicloention e (he s
axis). Since (110) 1< a mirror planc, the Tist quantity is celated only fo thie s rew comiore e and 1he o o
onc 1o the edge components of the dislocation  In Fygure 4, the alicoontoe of e saperpartab e e
into Shockley partinls. s well as the above mentioned assyimmetiy of the sHperparial centen o ation st
respect to the APPB planc, can be seer. 10 s adsa nodiced that the elpe COMpOnEN e more closcly sy
than the screw componenis and that thedit destorion felds show o Latge e bypany

Driscussian

Different chaices Tor the clastic center of the sl ation i the ceanptter sonuiaton proeediine can beadd g e
relaxation to dilferent core structures. Thiv is so because the elastic selition acis not only as (he b s
condition but alw as the initial configuration for the minimization procednne, enfrcing therefore the
convergency to a given conDguration. This situation is Tully exploited in this work (o obtain the differen:
dislocation structures discussed ahove. We find that. by a proper choice of the houndars ‘initial elasty cor-
figuration, different dislocation structures can be simutated for the same superpartiad dedocatnn, APH piane
and interatomic potential. Among those arc the planar and non planan <iraciures mentioned in the tatro
ductinn pfus a mixcd configuration. not reported previously, where one of (he partide spreaads m the piene
of the APB while the other does soin anothier (111 plane. Fhisv mixed vontipuralhion noay be apporians Lo
the understanding of pinning-unpinning mechanisms. Alva that conlipmatan hias an engspy of epb 0
eVinm higher than the plobal encrgyv mumimum, which we find 10 be 1he planat core comfiuranon Fhe
giobal encrpy minimum configaration agrees wath the one predicred by the chssc work ol Yamay i o
ai.(4). and by Yoo et al(d. We ale [ind a nonsplanar configusation i swhich the fets parieed oo ated oo
the APB planc whereas the right partial ic located above it The overall dislocationn cone taken then 1oy s
shapc. This type of core has lower encipy than the non=planar cor repinted i o presao waonk thE he
fact that the partials cin move on the complementary APR plane resulis i o decrere of the cnerey o the
non-ptanar core

As said o the Intraduction.in an elastic madel Yo (9) Tound 2 torgoe foree to et Tar the 00T
partials dissociation when they are located on the APR plane We have deseloped abive o simphe mode
bascd nn anisotrapic clastieny, that allows us to predict, among ather parameters, the focation of the wiper -
partials and Shockley dislocntions it equilibrium with (he correspanding APB and €S areas That el
imposes the displacement ot the partials ava necessary condition for Tinding the minmuonnm cney position
The partials move ac a consequence of the radial forces repelling one another and the tongoe force mentne e
above  Those forces are therefore relaxed by the displacement of the partiads outsiede the APH piaane The
existence of opposite forces gives rise 1o mare i one stable mixed and non planar confipnton w il oy
Pﬂniﬂk SP““ihg it different (11 1) planes. For o refatisely gy .'ll'li\‘l!fltll‘ll‘" taly A The Tatepune force abague
dominates and only one confguration is found fim cach of thowe cases The trends an the dicdoeasion can-
figwation prodicied by clasticity aie confirmed by the computer ~suonabition o Phaoar oo g aged meved
configurations are caltulated. The daslocatin dissoriation sodile nea e agree sl the ol tn predi o
However, in the compater stvbiion the calulated center ol e von DL sipser oo b s s appe o
ncarcr thc APB plane than predicted by clasty ity
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ABSTRACT

Dislocation core structures have been calculated using atomistic computer simulations in NiAl
and other B2 compounds. In the present work the calculated distocation core structure arc
correlated with the known deformatiom behavior of B2 alloys. It is found that for the high
ordering energy compounds < 111> dislocations do not split in the simulations, in agrecment
with the experimental observations. It is also found that core structures for certain < 111 -
and 1/2 <111 dislocations are spread in [ 112} plancs, which is consistent with the siip planc
often reported (or these dislocations. For the < 100> dislocations several orientations of the
dislocation linc produce sessile core configurations, whercas other orientations produce reli-
tively more glissile cores. Ilowever, a structural transition of each of these disfocation cores
may bec required beforc < 100> dislocations become mobile, and this i1s consistent with the
hmited tensile ductility obscerved in NiAT “soft” single crystals below 200°C.  Core structure
simulations for <110> dislocations are also reported and are discussed with respect to the
mnportance of these disiocations in the deformation of NiAl

INTRODUCTION

Since the early studies on BCC metals (1) it is clear that the dislocation core structure plays
an important role in the understanding of yicld bechavior. More recently, this approach was
able to give an explanation of the anomalous yield behavior in 1.1, alloys (2). The basic in-
gredient of these theories is that some cores arc found to be non-planar and therclore sessile,
whereas others arc planar and therefore relatively more mobile.

‘The wide range ol dcformation behavior in B2 alloys has heen correlated with the APB energy
in these compounds (3). Compounds with a low APPB encrgy, such as 8-CuZn, exhibit <111 ~
slip from room temperature (RT) to the disordering temperature (3, 4). In FeAl, which has a
higher APB energy (5), a transition from -~ 1El - shp at RT to - 100 ~ slip at higher tom-
peraturc has been reported (6,7). Both simple considerations bascd on basic theorics of or-
dering (8,9) as well as first-principles calculations (10) suggest that the APB energy in NiAl is
higher than in either -C u?n or FeAl, and = 100> ls the preferred slip direction over all
temperatures (11,12). ’

‘The purpose of the present work is to comparc these observations with the predictions that
can be inferred from the calculation of dislocation core structures using computer simulation.
The material that we will discuss in the present work is mainly NiAl, We performed static (0
K) atomistic simulations of the dislocation core arca using embedded atom interatomic po-
tentials (13), which we alrcady used to describe the B2 phasc (14). The simulation method is
the same as in our previous work on NisAl and NiAl (14,15).

We proposed recently a new way of depicting the core structure that will be bricfly discussed

below (15). It is directly based on the strain tensor [, constructed using a finite difference
scheme over the atomic displacements. Assuming that the dislocation line lics along the z axis,
two quantitics are computed, namely Y, = 2(}3, + I3) and Y, = F2, 4 I3, + 2E2,. Both are in-
vanant under rotations about the dislocation lin¢, and have therefore scalar nature. The {irst
invariant may be thought of as a squared mean strain involving shears along the dislocation
iine only, whereas the second would be a squared mean strain within the plane perpendicular
to the dislocation linc. For the particular case in which this plane is a plane of mirror sym-
metry of the crystal, or if the body is isotropic, shears due to screw dislocations do not mix
with shears due to edge dislocations; thercfore Y, 1s only rclated with screw components and
Y2 with edge components. Though an accurate representation ol the corc structure would
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involve the 6 components of the strain tensor, this representation is much simpler and sulli-
cient to identify the core shapes. Both quantitics can be plotted using standard 31> graphics,
and the contour plots of this surface will dircctly give the shape of the dislocittion core, cx-
tended to different lcvels of deformation.

<111> SCREW DISLOCATIONS

There have been scveral reports that these dislocations exist in NiAl as complete - 111 -
dislocations and they do not split into supcrpartials with an APB cither on {110} or {112}
planes (11, 16). These obscrvations are in agrecement with the computed dislocation core
structures and encrgics, as reported in our previous work (14). It was found that the encrgy
of a block containing the two superpartials decreased as the superpartial separation decreascd.

'The undissociated dislocation has an internal structure that is guite complex and highly non-
planar, therefore it must undergo a severe structural transformation before slip is possiblc.
The core is more extended on {112} plancs, and we expect from this result that the dislocition
will be transformed to a planar structurc in a {112} planc lcading to slip along this planc. ‘1 his
process will require very high stresscs. Alternatively, two branches may combine under stress
e corc structurc that is planar in a {110} planc. Actually both slip systems have been

'11) but the stresses required arc extremely high, and arc over 1% of the shear
i at room temperaturc (10, 17, 1R).

<100> DISLOCATIONS

B2 materials with high ordcring encrgices lypically deforin by the motion of 1100] distocations
(3,19), and experimental obscrvations of - 100 - dislocations in NiAl, show an overall oricn-
tation ncar screw (1§, 12). Ilowevcr, <100~ screw dislocations are clastically unstablc in
NiAl, and these dislocations therefore exhibit a serrated morphology so that the screw orien-
tation rarely exists (11). < 100> dislocations arc typically reported to glide on both {100} and
{110} planes (11, 12, 20). Liasy cross- slip of < 100> dislocations onto orthogonal {110} plancs
has also been suggested to occur in NiAl (20).

Simulations for a number of <100 » dislocation orientations, from purc cdge to ncarly pure
screw, on the {100} and {110} plancs have been performed. The specilic dislocation line di-
rections modeled are {010}, |120], [110] and |210] (or |100K001) slip, and [O11], [122], [t 11] and
[211] for [100] (O1T) slip. Figs | and 2 show contour maps of Y1 and Y2 for thesc two slip
systems respectively. It'is scen that in all cascs the core structures have non-planar compo-
nents, suggesting that high stress lcvels would he needed to cause slip. The magnitude and
extent of the dislocation strain fields suggests that < 100> dislocations may be more diflicult
to move on {100} planes than on {110}). Note that thc critical resolved shear stress for
< 100 > {100) slip in NiAl has been determined experimentally to he about 10% lower than
the critical resolved shear stress for < 100> {110} slip (21).

<110> DISLOCATIONS

The role of < 110> dislocations in the deformation of NiAl has not been clearly established.
< 110> dislocation segments have been suggested to for as the sessile reaction product of
mobile < 100> dislocations (22, 23), and have alternatively been reported to contribute to the
deformation of NiAl (24, 25, 26). The screw orientation has been suggested to be more mobile
than the edge scgment, and the slip planc has been determined to be {110} (26). Our computer
simulation result for the |I 10] screw oricntation, 1'ig. 3(a), shows that thc screw component
of the strain field, Y;, is largely spread_on thc (110) planc, and that therc is a nascent
dissociation of the type 1/2[111]+ 1/2[111] with a correspondmg very narrow band of (110)
APB in betwecen. Simple elastic calculations arc also in agreecment with this linding. 1lowcver,
the edge component Y3, has some spreading on the (001) planc and this may precludc casy
glide on the (110) plane. Indced this conﬁguratlon was ablc to stand stresscs of about
3 x 102 of the shear modulus without slipping. This is the order of stresses necded in com-
puter simulations to move 1/2[111] screw distocations in BCC materials. The samc is truc for
the edge dislocation on the (110) planc shown in I‘ig. {b).
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DISCUSSION AND CONCLUSIONS

Core structures have been simulated {or various orientations ol < 100>, <110~, and
< 111> dislocations in NiAl. Each dislocation studied exhibits and cxtended core, which is
expected to be difficult to move. In lact, none of the dislocations moved in the simulations
with applied stresses as high as 3 x 111 2 G. Although this is the proper order of magnitudc for
the critical resolved shear stress for <111 > ghde at RT (17), <100 - dislocations typically
become mobile at much lower stresses (12, 20, 27). The sessile dislocation cores may trans-
form to a more mobile configuration under the influence of an applied stress or thermal acti-
vation, and the < 100> and < 110> dislocations arc expected to transform more casily than
the <111> dislocations. < 111> dislocations arc preferred over < 110> dislocations below
300°C (10, 15), yet < 110> dislocations arc morc frequently observed above this temperature
(24, 25, 26, 28). The thermally-activated < 110> core transformation may thercforc be re-
sponsible for this transition from < 111> slip below 300°C to < 110> slip above this tem-
perature. The simulations do not predict a dissociation of the < 110> dislocation cores to a
separation that can be detected in TI:M, and this is consistent with cxperimental observations
of <110> dislocations in weak beam microscopy (26).
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Fig. 1: <100>(001) slip system
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Fig. 2: <100>(011) slip system
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Fig. 3 : <110> (110) slip system
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Abstract

- ~gjc features of dislocation core structures in ordered intermetallic alloys are dis-
-vealed by atomistic computer simulation. The simulated dislocation core

'r the mﬁst commonly observed slip systems in both L1; and Bi alloys.

The simuiations were carried out with embedded atom interatomic potentials. Screw and
edge dislocations were studied, particularly investigating the planarity of the dislo-
cations cores. The gencral trend of the results agrees with the results of previous inves-
tigators using pair potentials for rﬁodel alloys. In all cases the core structure is spread

in one or possibly more closed packed planes.

Abstract i



I.Introduction

The atomistic structure of dislocation cores is known to have important implications in
the mechanical behavior of materials. This was first recognized for BCC lattices by
Vitek (1). The significance of this work was that the mechanical behavior of BCC metals
could be explained using the results of the core structure simulation. The simulations
indicated that screw dislocations were characterized by a nonplanar core, with the cor-
responding low mobility. The edge dislocations, on the contrary were planar and
therefore glissile. The screw dislocations would control the plastic behavior in this case.
As higher stresses are applied the structure of these dislocations undergoes a transfor-
mation to a glissile structure, Although the core structure calculations are for zero
temperature it can be assumed that the effect of temperature may be to allow transitions
among the possible core structures. These transitions may occur from the Jowest energy
configuration (global minimum) to a slightly higher energy configuration that corre-
sponds to a local minimum energy in the calculations. The possibility of these transf-
ormations is particularly important if the global minimum configuration is sessile and
the transformation occurs to a glissile core at some critical stress. The activated state
for this type of transformation may correspond to the configuration found as the dislo-
cation is subject to the critical stress. In this way the core structure simulations can help
modeling mechanical‘ behavior changes with temperature. A similar type of study was
later used in models for the anomalous yield behavior of L1, compounds (2,3). This
work was originally initiated with pair potentials for model alloys with the L1; structure.
These potentials were not intended to represent any particular material, but rather a
.model alloy, | Calculations of dislocation core structure using embedded atom potentials
have been carried out recently for the case of a [110] screw dislocation dissociated in the
{111} or {100} planes in LI; NisAl (4,5). They indicate that the structure of the dislo-
cation dissociated in the {100} planes is aiways nonplanar (away from {100} plane),

whereas there are several possibie configurations for the dislocation dissociated in the



{111} plane. One of these is planar and the others nonplanar. Elastic calculations show

that in some of these cases there will be a torque force between the partials (6).

For the case of the B2 structure some simulations have been done with pair potentials
(7). We have carried out calculations for the NiAl B2 phase using embedded atom po-
tentials (8). The pair potential work was done for model alloys with relatively low APB
energy, and for a screw [111] dislocation dissociated in two 1/2[111] dislocations sepa-
rated by an APB. The configurations obtained for this case were similar to those ob-
tained for the 1/2[111] dislocation in BCC metals. Experimental studies in NiAl show
that the {111] dislocation does not separate into partials (9) and that there is {100] slip

(10).

. present work we would like to give a general overview of the results for the L1,
and B2 structures. We present the results of a detailed analysis of possible dislocation
core structures in NisAl and NiAl
In section 2, we describe a procedure based on the elasticity theory, that can be applied
to the study of dislocation reactions. The results of this model are presented in section
3. Section 4 deals with the atomistic simulations of the core configurations, and in sec-

aese results are compared with those of the elastic model.

2.Elastic Model

A code which uses a numerical technique to calculate the equilibrium configuration of
a number of parallel straight interacting dislocations of arbitrary Burgers vector was

developed. Anisotropic elasticity is used in the form proposed by Stroh (11).

In this framework, the interaction energy of two paralle] straight distocations of Burgers

vectors band b, is given by (disregarding constant terms and core effects):
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where Im{} is the imaginary part of a complex number, < ¥ {7 > stands for the scalar
product of two vectors, L, are invariant vectors depending only on the orientation of the
dislocation lines as defined in reference (11), ¥®y is the diadic (tensorial) product of two
vectors, Z, = x, + p.x; is a complex number depending on the dislocation positions (see

Fig.1} and p, are the roots of the sextic equation with 1.(p,) > 0.

The energy of a given dislocation system 1s simply the addition of terms like ¢q.1 for each
pair considered, and the energy of the faults bounded by the dislocation lines.

In this sense, the above energy depends on the dislocation positions (through the com-
plex numbers Z, and the extension of the faults), or equivalently, on a set of coordinates

{q} that define the degrees of freedom allowed:

ETaI(QI ,‘h.""r Qn) = ZEkUauh) + ZEgm' (2)
k I>]
This function is given as input to a standard optimization routine that, through a nu-

merical technique, determines the set {g} for which E;,, is minimum.

Dislocation self energy need not be considered for equilibrium force purposes because
it amounts to add a constant term to equation 2, then the set {¢} so determined is the
eqﬁilibrium configuration. The method can therefore give the equilibrium position of
the partial dislocations for a given splitting reaction. In some cases the absence of a
minimum indicated the fact that the particular splitting was not possible. In some other
cases a minimum may be found, although it is local minimum and a different

dissociation is favored,
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Note that energy comparisons for different types of splitting are not simply achieved by
adding the self energy for each partial. This is due to inconsistencies in the expressions
for the interaction energy. The energies of two calculations of this kind can be unam-
biguously compared if they deal with exactly the same partial dislocations and if the
orientation of the reference coordinate system used is the same in terms of the crystal
directions. Therefore, energics were only compared when the dissociation involved

identical or equivalent partial dislocations. This is discussed in detail by Steeds (12).

Also note that, in order to compare with simulation results, the elastic constants and
fault energies used in this code are the ones predicted by the interatomic potential used

in the computer simulation work.

.ults from the Elastic Calculations

< 110> Dislocations in NisAl

Several configurations of this dislocation were tested, which may be relevant for the
modeling of mechanical behavior. These involve APB and CSF faults. The energies of |
these faults as predicted by the interatomic potential (13) are given in Table 1, whereas
the elastic ct;nsfants are shown in Table 2. These dissociations occur mainly in planes

of the {111} or {100} family.

Dissociation in the {111} planes.

For mode! purposes, two partials of the type 1/2[110] were assumed to bound an APB
in the (111) plane. Furthermore, each partial was dissociated in Shockleys with a com-

plex stacking fault ( CSF ) in either (111) or (111) planes.



There are three contributions to the cnergy of the system, namely, the APB energy the
CSF energy and the elastic interaction energy between pairs of dislocations, I'ig.2 shows,
in a schematic way, the degrees of frcedom allowed to the whole structure, 1e., X, Y, Z
and W. These are as follows, W and X : the CST region width for core spreading on the
(111) plane and on the (1 1) plane respectively , Y : the distance measured on the (1{1)

plane between the superpartial center and the APB plane, and Z : the APB width.

The energy was then numerically minimized as described above with respect to these
parameters, and the results are collected in Table 3. Y is not reported in that table be-
cause it either results Y = 0 for the planar superpartials or Y = X/2 for the nonpianar
case. The last column of the table gives the energy of the different structures -depicted
in the insets- relative to the planar core.

The elastic calculations show that the ‘global minimum corresponds to the planar core.
This was first pointed out by Yamaguchi et al. (2). The nonplanar core, with the par-
tials dissociated in the {111} plane complementary to the APB and located at the same
height with respect to the APB ,was not found to be a minimum. Yoo (6) carried out
elastic calculations for the interaction of two 1/2 <110> partials bounding an APB in
the {111} plane and found that it implies a torque that would tend to bend the APB.
The present calculations suggest that this torque may be relieved by introducing an APB
in a zig-zag shape, as indicated in Fig.2. The model predicts an energy difference be-
tween the planar core and the lowest encrgy nonplanar core (in zig-zag shape) of 0.9
eV/nm. Table 3 also shows the equilibrium separation between the superpartials as well
as that between the Shockleys. The elastic predictions are that the minimum energy
separation for the planar core is somewhat higher than that for the nonplanar core. It
is also seen that the distance among the Schockley partials is about 1-2 nm. This is ex-
pected to be the order of magnitude of the spread of the core for each superpartial.

However this is a small distance, for which elastic assumptions could loose validity.



Dissociation in the {100} plane.

Similar calculations were carried out for dissociations in the cubic plane that involve the
same type of dislocations discussed before. The results are coliected in Table 4, where
X and Z have the same meaning as before. Note that there are a number of other con-
figurations that are necessarily equivalent to one of the ones shown in Table 4. All these
configurations are nonplanar, and thercfore are expected to be sessile. Table 4 also gives
the energies of the various configurations relative to the {111} planar core. The first
* point is that the values are lower than those obtained for dissociation in the
=, 50 that dissociation in the cubic plane will be favored. This is consistent

wii most modeis for the anomalous yield behavior of the material.
The differences in energy among the structures shown are very small, both being sessile.
These configurations may be relevant for the modeling of the mechanism of transfor-
mation of the sessile structures into the glissile planar core dissociated in the {111}

plane.

It is of interest to note that closely related structures have been observed experimentally

using the HREM technique (14).

nixed <]110> Dislocations in NisAl

Several edge and mixed dislocations were considered dissociated in the {111} plane. A
dislocation with mixed character with dislocation line along 8 < 110> direction 60° from

the burgers vector was considered. The separations between the partials increase as the

1
1-v

edge character increases (as in the case for an isotropic material in virtue of the
factor that modifies the expressions for edge dislocations). We obtained a value of about
10 nm for the pure edge and 8.1 nm for the 60° case. In all cases the core structure was

assumed to be contained in the {111} plane of the dissociation. We also studied the
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[110) edge dislocation dissociated in the (001) plane. The distance between the partials
m this case was found to be 16.6 nm, Further dissociation of the superpartials was not

attempted.

<111> Screw Dislocations in B2 NiAl

We performed elastic calculations for the splitting of this dislocation into two partials
of the type 12 <111 » bounding an APB. The APB was located in either the {110} or
{112} planes. The cnergies of these faults, as given by the interatomic potential, are
shown in Table 5. For the dissociation in the {110} plane a distance between superpar-
tials of 2nm was found; instead, for the {1 12} plane the corresponding value was 1.7nm.
The configuration with the APB in the {110} plane has an energy which is 0.6 eV/nm
lower, as expected from the lower fault encrgy. These separations are very close to the
resolution limit of of weak bearmn electron microscopy techniques. Also, for these small

spacings the validity of elasticity calculations starts being doubtful.

4.Atomistic Computer Simulation

Interatomic Potentials and Simulation Mcthod

We performed atomistic simulations of the dislocation core area using embedded atom
interatomic potentials. These potentials were developed by Voter and co-workers based
on the Ni3Al phase (13). Table 1 gives the fault energies predicted for this structure and
Table 2 gives the elastic constants.

The values of the APB are in reasonable agrcement with experiment. However, the
complex stacking fault is somewhat Jower in cnergy than the APB and although no ex-
perimenial data are available this is probably unrealistic. One would expect that since

in a CSF both, spatial structure and chemical order are distorted, the fault energy should

Ye



be higher than that of an APB, where only chemical order is perturbed. This probably
means that the CSF energy predicted by the potential is too low. Otherwise these po-

tentials seem to be a very good description of NisAl.

For the NiAl phasc only the latticc parameter and cohesive energy were considered in
the development of these potentials. Our calculations have shown that the B2 phase is
indecd stablc with respect to the Llo. The difference in cohesive energies of these two
phases is very small (4.369 for the L1o phase ev/atom comparcd t0 4.375 ev/atom for the
* ctructure). This is very reasonable since it is known that off-stoichiometry NiAl
‘=5 a martensitic transformation to the L1, phase. The extrapolation of the M,
e to the stoichiometric composition gives a temperature only slightly below
zero (15). As we mentioned earlier, Table 5 gives the fault energies calculated with these
potentials.
I" surface calculations (1) were carried out to insure that no other stable faults were
present, other than the APBs. Experimental measurements are available for the energy
of the APBs based only on the edge dislocation separation (16) since the screw <1l1>
dislocation does not split into partials (9). The edge <111> {011} is expected to
dissociate into < 100> + <011> according to elastic calculations, and there is some
doubt about the validity of the fault energies rcported based on the dissociation into two
1/2< 111> {011} edge dislocations. Calculated values for the APB in the {110} plane
range from about 250 to 880 mJ/m? (17). The high value of 880 mJ/m? was computed
from quantum mechanical calculations using a supercell approach (17). We reproduced
the same supercell and computed the energy of the APB based on this supercell and
atomistic energy minimization with periodic boundary conditions. The value obtained
was 540 mJ/m? as opposed to the 340 obtained for the same interatomic potential but
fixed boundary conditions in the direction perpendicular to the APB plane. We conclude
that the former calculation is affected by quite strong interactions between the parallel

APBs considered in the supercell.



The values of the elastic constants predictcd by these potentials are given in Table 6

together with the experimental ones (18).

The atomistic simulations for the dislocations considered were carried out in the usual
way using fixed boundary conditions in the directions perpendicular to the dislocation
line, by holding the atoms at the positions given by anisotropic elasticity (Volterra sol-
ution), whereas periodicity is assumed along the dislocation line { "z" axis ). Different
ortencations of the simulation region were uscd so that the major fault of the system was
always oriented perpendicular to the "y axis, coincident with the (x,z) plane. The
computational codes are based on DLEVIL (19) modificd to be used with volume de-
pendent potentials. They were also adapted so that the fault could be given a zig-zag
shape (though mainly contained on the (x,z) plane). This point is important since some
of our elasticity results suggested vig-zag shapes as minimum energy configurations. The
procedure involves choosing a proper zig-zag shape for the branch cut of the logarithmic

term of the displacement field so as to match the fault shape.

It is important to note that the anisotropic clastic solution plays two roles in these sim-
ulations. One is to ﬁ_x the boundary conditions far away from the dislocation core. The
other is to serve as the starting configuration for the minimization process. It 18 well
known that different local minima can be attained in atomistic simulations depending
on the initial configuration (2). Therefore several initial positions of the elastic center
of the dislocation should be tried, 50 to insure that the global minimum configuration
is found. In the present work we varied our initial configuration by varying the elastic
center of the dislocatioﬁ and also by trying various splitting possibilities with very small

distances among the dislocations.



Graphical Representation of Dislocation Core Structures

It has been customary to represent the disiocation core structures by means of arrows
related to displacements of atoms in a given direction. In the mecthod used by
Yamaguchi et al. (2), the arrows represent relative displacements of one atom with re-
spect to another ,generally a first neighbor. The direction of the arrow simply indicates
the two atoms considered and the magnitude is proportional to the magnitude of the
relative displacement between the two atoms modulus b/2 , being “b” the Burgers vector.

:1. use a related scheme (5).

ere a different way of depicting the core structures based directly on the
strain tensor E. We plot the quantity Y, = 2{EL + E3) and Y, = E} + E}, + 2E3, Both
quantities are invariant under rotations about the dislocation line {the z axis). When the
plane perpendicular to the dislocation line is a mirror planc the first quantity is related
only to the screw components and the second one to the edge components. This is so
because for this case edge and screw components have no interaction with each other
and may be treated separately. Once E is obtained through a finite difference scheme
on the displacement ﬁfld, Y, and Y; can be plotied.as functions of (x,y) using standard
three dimensional graphics. In particular the contour plots of this surface will directly

give the shape of the dislocation core, extended to different levels of deformation.

The plot can be done using various choices of the burgers vector to study the possible
internal structure of the dislocation core. Using the appropriate burgers vectors corre-
sponding to the splitting considered, the method proposed here can give the position
of the partial dislocations accurately. In the following sections we will use this scheme

as well as that developed by Yamaguchi et al. (2).



Simulation Results for NizAl

The results of the computer simulations for the dislocations in Ni;Al arc generally in

agrecment with elasticity theory.

Dissociation in the {111} planes.

For the dissociation of the <110> screw dislocation in the {111} plane three basic
cores were studied that were found feasible in the elastic model. These arc the planar,
nonplanar and mixed core. The nonplanar corc was confirmed to have the zig-zag shape
that was predicted by elasticity. The encrgy of the simulation block was monitored as
a function of the separation between partials in order to find the minimum. The partials
do not find their minimum energy spacing as part of the energy minimization process
unless the simulation block is very large. This is probably due to the effect of the fixed
boundary conditions which are obtained irom the elastic solution with the partials at the
initially given location. The calculation of the total energy is done as the sum of the
energy of the simulation block and the elastic energy of the region outside the block up
to a square of 0.2y, taken as a continuum. Fig.3 shows the obtained results for the three
basic cores, where the energy of the system is given as a function of the superpartials
separation. It is seen that the elastic prediction of the planar core as the lowest energy
is confirmed, though the difference in energy between nonplanar and planar cores is one

third of that predicted by elasticity.

Another important point is that the energy of the nonplanar core in zig-zag shape is
quite lower than that of the nonplanar calculated in our previous work (4) and also
found in the work of Yoo et al. (5). For a 1/2<110> screw superpartial to stand a
tangential force (6) from the other superpartial, a core structure must be assumed that

has a Peierls stress high enough to prevent motion along the direction of the force (sce
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Fig.4). The stress on each partial can casily be estimated from the cxpression of the
tangential force between the two:
b? (e ~€1y) (A4 —1)gh

o= 2 N o+ ©)

where A = 2caf(cn — ).
Writing f; = tb where 1 is the shear stress, and substituting for the values of the elastic
-~nstants taken from Table 2 and 1gf = .ﬁ_ , b=0.25am , r~6nm ,we get T = 190 MPa.
high stress may be supported by the planar core found in the simulations because
.+ fully applied perpendicular to the slip ptane (111). This is not the case for the
nonplanar core with the partials spread on the (1 11) plane. The resolved shear stress on
the slip plane for this core is still high, rss=1x 2 lgi ~0.94r causing slip in the
(117) piane that reliefs most of the torque and creates a fault in zig-zag shape. Fig.5
shows the relaxed structure of the nonplanar core configuration. In this figure, the zig-
zag shape is barely noticed due to the small deviation of the position of the partials from
the APB plane. In order to obtain this structure it was necessary to use a starting
configuration with the APB created in a zig-zag shape. We also studied the internal
» of the reln;(ed core for each superpartial. This is seen in Fig.6 where the new
scheme described above is used. The figure corresponds to the screw and edge
components for the left partial of the nonplanar core. Both components show a two
peak structure corresponding to the two Shockley partials. The distance between the
Shockley partials is larger in the screw components than in the edge components (these
overlap). The overall value is in good agreement with elastic predictions. The separation
of the two main partials is also in good agreement with elasticity, being shorter for the

nonplanar core.



Dissociation in the {100} plane.

The results for the dissociation in the cubic plane are also similar to the predictions of
clasticity. Fig. 7 shows one core structure obtained from the simulations in which the
1/2< 110> partial is sprcad in only one {111} plane. Another core structurc much
higher in energy was also found corresponding to the 1/2<110> screw partial being
spread on both {111} planes containing the dislocation line. Its high energy value sug-
gests that 1t will not occur, unless stabilized by some other process. However, it may be
relevant to the transformation of the scssile equilibrium structure into a glissile one un-

der high stress or temperature.

In a recent work using in situ TEM, dislocations of this type were observed to move by
a locking- unlocking mechanism in the cubic plane (20). This observation suggests the
existence of a higher energy configuration core spread in the cube plane. We therefore
searched for other high encrgy local minima that may be relevant to the deformation
process at high temperatures, particularly configurations spread in the cube planc. A
number of possible initial configurations were tested, that may lead to such a local
minimum in the energy-configuration hypersurface. In all cases the structure was ob-
served to change to a core spread in the (111), (117) or both planes. In particular, we |
tested an initial configuration that consisted of a core actually spread in the (001) plane
(Fig 8) ,that was constructed to be near the expected structure of a glissile core on (001).
The structure immediately relaxed and spread on a close packed plane. A similar result
was obtained under application of a resolved shear stress of about 0.04yu (shear
modulus): the core transformed to the (111) plane and subsequently moved on the same

plane.

The core structures observed are also cssentially the same than those found for the

dissociation in the {111} planes except that the two cores in the (11 1} and (111) planes
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are now completely equivalent. We conclude that the position of the APB does not

significantly affect core shapes.

Edge and mixed < 110> Dislocations in Ni:Al

A planar structure was found for the edgc dislocation dissociated in the {111} planc, al-
though a complete study of the effect of the jocation of the elastic center was not per-
formed. Similar results were obtained for the mixed dislocation with a 60° angle between
the burgers vector and the disiocation linc, as described in section 3. A nonplanar core
structure was obtained for the edge dislocation dissociated in the cube plane. The
internal structure of this nonplanar core is shown in Fig.9. It presents some spreading
in the cubic plane as well as in both {111} planes containing the dislocation line. The

was found for several different positions of the elastic center of the dislo-

Simulation Results in B2 NiAl

There are two main burgers vectors to be considered <111> and <100> (21). The
< 111> screw dislocation can possibly dissociate and the elastic calculations suggested
that it does. The edge <111> is unstablc against the dissociation into
< i00> + <011>. The <100> dislocations cannot dissociate and therefore no elastic
calculations were performed. Fig. 10 shows the line stability diagrams (WulfT plots) for
[100] burgers vector and two different slip planes.The experimental elastic constants of
Table 6 were used. In these diagrams the regions of concave curvature represent un-
stable orientations, therefore, no screw or edge orientation is expected for (011) slip. For

(001) slip the screw orientation is unstable but not the edge one.
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< 111> Screw Dislocations

The first analysis performed was the energy caiculation as a function of the distance
between the 1/2 <111> screw partials on both planes {1 10} and {112}. It was found
that the total energy decreased as the dislocations became closer and closer. It was
concluded that the elastic predictions were not maintained in this case. It should be
noted that the energy calculation included the elastic contribution of the region outside
the simulation block. There are two possible interpretations of the discrepancy of the
elastic results and the simulation results. The first is that the minimum energy sepa-
rations obtained from elasticity are simply outside the range of validity of elasticity the-
ory. Another interpretation is that there is actually a local minimum for the dissociated
case but that the undissociated configuration is the global minimum and the relaxation
process reaches this global minimum. The latter interpretation seems to be supported
by the shape of the energy versus separation curve obtained for dissociation in the {110}
plane shown in Fig.11, where a shallow Jocal minimum appears to be located at about
2 nm, as predicted by elasticity. Similar resuits were obtained for the partials dissociated
in the {112} plane. In all cases the energy decreased sharply as the partials were closer

than | nm.

The undissociated dislocation has an internal structure that is quite complex, as shown
in Fig.12. Several different internal structures for this dislocation core were obtained
besides the ones shown in Fig.12. In all cases the core region is spread over no more
than a few nm, this is consistent with recent weak beam electron microscopy results that

show that the < 111> dislocations in NiAl are not dissociated (9).

< 100> Dislocations

Pure screw orientations in this case are elastically unstable. The edge < 100> dislo-

cation with the dislocation line along 2 <010> direction was found to have two con-
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figurations, as illustrated in Fig.13. Note that the local stoichiometry of these two

configurations is different. The configuration in a) was lower energy. The distortion of

the core 1s spread in compact planes of the type {110}, as shown in Fig. 13c¢.

We computed two different mixed orientations for the [100] dislocation suggested by the
plots of Fig. 10. The first is with the dislocation line along [101] and the second along
[111). In both cases we found core structures that had some nonplanar components.
For the first case the screw components arc planar and the edge components are
nonplanar. However, the screw components are planar along the (101), which is not the
‘~ plane. For the second case the edge components were planar along the (011) slip
The latter is more likely to transform to a glissile structure at low levels of stress.

of these cores under stress is in progress.

Effect of the Interatomic Potential Used

The core structures reported above for the L1, phase are basically the same core struc-
tures originaily reported by Yamaguchi et al. (2) using pair potentials for model alloys.
The results for the B2 structure are different from the ones obtained by Takeuchi (7).
This mav be because the APB energy used in that work is lower. It seems that in our
sns a local minimum also exists with structure similar to those found in refer-

j» except that the separation between the partials is too small and the structure
.wiaxes to the global minimum of the undissociated dislocation. These facts suggest that
the same basic structures are predicted by different interatomic potential functions, with

different separations between partials and different relative energies.

5.Comparison of Elastic and Simulation Results

For all the calculations carried out in NisAl it was observed that the predictions of our

elastic model were all confirmed by the atomistic simulation results. The separation
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distances calculated were followed very closely for all types of dissociation, with a dis-

crepancy of less than 10%. Note that ail the distances between the main superpartiais

obtained in these cases are around 6 nm. The separations among the Shockley partials

however, are smalier (less than. 2 nm). Reasonable agreement was nevertheless obtained
for these small separations as well. Qualitative trends were also confirmed, for example
the fact that the separation of the partials in the (1] 1) plane is lower for the nonplanar
configuration than for the planar one. The energy trend predicted by the elastic model
was in agreement with the simulation results. The differences in energies among the
different core configurations obtained from the simulations were of the same order of
magnitude than those predicted by the elastic model, with discrepancies of up to a factor
of three. This is of course expected since core effects are not taken into account in the

elastic calculations and the energy differences are small.

In the case of the NiAl calculations it also seems that the simulations show a minimum
at about the splitting distances calculated elastically. In this case we expected that
agreement would be more difficult since the separation distances are smaller (2nm) and

core effects should be relatively more important.

6.Discussion and Conclusions

The present results for the L1, structure are in qualitative agreement with those ob-

tained by Yamaguchi et al. using pair potentials for model L1, alloys (2). The major

dufference is that we obtain the planar core as a lower energy than the nonplanar one in
the case of dissociation on the (111) plane. In this respect, our results agree with those
of Yoo (5). For the nonplanar core split in the (111) plane, the two partials were found
to be slightly above and below the APB line forming a core in zig-zag shape for the total
dislocation. This has a significant effect on the energy of the core structure. This con-

figuration mostly reliefs the torque force. The energetic balance among different core
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structures is very delicate. The important fact is that the same basic core structures are
obtained despite that more realistic interatomic potentials arc used. However this situ-
ation may not be general. In (22) it is found that pair potentials do not explain the
prismatic slip observed in certain hcp transition metals. For this case a tight binding

model, that accounts for d orbital effe,éts. seems more appropriatc.

We also note that the location of the APB does not affect core types, because either with
the APB located on (i11) or on (001) the same two cores were obtained : the core
spreads on (111) , or on (lﬁ). Regarding the experimental observations of ref. 20, we
were not able to find a core spread on the (001) plane of the APB, as these observations
would suggest. For the case of the B2 structure, our results are very different from thosc
- obtained with model alloys (7). Possibly, the &gason is that the APB is much higher in
the m=*~=1ls considered here than in the model a‘lloy‘potemiais of previous works. The

rew dislocation therefore does not dissociate into two 1/2<}11> superpar-
tials. INevertheless, we believe that the configurations with the two superpartials
dissociated in the {110} or {112} planes are local minima with separations that are close
to the predictions of elasticity. These separations are small enough so that the simulation
converges to the global minimum. Most importantly, these results agree with the ex-
perimental observations using weak beam electron microscopy. The present work how-
ever, still cannot make an assessment of the question < 111> versus < 100> slip. This
assessment has to be done in a study of the dislocation core mobility, which is in

progress and will be reported elsewhere.

It is interesting to note that all the cores studied in the present work suggest that the

equilibrium core structures tend to be mainly localized on close packed planes.

O
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Figure Captions

il.

I2.

13,

Scheme used for the ciastic dislocation interaction (Eq. 1)

Schematic drawing of the position of the partial dislocations considered in the elastic
model for a < 110> dislocation dissociated in the {111} planc.

Energy vs. separation curves for three possible core structures of the <110> dislo-
cation dissociated in the {111} plane.

Scheme for the calculation of the resolved shear stress (i:q. 3).

Differential displacement map for the core structure of the complete (nonplanar)
{110} screw dislocation. The APB is indicated and only two atom planes are shown.
O: Al & N

Strain invariants for a relaxed (nonplanar) superpartial dissociated into Shockley
partials, using 1/6< 112> burgers vector. a)Screw components (Y,) b)Edge com-
ponents (Y3}

Differential displacemcrit map for the screw cdmponcms of a ! /2[170] screw dislo-
cation spread in the (111) plane. The APB is on the (00]) plane. 00 : Al, & : Ni

Initial configuration tested with a core spread in the (001) plane. The APB is on the
(001) planc. O : Al, A Ni. This core relaxed to that of Ing. 7.

Nifferential displacement map for a core structurc of the 1/2 < 110> edge dislo-
tion. The APB is on the (001) plane. O : Al, A : Ni.

ability diagrams in NiAl for < 100> slip, a) on {001} and b) on {011}.

Energy vs. separation for the splitting of the < 111> screw dislocation into two
1/2 <111> on the {110} plane.

Two possible core structures of the <111> screw dislocation in NiAl: Contour
lines for Y2 invanant.

Two core structures of the edge [100] dislocatian in NiAl a) and b) and typical con-
tour plot c). ® : Ni, A : Al
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Tablc 1. T'ault Energics of NiyAl (md/m?)

APB {111}

{111} {100}  CSI° SISF

EAM 142 83 121 13

Table 2. Elastic constants for Ni; Al

Elastic Constants in GPa

EAM Experimental
< 246 230
i3 137 150
Ca 123 131

Table 3. Elastic Model Results for the [110] screw
dislocation dissociated in the {111} plane.

X [nmj Z [nm) Wi[nm] E{[eV/nm]

— 1.83 00 o— —
1.09 5.43 _— 0.9 ‘—-4
094 569 — 10

097 502 1.69 0.5  smam—em)
089 510 169 06 oy
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Table 4. Elastic Model Results for the {T10]
screw dislocation dissociated in the {01} planc.

X {nm] Z [nm) E cV/nm]

1.05 9.42 1.2 /—__/
1.06 9.39 12 S\

Table 5. Fault Energies for NiAl (mJ/m?)

APB

{110} {112}

340 g 410

Table 6. Elastic Constants for NiAl

Elastic Constants in GPa

EAM Experiment (1) Experiment (2)
c 279 203 204
€y 186 134 136
Cu 178 116 114

'N.
ZN.

Rusovic and E.T Henig, Phys. Stat. Sol. A, 57 (2) 529-540 (1980)
Rusovic and H. Warlimont, Phys. Stat. Sol. A_, 44, 609 (1977)
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