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INTRODUCTION TO THE STUDY OF PHASE TRANSITIONS

F. Gautier.

Université Louis Pasteur, Laboratoire de Magnétisme et de Structure Eloctrani-
cue des Solides, 4, rue Blaise-Pascal 67000, Strasboury, France (L.A. (C.NLR.S.
306},

Intraduction,-

L. Phase transition - General.-Everybody has an intuitive knowledge of the various
states {or phases) of matter (solid, liquid, ges...) and of the phaue traasitions : a small
quantitative modification of s "relevant" cenatraint (in gerwral the teinperature)
introduces a gualitative change of the physical properties. With our increasing
knowledge of tha properties of condensed matter, it appeared cicarly that this kind of
phenomena is very general; let us menticn for example, the magnetic transitions
{ferromagnetic - antiferromagnetic - ferrimagnetic transiticns towards a paramagnetic
state) the order dlsorder transitions in allays, the structural transitions (ferroelectric -
paraelectric transitions, martensitic transitions...), the paraconductive - superconduc-
tive transitions, the metal insulatar transitions, the liquid crystal transitions {isotropic-
nematic...), ths liquid-superfiuid transition...

In order to characterize the possible equilibrium states, it is quite natural ta
define "phase diagrams” which determine the nature of the equilibrium state far given
values of the external constraints Pj (temperature, p.ressure, electric or magnetic
field...). The phase diagram defines domains in the parameler space { Pi} which are
separated by surfaces or lines of singularities, It is then necessary to 1) characterize
each of these domains not only gualitatively by the physical properties of the
corresponding phase, (matal, insulator, superconductive, ferromagnet...) but also
guentitatively by the value of one {or several) "order parameter(s)" determining the
peculiar state of the considered system. The definition of this order parameter is
obvicus in some cases {magnetization for the ferromagnetic paramagnetic transi-
tion...); it is difficult in other situations and ita identification is one of the steps
towards the understanding of the transition. For example, the relation between the
order parameter of a superconductor and the number of Cooper pairs is not at all
obvious and took a long time ; the order parameter for the metal insulator transition is
not clesr at ell.,.

When we know the order parameter, we have to characterize the nature of the
singularities of the thermodynamic potential and of the physical properties; the
surfaces (lines or pointa) of singularities which appear in the parameter space must be
classified from s general point of view to paoint out the general trends. Several
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attempts were done according to the theoreticel and experimertal knowledge of the
cansidered historical period but, it appesrred progressively that these singularities
present a surprising "universal" character : the singularities of the thermodynamic
.potential are often the same for systems which have very differant physical properties
{for example, structural, magnetic...).

In this introduction, we study gualitatively some elementary phase transitions H
this will allaw te exhlbit the peculiar characteristic properties of the phase transitions
(2). Then, we discuss the methods which are used to solve the problems raised by the
study of phase transitiona {3) ; we introduce the main models which have been used for
these studies (Ising, Heisenberg...) and we show thet the same model can s priori
represent different physical phase transitions. We discuss the definition of a critical
point as a singularity of the thermodynamic potential (5) and finally we present a brief
summary of these lectures,

2. Phase transitions : some examples.2.1- Liquid - Gas transition.- 2.1.1. Equilibrium

between_several _phases.- The equilibrium state of an homogeneous system of N
identical particules is determined by the value of two thermodynamic quantities, the
velume and the energy for example, It is possible that the system in its thermodynamic
equilibrium does not remain homogeneous and becomea separated into several different
homaogeneous parts. The different states of the system which can coexist in the
equitibrium state are defined as the different phases of the considered matter, The
equilibrium between these phases (1 and 2 for example) is obt sined by requiring 1) the
equality of the temperstures (T1 = T2 = T), 2) the equality of the pressures (Pl = P:Z =
P) and 3} the equality of the chemical potentials ¢

ul(T.P) = uz(T.P) (13

This last condition results from the conservation of the tota! number of particles
(N = Ny NZ) and from the fact that the free enthalpy G(T,P) is minimum for the
equilibrium state dG = Hy le ) sz =0). Far a given pressure P, the chemicai
potential of one of the phases (1 for example) is smaller than the order (ul < uz) when
T <« To: the phase 1 is then stahle whereas 2 is metastable ; for T = To bath phases
have the same molar free enthalpy and for T T[J the phase 2 hecomes stables ; To is

the temprrature for which both phases can coexist (Fig, la).

< Figure la
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In & diagram pressjre - temperature, the points TD(P\ define a line L which represents
the condition (1)} the points ™M = (7,P} which are not on this line represent
homogeneous statds. When we change the external constrairts l.e. T,P, the point M

which represents the considered system defines a "physical line” in the perameter
space and there is phase separation when this line crosses L. Naw, if we follow the

states of the systém in the plane {P,v}, the heterogeneous states of the system are
represented by a demain of this plane D : the molar volume is - in general - different

for both phases(vlk vy for exarnple) and a point of O represents a system which has

T

v F'jgure b

VT XSV, b X,V (2
2

xl(sz being the molar fraction of 1{2) (xl AP 1), If, as an example, we follow an
isothermal vatiation and if the straight line T = T1 crosses the line L it will appear an
heterogenous state jwith Vi<V v, When we go from one phsse to the other {1+ 2)

there wili be an ﬂnsérption {or emission) of heat {latent heat ir= T(32 - sl))_

Fig lc: Uritien) point,

2.1.2. _QIAEEG?J_E’PJI‘F; - The line | can stan at oo oot (TC,PC} called M. For
T"Tc’ WE ¢an rmly_obtain one phase when we vary V2 and at T - Tr_, the differerre
hbatween hath phnspsé disappears w'vl S PURIIERPA The diagram v j« engiven by the
figure lo. If there 15 a critical paint, we ran alwavs go continuously from one phase to
another without phalne separatian : the concept of different phases is then clear only

wher they roexist,
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A critical point can exist only when both phases do not differ qualitatively. For p

examnple, if the phases are characterized by different symmetry groups it is impossible 57.80;“; Xe
to observe a critical point {liquid-solid transition for example). However, if both phases 5650

present the same symmelry, a critical point can exist Fliqujd-gas transition). 5775} *—ooga.

When a critical point C exists, it is interesting to study the properties of the system
when M is in the neighbuuriwod of C, Using the cleflimtlon of C(slw Sy ¥yt Vs when 5770
T TC). the stability canditions ((.d’/ov)T - 0...) and aspuming that the critical isotherm

. I

is continuous, the criticul point is the puint for which the isotherm compressibility 5765
1 651

diverges (KT = - 1/v (av/ <F’).i owar L0 _.V)T= 0). Finally, if we assume that (av/aP)

13 an analytic function of v and T for T ':Tc a:nd VeV, we obtain easily the

following simple laws for the specific heat and the énolar volumes near C (Landau}: 5760
(Landau-L ifehitz, Statistical Physics). :
I 5755+
ViTve T - (vz- vc)'\,(Tc - T)I/2 (3a) A N , .
130 120 1'101 100 090 p
poonov -7 M2 (3b) (g mt)
T R
Fig, 28 : [sotherms of xenon in the criti i
cp v AT -T) v Blv-v )2 (3¢) Soe T Chem, 32, 98, eritical region (from Habgood and Schneider, (1954).
a -1 (T>T) (3d}
Ky (T-7 c X K
where A and B are constants, y : \7 /y \T
2.1.3. Critical behaviour. - Let us summarize the main experimenta! features of the ‘ L~
liquid-gas transition in relation to the previous results |: CM TC T Cy Tc T

1) Theliquid-gas transition presents a critical point for which the first derivatives of

the thermodynamic potential are continuaus (sl = Bpy ¥y TV, when T = Tc' P = PC):

1a) The isothermal compressibility Kpdivergesat T=T as: (Tc -1 Vwith Yol ' H P, I>T Te 71
1b) The coexistence curve v,(T), v,(T) is not e parabala as suggested by {3a) but & e
e v 1/3
cubic : (wl(T)-\.rc L (TC - 1 W T<Te
2) Corresponding states : The isotherms and the coexigtence curves are practically the pc P

same for a large number of simple systems when we choose reduced variabies t =
T/Tc and v/vc.
3) Critical cpslescence : the system presents for T= Tc a pecutiar "milky" aspect. This

results from the diffuse 1.5 scatlering by droplets the size of which is of the same

order of magnitude as the it wave length,

.

In_conclusion, the transition liquid-gas is charscteri
predictions of a simple model based on the analycity
satisfied. In the next section, we will precise the con
impartance of which will be shown to be essential in th

angle light scattering. Let us briefly study the phenom

ged by a critical point but the
of (BV,":JF’)T for T = T are not
cept of critical opalescence the
e following lectures,

g corresponds to a strong small

ENa.

Fig. 2b : Ferromagnets (a} and fluids (b) in the critical region,
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Fig. 2c : Corresponding states {from E.A. Guggenheim, J. Chern, Phys. 13, (1945) 253).

2.1.4.1. Diffuse light scattering. - ¥ or a given scattering vector glg = k' - k) where k
and k' are (resp.) the incident {scattered) wave vectors, the diffuse scatiered intensity

I(g) is proportional to the Fourier transform of the density-density correlation

function :
Ilg) _ 1
gﬁ)— Pl (CH q#0 {4.8)
gla) - J o). e ' ar {4b)
gle=r) = < (n(r) - n) (n(r") - n)> (&)

n = N/V is the density per unit volume ; In(q) is the intensity scattered by a random
distribution of N particles; n (r) is the density of partlcles {per unit volume) for a
given configuration snd the average <> is an ensemble everage over all the confi-
qurations of the system in equilibrium with a thermostet (temperature T). Then, glr) is
a measure of the local order i.e. of the correlation between the denaity n{r} and n{r') :
if there is no correlation g{r - P} = <an(r)  an{t) > = <anlr)>< an(r) »= 0 (An(r} = n(r)-
nlt

gir~1)=0(r fr (disordered system} (5)

since by definition <nic)> = n = N/V.

Jimit 1700 ! can be approximated by a Jorentzion :

ORI U (q - 0) 3

PO B

rad?, 1P

80 , 120, 160872
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Fig. 3a: Critical diffuse scattering for argon. (frem Thomas TE and Sehmidt PW, J.

Chem. Phys. 39, 1963 2506).

Fig. 3b :Deviations from the law (6) (schemati=),
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Gy SEEIESEILA LR Tenge of the small angie scattering and (T} (which has the
dimensicn of a length) describes the range of the correlstion function glr). This
function can be obtained from {8) by a Fourier transform (cf, 4b) :

!
gir) —exp -Er . (7

When T . Tc’ the carrelation lergtn 7{T) diverges %0 that we observe a strong small

anyle scattering, The ex;.arimental study of 4 (T) showd that :

o . tr -V
LTy T . Tcl ! {8a}
i

and detatled studies show that -

T2 RD) forqesal (8b)

gl v (g4
Finally it is possible to verify the existence of "corres onding states" by representing

the diffuse scattering versus qand T according to the lgw (cf, Fig. 3),

l%’ SENCTS (8c)

In cenclusion, the small angle scattering sHows that the density-density
correlation has & range characterized by a correlation length & (T) which diverges
when T o TC.

2.2, Binary mixtures. - It is easy Lo extend the previous results to a system of different
particles. The equilibrium canditions are :

w TP C;S = uf e, CJF}...) (9)

where ::.lOL = N;?N id the concentratian of i in the phaseo . An equilibrium state of a
binary mixture is determined by three quantities,! for example T,P and the
cencentration ¢ of one of the constituents {0€cs1).|The equilibrium between two
phases is determined by & surface in the parameter sgace (T,P, u); the equilibrium
between three phases is a iine {of triple points) in this Bpace and the states with four
phases in equilibrium are obtained for isalated points.
In gereral, the variadles T, P and ¢ are preferred. In this space, the equilibrium
between two phases ia represented by asurface ; for given temperature T and pressure

P, the intersection of the l..e T. .’0

concentrations ¢, and g of the phases in equilibrium. [For C  <Cer 5 there is phase
separation. Usually, the phase diagrams {T,c) are sectiohs of the previagus diagrams at
canstant pressure P, In such & diagram the cancentratigns of both phases can become
equal for some temperature TC(P) (cu(Tc) =cy (Tc . This "critical" point can
correspond to different physical situations :

e 'po) with this surface determines the

T (a) T (b)

A

c C

Fig. 4a: Critical point for demixion, Fig. 4b : Point of equai concentrations.,

1) the properties of both phases become identical and we have a critical point the
properties of which are similar to those observedfor the liquid-gas transitions {Fig,
4a);

2) the properties of the phases remain different even when the concentrations are
equal : we have a "point of equal concentrations” (Fig. 4b).

When there is a eritics] point, the phencmena are similar to those we chserve
for the liguid-gas transitions : the critical point is defined by the condition 3./3c
(T,P,c) = 0. Detailed experiments have been done an fluid mixtures ; they showed that
the coexistence curve is characterized as previously by a cubic form: cu(T) \

ITC -T |B, B =1/3. Criticel opalescence has alsa been cbserved, this phenomena is
agdoriated to long wave length fluctuations of concentrations ; it can be represented

by the same laws as those we discussed in 2.1.4. (Fig. 3.5),

Ordered structures can appear In alioys at "low" temperatures. For "high" tempera-

tures {T > TC ) the probability for a site 4 to be occupied by an atom A does nat
depend on the considered site (¢{)} = c); on the cantrary, for T < TC we can observe an
ardered phase characterized by a periodic variation of c(x) with .. In the simplest
case, the system remains single phased and the trensition is continuous : the concen-
tration c(k} remains constant (and equal to c¢) for T » Tc but varies continuously when
the temperature decreases from Tc(c().)-»c when T+ T -0) to T =0. This transition
presents analogies and differences with the liquid-gas transition : 1) the transition is
continugus : the tharmadynamic potential G(T,P) and its first derivatives {volume v,
entropy s....) are continuous at T = TC (na latent heat) as previously observed for the
liquid-ges transition for T = TC; 2) the tranaition can also be considered as
discontinuous since the symmetry changes when we go from TD +0ta TE - 0 : this was
nat the case previously since liquid and gas present the same symmetry, The
periodicity of the ordered phase is necessarily greater than the perigdicity of the
disordered phase i.e. the ordered phase has s lower Symmetry than the disordered
phase. Note finally that for T<Tc the ordered states are identified by the symmetry
changes : the new perlodicity is obtained from new Bragg lines (superlattice) appearing
in the X-ray or neutron diffraction spectrum,



comzrsience

2.3.2. Order disorder transition in B _brass~ The first (and simplest) example we : !

consider is the order disorder transition in CuZng (Fig. 5). The crystalline lattice is
body centered cubic ¢ this lattice results from two simple cubic sublattices (we label !
@,R). In the disorderad state, the A (copper far example) cancentration is the same on :
all the sites (ca =cgh In the ordered state, the symmetry becomes simple cubic (with :
two atams pet cell): this change of symmetry comes from the fact that one of the

sublattices is occupied preferentially by A atoms, the corresponding concentration
being (for c = 1/2) 1 :

1 1
C“-z(lﬂﬂ CB--Z‘(I-n) am
Fig. 5c 1 Orderidisorder tiaimitnir- « = o0 < arser and b) first order transitinns.
M H
! T
|
L |
Ta !
I

;gm_(j' Struc&u;;.)ord:r parameter 1 (T} of B bress (CuZn) (... exp, —-_quasichemical ‘ Ttrrp
method, ~--_ and specific heat ¢ (T) {from Nix and Schockl ‘
1o, (1938 Y1 chockley , Rev. Mod, Phys,
concentratior
Fig. 5d: Tricritical point.
o » - L] . ”._* d
o n =] Q
0200 40 500°C ’
. ] = demain boupdery -
Fig, 5b ¢ Ordered phases in the gold copper system. ~20 '
ey -
For Te T ot the system is characterized qualitatively by the new symmetry Cuhiull

and guant]tatlvelz by the spatia! fluctuation of concentration n{T} =0, -Cg- The

F_|g Lo Tople pont.
orderrd state is characterized by the order parameter 1 (7) which varies from zerp

(T=1 ) to one {T = 0) when we qo from a disordered (c

" =1/2) ta an ordered ‘
state (r

> 233, Order_ nﬁameter : Cudu diagrane. The onrder can be represented by oo con-
=1, 1 0g = . F'ur T T the order parameter varies as - Ty AT - T ‘f[i with 2 . I
cl

boEga and the specific hea: prsu:nrm an anomalv hoth for T~ T and for T« T {Fig.
Sa) ¢ ¢ ‘ rli)z o+ AFCOSCQ“ +
. 4

centration wave ﬁ

iy

) (11



characterized by the wave vector g or even by a superposition of such waves :

cly=e o oA P L AR 1P (12)
Z q q
3
Let us consider as an exanple the structures observed for the systern CuAu, the

disordered state being face centred cubic. The system CuAuI can be represented by a
successive stacking of {001) copper and gald planes. The geid concentration can then

be writien as :
eil=croycosyy A =¢ (1sn) (CuAul) a»

where gy = [001] 2nr/a. The superlattice CuzAu can be represented by a superposition

of three concentration waves : !

c{i)=c+c {casgyi +cCOSQ, ) +4cCO5qy )
1 ] 2 ¥

2 20 21

ql= [1;010 ] ‘%" [ qz =E03110 ] T ’ q3 = EG,O,l:I "8 {14)

¢( A ) can have two values on the fec lattice sites
cii) =c + 3nc when A s cne of the centers of the faces

cli}=ec- nc  otherwise (15)

In both cases ({13}, {15)) we can alsc represent the order as follows : 1) consider
the fee lattice as resulting from four simple cubie uubléttices =1, 2, 3, 4); 2) assume
that the concentration (i} depends only on the nature of sublattice . However, the
reprasentation (12} is much more general ; the q vscturﬁ; are directly determined by the
diffraction superlattice lines (X-rays, neutron, alectroni diffraction), Note that the new
period (Fig. 4) can be commensurate or incommensprate with the period of the
disordered lattice ; for example in the AuCu system we observe the periodic antiphase

AuCu, stable in a small temperature range (30°) aFuund 4009C ; the structure of
AuCu” can be approximetely represented by a regular repetition of two sets of five
cells of AuCul which are in antiphase with respect to egch other.
2.3.4. Conclusion. - The order disorder transitions are cheracterized qualitatively by a
symmetry change, The ordered state is determined by the functions c{i) i.e. i)
qualitatively by the q vectors which appear in the expansion of the concentration in
periodic concentration wave:s“; it! quantitaiively by the|amplitudes Aq i«e. by the order
q {2).14

parameter nc=(I |A witich characterize the importance of the concentration

fluctuations.
The transition can be continugus ("Znd order"): we diacussed gualitatively the
properties of this trantitian in relation to the liguid gag transition. In the plane (T,c),

the temperatures Tc(c) define a line which separates|two domaing corresponding to

single phased ordered (n# 0) and disordered (n = 0) states, Along this line the transition
is continuaus and the maximum of this curve Tc(c)-if it exists - has no peculiar
physical meaning.

The transition can also be discontinuous {or lst order), the order parameter going
discontinuously from a non zero value n(T_ - 0) £Q to & zero vaiuen (Tc +0)=0. The
transition line T, {c) can present a maximum i in such a case, the Line can be splitted in
twa branches (TE‘D(C). T{Z) (2)(1:" T< TC(D(

c c
cases, the phase diagram can be much rnore complicated. For example, when we vary

(¢)) and bath phases caexist for T c). In real
the concentration, the first order transition can become a continuous transition at
Tc(co) {(tricritical point); we can also obsefve the coexistence of three phases ({wo

ordered phases and one disordered phase) at the triple point.

2.4.1.1. The first experimental end theoretical studies of magnetic transitions
{Faraday, Curie, Weiss...) concerned the simplest case 1 the system is paramagnetic for
T >T|: and becomes ferromagnetic below the Curie ternperature TC {ircn, cobalt and
nickel...). The ferromagnetic state [s characterized by a non zero uniform
magnetization M(T) - even without an applied magnetic field H. The magnetization
M(T) is a continuous function of T far sil values of T (M(T) + 0 when T-+ TC); more
generally, the thermodynamic potential end its first derivatives {M, s, v...) are
continucus when T incresses from below to ebove the Curie temperature. However,
this transition is also discontinuous since the symmetry {i.e. the set of symmetry
operations, which leaves the system invariant, changes discontinucusly at T = TC : the
symmetry of the ferromagnetic ordered state (M #0)} is lower than the symmetry af
the paramagnetic the order disorder transition observed far the g brass : here, the
ordered stule is characterized by a (pseudn) vector, the magnetization M, whereas the
order disorder transition is characterized by ascalar n.The magnetization is the order
parameter related to the paramagnetic ferromagnetic transition, It is an extensive
quantity and we will consider in the following sections M as representing the
magnetization density per unit volume { or per atom). In practical situations the

magnetization is coupled to the lattice variables so that the magnetic state depends
on the direction of the megnetization {magnetic anisotropy, easy axis of magnetiza-

tion...) ; for simplicity, we neglect such effects here ; they do not modify qualitatively

the physical picture of the transition in most cases.

2.4.1.2. Critical behsviour (Fig. 68, c) (experiment). - Let us briefly summarize the

magnetic properties of the transition for T :TC for the simple ferromagnets (Ni, Co,

Fe): g

1) Far T <T, the magnetizatic varies as Hc - T | withg =0.3;

2) The specific heat ¢_ presents an anomaly for T = Tc {below and above Tc): it is
varying as (T - Tl__\)-‘:1 with a=0.1 (Fig. 6e};

N ALT=T, the magnetic susceptibility X = (BMIBH)T,P is divergent and varies &s
(T - TC}-Y withy = 1.3

v

L)

L&l



4) The critical isotherm {i.e. M(H,T = Tn)J varies as H” § with 8~ 4 ;

5) Finally, we observe (by magnetic neutron diffuse scattering) a magnetic criticsl
opalescence i.e. largs fluctuations of the magnetization density <|Mq] » for
small wave vectors q (q ~0) (see 2.1.4. for comparison and replace, in equation {4},
(5) and (8) the density © (r) by the magnetization density M(r)).

2.4.1,3. Discussion. -Order parameter and conjugate field, - The critical properties of

the previous system are very similar to those we described for the liquid-gas

transiticn : the magnetization M plays the role of the density p- o, end the magnetic
field H must be cormpared to the pressure P. In both cases, the order parameter is
defined from an extensive variable and the variables (- P P}, (M,H) are "conjugate”

In the thermodynamic sense. Among all the intensive variables defining the external

constraints the variable M, conjugate to the aorder parameter M, plays a peculiar role :

if the system is submitted to a non zera value of this field H, the order parameter M

becomes non zera for T *TC and the linear response aof the system to this field, the

susceptibility x =(3aM/34) H = Odiverges when T TC(X , KT +x when T+ TC)- The
divergence of this susceptibility is a "premonitory” effect which indicates that the
system will support a phase transitian for T = Tc'

Finally, if we compare these results to the results which are obtained for the
order disorder transition we abserve & similer behaviour (see(1) and (2)}, but the field
conjugate to the order parameter n has no physical meaning (see & 2.4.2. for
comparison).

2.2, Paramagnetic-antiferramagnetic_transition.- It is possible that, for T< T , the

ordered state corresponds to an antiferromagnetic arrangement of the moments : the

macrescopic magnetization remains zera for all temperatures but the magnetization of
each of the lattice sites m(}) is different from zero when T<Tc. The magnetization
must then vary from site to sits, The simplest case corresponds to an antiferromagnet
defined from the two sublattices o and B we considered previously for the B brass

(2.3.2). The lattice is body centered and the magnetization m(4) is zero {for H = 0) on

all the lattice sites A, for T> Tc' Below Tc’ the magnetization m(d} becomes non zerg

and the simpleat magnetic arcangement to obtain 8 zerg macroscopic magnetization is
the following: m{i) = m_on the o sublattice sites and m{‘) = mg= -m, on theg
sites. The symmetry is lowered (from bee to sc) when the temperature decreases from

TC +0Dto Tc ~ 0. The transition can be discontinuous (m(1) »m(TC) EOQ when T Ta- 0

ar continuous (m{T) +0 when T TC). An ordered state is then characterized (see 2.3.2.)

by the order parameter M = ra'\Ot - rnB but, as for the order disorder transitions, the

field H conjugate to this parareter has no physical meaning. More precisaly, by
definition, this field must be coupled to the system by the coupling energy :

S t~NH(mn-m } (16a)
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Fig. 6b: Magnetization of nicke! versus temperature (from Weiss, P. and Farrer, R
Ann. Phys. (Paris) 5,(1926)153.)

By compariscn of this equation with the coupling energy nf the svstem with a space
dependent field F(})

| R A I (160)
we find that the field conjugate to the order parameter M 15 o "staggered” field equal

to:

Wb e
H )"I~Hif Lo

AN

(160}
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Practically, such a field cannot be realized so that the susceptibiiity cannot be

measured directly.

order will be characterized by & magnetization density which will be spatially varying

according to a single magnetization density wave !
miA} = Aq cos(q A «¢ ) (17a)
or to a superposition of such waves :

m(3) :% P (Aqedt ar e gy (17
q

For example, the magnetic structure of bec chromium is characterized below
TNz 311 K by a transverse(q.A_ = 0) sinusoidal wave (T.A.F. state) ; the wave vector is
parallel to DDG] and the corresponding wave length decreases cantinuously from 28a
to 2la (a = interatomic distance) when the temperature decrease from 311 K to 123 K,
Below 123 K, the wave becomes longitudinal - q and Aq are parallel (L.A.F. state) and
its period remains practicelly constant. The tranmaitions P-TAF, TAF - LAF {P - para-
magnetic) are first arder transitions but these properties are very sensitive to the
impurities : some atamic per cent of impurities (V, Mn...} are sufficient to change this

complex antiferromagnetic state into the simple antiferromagnet described in (2.4.2.).
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Fig. 7a : Periodicity of the magnetic helix versus temperature for same rare earths
{c = periodicity along the hexagonal &xis).
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Ancther interesting example of complex structures is given by the rare earths
for which helicoidal atructures are often abserved. The lattice symmetry is hexagonal
and the transition from the paramagnetic to the helicoidal state is (in general)
centinuous. The q vecter is perpendicular to the hexagonal planes and the momenty are
perpendicular to a direction & which is nat necessarily the same as the direction of q.
Moreover, the periodicity of the magnetic helix varies continuousty with temperature
(Fig, )i the corresponding structures have then fin qeneral} a period which is
incommensurate with the period of the crystalline lattice,

2.5. Structural transitions, . Fromsome years, the structural transitions have beep

extensively studied in relation to ferroelectricity, It has been possible to show that
such transiticrs can be continuous and have the same properties as those we discussed
previously. The ordered state has the lowest symmetry and is characterized by the
displacement aof some atoms relative to the others, For examnple, in the simple be:
crystal with two s.c. sublattices (§ 2.3,2.} it is possible to imagine that the atoms o
are displaced by the same quantity relative to the atoms & ("ferrodistortive"
transition) 1 the symmetry of the ordered system becomes quadratic... In the same way
as previously, it is possible to represent an ordered state by one (or several) static
displacement waves.

A simple example of such cantinuous transitions is given by the transition of
SrTi(J3 from a cubic to a tetragonal state. [n the high temperature state the cubic cell
is occupied by & titanium atom (at the corners), three oxygen atoms (4t the edges) and
one strontium atom (at the cube center). Fach Sr is then surrounded by an octaedra of
oxyyen. Below T. = 100K, the cctaedra are turned around [001] by an angle+ (4).
This angle varies with the crystalline sites » oceupied by titanium (Fig. 8)

—

1 11
S TN i s 742
{_60(1 4 cos q 19 = 53

3 e

7 (18)

T

a being the parameter of the ~ubic cell, The wave vector related to this distortion
wave s paraliel to [[1117]; it is such that two neighbouring octaedras are
characterized by two-opposite valurs of 40 1) (antiferradistortive state),

In the same way, | a AlD;, whose crystalline (peravskite) structure is the same
for high temperatures, preserts a phase transition from a cubic to g trigonal state

when TC‘ BOD K. In this rase, the octeedras are turned arsund {111 T by an angle

P st P

$(1). This ru;tatlnn can be considered as the product of three of the previcus rctations
(18) ( [100] x Eﬂlﬂj « 1017 }: as previously this transition is antiferrodistortive
since two neighbouring octaedras are turned by opposite angles, As for the previous
trangition, it Is possible to study the critical behaviour : the order parameter 4 {T)
varies ss| TI- T (B with = 0.33 when 1 =T, (see Fig. ad).

Finaily, let ua nate that such continuous transitions have also been observed for

uni or bidimensionel systems {see Gerl's lectures).

@Sr ®T

Fig. Bb : Distortion of SrT‘:D3 for T TC.

3. Study of tha phase transitiors methaodology. - 3.1, Continugus transitions - General

features. - The previous gualitative discussion shows that hevend the varinty of the

phase transitic‘fr:s. it is possible tn oxhioit 2 strang unity. S xeluding the discontinuous
trangitions (13t order'") characterized fo + dismontinuty of the first derivative of the
thermodynamii‘: potential fs, V,..), we cursidered a large nurmher of "eontinuous”
transitions chd;racterized by : 1} a svmrmetry change at T - TC, une of the phases (the
ardered phase)} having a lower symrnetry than the other ; 21 the continuous variation of

the thnrmndvﬁamic potential and of its first derivatives when we pass through the
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Fig. 8e : Distortion of LaAlDJ. for T« TC.

Fig. 8d : Variation of$ {T) with temperature {8z0.33)in 5cTi0,. (from Miller K.A., et
al. in local properties at phase transitions,(l976)‘ed. by KA Muﬂer
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-transition temperature; 3) in the ordered state (i.e. generally for T<TC), an

equilibrium stete is characterized by the value of an extensive variable M called the
"arder parameter”. This order parameter can be a scalar, 8 vector or even a tensor... ;
it characterizes quantitatively the amount of order and is choosen to be zero (by
definition) in the disordered state ; 4) in the "critical region" (i.e. for T = TC) the order
pararneter, the specific heat... exhibit & singular behaviour and present a non analytic
behaviour at T = Tc; 5) when T~ TC the "susceptgbllity" w = M3 H Le. the linear
responge of the system to the field H conjugate to the aorder parameter diverges and
this divergence for T+ Tc +0 is a "premonitory effect” of the phase transition; 6)
finally, the critical region is characterized by a “critical opalescence” i.e. by large
fong wave length fluctuations of the order parameter < \Mq 12 5> of by leng ranged
spatial correlations <M(o) M(r}> .

It is important to recognize that this class of phase transitions is characterized
by this last phenomena. When T zTC, the system is fluctusting between states of
similar stability. Then, it appears locally, for T >TC, ordered domains whose size
and life time 1 increase when T+T . The correlation length ¢ (T) diverges for a
continuous transition whereas It remains finite for a first order transition.

3.2. Problem and methods. - A large number of problems must be solved to understand

the physice of the phase transitions. For example : 1) What is the physical origin of
such transitions ? ; 2) la it possible to predict the type ("continyous" or "discontinuous")
of atransiticn ? What is the role of the external constraints 7 3) Is it possibie to define
precisely an "order parameter" ? 4) Is it possible to precise the singular behaviour of
the physical properties in the critical region ? What is the degree of "universality" of
such a behaviour 7

As a first step, these problems must be solved qualitstively.

From an experimental point of view, it is necessary to characterize a transition

by detailed measurements of the physical properties near T, which will determine the
nature of the singuiarity of the thermodynamic potential. We need measurements of 1}
the thermodynamic quantities 2) and also of the spatial correlations < M(a} M(r) = by
diffuse (light, X-rays, neutran...) scattering. A transition will be characterized by a set
of laws which express the veriation of these properties with temperature (Cp(T), 5(T),
x (T}, E(T).). The comparison of these physical data for different phase transitions
(structural, magnetic, order disorder,..) will allow to define "universality" classes.

From_a theoreticel point of view, we can use several approaches according to

the "level of approximation" we choase, [t is tempting to try to represent as strictly as
possible & transition by & microscopic _model ; this approach is an “ab initio"
determination of the physical properties but 1) it is ambitious : it gives {in principle)
ton much infarmation for our qualitative purpose and 2) it does not allow to exhibit the
"universality " of the critical behaviour. For this reason it is important to develop

phengmenological theories based on general assumptions concerning the symmetry.

s
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These theories will allow {in principle !) to classify the trangitions, to deduce the
conditions which are necessary to obtain continuous transitions, to relate the
singularity of the thermodynamic potential at T = Tc to syrmmetry transformations and
to invariance properties.

From a methodological point of view, it will be equally interesting to "build"
simplified "microscopic models" which retain the gualitative features and are as simple
8s_possible to be exactly soluble or, at least, snalytically and numerically tractable.
These models -1sing, Heisenberg, sphericaf, Pott's... models- are then interesting not

only for the applications they can have but also for the qualitative features and exact
thecrems they allow to discover. We discuss briefly in the next section some of these
models,

4, Microscopic models. - The macroscopic system is now assumed ta be made of N
identical microscopic subsystems ) and the phase transition is a cooperative effect
which results from the coupling interaction between the microscopic systems. More

precisely, this coupiing enerqy kB'T.‘- determines the "“ordered state” whereas the
entrapy assoriated to the disorder induced by the thermostat favors the "disordered"
state; the phase transition comes from the competition between the coupling (kﬂﬁ )

and thermal (kBT) energies, the critical temperature Tc being roughly equal to ¢,

extensively to describe the magnetic arder. The subsystem ) ("spin" 1/2 far example)
can be one of two states (1 and i) whose enerqiesc+ )+ are equal (when there is no
applied field). We define the number ay {representing the 2 components of the spin for
example) for each system A 0, = +1 if A is in the state *, = -1 otherwise. The
coupling energy is then chosen to be as simple as possible ¢ it is msssumed to result

from pair interactions between "spins". Choosing the origin of the energies so that

€, = £, =0, the energy of the system may be written as follows (ising model) ;
(o} )==3 T vOo-y)a,0- 1o, H (19)
)=mg d wheyo s o, Hy
My !
H\ is the {magnetic) field conjugate to Gy The thermodynamic properties of this

system will be obtained from the classical relations :
F =kgTLog 7 (20

- EE{a, D ,
7= 5{1‘\}8 A (21}

the sum (21} being defined over all the {(*spins"} configurations. When v( ) 0, a "spin"

t tends to be surrounded bv ¢ spins ta minimize the coupling energy; at low
temprratures, the system hecomes "ferromagnetic” (¢, - 1V% or 7y = -] ¥ when
HA

critical temperature kBTc'

=0} sand the coupling enctny 1184 = ,‘“v(‘«-n Jis o

the nrder of magnitude of the

(lattice gas} predenting a liquid-gas (ransition. In such a case, the degree of freedom

associated to esch site 4 has the following meaning: if 7 = +l, the site ' is

accupied by an atom A and if . v = -1, this site is unoccupied. | et Us now introduce
the occupation nimbers 8

1. bV 1if x is eccupied ;
Boesu LT 00 otherwise, 22

If the fluid is in equilibrium with ~ the~mnstat, the field corjugate to the density © =

/N H By (N isjthe numbe: - s.tez | i enemical potential oo of the thermostat.
The energy of the system Ko o5 ther opnony
L \
%&({Phl)r?-if\l‘:-% Covlawpop -s T 73
: CE . . .

and the properties of this system { . far exampie) are calculated using the "yrand
canonical" ensemible,

4.1.%, Ising rmodel, demix]on and order-disorder transitions.- The Ising model can also

represent the physics of a binary alloy whose ernergy % can be written as a sum of pair
interactions : L}( bowy, Eij( A1} being the interaction energy between two atoms | and i
in % and u. A configuration of the alloy is getermined by the set [ pl © where the

. ’ * :

. i )
occupation numbers R, are defined fsepl22) hy :

i _{ 1if * is ccoupied by an atum i .
‘ Py = j 0 otherwise 24}
i
|
The energy of thé system in equilibrium with the thermostat is given by :
] i 1 L ‘
" . . i \ .
)CI(LO\)):j{’ -1 Ni w,I:- 7 P, pg_ -.iJ.Q (RS L}ihi (25)
! ' f5 "
ui(i = A, B) s thd chemical potential of the ith constituent.
For a binary alloy and if we assume that all sites © are ocoupie ’:pa + pFi =1}, an
| ' ’ !
alloy configuration is determired by the numbers !Df\fn,} and the enerqy &
becomes identical to (23):
P 1
i-}t’({n-ﬁ}):-f\: vie-in,p - 5oL (26)
.
C is a constant : v and A are defined by ;
|
I e R
i du - ta ot te b 2 "pp’((l} - %B"_m‘ (27}
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be determined by the existence cf a Slnguiarity of the Fhermudynamic potential F.
However, Z seems to be an analytical function (T > 0) since it is a sum of expanentials
(see(21)): at first sight there is no singularity and no phdse transition! This i3 exact
when the number af canfigurations {o ! is finite : there s no well defined transition
for finite systems, o !

However, in thermody ar s and statistical physic&s, we are interested by the
behaviour of macroscopic systems i.e. by the Lhermody‘ amie limit (N, V+o , N/V
remaining constant); relations (19) and (20) have been obv.[:ained in the thermodynamic
limit. When the size of the system (i.e. N incresses, th}e number of configurations

increases exponentially and becomes infinite. The limit OT an analytic function is not

necessarily analytic so that the phase transitions must bg defined mathematically in
the thermodynamic limit. 7

£ jj(l]) =]§ € ]}(R-u)

when v(i) >0, an atom A tends to be surrounded by atoms A and we must abserve the
demixion at low temperatures. When v{-} < U an atom A tends Lo be surrounded by
atoms B and we can hope to obtain an ordered structure af low temperatures ; this
order depends both on the lattice and un the function v(x). The ferromagnetic
(antiferromagnetic) transitions are to be compared (respectively) with the demixion
(order-disorder) transitions. If we introduce as previously {see (22)) the quantities
0, =2p, -1, the problem (25) is equivalent to an Ising problem with applied magnetic
field:

C' is a constant.

4.1.4. lgi_gg__rp_q&jf_.‘!_g_qg__s_tgy_r.:t_ggglJ_rfl__rlgi_t_ip_rlsi.’ The Ising model can also represent a
structural transition when peculiar atams can have two possible positions: fet us
mention for example the ferrodistortive transitions in KHZPOA’ NaNOZ... [n the same
way, when each subsystem X can be in cne of two electronic states and when these
states are coupled to the deformations, the carresponding transition can be
represented by an Ising model (Jahn-Teller transitions in Vanadium (DyVU“, TmVUa...).

4.1.5. Conclusian. - The Ising mode) is important because it can represent a transition
resulting from the coupling between N subsystems if these subsystems can have two
possible states : then, ay will labet the spin, the chemical nature, the electromic state,
the displecement... of the system ) according to the physical nature of the transition.
4.2, Heisenberg model. - This model has been introduced to describe the ordered
magnetic structures end is an extension of the [sing madel. We associate a vector 5
to each subsystem X and the coupling energy is given by :

£ = - (29

3] b

Ev(i-)5 .5 - & H,.S

7
r‘\i'u e

The spin § is defined in the "spin" space whose dimension is ni 0 is the
dimensionality of the order parameter. If 5 is a vector in three dimensional space
n=3;if it can only lie in & plane, n = 2 (strong anisotropy)... The Heisenberg model is
then characterized by two numbers (n,d) : d is the dimension of the lattice space and n
the dimension af the spin space. When n»=~ , we obtain the spherical model: this
madel is exactly scluble (even when d = 3 ).

5. Phase transition effects. Tharmodnamic limit and mathematical definition

of a critical point.- For a given model (the Ising model for example), we must calculate
the partition function Z and the free energy F (see (20), {21)). A phase transition will



This can be illustrated by a numerical ealculation of F{T) and ® for an [sing
model (square lattice - d = 2 - with interactians v(1} between nearest neighbours), The
tlhermndynamic quantities - the specific heat fer example - can be determined from
equations {19 and (20} when the system is made of an increasing number of squares
(Ix1, 2x2, 4x4...}. Figure 10 shows that if the specific heat is perfectly reqular for the
smallest systems (2x2) but an anomaly appears progressively when the size increases,
the function r_‘p(T) remaining regutar for all T values when this size remains finjte. The

singularity appears only in the thermodynamic limit and it has been shown to be
logarithmic (Onsager) &

ey % Loa 'T.T ] (30)
25
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Fig. 10a : Specific heat far n x n Ising squares. {from Ferdinand, A.E., and Fisher, M.E,,
Phys. Rev. 185,(1969)832).

In rconclusion, the phase transitions are defined mathematically by the
singularities of the thermodynamic potential for peculier values of the external
constraints (temperature, pressure...) in the thermoadynamic limit,

Finally, it is importent to recoghnize that it is difficult te determine

experimentally the existence of a transition far T = TC and the nature of this transition
(continuous, discontinuous 7). In some cases, detailed experimental studies have shown
that the transition remains well defined {or all acressible termperature scales (Fig, 9b)

but 12 is not excluded that deferls, impurities... smear out the transition in some cases,
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Fig. 10b : Specific heat for a sauare lattice (from Onsager, L., Phys. Rev. §5,(1944),
117,

6. Concluslon, - The Iprr.:.-vious analysis allows to: 1) exhibit the main features of the
phase transitions, 2) suggest a first classification ("eontinuous® and “discontinuous"
transitions), 3) defi}\e the problems we must solve to understand the otigin and the
properties of these% transitions. The following lectures will try te introduce the
methaods and the c¢oncepts without detailed discussions of the peculiar physical
situations ; let us nolw briefly present a summary of these lectures.

In the first 6hapter, we discuss the phenomenalogical theorv introduced by
Landau ; this theory|1) suggests a classification of the phase transitions and defines the
order parameter injrelation with the symmetry change at T - TC; 2} defines some
conditions which aré¢ necessary to obtain second order transilions and 3) predicts the
nature of the sinqulai‘ity of the physical properties (specific heat, susceptibility, order
parameter...}), This theory uses gerera! symmetry arquments and assumes thal the
thermodynamic poterLtial presents analytical properties at T = TC t this fast assumption

has been shown later Lo be false, so that the singularities of the physical properties are

not correctly predicti&d by this theory {see chapter 3),

In the ser:ond| chapter, we study the simplest approxiriatinn and madel to
describe the phase transitions i.e. the mean field approximation (MUF.AL) of the Ising
model. We show that the transition we obtain by a M.FLA, has the sarie features as
those obtained by the Landau theory., We show the limitations of this M.ELAL, the
fluctuations being dorlninant in the critica! region when the space cimensionality is low
(d< 4}, However, the M.F.A. is prazicaily oopectant sinee it is  the simplest
approximation which lis always used to chitai~ a fipst appreach of the phase transition
(Bragg Williams for oi"ds'r disorder transitinng, 275 method for the superconductors,
Var rer Waals method for the liquid-gas transibions. ..

!



In chapter 3, we precise the nature of the sinqularity of the thermaodynamic
potential for "simple systems". We are mainly interested by the critical region and we
show that the thermodynamic potential is a generalized homogeneaus function of the
temperature and of the fieid conjugate to the order parameter. We show also that the
critical exponents depend mainly on the space and order %Jarameter dimenslonalities.

in the last chapter (4) we try to exhibit the sufficient conditions that a system
must satisfy to obtain the singular behaviour described in chapter 3. For this, we write
the partition function Z as a functional integral (Landqu Ginzburg) ; we recover the
Landay model as an approximaticn. Then, we intrpduce  a peculiar group of
transformations - the "renormalization greup” - which v;'il! allow to characterize the
critical behaviour ; we show that it is passible to find Lh? singuiar behaviour of simple
systems (see chapter 3) in terms of such Lransformations‘(fixed points...}. However, we
do not discuss the methods which allow, to determine quantitatively the critical
exponents, these lopics being too specialized for the pregent introduction. We restrict
also our study to the "simple systems" and we do not disir:uss recent and exciting new
developments such as the defects of ordered states, phase transitions in disordered
Systems...

LANDAU MODEL FOR THE SECOND ORDER PHASE TRANSITIONS

1. Introduction. -1.1. Classificatian. - As previously mentjoned in the introduction, the

experimental results abtained for transitions whose phys
(arder disorder, magnetism, liquid helium, structural |

singular behaviour of the thermodynamic potential preser

ical nature is very different
ransitions} showed that the

ts general features. It is then

tempting to clessify these transitions according to the fature of these stngularities.

The first attempt has be done by Ehrenfest {1933} : the ¢
which the system presents a discontinuity of the thermd
derivatives. The 1lst order transitions are transitions for
related to lst  order derivatives of the thermodynarmic

{entropy A4s, volume Av if the system is in equilibriu

itical point Tc is a point for
dynamic potential or of its
which the physical properties
potential are discontinuous
M with a thermostat which

which there are discontinuities of the physical properties related to the second

determines pressute and temperature). The 2nd order trFmsitions are transitions for

derivatives of the thermodynamic potential {specific hest at constant pressure c '

isathermal compressibility KT...). The first arder trankitions have a latent heat

QT =T, A ( 25 £0) whereas the ather transitions are such that

i = 0 (a8 = 0). Thia

first classification is interesting Lecsuse it allows to comgpare the transitions for

different systems (order disorder and magneticm for exam

histarical interest because it assumes that the relevant sing

ple} ; however, it has only an

plarities are discontinuities :

this assumption is in agreement with the results of the mean field approximation but

later, the experimental studies showed that the nature of the singularity is much more

subtle for transitions without latent heat.

Landau (1937} pointed out thal the transitions without latent heat { e = 0) are
often characterized by : 1) a continuocus variaticn of the properties of the systems and
by Z) a discontinuous change of the symmetry. For example, the symmeltry changes
discontinuously at T = TC when we consider the order disorder transition of g brass:
far T = TC + 0 the system is bee whereas for T = TC - 0 it becomes simple cubic {with
two atoms per cell) and looses a symmetry operation (Lhe translation from a carner to
the center of the cubic cell). However, the order parameter (the cuncentration of a
given atam cn a given lattice site) changes contin;.musly : this continuaus change is -at
first sight- the property which characterizes the transitions without latent heat of
transitions. The continuous structural transitions are also characterized by a change of
symmetry at T = Tc and by a continuous change of the atomic displacements.

Such phase transitions are then characterized both qualitatively by the
symmetry change and quantitatively by the value of the order parameter associated to
this symmetry change, For the 2nd arder phase transitions, the two phase cannot be in
equilibrium with each other ; we can only observe the continuous tranmsition from one
phase to another. Both phases being identical at the transition tempersature Tc' the
a);mmetry of the system at T = TC must contain all the operations of symmetry and the
symmetry must necessarily be lower for the ordeced phase i.e. for T« T:. In other
words, if GD is the symmetry group for T = Tc - i.e. the set of operations of
symmetry- rotations, refiexions, translations- for which the crystal remains invariant-
the symmetry group remains the same on ane side of the transition whereas it becomes
Gl(GlC GD) on the other side,some operaticns of symmetry disappearing for T< TC.
When there is a change of symmelry, a necessary condition to cbserve a second order
transition is then that the symmetry of one of the phases (the "ordered phase") is lower
than the symmetry of the other {the "discrdered phase") i.e. that Glf. GDr this condition
is not sufficient as we will show later. On the contrary, there is no similar condition
for the lst order transition.

Note finally that the second crder transitions are not accompanied by discon-
tinuities of the thermodynemle potential and of ita first derivatives {entropy, energy,

volume,..) at T = Tc‘ The hysteresis effects corresponding to the coexistence of
metastable states with stable states cannot exist for 8 2nd order transition since there
exists only one state at T = Tc'

In conclusion we will consider three types of transitions :

1) The transitions for which the phases have different symmetries (Gl¢ GD‘ GU¢ Gl) i
these transitions are lst order since it is impossible to go continuoausly from one
phase to the other (polyrmarphism for example).

2} The transitions for which the symmetry group of the less symmetric phase Gl is 8
subgroup of GO {Glc.Go). It is then possible to define an order parameter

% Here we assume thst the ordered phase exists at low temperature.
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&ssociated to this symmetry change (see section 3) and the transition can be of the

2nd order if this order paramater varies continuously across TC but it can be also a

lst order transition. We will show later some necessary conditions which must be
satisfied to have a 2nd order transition.

3) Finally there are some cases where the symmetries of both phases coincide
(Gl = GU) and the transition can be lst or ?nd order (liquid gas transition) : we can
define an order parsmeter (see the introduction) but it is not related to a
symmetry change.

L.2. Landau model for second order transitions. - In this chapter, we study 1) the

definition of the order parameter in relation to the symmetry, 2) the conditions which
are necessary to observe the 2nd order transition, 3) the properties of the system near
the transition temperature TC. To cobtain such properties it is necessary to use simple
assumptions about the singularity of the thermodynamic paotential G for T = Tc' Far
simplicity, Landau assumes that (3 i3 analytic ; we will see that this assumption is not
satisfied for most systems and the nature of the singularity of G is described later for
simple systems (chapter 3} : this is why the properties, deduced from the analyticety of

G, are not carrectly predicted by the Landsu model. However, the analysis which is

related to the symmetry chenges i.e. the determination of the order parameter in

relation to the irreducible tepresentations of GG' the conditions which must be
satisfied to obtain a 2nd order phase transition seem to remain valid in most cases

{(chapter &4).

For simplicity, we will present the L andau theory in two ateps :

i} We assume the axistence of a phase transition characterized by an order parameter
M and we show thet the analyticety of G determines the properties of the system for
T = TC ;

i) the we show how the properties of the phase transitions and the definition of an
arder parameter can be related to the symmetries of the ordered and disordered
phases.

2. Landay mode) and properties of & phase transition. - 2.1. Introduction. - First we

assume that the system is characterized in the ordered state by a scalar arder

parameter M (magnetization for a ferromagnetic transition, long range order
parameter for an arder disarder transition...); G(T,P,M} is the thermodynamic

potential of the equilibrium state obtained for fixed values of the constraints T,P,M. If
we apply an external field Ho' the equilibrium value for the order parameter M is

obtained minimizing the potentis! G = (3 - MHo‘

2=
28 -0 4G . 0 (.1
aM 3M2

For a second grder tramsition, 4 - 0 when T - T[_ ‘0, Then following L andau, we
assume that the potential G(T,P,M) is analytic at T - .- More precisely

i) we assume that we ean expand (G(T,P,M} in successive powers of M whan M 1

2 3 4
GTAM) = GUT,P) wa Mo AT X 4 mir Mo L o

. . . (.2
! 4]
Cosome Bl s E:__ .

Go (T,m being the q}hermodynamic potential for T = TC H
ii} we assurne thatithe coefficients ( ., Ay By T are continuous Tunctions of T,9.., at
T=T. ‘

In some cases the lexpansion {1.2) can be siinplified by symmnetry considerations 3 for
example, if G(T,P,M:?) fs invariart Ly e < ance Mo oM, the odd paowers of M disappear
from (1.2). Mnreov;&r, iLis ere ot aw tone of the ordered and disardered states are
characterized by d%fferent symmnicy sranps, o< [ (see section 3l We will consider
only such transitiun‘a in this chapter,

The previoud assumptions seem " priori” ta be natural. Mowever, they are not
at all obvious sincé: Tc is & singular point for the thermodynamic petential ; we will
show that they imply a critical behaviour which is different from those which are

experimentally absdrved.

2.2. Relative stability of the ordered and disordered states Ist and secnnd arder

transition.- Form {L.1} the disordered state (M - ) is stable only if ¢

A(T) -0 f T 1%
c

The critical temperlﬂture Tc is the temperature for which the disordered state becomes
unstable relative tolthe ordered state (M £0), Moreover, far a sneand urder transition,

M must increase continuousty from zero when T decreases from Tr_ :insuch a casp we
must have : i} A(TCJ =0{M=0at7-= Tc)’ iy ALY TC) <0 for 1 T(‘ ‘instability of the

disordered state). it A(T) is analytic for T - T, these conditions reaquire the fallowing

expression for A 1 |

2

A(T):afT~TP)fU((T-TC) a0 (143

The condition {1.3) is a necessary condition to jnsure that the disordered state is stable

but it is not sufficiant to insure that it is the rnost stable. For example, if for T ‘TC,
B is negative (B« U)iand if we neglect the higher arder terms of £1.2) %0 = 1 = .0, the
states for which M > -3 A/2B are more stahle tha the disordered state Fig. 1.1.a):

i

| yo M= .5
To abtain the new tI:qullihrium state, ii s ther - eeessary o consider sne (at least® »f
the hirher order térns of (1,7} atherwise, G40 woukd derrease cantinyousty for
tnereasing valuyes af MM > 2 3A/ZI) : we mmust keep fat least’ the Booher order terns
of 73 up to the firgt one which is positive, t ot s assaene for siiplicity that 0 s



positive and neglect its temperature variation since we consider only the critical
region (T = TC). The thermodynamic potential is then ciharacterized at T = T,_‘ by twa
minirna : the most stable state corresponds to M(Tc) £0D s0 that for this temperature
‘the eguilibriumn state is ordered. The system remains oidered for all the temperatures
T« T, such that the mibimun of GIM) for M £0 mTre stable (heh the dissrdered
state. TD is then nefined by the conditions @

‘GL’M =0, T )= GIM(T T ) MT ) £0
|

i i (1.6)
aM fM‘To)) =0
Using (1.2} these conditions hecome :
; 28 c v
\A(To) + 3 M(TD) + 3 M(Tc) =0 (1.7a)
2
( A(TD) + BM(TD) +CM (To) =0 (1.7v)
and substracting (1.7a) from (1.7b) we obtain the value of M(TO) :
!
M(TO) -3 (1.8}
The temperature To is then obtained from (1.8) and ong of the equation (1.7). If we
assume that the expansion (1.4) remains valid, T, lsgivenby:
2
2B
TU = TC * 5ca Tc (1.9)

For T> Tu, the most stable state is disordersd but for T< TD the ordered state
corresponding to the second minimum of G becomes more stable : the order appears
discontinuously (see{1.8)) and the first order transition has a critical temperature T,
larger than TC. We obtain the same result when B is positj«e.

The previous discussion shows that a necessary conditidn to obtain a second order

T
transition is that the third order terrm of the L andau expangion (1.2} is zero :

B=0

in the same way, we will show that _ :nust he non negatjve to obtain a second order
transition {(see section 2.3.).,
For some systems the coefficient B can be shown to be zero from symmetry considera-
tions ¢ for magnetic transitions the order parameter is the; magnetization and the free
energy is invariant by the change M + .M : in such & cese, all the odd terms of the
expansion (1.2) disappear and the transition can be @ 2nd order transition. For the

order-disarder transition { B brass, ¢f introduction}, the change M- - M exchanges the
sublattices o,8 and does not change the thermodynamic potential ; the erder disorder
transition Cu Zn can be a 2nd order transition, On the contrary far the Au Cu and
Au3Cu struetures we described in the introduction such a symmetry does not exist and
& ?nd opder transition cannot appear in this Landau theary.

2.3, Physical meanning of A - susceptibility, - The physical meaning of A is simple. Let

us ssume thet we epply to the system an external field H {(magnetic field for a para-
ferromagnetic transition, electric field for a para-ferroelectric transition...) coupled

to the ordes paremeter M, The equilibrium state is obtsined by the minimization of

G= G—MHD i.e.byt

(MY gap
c>0
A>D
ALD
0
\NZ )

Fig. 1.1a : Thermodynamic potential when T = Tc (2nd order transition),

G{M)

B<O
c>0

Fig. 1.1.b : Thermodynamic potential when T = T0 (1st order transition).

e '
W-Ho=0 AM+B M 4...-HD

2 (1.10)
ﬁ?n A+2BMay.ns O

3 M

Far small fields Ho (linear approximation) and T > Tc:' the order parameter which is

induced by Hu is given by :

AM=H_ orM =y H_ with w o= A {1.11)
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Fig. .1.c : a) second order transition, b) 1st order transition, ¢} continuous transition
fram a Ist te a 2nd order transition {TC : tricritical pf:'mt), d) tg h) LheIrrnodynamic

%J_tit?rnl':al versus temperature :d) T TC ; e)TC< Te Tc; )T = Tc; ) Tc’ T, Toi h)
< T

The susceptibility X-i.e. the value of the order parameter per unit applied field is
equal ta the inverse of the coefficient A, For the eritical termperature TC of a second

order transition the susceptibility diverges. Assumning that the condition (1.4) is
satisfied, we obtain s Curie-Weiss law far the susceptibility ;

YTy - Cw -1
(1) = T C., =@ (1.12)

2.4, 2nd order transition : ordered atate and critical behaviour for C > 0 (Fig.1.1l.b). -

The ordered state (T < TC) Is obtained when we keen (at least’ the higher order terms of
G up to the first one which gives a positive contribution tn G, Let us assume for

simplicity that C » 0 and neglect the variation of C with T since we consider only the

critical region (T =TC). The case C < 0 will be considered in the next sectjan,

The equilibrium g obtained for T < T and Hr_‘ =0 from:

\ Soam.om .o {1.130)
20y
)’_%’ I o TG {1.13b)
"M
(1.138) has three dolutions
S LA 1)z g2 v
. M=0, ha T
i "
!
but {1.13b) is noti satisfied by (b~ - o0 correspanding to the disordered state ; in

cenclusion, we obtain a secend order transition ‘M -0, T« TC) at T = T(_ when (1.2} 71.3)
and C *0 are satidfied,

When we d:pply a field HO coupled to the order parammeter, the equilibrium is
determined by ;

A(Y)M+C(T)M}:r~:{0 (.15

and the critical isotherm is given by :

H o= (T )m’ (1.16)
o c
The entropy of thé ordered state is (see {1,2))
3G GO 2G ., iM .
ER e — - (== =) (117
5 (;+T B " P SR AT £
When Ho =0and T ’ITC we gbtain
| s=s S TeT (1.182)
0 r
? 2
M c a . B
=5 - A - L STELT S 1.16h)
(5‘50 87 “a ?C‘\Tc) (Tc r.r - (1.1

S being the entropy of the disordered state : the entropy de-resses linearly with T
o
from the value Su' For this reason the sperific heat has a jump nt T = TC in such a

mode! :

3 .
! Cr=0 1 e T -7, 11.194)
P Peo 2' . 2 o
; A Tﬁ
i = — (r-7 . (1.19b}
i CP_CPO+ CrE + N |E) T TC .1.19b

2.5, First_urder trénsition far C(T ) < 0(Fig. l.i.c). - When C{T) is negative, we must



cansider at least the next higher order termn of {(1.2) since otherwise G{M) would be
negative for M2 > 2A/C and decrease continuously when M increases. We assume -for
simplicity- that only even power Lerins of M appear in {1.2) and that E>0, The
-extremum of G is then cbtained by the condition (H =0):

Ca(1-1 )+ om? s EMYIM <0 (1.20)

This equation has the fojlowing solutions :

M=10 (1.213)
. 1/2
Me: f - a2 .‘—'3,*,-%- T )9”2 T (2.210)
12
R TRELTE- YO ))1”2 7 (1.21e)
L

Fram (1,21) the extremumn (1.21b) exists only when <T, whereas the extremum

|
(1.21a) exists for TC< T fTU where : i

c? :
=T : (1.22)

—
o

[H]

_<

+
Dp—-

c

It is easy to show that (1.21c} carresponds to a maximum; of the free energy so that we

do not consider it. When we apply a magnetic field (1,10) becomes :

ATIM + CITIM® + E(T) M = H, (1.23)

and the susceptibility defined as hreviously by

M
X={==) (H =0) (1.24)
aHO p g
is given by :
Lam s oscm m? 4 seemm® (1.25)

In the ordered phase (1,21b) the susceptibility is then expriessed as ;

1/2 :
Ll Com  saE 1z 4pE ‘
x = L2 2 (-1 .l+(1-c5-(T-Tc)}] (1.26)

The divergence of the susceptibilily 's ablainedat T = T t the temperatures for which
the ordered (T < T, Jand disordered phase (T > T ) are atable do not coincides When the
temperature mcreases, the ordered phase bacnmea morg stable (for T<T ) than the
disordered phase but for T, <T« T the disordered phase rFmams (meta) s&ab[e.

The transition between ordered and disardered states is thpn characterized by the plots

UMMM W A Gl Sy U i DU U U 1D 3

of G(T,P,M) when we vary the temperature {Fig. l.l.c). We can then consider the

following situstions obtained for increasing temperatures ;

1) For T Tc, G represents two minima _tMO correspanding to the possible states of
stable equuibrium ;

2) For TC T Té, a third extremum appears for M £ G (see{1.21c)) but it corresponds
to an unstable equilibrium ;

3 ForT-= Ti, the disurdered state M = § beromes degenerate with the ordered stable
state (1.2.l‘b). The temperature Té isgiven by : -

Ti ST 13_6 Efé_z (1.27
and represents the critical temperature for a first order transition : when T varies
from T = 1~ 0 ta T= Tl +0 the value of M changes discontinuously from

[ 3/4 C/I-_:]l 2 g zeto, the suscephbllltv remaining finite ;
4) For TC <T <To' the disordered state is the most stable equilibrium state whepeas
the ordered state is metastable ;
5) Finally, for T > To' the metastable ordered states disappear.

2.6. From a 2nd order to a first order transition : tricritical point. - Let us now consider

the case C = 0. The equilibrium states are determined by the condition :
— 4
L alT - TI’.‘J + EM R M=0 (1.28)

The order parameter vaties as ¢

__a 1/4 ,
M(r) = E—{T—C) (Tc -T) {1.29)
when T « Tc and the susceptibility varies according to a Curie Weiss law :
= 1 T~ T
| x=ar c
¢ {1.30)
1
= T
( S T TC) gTl:

For a given system, the Landau coefficients A, C,.. vary with the external constraints
{the pressure P for example) and it can happen that the variation of P changes the sign
of the Landau coefficients ; for examnple, C(P) >0 for P » P and C(P)¢ G for P+ P
in such a case we will observe a progressive evoluticn frorn a first order to a st‘cond
orcer transition when the pressure increases. In the plane (T\P); we can define a line
which represents the set of critical temperatures T (P) This line can be separated in
two parts by the tricritical point (T PD) defined by C(T P )- 0: far P« P the
ternperatures T (P) are the crmca] temperatures for flrst nrder Lransitions whereas
the points Tc fur P> P0 represent second order phase transitions.

2.7. Discussion : Landau critical gxponents. - The general assumptions we considered

-



previously sllowed i) to define conditions on the Landau coeffictents which are
necessary to obtain second arder phase transitions i 1t) to determine the properties of
the system for T= TC. It is possible to characterize qualitatively the singularities of
the physical praperties of the systern by critical exponents ; the results of a Landau
theary are summarized as follows for a typical second order transition (see §.2.4.) :

for T> T Cpn(T-T ™ with o = 0 (1.31)
x (T - TC)‘Y with -1
T, Hon M with § =3 (1.32)
for T-T_ Cp (T -7 with 4 =0 (L33
x*’T -T‘Y with y' = ;= |
T -m f with §= 172

3. Second order phase transition with a symmetry change. -We consider the transitions
which are characterized by i} a continuous variation of the properties of the system
when T =T i i) a discontinuous variation of the symmetry at T = Tc‘ This
dlscontmmty is defined by the symmetry groups G and G 1 Forresponding (resp.) to the
high and low symmetry phases (G CG ) Let us rera]l here that the symmetry group of
a system (in a given state) is the set of the symmetry operations which leave invariant
the state of the cansidered system. This state is characterized by one {or several)
function(s) which determine the spatial variation of the physical properties the
symmetry of which is changed at T = Tc. For example, a “magnetic* systemn will be
characterized by the magnetization density m{r} (per unit velume), a system which will
present “electric” transitions will be characterized by the electric polarization density
P(r), a structural transition will be characterized by the atomic displacement utr), a

order disorder transition of a binary system will be characterized by the spatial
vatiation of the concentration cir! of ane of its constituents... This density (m (r}, P(r},
ulr), cfr)...) can be a scalar, a pseudo vector or gven a tensar, For simplicity, we will

assurme here that this function we note M(r) is a scalar i the generalization is obvious.
(see 3.6,
The Landau conditions for 4 secand arder phase transition (see §2.3) determine

1) new conditions concerning the nature of the symmetries (’l which can appear after
such A transitior; 2) the definition of the order parameter M and the Landau
expansion of the thermodyramic patential in sliccessive powars of M(r)

41, S5ymmetry change and function Mir). - An equilibrium state is characterized by

the function M{r}. Near Tc we can white :

Miry = Mo(r) + &M(r) {1.34)

where M_(r) is the part of M{r) which presents the symmetry of (,;O for T TC
o |

! ERATY L0 far T>,TC (1.35)
i

EMIr) is the .part of Mlr} which determines the symmetry group G of the low
symmetry phase (SM(r} £0 for T . TC,‘ The symmetry operations Tz G, ;translations,
rotations, reflexions...) change the density Mt} into a2 new density TM{r) defined by :

TMTr) = M) or M-t e (1.38)

By definition of G_, T™ (' 1 o0 V1. G but AMirtis not invartant by all the
s} b - )
operations of G_, £ ram re a T Lp o e hie shown that an arbitrary function M)
] Pl
. , . n: . .
can always be represented 55 - war camhingtion of basls functions ;‘i r! which

transform according to ¢

Y ‘) nt ,
L L L (1.37)
i 1 . i i
. J
The funct‘mns{ ¢(”) Foao-a, 2., dn? are the basis functions of an irreducible

representatlon (n) of the group G 3 the matrires D‘n) (T} define the cerresponding

irreducible representatlons el Iabels the repres nntat]nn and i ane of the functions of
nt
the representation n. Among all the - ‘L “there is always one of them which is invariant

by all the operations T ¢ Go i it defines the representation “ideorig yof Go and 1s nnted
M . (ser the bdok by Carnwell for example’. © Mit) can he writlen as :
o ;

Yo ,
SMEY = g LAY 1.38)
i ! '

where the st_:mrnation is extended aver all “he representatinng ‘escppt the representa-

tion identity) since SMIr is not invariant v all the aperatinns T G Mt ane e

in) "

being real we can choose ‘:j TP as 4:‘9\;11‘ -":JFI\‘E,‘HDHS Of 0 e are not real they will
appear only through the combinatians - ‘I‘r“ . in"‘
3.2, Thermody':namic potential, - The teupmnddvnamic ootential G010, M50 15 g
functian of the external comstraints and functional of tue densits 14T e, g
function of the coefficients f’l‘n determinniey the state of the svetog

GIT,P, S Mie v o :""'.'.,- 1,39

|~ Lo o

The coefficients C which charactertze the eguilibrivs state are determined by the
minimization of G ; they Arcoeauaste cos for 7T fsathat Wi = 00 but ome of them
-at Ieast. must be non ozern for 7 ST "“T.nm_ a secand arder phase transition at
T=T all the émefficienta Clin" MLt -.a.r-u-':h Sen T TF Dsimee el when 1 .TC-D.
Ns pr‘ivicur.!y (;;eu §.2), it is then usefe! @ capand G, ]ﬂ S L omnneessive powers of
(,J‘Ikn\ when ve are interested by the critweal proparties for 1 T(‘ batot s important to
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_ (n) :

use the symmeiry properties. The coefficients © " are transformed by T- G in the

same way as the basis functions q(m’ H morllzovc'r ‘
1

(n)y . .
G(T, PC- ) is a scalar so that it must oe invusront by the operatjons T G . The

Pl
expansion of G in successive powers of (07

, the thermodynamic potertial

- |
wiii then cnly contain linear, quadratic,

cubic.,, n) ¢
ubic... invariants built from c, Sl Zo..d_; for tre representptmns {n) which

determine the low symimetry phase Then we can use two general resuits

i} there is no Linear invariant built from C.l' n i.e. no linear combination of the C‘(n)
i:1, 2,... dn) invariant by the operations T gGg: otherwise, the répresentationl(n)
would contain the representation identity and it would be either thle representation
identity itself or reducible - which is impossible.

ii) there is only cne quadratic invariant for each representation n: ft is a quadratic

form of the ccefficients Citn) which reduces to ;ﬂ\.(nJ L C (n)2

Finally the thermodynamic potential can be written as follows H

2
amer=curey . o A gy (1.40)
n i

3.3. Second order transition - order parameter, - For T » Tc' the cueffiEients A(n) {T,P)

must be positive to insure the stability of the disordered state. To ob;ain a8 transition
at T=T ¢+ One -at least- of the cuefficients A( )must change of sign Bt T = T cls

then the largest temperature for which one of the coefficients A( 0}: is zero, Except_

for peculiar cases, only one coefficient is zeroend for T =T I
c |
i

n) ()
\ aMir) = roC io 9 o) .
) 1 ‘
( n ) ; (1.41)
A ° (ToPr=0

The "order parameter"” related to the transition is the set of the d coefficients {C( o)}

which determine the state for T < T i 1t s transformed by Te C? gs the set of the

basis functi
ions of the irreducible representatmn n of Go. The d:mensL_ug of the order

parameter is then {by definition) the dimension of the irreducible representation n . It
]

is easy to show that the operations T for which +MI{r} s invariant is g subgroup Gl af

G..
]

AT 6Mr) = 1 (”’m(”)(r) re My 4y
i) ! iy 1M

\ .
- 5™ ™ (efinition of TCM,
i tnd i ] }

(N 5 g, tn) :
cie E DjiJLT)Cin (see eq. 1.37) ]

i L I

Then
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3.4, Landau expansion of the thermodynarmic potential. - Let us now suppress the index

By in the expansion of G for T < T . It s natural to define the guantities v , and M by :

C.
Z_ . 2 i
M® = rl C; vy {1.42)
so that the thermodynamic potential becomes :
AT,PIM?
G(TPM, 7)) = GoUT,P)+ =t z BG(T.P) f

(1.43)
(A 4
« [ C TP () !‘iﬂ o

S), f(a) are the invariants of third fourth ... order obtained from the coefficients y i
As discussed in section 2.3 the transition is determined by A(T )— 0. This transmon
will be 8 2nd order transition only if : i) the third order terms are zero {§2), ii) the

fourth order terms are positive. The first congition will be satisfied if the symmetry
{n}

symmetry of G is such that it is impossible to form third order invariants with C

(§2). If this cnnditiun is satisfied G(T,P) can be written as:
@, \M*,
G(T,P) = Go{T,P) + A(T,\P) T A (T,P) £ Gy ) .- (l.ad)

The equilibrium will be determined by minimizing G with first respect toy and second

with respect to M.
4. Application ; order disorder transitions in binary alloys. ~ 4.1, Introduction. -In a bi-
nary alloy, the density M(r} is determined by the octupation numbers N {see section 2

of the introduction).

M(r) =§ P, Mplr-2)+{l-n ) Mgl <% (1.458)
It is the superposition of the densities characteristic of the A and B stoms (MA(r- XD
and MB(r -3 ) respectively) distributed over the sites *of a perfect lattice with one
atom per cell. Here, we are only interested by the transitions which come from
different atomic distributions ; an ordered state is then charecterized by the local

concentration ¢, =<f> on each site s or by its deviation from its average value ¢ :

M. =C._ - € {1.45b)

In the diserdered state MA = 0 for all sites ».From the Landau assumption, the

thermodynamic potential can be written as:

1 1
G(T,P, (M, } ) =Go(T,P) £ AWM M+ 3 BlaupIM M M
M tT WM ’luo He M R1.46)

L



The coefficients A, B... are onty dependent on the relative distances between Arfirpens
(AQL 0 = AD- W), BOL Y, p) = BOp, uA-p)..) since these quantities are characteristic of
the disordered states, We can use this property -characteristic of the translational

invariance of the perfect lattjce- and introduce the Fourier components M_ of M
. q A

M =

1 -igh
—— L M
TN a A

(1.47)
M, =

pal i

q

I e igh M
YN aq
L I .
Note that Mq = Mq since M}\ is real and Go includes the inversion, An ordered state js
then characterized by the set of Fourier components [Mq} and the thermodynamic
rotential becomes (see(l.46) (1.47)) ;

GTP(M_1)=GoT,P + & ¢ A M 12,1 5 MM
' q + 5 : () | ql *3 CCHER Mql sz(q;*qz)

Gl,qz
R (1.48)
with
-ig?
Alq} = Z AR} e
i . . {1.49)
quA -la,u
B(ql. ql’) = I B(lu)e e
Xyl

At first sight the expression (1.48) is similar Lo the canonical form (1.4D0} : we used the
translational invariance to diagonalize the second order term in (1.46), We will discuss
in the next section the relation between this transformation and the symmetry
properties. Let us now recall here that the disordered state will be stable for all
temperatures T for which Alg) > U(Vq); it becomes unstable when ane (at least) of the
coefficients A(g) is negative. When the temperature T decreases Alg) becomes zero for

the first time for a wave vector a, such that :

A(qn. TC) =0 A(qcs TC) < A(qv TC)
(1.50)
Alg,T) > 6 Ya, 71o7

T _is a priori the critical temperature -if the transition is a second order tranaition. At
C
this point we must consider two situations we discuss now in sections 4.2, and 4.3,

4,2. Modulated structures, - When a. is incommensurate with the reciprocal lattice

vectors, the ordered crystal has a translational symmetry which is completely
different from the symmetry of the disordered lattice ; we are not in a situation which
is described by L andau (Gi¢_ GO}. Note that the concentration can be modulated with a

wave vector which varies  continuously with the temperature and is determined by

the minimum of the thermedynamic patential, These modulated structures are
discussed in other lectures (see the lecturas by Gerl and Pouget) and will not he
congidered here. Let us nate only that it js possible to "block” sn incornmensurate
structure by external perturbations (pressure...), the periodicity becoming commensy-
rate with the original lsttice. From the previous discussion, the incommensorate
transition is q first order transition (Gl¢ GO).

4.3, Superlattices whose periods are commensurate with the period of the original

lattice. - In this case, the transition can be studied by the classical Landau arguments,

Tao study the cdonditions we have to satisfy ta ohtain a second order transition, we have

to expand M - and G(T,P M1 acseeding Lo the irreducible representations of G (see
o

section 3). THe expansior ¢ b o o pur sentrations M according to their Fourier
i

componerits Mq (1.47) can he shov tahe an expansion of the type {1.38) : the function
M, is & superposition of functions Mq(\) =o' which transform according to the basis
functions of ifreducible representations of GU. Let us verify now this paint.

If TRE Go is & translation (vector ) ;
igR _ -igR_igR LR,
TRe -e o ':’TRMq(U‘B Mq“ ) (1.51)
If TEGDiis a rotation |R

(1) (1.52)

-1 .
igR _igR™*r _ i|Rqr 4y -
IR & = e = IR Mq( )‘M[qu

we used [Rq Iﬁ:?r = qr.

The functions|M Rq(r) (\RRGD) are then transformed into each other by the symmetry
operations T ;-JGD : they form a representatinn of the group Gn 1.37),

Let us consider now the set of s different vectors T =9 G Qrere 4 such that
qu =g+ K (w;rhere K is & reciprocal lattice vector) ™ this set is called the star of g.
The set of the operations |R which leave invariant the vector q will be called the
group of vector q. From the previnus discussion, the representation of C’o are labelled
hy the vector q and assuming that the ordered state 1z charartorized by only one of

these representations, we can write M _as follows =
i

! T 2,
My =M RFETR
: M 8 L . (1.93)
M, = — o 7. T

. £
| I

* Twp vectors which differ“cmy by 8 FE“C;EY;;J—(SEI laltiEE‘veci};i’f;Tré considered to be
identical since:they define the same set of values of M (') for ail - sites

i q '

|



The previous expansion was performed assuming that there is only one atom per cell. If

there are several atoms per cell, the basis functions of the irreducible representations

of G0 can be shown to be Bloch functions :

Mq(r) =u q(r) e

(1.54)

f ulri=u (rea)
q
For a wave vector g, Lhere are -in general- several funetions uq(r) (noted “(;E"D: these

functions transform into each ather hy the cperations of the group of vector g: they

form a representation of Go cuolled "sinall representation”.

4.4, Landau conditions for commensurate structures. - We can now summarize the

Landau conditions which are necessary to obtain a second prder phase transition: 1)

1
defines the syrmmetry of the ordered state ; 3) there is

G C.GO. Gl being a subgroup of Gu; 2) only one irreduéible representation of C‘.0

c third order term in the

expansion of G ; 4) according to the crystalline system, 9. h#s the following values :
|

K K _ K !
% =9 %7 30T

where K is a reciprocal lattice vector of the disordered phay
We discussed previously the conditions 1) 2) 3}

The third condition can also be written as follows :

(1.55)

€.

C 3: the transition is a first order trensition if there are three vectors Qs o q3 of

the star of q such that Qp +Qp + 43 = 0 (if such vectors exist, they will give a third

order term in (1.48)1).
The last condition expresses the fact that Alg, Tc) is extreg
vector q; of the star of q.- We will not discuss this conditig
L ifchitz shows that in most cases the Bravais lattice is
centred lattices (cubic, tetragonal and arthorhormbicl and the
lattice periods can be multiplied by four. The main results
in the book by Krivoglaz.
4.5, Conclugion. - We discussed the Landau theory for & s

mainly for order disorder transitions. However, for magnetic|

mum by symmetry for the
n in detail. The analysis of
doubled, However, in the
face centred lattice some

bf Lifchitz are reproduced

talar order parameter and

and structural transitions

the order parameter is a vector =c that the symmetry is determined nat only by the

spatial symmetry but also by the symuynelry in the order parameter space. The

generalization is obvious : it is suitaent to consider each

component 5MQ {r) of the

order parameter, to expand it according to (1.38) and to cansider the thermodynamic

{n)
1

potential as a function of the coefficients C s we do not discuss this point here.

The Landau thecry aliowed to find some conditigns which are necessarily

satisfied when a second order transition occurs. It asaumne
patential is analytic at T = Tc so that we can have a pr
results obtained with this theory. However, we can think tha

only related to the symmetry remain valid : we will discuss t

¢ that the thermodynamic
ori some doubt about the
L the arguments which are

his point in chapter 4.

LISING MODEL MEAN FIELD APPROXIMATION

1. Intraduction. - 1n this chapter, we study : 1) the properties of a second order phase
transition obteined from the Ising model, 2) the principle and the results of the mean
field approximation {MF A) applied to such a model. The system we study is made of N
identical subsysteme X sitting on the sites of & perfect lattice. Each of these
subsystemns * can be in one of two different states; the energies of these states are
assumed to be the same in the absence of an external field; the value of this energy is
chosen ta be the origin of the enargy scale and the two possible states of the system -
are characterized by an index oy which 15 =qual either to +1 or -1. Finally the N
systems & are coupled so that the total energy corresponding to & configuration
IO NEEL NS {0, } is given by :
(o= -3 7 Do T Moo 2.1
AE :

) 2 e

The first term of (2.1) is the eoupling energy whereas the second term represents the

coupling of each of- the subaystems A with the externel field My We noted
previously (see the Introduction) that this maodel can represent a magnetic trantition,
an order-disorder transition,.. For simplicity we will often call each subsystem Aoa
"spin*out the following corwiderations are generally valid,

The trensltion results from & competition between the order introduced by the
coupling energy and the disorder introduced by the thermal energy given by the
thermostat with which the system is in equilibrium. For simplicity, we shall essentially
consider the peculiar caze for which the interactions v(i ) are ail positive ; the ground
state (T = 0K, Hn = 0) of the aystem is then ferromagnetic in order to minimize the
coupling energy :

T=0K, o, =1V A when w(3)>0 Y

A
(2.2
or 0, = IS U VY
The coupling energy is then equal to:
Firl)) = - NWo)2 (2.3a)
where ¥(o) is defined by :
w(a) v(h) (2.30)

e i1
T~



The trancition will oecur when the thermal enerqy kBTc will be roughly equal to the
coupling energy i.e. when :

vla) ~k T. (2.4)

B

We will study first the nature of this “ferromagnetic-paramagnetic” transition

in the mean field apptoximation 3 we will consider later the general case carresponding

to positive and negative values of vi!) in order to show the possible existence of
modulated structures the period of which can be incommensurate with the lattice
periad,

The mean field approximation neglects the spin correlations which necessarily
oceur from the interactions v(i), Wa #atimate the importance of these correlations in
the simplest approximation (RPA) and we show that these correlations become
essential for d dimensicnal systemns (d <4) when T- Tc; from a simple (Ginzburg
Landau) criterion we estimate the temperaturs range for which the correlations are
essential to describe thermodynamic properties (critical region},

2. Mean field approximation. 2.1. Principle of the M.F.A,, - Keeping only the terms

#: £2.1) which are dependent on o

¥ JE0y H (2.5)
Ho=H . + I wiuio (2.6)
4 [ e "

it is easy to see that each spin @, experiences a field H’\ which results from the

external field HoA and from the interactions v(x-1) The total field H depends on

A
the values of all other spins u“(uél )- The mean field approximation neqglects the
fluctuations of H, relative to its thermal average value < H) » For the caleulation of
the thermodynamic praperties, each subsystem A is then considered as an jsolated

systemn in the field(H)\ B

Hyr o= e D viaandeg s (2.7
Couk M
the carrelation between the movements of neighbouring spins is then neglected. The
difficult problem of N interacting subsystems is repiaced by the much easier problem
of N identical subsystemns in the mean field of the others ; we discuss later the validity
of this method {see section 8.
It is interesting ta compare the exact form of the internal enerqy

-.rff:-:-%- vl e s L Bt 7.8

£

P LMUL LT WU LR SLUUy W giasy llal’lSHIV()ﬂS ~ £DY

te its approximate value< 7 ‘- a Ohtained in the MF A, :

A - . l [ T H Y (2.9)
J 3 . IR . RPN UL,

This last equatinn can be obtained as follows : i’ the average encrny nf each spin T
inthe field <H, - is <3 o Loy

¥

i) however, the total energy - ¥ L not eaual to the sum nf these energies

L (2.1

i
since this sum takes inta account - ... sothe interactions between the spins G, and
H R Pl ! SO H R . -9t 5] A N + 1I¥H
{first in cﬁf)\‘ af‘?d second in -k L rteentain g MF A WE Must then divide by two
the coupling enerbies which appear in the r.h.5. of {2,10) in order to recover equation
(2.9).

2.2 Spin correlatipns - correlation functinn. - The ME A neglects the spin correlations H

the comparison batween (2.5} and (2.8 Is cansistent with the fact that the correlation
function g( 3- 1} defined by ¢ .
gl =)= s DA 2
|
is zero in the meah field approximaton :

! A= AT s e e Vo4 2

B ALV or e e CMEATT a2
The function g(“)i represents the "memory" that the systers has in . from the spin
state in} . For example, in the paramagnetic state (. 5 -G, M- 0

kA- )= <5 - I =2 (z.1%

g} H u -?‘:41 L \ -1 i ,‘1"1 <
fou\ﬂ -1 represents the valum of T.oaveraged over al! the configurations for

I : - .

which Ty = t1; the last equality of (2.1 results from the fact that both spin

directions are eguivalent when Hn . = 0. When the spin states «ge randornly distributed,

there is no nnrrelélmn hetween the values nf and Tof 1y the average valoe of

9 is then indepshdent on the state of the .t spin and @

i
[RSTORTS B o A N sarcae stribution o pie oAl
|
The ME A assumesisuch a randam diserbiticn 4 ies but, incgo ey inrium state, the
spins are never taddomly distrihotedd £ om0 patcinterictios o by there g g

loral order betwern neighbeurinn s, This 30 easily be uncerstood from the



following qualitative argument. Let us assume for example that v{} -1 )= v is positive
when A and | are two nearest neighbours and zerg othe;rwise ; the field that the |th
spin experiences from its local environment when Iy =t 1 is then mainly due to the

Ath spin and is equal Lo + v. In the high temperature limit, the probability for the spin

ptobe in the state + 1 is then given by : !
i

wlk, T
P . & v 1 v
T V,ikBI' -v,-kaT = 7 sy k"ﬂ:-'r)r V<<kBT (2.15)
e [ -]

and the correlation function Letween two neighbouring sglins Is given by :
1

()\ - ) = 2 o« b - | 2y
g M UU g - o = 2 [P’-T_:l . k—BT (2.16)
’ |

If the spin 4 is in a given d i = i i
A g irection (u:\ = + 1 for exampte) the neighbouring spins wiil
be mostly in the same direction when v >0 : this local grder is measured by g{i-p )
(2,16). It decreases when the temperature incresses and when the distance [A=u]
increases, The criti i iver
critical temperature Tc being roughly gi ver by :
|
!

kB Tr: = flo)= Zv (2.17)
I
where 4 is the coordination number of the considered lattice ; the local order for
neares! neighbours is given by g =2/2 at T = T_, Quali
=T . Gualitat
all its coupling energy for 7 =T ] !VEU" - ?y“em e
' o B3 assumed by the MF A since it keeps an energy
roughly given by <d> WN/2 Zv guN v 1/2 kBT . ‘
v . c
[t is then important te estimate the quantitative and qualitative effect of the SRO on
the thermodynamic properties ; quantitatively the MF \ is nat sufficient to obtain

reliable results ; for example, it overestimates the trangition temperature T_ which
must be computed using more sophisticated methods [Kikuchi's method i :ee for
example, Bocoquet's lectures) taking into account locgl order. Qualitatively, the
thermodynamic behaviour is not correctly represented by the MF A, For exampla, even
when the nature of the LRO and of the phase transition is correctly predicted by the
MF A, Lhis approximation cannot represent the thermodynamic behaviour in the critical
region [ Tc - AT, Tc + AT:\ for which the contribution of the spin correlation will be
shown to be dominant.

2.3. MF A and variational method : lace Apperti 1)~ We uged the simplest presentation

of the MF A, However, this appruwmation can be obtained| by a variational method. [t

is 8 priori reasonable to approximate the free energy by: the free energy of a set of
independent spins A submitted to fietds :

H., = vy -2 E" + Hu_\ (2.18a)

)
"

the quantities Eu are Lo be determined a posteriori. It is essy 1o caleulate the free
T
energy of each of these systems and to show that the free energy Fm deduced from the
MF A i.e. from the choice :
T =<g > (2.18b}
u "
is the best free energy corsistent with the assumption {2.18a). We show this Lheorerm in

the appendix L.

3. Ferromagnetic-paramagnetic transition in the MFA.- The MFA replaces N interac-
ting systems by N independent systems in the field < H} > {ef[2.7)) and in eguilibrium
with a thermostat. Let us briefly recall the properties of an isclated spin, define the

self consistent mean field equations (& 3.1) and study the conditions for the existence
of a ferromagnetic phase.

3.1. Self consistent eguations. - The coupling energy of an isolzted spin . with an

external field H is given by :
h(o,) =+ <y (2.19)

The thermal average of Iy when the spin is in equilibrivm with a therrnostat

(temperature T) is given by the Boltzmann statistics :

BH - BH
<3y = (l)BeH ad ('_Deeh = th 8 H {s= k-1—1) {2.20)
e + e B

When the field H is very small, <0, > is proportional to the applied field H :

<g,> = BH {(BH<< 1) {Curie Law) (2.21}

{low field and high temperature limits).

When the field is very large <> saturates i.e. <oy 1 (high field and low
temperature limits gH >> 1)

The equations (2.7) and (2.20) must be solved self consistently : the system of N non
linear equations hes in general several solutions and the physical solution will be the
solution which will minimize the free energy. The spin - spin interactions determine
the low temperature ordered spin structures ((c;\> £0 for Ho;‘ = {0) which are
destrayed by thermal disordering when the temperature increases. When the ordered
state has a simple symmetry, the solution of the system (2.7, {2.70) is simpie : this is
the case when the ordered state is ferromagnetic, the N equations corresponding to the

N spins A becoming identical.



3.2, Ferromaqnatic-paramqnetic transition, - In the MFA, it is easy to determine the
ordered structure which can appear when we decrease tha temperature from T 2w . In
the present section, we consider only the ferromagnetic structure the general case

baing considered later (sce section 5),

We assume that the interactions v(1) are positive sc that at {cw teimperatures all the

apins are parallel, the ordering energy being :

o, =211y = N oo 4 =) (2.22)
A 2

where

Wa) v wpye'dt (2.23)
From (2.7) and {2.20) the condition of appearance of ferromagnetism (.2,
%04 = <a> A0 when H, = 0} is given by :

7w = th pelo) o {2.24)

For T >TC, where Tc is the transition temperature (Fig, 2.1.a) defined by :

kg T, = ¢(a) {2.25)

only the disordered solution { “0>=0) is in agreement with (2.24). However for Te Tc’
there are two other solutions + <0>0£G; these solutions toar tend to zero when
T +Tc and they will be shown ta be the mast stable (see section 4.4), The MF A then
predicts z second order transition between ordered (¥« TC) and disordered phases
(T >Tc)' We study the praperties of these transjtjons for all possible lattices in the
next section,

4. Properties of the paramegnetic ferromagnetic transition in the MF A, -

4.1, Order parameter {magnetization) far T. T H =0).- <quis varying as :
g2l

cm=(T_. T F e -4 (2.26)
(2.26) can easily be shown by expanding {2.24} for small <0>; we obtain :
T -T 1/2
<. .’Fi (—-i.....
’ T (2.27)

4.2, Susceptibility for T " T~ When we apply an uniform (HO y = HD'V 3 ) external

field to the syatem, a "ferromagnetic" arder of the 3pins appears even for T ~ TC: the
unifarm field is ceupled to the nrder parameter <., - < and, by definition, the

{linear) sus:eptivility is given by :

0 R 2

i
F‘lg. 2.1.a: Grapmcal determination af the orrdered state for T.- TC in the MF A,

; ¥ o= {2.28)
; T T dA !
H o =0
[a]
For isolated spins the susceptibility +? is given by (see eq. {2,210«
X%= R = e (Curie taw} {2.29)
i B
Far interacting spins in the MF A, the susceptibility v is obtained from the expansion
of the self consistent equation :
<g>thfic H~ =z th t-.(Hn +%lo) g} {2.30)
In the low field limit & H<< 1)
<O = _\(n (H(I + 0’(0)-'_73 ): ’YHO (231)

The susceptibility for interacting spins, iy brenees a function of the susceptibility for

nan interacting spind, «™. y 1s glven by :

e (2.3

or, more precisely by the Curie- Weiss |aw :

T - (2.33)

; 2 =



For T vTc and when T »TC, the susceptibility is then varyipng as :

CATAT Ty s (2.34)

c H
!

it is easy to show that the susceptibility x is varying like t2.314) for T « Tc'

4.3, Crineal isotherm ¢ (T = T % - At T = T, the self cansistent equation (2.31)

becomes ;
s L ; 1
(et M (Bt 7 (2.35)
Be
The oruer parameter is then varying as H”} at T=T,le.
ying o o
CuEn HDULS 5= (2.36)

4.4, Free energy. - Qualitstively, the transition results frpm the competition between

the ordering energy (introduced by the spin-spin couplings and the dgisordering thermal

t T = OK and increases up to

energy. The ordeting energy is maximumn at T = 134 (2."22) and decreases with <qg>
when T increases ; on the other hand, the entropy is zero %

N kB Log 2 when T increases, I
Quantitatively, the energy < %\ > and the entropy 5 cen esily be obtained in the MF A
i.e. neglecting the spin-spin correlations. From (3.9) the ienergy is given by (for H =
0 :

< A

~Yttey cor? (=0 (2.37)

> =
MF A o

The entropy is given by :

5 :kBLr)gW (2.38)

where W is the number of different confiqurations consistgnt with the order parameter
<0>, In the MF A, the spin-spin correlations are neglected sa that W is the number of
ways to put at random N’ spins in the state + 1 and N_ spins in the state -1 onthe N

lattice sites :

v TR (2.39)

The number of systems in the state ¢1 {-1), N+(N_). is related to <g>by:

‘N:N++N_ N‘x%(lv(\c»)
NO-N i.e. (2.40)
<0>-_*___.. N-‘—Nz[1'<0>)

TN o+« N
. R

rmodynamic limit {N+ =) and using the Stirling formula, the entropy

in the the
becomes :
1+cq> 1+ oyge 1-<g7 1-<g> vy (2.8
Spa = - Nkg (T Lea (T Yo =gt Log (T

As predicted on physical graunds {2.41) shows that the entropy increases from zero to
= NkB Log 2 when T increases from zero. Hawever, the

its maximum value smax
in the MF A since we negiect the local order

maximum velue is reached when T = TC
{i.e. spin-spin correlations) in this approximation.

The free energy F =<H,>- TSis obtminad in the MF A from {2.37) and (2,41} F is 8
function of <o» and the equilibrium value for <g> can be obtained either from the

previous discussion {see section 3.2) or from the candition :
EdI?FEw -0 fequilibrium) (2.42)

The solution corresponding to the stable equilibrium is obtained by requiring that the
free energy is minimum s ’

2
dF -0 (stability) (2.43)

d <o >2
The condition (2.42) is equivalent to (2.24) ; this can easily be shown from {2.37) and
(2.41). The condition {2.43} is satisfied for the solution <g>=0when T > T whereas it
is oniy satisfied for the solutions + <u7 $0 far T< Tc' The shape of the curves Floo . )

is shown in figure 2.1,b § in the next section, we verify these results when T= Tc'

o6k

c2r

i I 1

0 2% Q50
T/Te

"

1

075 100

Fig. 2.1.b : Order parameter versus temperature.
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Fig. 2.1.c : Frae Bnergy versus <g> for various temperatures (MFA),

4.5, Landay expansion of the free energy when T=7 .- When T - TC e, <g 0, the

free enecgy can be expanded in successive powers of the order parameter, From (2.41)
the entropy is equal to :

NkB 2 L
SMFA = Nkylag2- 5= o~ T —g‘—-- + ) (2.44)

whereas the free energy (see eq. (2.37)) is given by :

Nkt 4

- N 2
FMFA(<0>)=—NI<BL092+ T(kBT-O(c))(CJ) Y cas h

(2.45)

When T~ T.» equation (2,43} isthe {Landay) expansion for the free energy in the MFA ;

E-(N-Iﬁl: ﬂ9<0>2+ Qgccoah.. (2.46)

The Landau coefficients A(T) and C{T) are given by :

AT = wg(T-T)

(2.47)
CiT) = kBT/Z':

and satisfy the conditions we discussed previously to obtain a secand order phase

transition (see chapter 1),

4.6. Specific heat coefficient. - The specitic heat :

_ 35
Cv T\TT) , (2.48)
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Fige 2. Zaat 6 (Q) w v the ot < atate ig “ferromagnetic” (qc =0).
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Fig. 2.2.b 1 %{g} when the ordered state presents 3 modulat nd structure (qr? A0

1
introduced by the |spin ordering is given by {2.41) and (2.24j. As we neglect spin
correlations for T>TC, the entropy is constant for T Tr and the correspanding

specific heat is zero. It is given by :

C - ¢ (2.49)

and has a simple junéf]p at T = Tc as shown by the | andau theary.
i

4.7. Conclusion. - The properties of the transitien we obtain in the M4 are those we
deduced from the f_andau phenomennlogical theory ; the coefficients ALTY, ClT)...
which appear in thig theory are clearlv rolated to 1the coupling coeflicients v(i ). Note
finally that the progerties we fiieid are wdepencent of the dimension o of the systen ;
they are summarized in fiqure 3,

5. Modulﬂtedstntu%tr&l inthe MFA. 5.1, Madulated structures, - In the previogs

section, we assumerd, for simplicity, that the interastiong vl = are positive sn that the

atable state atT - OK is obviously ferromngnetic :
|



o [V R Y W 1Y F- TV

<O o= wgn V’ B - ' .
3 (HD o} ‘ T<T, (2.50)
v 1) =0 i
~ ) . \
Far this reason we did not conslder solutions <. 3 whichlare inhomogeneous. However,
in general, the interactions can be positive or negative and they can "a priori” oscillate
with distance. According to the nature of interactions and of the lattice, the ground
state can be ferromagnetic, antiferromagnetic (with two sublattices in the simplest

case) or much more comples, When the lattice is perfect and when all the spins are

identical, it is possible "n priori", from symmetry cunLiderations, to obtain simple
modulated structures @

<0,0= Aqo ::os(qD A +0) (2.51)

the period 21/ |qu can be incommensurate with the lattice periodicity. It is
interesting to determine the conditions for which such modulated structures can
appear., We will determine these conditions in the MF A ag previously. We introduce the
Fourier transforms of the coupling constants v (1) end of the spin variables, :
g vigd= b w(X) eld”

! (2.52)
(uq: L § eiqlo

The spin configurations are determined by the N numbers {UA} {Az1, 2,u.N); they

are also determined by the numbers [0 ai Vi = 1, 2,...N) where the q are in the firat

Brillouin zone and are given hy :

d P
= 5 ot N
9; (;1 L A i=[Pyeh P (2,53)

In (2.53) N o '8 the number of crystalline sites in the difection a of the lattice basis

vectar a , A is the lattice reciprocal vector corresponfing to a, (_Aﬂ.g_s = 2n 606)
and B is an integer,
From {2.52) and applying the relation :

. . | 0 if gf0

i ' -

N T it geD (2.54)
it is easy to show that :

o, = 2 7 el® (2.55)

/N g 4
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Fig. 2.3. :Phase transitions : Y
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— . .-exact results ; d = 3 for short range interactions v(i} (schematic}

the sum E‘q being extended to the q vectors of the first Brillouin zone. The energy :

# (see section 3.1) can then be written as :

ale=-} e o, (2.56)
q

In the MF A, we replace <a,o.> by <a,>» <ou>( M uworeo q o " by <0q><g _q‘;
and the internal energy is given by :

. 1 .- L z
‘5&>M-‘A"- Eq'o(q) <oq><o_q>-- 3 E'O(q)|<uq>! (2.57}

z q b
[n the last equation (2.57) we used the fact thai the lattice is assurned here, for

simplicity, to have an inversion symmetry so that :
d =0 , Sgy=¢{-q {2.58)
The modulated structures (2.51) correspond to (see eq. (2.52)) :

A
L}
<g a >z = YN (éqqo + 6q_ qo) {2.59a)

and the energy (2.57} can then be written as :

2 ‘

N
2. 50 (qc) Aq (2.59b)

NV .

Amang the set of all the modulated structures (2.51), the most stable are those for
which v(qo) is maximum, They are obtained for the vectors 9 such that (see fig. 2.2.):

e} <¥g ) (2.60)
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Fig. 2,4 : correlation function gl ) and correlation length  FA(T) when T=T
(schematic). ¢

If %{q) decreases far increesing lq'values. the ferromagnetic solution wiil be the
mast stable but if %¥{g) is maximum for some q, value (qclﬂ) in the Brillouin zone, the
most stable solution will be modulated with a period incornmensurate with the lattice
period : the periodicity of the ordered state is thern determined by the nature of the
spin-gpin interactions.

[t is then possible ta study the tranmsition from a modulated structure to a
paramagnetic state as it has been done previously for the ferromagnetic-paramagnetic
transition. In the next sections we summarize briefly such a study. We define the
corresponding susceptibility  x (g) and we briefly summarize the propertirs of the
transiticr: and the variation of the free ENergy versus <gq =« Finally we determine the
condition of instability of the paramagnetic state versus a modulated structure when
the temperature decreases and we determane the corresponding rritical temperature
Tc (ser section 5.48), The principles of such ransiderations are exactly the same as
previously, but they will be useful later for the studv af spin-apin correlations and of

the valiells ool the MPTA,

5.2. Local susceptlbility for 7 * T .- The valyes of <o ,7are given by the self

consistent condition :

I N T T T L {2.61a)

\
|
\
In the high tempﬂ‘#ature and low field M, - limit, we can linearize the previous
. I
equations ; !

| <, =2 "Hn . Vit- L) o ) (26100
The external field Hou acting v the e - v oduces a local order sround this site o
whose value is (by definition) T . H,. - The local susceptibility (- .) is

cnly dependent on - U when the system is irvariant by the lattice trarslations, In the
linear approximatioh, <UJ\> results from the linear superposition of the affects induced
by all the fields I--!0 :

\

R O R (2.62a)

i i
i .

N 5
rg s o= jooE ~,‘(1-;,\)e-m‘ I PR {2,620}

(O

o= J.Q)HD (2.6%a)

with the definition |
1
H = i .
oq 4+, o
) N ‘ (2.63h}

xlad= = i

1

5.3. Local susceptibllity in the MFA. - From the expansion of rquation [2.61b) we can

determine the 10calisusceptibility of interacting spins, =, from the suseentibility of
nen interacting spind‘, x°% In the same way a3~ obtained the uifosm susceptibility
fromy ® in §.4.2, From (2.61BY tve suseept billty 9050 ' 0f nan teracting spins

(v = 0} is given by :



=

Fig. 2.5 : Specific heat, entropy and susceptibility in an [sing model {d = 1) (achematic).

the magnetization <, is only madified by the external field HD which is applied on

. . . A
the asite . This is no longer true when the spins are interacting (v £ 0). Multiplylng

(2.61b) by g9 A;' “N and summing over all the lattice vectors } we obtain:
<aq> = B (HDq + 0(q)<cq>) (2.65)

This equation is the extension of equation (2.31) obteined for the unifarm susceptibility,
The g dependent susceptibility y (q) defined by (2.63b} is then given by :

x(Q) = —g— = —h (2.66)
1. %) x kBTT-Tq)I
with
kBTq = o(q) (2.67)

When the temperature decreases from infinity, the susceptibility diverges for the first
time for the temperature ch defined by (2.6D) i.e. for the vector 9. for which the
ingtability of the disordered state appears first.

5.4. Frae enerqy in the MFA. - The free energy of the order¢d state can be obtaeined in

the same way as in the uniform case. The energy <dJ&>is given by (2.57) and the
entropy is obtsined by a generalization of (2.41):

i
l- <o)> 1-<TA> ] 4%0)> 14 503>

L A

A 2 Log Z * H Log Z e

SvEA” K (2.68)

In the same way as in gection 4.4. o s possible to obtain the mean field solution i.e.
{2.60) from the conditian :

A =0 (2.69a)

Using the classical relation (see eq. (2.54) and 2.55)) :

Z <a;\>7'= £ <o >|2 (2.71)
A q q
the free energy F is given by :
F(Tv. <o ) =ek & (0l@)-kqDi<o >12 «0l |z -] 9 (2.72)
Y175 i B q q !

q
From the value we obtained for x (q} (2.66), the Landau expansion of F can be written

a3 ¢

|~:o >|2

1 1
F{T,v, <Uq>) =3 z —(%—X a oan =

q

[ Ll

p'OAM) e ]Zee 273
q

q

From {2.73) we recognize that : i) the inverae susceptibility is the second derivative of

F relative Lo <oy >3 li) the Landau coefficient A{g} associated ta - 97 i3
-1 _
Alg) = xlal ™ =kg(T - Tq) (2.78)

and changes its sign for T = Tq' When the temperature decresses, the paramagnetic

solution becomes unstable for the temperature
T.=T (2,75}

and for 7 « Tc’ the ordered state (2.51) is more stable than the paramagnetic solution.
The value of the order parameter ch can then be obtained from the equations {2.61)
or, for ¥ ¢ Tc’ by expanding F up to the fourth order. This expansion allows to obtain
the properties of the solution near the critical temperature Tc i.e. the exponents
B,v, &6 and o we defined previously for the order parameter, the susceptibility, the
critical isatherm and the specific heat : it is easy to showthat they are the same as

those we obtained for the ferromagnetic-paramagnetic transition.

&. Relation bet ween local susceptibilities, fluctustions and correlstiors. - 6.1. F Juctua-

tions and correlations. - For simplicity, we wiil consider only the high temperature

phase faor which <0q> 0. The extension of the following results to the low
temperature phase is straightforward.

The spin fluctuations in the equilibrium state are characterized by the function
gtq) defined by &
Iz (2.76a3)

glq) = <oq o_q>°-|< c;q)g

roo=



the thermal average < » o Deing taken for an equilibrium state without applied field
(H‘J = 0), This function giq) is the Fourier tranaform of the correiation function g} ) we

defined previously. Let us now show this relation for T > T : from {2.52), glq) is given

by :
1 L -iglh )

g qq>n N)\L'(U?\Ou'ﬂe (2.76b)
the system being invariant by the lattice translatians when HD: =0, -« ﬂu e T gla-y)
is dependent on| & « | and we obtain

gad= & oo won e L g et (2.77)
X [CRR ) :

The relation between the correlation function g(3} and the spectrum of fluctustions of

wave vector g, glq), can be also written by Faurjer transforming (2.77) as follows :

igl

g = 1 g gg)e (2.78)
Nog
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Fig. 2.6.a : Specitic heat of an Iring model (d = 2) (from Db, (1950)).
—— exact {Onsager)
Bethe
-+ Kikuehi,
6.2. Fluctuations and susceptibilitv. - The local susceptibilities  y (1) and the

correlation function g{A) are related by an exact thearem the validity of which is
independent of the approximations tsed to calculate these quantities (fluctuation -
dissipation thearem), We' consider here anly its classical version: the correlation
function alq) for the equilibrium  state {without field) is properctional to the linear

respanse to an applied field Hoq with the same periodicity ¢

fq)= v 0~ =k y (299
gfal a4 °-q"a al (q} Z
To demom‘;irate this relation we nale the thermai average of v, <a-lar. o .}

o
when the systermn s submitte:i to a non zern or lo a zerol applied field respectively.
The energy of the spin s8ystern coupled to an external field Ho . such that Hoq‘ =

. o N
Hoq aq’ is given :bv H

i
. - .
i R an -q (2.50)
A
oo ]
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Fig. 2.6b: Specific heat of a 3d Ising model for a ffc lattice {from (omb, (1960Y, Adv, in
Phys. 9, 149). |

|

The partition funétion 7 is then :

| - F e 1)
1 7= Y ¢ a {2.81)

i
the summasation béing taken over all the possitble spin corfigurations ‘rach configuration

is determined by the numbers [ a s lq = ...qi...). By definition the thermal average of

o, > is given b
q q o] |y . \
..‘i: g.e Rt r]"’ !
g 1
Yol TR AT {2.82)
e q

Without applied field, ﬁ:fn. 7=z ZD and :q "o = g for T . T.. Far a non zero

applied, HD ' » we can obtain - from an expansion of 12.82) in successive
q

= ‘l" |H
"4q" og - _ .
powers of Ho' Keeping only the fi-i! nrder torms, we obtain the linear susceptibility

x(q) defined by (2.63a) :

12,83

|
| SE )

W LX) H e @ b4 g
a Xa Hog ; "



From the definition of < oq [ S

;% Eoltoghy

, 1
q=q o 2 lij Vg %q (2.04)

‘ i
and using the fact that < Uq o = g for T~ TC we obtain (q.79). This demonstration can
be easily extended to the temperature range 0 < T< Tc' !

1. Correlation function near the critical temperature. - 7.}. Introduction. - The MFA
neglects the spin correlations U;;MFA( D=0Wa £0). Howé‘ver, it is easy to show that,
usually, these carcelations are strong when 1 - Tc(see section 2,2); moteover, they
become long ranged so that the validity a! the MFA we examine later is a priori
dubious when T = T (see section B8). In this section we ?btain an estimation of g(x)
from (2.79) end from the MF value of x(q} {cf. (2.66)). Thik pracedure is not consistent
since the carrelation function g(q) is calculated from an expansion of the susceptibility
¥ {q) which neglects such correlations. It is hawever valid ta examine qualitatively the
order of magnitude of the carrelations and to verify i[ they are not qualitatively
impartant to describe the secand order transition, In order 1Lo understand physically the
assumptions of such a procedure, it is interesting to recove.r the cortesponding value of
q(q) i.e. (see eq. (2.65) and (2.79)) :

kT
o) = kgT x(@ k‘ﬁ"ﬂ&ﬁ' (2.85)

from an extension of the mean field equations. I_et us now gxamine this point,
By definition, g{x } can be written {far T > Tc) in the followjng way :

900 = 3 [woy5 - <o,z (2.86)

+

The spin 0 has the probability 1/2 to be in the state +1; if it is in this state, it
polarizes the neighbours ) which are then characterized biy a non zero average value
of Gyps 0,7 {conditional average). In the same way, if the spin 0 is in the state -1
(probability 1/2} the averasge value ofc’\ is <0, Without applied field, both spin
directions are equivalent so thFlL\U}\>_ =- <oy, and

gli) = LN {2.87)

<o)\>* can be estimated if we ass.me (hat the spin ) is submitted to the field induced

by the spin O, v(3)}, ang to th: & «- g+ tielu wduced by the other spins ( for which
nothing is known).

(GA‘»*:th Bivii + & videp) <n| . ) (2.88)

A Fe

This estimation is an extension of the MFA sinee it neglects the correlations between

the spin A and the other spins ¢ which are not at the origin (¢ £0) In the linear

approximation :

ghd= gvl+g ¢ viA-pide A, DD (2.89)
PO

This equation can be solved by a F curier transformatian :

gad= ¢ g %= ola) . a9 gla) (2.90)

X#0
In the Lh.s. of {2.90) we neglected the restriction p#0j it is easy to see that this
correction is not guelitatively important, g and 3 ere related by a simple relation : by

definition g(0) = <002 >= 1 and:
glq) =1 + §lq) (2.91)

It is then trivial to recover {2.85) from {2.90) and (2.91). Finally note that it is possible

to obtain by the same methods the correlation functians for T <Tq ; in a ferromagne-
oy
tic state g{q) is given by :

2
lo<g> (2.92)
(q) = ——E e (T<T.)
S L@ (L -<0> D) ¢

7.2, Correlation function for T =T . - The previous form of glq)(2.85) (2,92)) presents
a singularity when T =T and g = q_. Let us naw study the singular behaviour of g(3)
near the transition temperature. For simplicity, we cansider only the ferromagnetic
transition (qc = 0) but the results obtained for q, #0 would be qualitatively similar. We

study the spatial dependence of g{}): ) at T = T and later ii) for T £Tc.

atl q values in the Brillouin zone, the asymptatic farm of gl { |3
by the values of glq) and of v(g) (2.85) for g =D. It is then useful to keep only the first

terms of its expansion, for q= 0, in (2.78). 4{q) can then be written as follows :

va) i deterrninec

2
W= £'v0) e s tio)e T g + (8L () e (2.93)
A A

Using (2.58), the linear term of (2.93) is zero and if the symmetry is cubic (2.93)

becomes :

“(q) = 0(0) - aQ” ¢ ..

(2.94)
1
3

a = ARALRTEN
X

s —



We keep this simple form for (2.93), the Anisotropy of the expansion being not essentin!
for the qualitative resulty we want to discuss here,
From (2.78) and (2.94) the correlation function becomes :

igi
d g'd
gt , T mf dq” e (2.95)
o
where d Is the dimension of the considered lattice. Intraducing a dimensicnless vector
X =q]%|and the unjt vector A (3= |1 i3) we obtajn :
dx” el* } 1 d i /};
) - e . 1 ix
alh T j N 3 J de” e " (2.96)
Y Iy 2
X

At T = TC the correlation function gis, TC) is decreasing slowly as a power of the
distance EE

1
9T an )= W‘_H n=10 (2.97)

The parameter n which |s introduced experimentally is zero in the approximation we
use here for g(3),
7.2.2, Correlatlon function when T .7 (Flg 4a).-For T>T o the correlation function

can be written as : (see eq, (2.85) and (2.94))

( kBT
w gt 1763

where the "correlation length™ £ determines the range of the correlation function, In

the spproximation we consider here y Lo when T +T as (Fig. 4.0} :

(M~ | T- Tc |” v =172 (2,992}
More precisely :

cm= [Z (o7 12 (2.99b)
A

The spatial dependence of the correlation function when T = T can then be otained by

Fourier transforming g(q). For example when d = 3 we abtajn :

-1l etm
T d=3) (2.100)

g{a) ~ 2

Similar results are easily obtained from €2,92) for T - T .

becomes larqger and larger. F or T i T(\, the correlation function derrenses expaaentially

with the distance |X] and its range is small when we are far from the transition

mu uuu\,uull lU e :luuy u1 pl!nhtt udn:;lllor\h £53

temperature. However, near the critical temperature, the importance of the
fluctuations becomes qualitatively arne guantitatively impartant, At T = TC the
correlation Ienqt_}w £{T) diverges and the correlation function decreases as a power of
| Vi, Note that ishort range interactions v(*1 (limited to the ncarest neighbours for
example) induceélonq range rorrelations at T = TC. The detailed variation of the spin
interactions v(,\)‘with]A] does not determine the correlation function when T = TC:
here g(?\.TC) is offly determined by the laltice dimension d.

However, ds previously menticned, the calculation of g(* ) we presented in this
section is not self.cansistent ar we s spent sy priori" the validity of such results. Let
us only mention here that thre ;1al tar.« ‘eat res we obtained for g(3) for T T are
well predicted wHen the transitier = 5 ind order transition {2(T) diverges at T =T )
but, the detailed form of the correlation finetion is not correct. Far simple systems

we will represent the correlation function when T ~ TC as follows :

] (2.101a)

gl 12 T) - -

E(TY n [T - 70 7% (2.101b}
. e

The variation of wthP spin-spin correlations for T- T is then characterized by two
indices r, and v and by the functinn fl (x).  tJsing Lhe Previous approximation we

ocbtain

n =049 =172 . filey=e™™ {2.107a)

In reciprocal space, using the same transformation as proeviously see {2,96)), the

Faurier transform af (2.101) is given by :

GRS (2.102b}
q !
8. validity of the M.F.A, Ginzburg - Landau criterion. - 8.1. Speoific_heal  when T-
T..-Ttis mlerestmq to estimate the specific heat and the internal or wergy for T - T .
"

For such an eqtamatlon WEe £an use the approximate forme we -ntained for thrz
correlations in thHe previous ction, Such o calculation will allow to understand
gualitatively the role of the correlations when T - Tc' These carreiations will change
qualitatively the properties of the transiticr fnr o - 4 (spe sertion 8.7

From rquatinna{Z.94) and (2,F"" *ha intp 4 coargy, whict o5 dires iy related to the
. L0

correlation funrctidn, is given by :

o o vl k 7

v ' ‘qJ P _‘” {2.103}
H Q

‘.
:
.

|



where the integral muat be taken aver the first Brillouln zone. The singularity for

T >Tc is determined by the expansion of g{g) when g ~ D2
N S B I d 1
<l - g —— —— g’ —F, (2.104)

and the specific heat for T > TC is given by 3

3<ftr 1y [ ag® d
c o= (—#) T e s ——— H —g——-— + ___?V ;. __qﬂ....__
v 3 ¥ z 8il 3“ ! q +£ Tz g1l z (qz + E-z)z
| (2.105)

L =2 . |
When T ;TC, g_d jU and we must integrate in a space qf dimension d, q-2 and q-a.
Since dgq =i 4% dg, we must calculate jdq/qn with n = 3-d and 5-d. The integrals

diverge for q == and for q = 0 for two reasons : |
1
i

i} The divergence for q = « is artificial ; it comes frmr‘ the fact that we expanded
¢lg) in (2,105} { see {2.94)) but this expansion is not valiid for q =« ; the estimation
(2.105) allows only to determine the g =0 contribution i{u the specific heat when we
replace the upper limit of the integrals by a cut off %n = Z‘n/)\n {where Ag is the
range of the spin couplings).

ii) The integral J'Oqo dq,"qs'd diverges for d <4 and thiT divergence is essential 1 it
comes from the fact that the correlation length divergPs at T = T_. [n other words,
the specific heat remains finite when T= Tc for d>hi, but for d <4, the specific

heat is diviargant. It is interesting to determine the nature of this singularity. With
lg = £~ we obtain:

Jq° 5:-1-9-3- . ghd Jq"g.—-—T"d-l dx (2.106a)
o (g°+ £-2)2 o (Kzfl) ’

When T >TC, q, £ += and the specific heat becames for d" <4 :
e MYl A P g2 (2.106b)

In the same way, when d=4, it can be shown that :

o Loy, T Tc| (2.106c)
1
. . r Yo 3.d . \
Finally nate that the integral ‘s dg/q is alao diverant for d < 2 but the corres-

ponding divergence is less important than the previous one:e & a-2 AT T ld-2/2_
‘ c

The resuits obtained in the MFA, When T = Tc are those we obtained previously
from the Landau theory : the eritical behaviour is characterized by the same critical
exponents {1, & ..), The MFA neglects the spin-spin correiations (or the spin
fluctuations). An estimate af these fluctuations shows that they are qualitatively
impartant in a critical region (Tc' 87T, Tc +4T), the width of this region becoming
larger when the range of the spin-spin couplings becames smaller.

For temperatures which are not in the critical region, the MFA can represent
qualitatively the physical trends by an interpolation between the ordered and
disordered states. However, even from a gualitative paint of view this MF A leads often
to wrong results. First, it predicts the axistence of a transition for all values of d;
however, it is easy to show that when d = 1 (hnear chain) there is no phase transition
far T £0 when the gpin couplings are short ranged (see Fig. 5 and appendix 2). In
shuch a case, the general behaviour aof the physical properties (specific heat,
susceptibility...) is pot qualitatively reproduced by the MF A, Moreaver, when v #) is
not always positive the ordered state when d > 1 is not always exactly predicted by the
MF A : some general theorems ailow to determine the nature of the ordered state for
7= 0K for pair interactions v{3) going up to the fourth nearest neighbours. Finally, the
arder of the trensition (2nd or lst) is not even correctly predicted in a number of
cases,

Guantitatively it is possible to develop maresophisticated MFA to study the phase
transition in the Ising model (Bethe, K ikuchi...}. These methods allow to obtain a better
agreement with the exact results far from T when they are avaiiable ; however, they
do not change the critical behaviour we discussed previously. In these lectures we do
not discuss the analytical (high temperature expansions...) and numerical methods
which allow to obtain mare precise informaticns on the phase transitions in the Ising

mode! {see the book by Domb and Green).

8,2. Discussion - Landay Ginzburg-criterion. - For d< 4, we have shown the existence

of an inconsistency since the carrections to the MFA modify qualitatively these
results : the jump of specific heat is replaced by a divergence. A similar caleulation
can be dane for the ordered phase (cf. {2.92)). The specific heat results both from iy the
contribution of the Landau theory, ii) the contribution of the fluctuations of « around
its average value, For d <4, the contribution af these fluctuations is dominant when
T '"Tc and the MFA has no longer any meaning in this critical region 'iTC - T,
Tc + E:Tjj . The Landau thecry {or MFA) will be valid when the temperature is cut of
this region. An order of magnitude of 1T is obtained when the two contributions to the

specific heat are of the same order of magnitude i.e. when (see eq. (2.49) and (2,106}

3k
2 B B r- Tl (d-4)/2 (2.107)
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The coefficient@ depends both on d and on the range of the pair interactions v(3) {sec

(2.94)). When the interactions are short ranged (for exarmple v(i) v vie)exp - lajf?

o
where '\“o is the range of the interactions), the coefficient « varies as? ﬂd+2 and the
critical region is given by :
il -d{d + 2)/4-d |
AT A @+ 2/ (2.108)

o

When the range of the spin interactions l‘n is targe, the critical region is srmall ; it can
even be so small that the experimental behaviour seems to be governed by the MEA!
{superconductivity far example).

9. Conclusion : validity of the MFA. - In this chapter we discussed the results obtained
in the MFA4 ; the importance of this approximation comes from its simplicity.
Moreover, it can be applied as a firct approximation to explain phase transitions the
physical nature of which iz different (Van der Waals for the liquid gas, B.C.5. for the
superconductor metal, Bragg Williams for the order disorder; malecular field far the

magnetic transitions...).

APPENDIX 1
MFA AND VARIATIONAL METHOD : We show that the MFA results from a

variational principle (see section 1) and we apply it to the Ising model {see section 2).

1. Varistional principle. - (Bogoliubov inequality), The calculation of the thermody-

namic patential F{T,V) of a system whose hamiltonian is e
F{T, V):-kBT Log Z Z= EJ[r‘_l]e (A1)
isin general impossible so that we try to obtain the best approximation for F from a

soluble hamiltonisn. We note ffc the hamiltonian of a system for which it is possible to

determine exactly the free energy F'o H

N -e ¥ 2)
FU(T,V) =ekaTingZ, Z,= ", N e {A.
It ia then possible to show the following inequality @
F o« F-oi-(,ff(j' -1\%)0 (A3
- R B¢
PIE A H#-60) 3 S .
- 0%t ](}"{ e /',, o o (A.4)
[ pivo

i i i meter x
Then, among the hamiltonians fﬂo(x) of a set depending of the continuous para

and chosen to represent teasonablv -from physical arguments. the free energy, the

i i Wi inge o o nimiem el when
best hamiltonian rng.x) is ohtainec when 7o+ i 4‘&0 o 18 mini i

2
_E.(r N ! =N .'1r\dﬁ-—-—d2 ‘Fg .- i'".J ‘0) -0 (AL5)
dx | o Too0t Ly dx :
i o

The inequality R-3 is shown in aection b of tais appendix.

2. Application d:uf the variational principle to the Ising model. - Let us choose as soluble

hamiltanians )'r'L the harmt-- a0 beeedent particles inoan nwternal field :
1
i
I
# . ohio
\ o (A.86)
|
‘ ) = S B Wi vl
: ho( =- v c 7. { N

(}'fgn(ﬂ_) depends on the paramnters

previous variational principlr. We will show that the best approximation for the field

acting on the ith systemn :

LAT)

is the averaqni field <H,* we introduced in the MEA e, the fiela 767 with s

A (A.8)

i = paranagnetic Loans and
£or simplicity, let us only consider here the ferromagnet s parainagnetic te ansition A

assume that all the 0, are equal: © -« The freeeneray £ i tnen given by

LA SN L 2 ‘AL
FD:-NkHTlf]qfn + B e N x ;
# . % panhe written in the following foom Tnen (LA
L ?
. ! - . ¢ 0)
B - 1 G - (Al
£t =5 L : 7
and its averége value is (from {252
I o) z (AL
oew L I's TR T :



The condition (A.5) becomes (see (A.9) (A,11)) ¢

{ of -
I %{a)
sl NQ(n)x-Nﬁ(o)th-l?,
) kR deo>
. . -
7 T oN6e) <o [T -1 ]

The condition (A.5) can then easily be written, using (A,12

} and (A.6), as follows :

It is then equivalent to the mean fieid seif-cunaistent equbtion (2.24).

3. Demonstration of the Bogoliuboy ineguality. - Let us introduce for 0 <) < 1 a set of

hamaitonians & (1) defined by :
By=f, rv
Then :
# 0= . W=

Ta each ¥ (1), we can associate a free energy F(\) (sed

(A.1) and (A.14) we obtain : i

]
, . REAERY
F( )=—kBTan L{Cl}e
Foey 1 . TP
d)‘(l\)«~v_- -Zm }_{U\}B
2
d—Fz(A)=— < (V-<V>\)2‘- < 0
@ bt

The ineguality {(A.3) is cbtained from the relation:

FIL-Flel=F -F < S5 (1=o0)x
o d\? :

which can be written :

F‘;_F‘)* «\’Df}”»(ét-kb;-

i

]
(=)
fad

£

{A.12a)

{A.12b)

(A.13)

(A.14)

(A.15)

(A.1)). From the definitions

{A.18)

(A.LT)

{A.18)

(AL19)

(A.20)

APPENDIX 2

ISING MODEL FOR d = 1

We show here that an lsing model for d =1 and with interactions between

nearest neighbours has no transition for T # 0K, Let us assume that there is no applied

field H_ so that the energy for a given spin configuration {o 199 O }ise

j&([rz)\} Y= v 0 0= 0y G v gy 2y

The partition function Z can be written ss follows :

Gv(clcz+ Ug T3+ ¥ 0y GN)
Z =1L e
N {OA}

Let us zplit from (A.2.2.} the contributions of the Nthspinto Z, :

Bv C

-Bvo )
N-1
N~ ZN-I(e

N-1
+€ = 2Ch  Bv ZN-l

Z
By an iterative process we obtain :

Fo =-kaTLog [ 2Ncn sy ]

N B
In the thermodynamic limit (N ~=) F becomes :

F=-Nk,TtLog 2Chév

2]

(A.2.1.)

(A.2.2))

(A.2,3.)

{A.2.4.)

(A.2.5.)

from this expression, it is easy to calculate the entropy and the specific heat and to

show that all these functions are regular. Note however that c, presents a maximum

when kBT ~ ¢ recalling the result obteined by the MF A,
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L Introduction. - In this chapter we precise the nature of the singularity of the
thermodynumic potential associsted to the second order phase transitions of "simple"
systems. The determination of this singularity results from = large number of
thecretical and experimental studies which tried to determnine the general features of
the critical phenomena. Fram these studies, it has been possible to exhibit the
important ("relevant") parameters which determine the thermadynamic notential for
T~ TC. These parameters depend anly of general properties related tgo the symmetry
(space and order parameter dimensianalities) of "simple" systems; this peculiar
property cof critical phenomena ailows to relate systems whose physical nature is very
different, In this chapter, we define the nature of (he sinqular part of the
thermodynamic potential G(T,P} and we precise the parameters which determine
qualitatively this behaviour ; we do nat try to determine quantitatively the physical
properties of such systems. In the next chapter, we will justify the singularity of
G(T,P) we describe here.

One of the first discrepancies between the exact behaviour and the results of
the Landau theory for T= TC apprared when the Ising model for d = 2 has been golved
exactly (Cnsager 1944) : for such a system, the specific heat €, Presents a logarithmic
singularity for T = Tc (cv ~Log IT - TC\ )y the order parameter varies as |T-Tc | 1/8
and the susceptibility diverges as i T-Tcl '7/4. Later, detailed experiments allowed
to precise the behaviour of the specific heat, the susceptibilitf... near T = TC; this
behaviour has been characterized by power laws |TC-T |y the correspanding
exporents ¢ being the "critical exponents”, It appeared guickly that these exponents
are real numbers related by relations called "scaling laws" ; then it became clear that
these relations (first jrequalities and later equalities I) can br derived from a peculiar
form of the thermadynamic potential - thig potential being s "generalized" homoge-
neows function, Such an "homogeneit y Property can then be -as usual- derived from a
scaling hypothesis and by & dimension analysis. The scaling hypothesis assumes that the
long range spin correlation near TC determines the singular behaviour of GIT, P}: to
obtain this singular behaviour, it is sufficient to sssume that i) the correlation function
decreases with sgme power law at T = Tc; i} the scale of the phenomena at &
temperature T is determined by only one length, the carrelation length * (T) which
divergas ot T = TC.

In this chapter, we define the critical exponents and summarize the main
scaling laws, Then, we define the singular part of the thermodynamic potential as a
qeneralized homogeneous function; we show that this assumption is consistent with
the scaling laws and can be deduced from the scaling hypothesis.

2. Critical exponents - scaling laws. - The hehaviour of the physical properties when
T= Tc is characterized by power laws £ where t = /T . T(‘E iown introduced these

expanents when we discussed the I_anday theory and the ME A, st us recall here their

definitions 3

: . :
order parameteT for T« TC : MACTY Ot

i -1
specific heat C[L ' CP At

i R
susceptibility y [ : ot

' Ve
critical isotherrh H{M), T = L oM

[ 1/ (d-2er

correlation functionat T= T _57".1 }: s s T i
correlation lendth £ T t

|
Let us note tha‘t a physical quant Lovaries as tt for t- 0 when = (U3t 40
where C 1s a cémstant. When trere is a togarithmin singularity, we will sav that it
carresponds to ¢ = 0 (since Log £/t « « when : » GandLogtitt . o when : - 0.

In these lecturd:s we do not distinguish the rxponents for T TC( £ e and for Te TC

hei "
{4, v', w'...} sihce the experiments seem to show that they arr equal for "sirmple

systems. .
The six critical exponents we defined previously are relsted by the four following

independant scaling laws :

o+ 20 4y =2 (Rushbroake) (-7 {3.1)
o — g8 - 1) {Widom) (3.2)

i
Y oy (2-m) Fisher) (139
d v% 7. {Josephsont [ i3.40

|
|

These laws were first shown to be inequalities (see for exarnple the book by Stanley),
the nature of Lihe inequalities being preciced in the previous eqguations (3.1, 4). The
critical behavit.lnur of the simple systermns 15 then determined nnlv By Lwo independent
critical exponents. Finally note that amnng all the scaling laws, nnly the last one (s
explicitly dependent of the dimensionality .

The relations (3.].. 4} are satisfied when exart results can e ob'sined s for example,

! “ - .
the exponents af the [sing rmodel when 6 - 2 are given by :

n =0 B =1i/c R =15 o lia e=1
Mareaver, the :numerical rrethods allow ‘¢ evaluate these coefficients for simple
] '

madels (Heisen'berg..() and the resul's nhtained by such methads are also in agreement

with the previous laws {see tabie |0,



Critical exponents

d n a k Y I § n v
Ising 2 § 0,125 1.75 115.04 0.25
Heisenberg 2 3 2.5 O?
Ising 3 1 0.11 0.3 LS 0.03  0.64
X ¥ 32 -0.07 0.3y 4.8 0.03 0.67
Heisenberg 3 3 -G.12 0.37 1. ‘ 4.8 0.03 0.7
Spherical 3 o -1 0.5 i 5 o 1

T

. : o i

3. Homogeneity laws, - The singularities, we charactarized previously by the eritical
exponents and the scaling laws, can be deduced frcul a peculiar form of the

thermodynamic potential G and of the correlfation functio g : if we assume that these

functions G and g are generalized homogeneous functions (hormageneity sssurnption),

the relations between the critical exponents ere recovered

Let us first recall the definition of such generalized homogeneous functions: a

function ¢ (x, y, z...) of n real variables x,y,z... is hnmogelTous with degreesa,f, Y.

if, for each X real, we have silher :

¢ (xstay BoazY 0= ¢ (x,y,i,...) {3.58)

or: i
B 00y, Zy) = x° -.;,(—y— , -5+T+ y ) {(3.5b)

<Py X¢T

The equation (3.5b} is eguivalent to (3.5a); it can be deiduced from (3.5a) choosing

A= x'llu; 8 bys by B0 then given by : '
|

sx-lin, ¢ =uls gy alp, (3.5¢)

and:
ISE SO RV 1 N {3.5d)

The definition (3.5) is a simple generaiization of the ciassical definition of
homogenecus functions (we recover if g=3 = y..1). We pow examine the behaviour
of the thermodynamic potential(subsectinn {3.1))and of the|correlation function we can

deduce from this assumation (subsection (3.2)).

3.1. Thermodynamic potentiel. - The heamogeneity hypothesis applied ta the thermady-
namic potential Gy G(T,H,p) = Gr(T, H, p)+ Gs(T' H, p) assumes that the singular part

GS(T, H, p ...; is a function (3.5) where x = t, ¥ = H, z = p,... [n this section we consider
only the dependence of Gs(t,H) with the temperature and the field H coupled to the
order parameter M. As shown previously (section 2} two critical Indices are then
sufficient to determine the critical behaviour so that the homogeneity hypothesis
characterized by the degrees associated to t and + (or by a and gH) determines
completely the criticat behaviour. The exponents a, $H will be chosen in order that the
critical behaviout is characterized by the usual exponents: we will verify below that

a=a-2 and = B&; the thermodynamic potential can then be written in the

¥y
following form :
G(T, p, H= G (T, p) o 277 £ (2 (3.5¢)
r o
This expreasion is only valid in the critical region i.e. when t -0 and H - 0. From

{3.5e), the order parameter M and the susceptibility are then varying as :

M :-;;G(t,H) = pfresd g(—%c) (3.5)
. X

ER L

. 21:4 SRS Zd,h(_r%) (.7)

s

the function g and h being the first and second derivatives of the function f,
Let us now show that this choice of the coefficients a and ‘N is consistent with the
usual defimtion of the critical indices :

i} specific heat ; (H = 0)

C (HzG)—T(aS) =-T(§2G} ~ flayt™ (3.8)
p ﬁp asz

The coefficient o in (3.5e) is then consistent with the usual definition,

ii} order parameter (T < Tc, H = 0) (see eq. (3.6)}

2—&—¢.H
ME) ~ t =6 =Z-a-iy (3.9}

iii) susceptibility (T> Tc) (sme eq. {3.7))

2-5'1—2¢H
x (]t = =2 OH + u- 2 (3.10)



iv}scaling law {3.1). - Eliminating ¢y from {3.9} and (3.10) we obtain (3.1)
v} critical isotherm 1 this isotherm is obtained from (3.6) when t = 0, H £0. Fram (3.6},

gly) must vary as y $ in order to recover the ctassical meaning of the exponent
6 .

§ 1/5
HYM © (T = TJ =gy vy ! (3.11}
When t=0in (3.6) the t dependence must not introduce a singularity ; this requires
using (3,93 :

Zogedp -, LSS

H

t e L e 8= RS (3.12)

vi} Widom's relation : eliminating rer and = between {3,9), (3.10} and (3.12) we
recaver (3.2},

vii)Conclusion + In conclusion, we have shown that the assumption {3.5e) is ronsistent

with the usual definition of the critical indices and with the scaling laws (3,1),

(3.2); the other scaling laws can only be abtained if the homogeneity hypothesis is

applied to the correlation function, Finally, we must mention that the assumpticn

(3.5e) can be verified for soluble models (spherical model, [sing model for d = 2...)

and from numerical and experimental studies. [t is often easier to represent the

state equation M(t,H) using the reduced coordinates :

m = '—h:r h = —};? (j.ﬁb)
t t
M
HYE L
1k
06

H'/pa
Fig. 3.1. : Reduced magnetization of CrF}rJ {schematic) : M/HU\ = (L/H;“: )

All the curves M(t, H) when T ~ Tc are then represented by an unigque corve mih)

which summarizes the varistion of the arder parameter wher t - 0 (Fig. 3.1}, This is

a generalization of the classical law nf corresponding states {see introduction).

3,2. Corretation function. - The homogeneity hypothesis for the correlation function

9(t,r) requires th following form :

Qlrt - £10r/5 ) (313

1
d-241
r

where the correlation length £- t™” determines the scale of the phenomena when
T~ Tc. The critirjtai behaviour of g is determined by two critiral indices -, and-w ., These
indices are then related to the other indices deduced from GIL,HL We shaw now that
(3.13) determinea: the Fisher relation (3.3), (3,13} is equivalent to the relation :

|

vas = f0as ) 3a4)

¢
as easily shown by Fourier transforming (117 when t = 0 in the same way as in chapter
Z. From the fluctuation dissipation theaorem ‘chapter 2,(2.79Y the uniform susceptibi-

lity becomes :

ria=0)= . -k T glot) {3.15a)
and varies as t~ ﬁ( by definition of ;) In order to obtain a finits value for +y it ls then

necessary that «

fz(x) m(z-v {x - ) “3.150)
and,from {3,14), we obtain :
5 7 dim glgt i (14
: q+6
Comparing the first and last relations of (3.15% we nhtain Fishar's celation (3.3,

d

A Do) 9
5 *%“/[}.7}/2/)/'9/5 AR

A

3L intermedigts

y)
1
| a

|
Fig. 3.2 : Critical behavious versus noan< o {f-om G, Toulmisne - B, Pfeuty, 1975,
Intraduction au Groupe deRenorealant o0, 4, Grennhle !,
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fig. 3.3. Critical betaviour versus d and g,
[ : classical reqime fshort range)
II : classical regime (long range)
I+ nan trivial regime {short range)
IV z non trivial regime (long range). (frorh G. Toulouse and P, Pfauty),

4. Sceie trasformations and homogeneity hypothesis. -It’ is possible to obtain the
previous forms far Gs(t, H) and glr,t) from the followifg assumptions : 1) the spatial
scale of the critical phenomena is determed at a given temperature by only one length,
the currelation length £~ t™, which diverges at t = [ 2) the correlation function
decreases as a power law at t = 0. {3,5e} and (3.13) can| then be obtained from these
assumptions by a scaling transformation. If we multiply the unit of length by s, the
messure of the distance between two points r is | divided by s, r'=r/s; the

thermadynamic potential per unit volume G't,H) Is then “multiplied by sd H

Gl = s? Gl HY | (3.172)
and the correiation length becomes £'= £/s, From assumption 1), the thermodynamic

potential G is the potential corresponding to the temperature t':

1

W
£'= &/ fu—-E-;- =Y =mp sy (3.18)
Then we abtgin from {3.17}, (3.18) the relation :
a0 = Gl 0 = 0%, 0 (3.17b)

After this scaling transfarination, the crder parameter| M(r) becamas MYr') and the

correlation function becomes :
Gty oo N M) > (3.19)

At T =T itis invariant by tnis scaling transformation (g'(G,r") = g(0,r)) since, from 1)
£

»

is not madified by this transformation: it remains (infinite [. This invariance is

satisfied when :

M{c) =s 2 M(r) {3.20)

b M W e WML TR 2 UMY U dald ool 0TS Ol

i.e. whenz:

gloyr) ™ rd‘iﬂl {assumption {(2)) (3.2

We can obtain the law of trensformation of the field H from its coupling energy

between the order parameter (M'H' = &9

M} which is transformed as G :
Hz=% 2 H (3.22

After the scaling transformaticn the thermodynamic potential becomes (see eq, (3.17)
and (3,22)) :

de2- 1
QM) = s3G04 = gt s 7 R (3.23)
If we choose s = t” ¥ we abtain :
G(l.—:{{-ad_n y= %9 g, W) (3.20)
T 2

This expression shows that Git, H) is & generalized homogeneous function the critical
indices of which are deterrnined by n and v. Applying {3.8) to calculate the specific
heat and using the definition of the index a we obtain relation (3.4) :

vd=2 -0 (3.4) Josephson
Using the same method, the correlation function becomes, (cf.equaticn {3.19) and
{3.20)) ¢

d-2+N l/\;t r drzn

g'{t,eH) =5 glt,r,H) = g (s s 2 H {(3.25)
When H = ( and using 3 = r, we abtain :
1 A o -y
g(t,l‘,o) = rd‘z*n g(( t'Y) ] lr U) = r_d_2+nf1( r/t ) (3.26)

and we recover the form we used in the previous section for g(tri(see (3.13)). Then we
can deduce Fisher's relation (3.3) as in section 3.2 . Finally we obtain the scaling laws
(3.1) and (3.2) as in section 3.1 with Oy =wd + 2 -n)/2 : the homogeneity relations
(3.24), (3.26) deduced from the scaling assumption are then equivalent to the
homogeneily assumption we intraduced in section 3.1 and 3.2. The scaling assumption
and the scaling transformations determine relations (3.1) to {3.4) : for this reason these

relotions are called scaling laws.
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Fig. 3.4.: — specific heet of a linear chain (Ising d = 1)
» —specific heat of a square lattice (Ising d = 2)
~—specific heat of a rectangular lattice,
(lsingd = 2)
Vi E 17100 vl(from Onsager, L., Phys. RRev. 65, 1944}117),

5. Critical behaviour of the "simple” systems. - As mentioned in the introduction, a
large set of systems (called "simple") present a sinqularity characterized by (1.5), wWe
must raw try to determine the parameters which govern the critical indices. The
numerical and experimental results obtained for some stimple models (Ising,
Heisenberg, spherical... models) throw some light on this paint : the critical indices
depend on : i} the space dimension d ; ii} the order parameter dimension n and iii) the
range of the “spin" couplings (leng ar short. range couplings). We examine the
importance of these parameters in the next section.

5.1. Dimension d. - [n the previous chapters we painted out that the space dirmnension d
plays an important role in the determination of the properties of phase transitions.
First, we have shown that the fluctustions hecome qualitatively important only for
d <4 ; hence we can hope that the critical indices are given by their classical {i.e,
Landau: values for d» &, Merecver, we have shawn that |f the space dimension is too
small 7t = 1 for the Ising model) phase transitions become impossible (for T £ OK) when
the spin rouplings are short ranged.

It can b thought -at first slight- that it is not physically interesting to consider d as a
canbirmmus variable (Ogdge) and to calculate the exponents as a function of d,
Howewver, note flist that the values o - 1, 2, 3 present » physical interest. Al the
phvsicat systems crystallize in the three dimensional space {d = 3) but it is paossible

that this syaterm can be represented by aset of weakly coupled atamic lines ‘oz planes) :

N .
wore srecisely, the interactions between the atoms of each line ‘or plane) v/,/ can he
R H e 1
much Lirger than the interactions between atoms of different lines {planes) v L(v// By
.
vl
Wr;z-r‘ kT v, we can obaerve Va priori" an ordrred structure arnong the
-
R i L

atoms of the same Jine {plane! but there is no order between the atoms of the different
o 5

. . . - o i
lines {planes), The system is characterized by d =1 {or o -2% This discussion is

Ulustrated In figure 3.4 : this figure shows the result obtained for a two dimensional

VI pPNase transitions 305

Ising made! for which vff/v_L can take several values, We abtain Onsager’s reeylt for
d =2 when b/f/vi=l whereas we ohtain the resu}

4 carresponding to a linear chain
when v},//v {| =0 or w(gep Fig. 3.2 for comparisan),

5.2, Order parameter dimension n, - The role of nis illustroteg by the results obtainad

for the Ising (n = 1), Xy in = 23, Heisenberg (n = 3) and spherical (0= +) mpdels {see

table 1), For & given dimensian d, the exponents RN vary strongly with n ; for example,

% decrenses ‘and changes its sinn when n increaseg,
Let us recaill here that n 5 the dimension of the irreducih]e representation of the

symmetry group Go which datermines the phase transition: n can then take very

different values geeording * 1 e, "r.od case, For example ;

n-1, carresponds to the tic, | A order disorder, some structural transitions see

|
intreduction),

N = 2, corresponds to the magnetic arder.ng of systems faving a plane of edasy

magnetization, the supercanducter .mntg) transition, the nematic- sinectic A

s .
transition in liquid crystals, the Pejertys structural transition for d= ] systerns.,.,

n=3, COrresponds to the magnetic transitiong represented by the Heisenberg mode]. ..

Wher the unit!:ell does not change during the transition, it is sufficient to consider the

. |
point group and ng 3 5 on the cantrary, when the cel] g doubled in ane direction {at

least) it is than necessary to consider the representations of the BRACE group whose

dimension n can be larger (n = 4 fqr the structural transition in NbQ

)

2

[ .

5.3 Range of fpair) interactions. In chapter 2, we showed far the lsing modei thyt the

range of the spin couplings determinga the width of the critical region @ the results of

the ME A bec&?r‘ne exact when the range of the spin cauplings become infinite

A4 = w/ND and for alf d values we obtan T 0. Then, for « - Ln=1 a transitipn
from the regime TC:[] K to a regime T 0 must exizt when the range of the
intreactions increases, [f we characterize 1he asvmptatic behavieur of ol (r 20} by

the jaw @ viri oAz =0 (3,27

it is possible to show that, for = |, there i« nolenger a phase trantition with non zern
T.: the line o F 1 separates the reqion for which T A0

‘ ‘rom e reqgion for which
Te = UK (Fig. 3,3,

The range of the interactions plays an wgae,a] rale to drtermine the nature of the
transition and their PToperties ; the experirman: g observalis. of lassical fxponents
when d =3 cani be for esairnple i Indisation aof the existonee of long range
interactiong (elaétic for examle as waraeste s for the systern Degd Fig. 3.5).

5.4. Simple system, - We have shown the freprrtance of the role of Ny dand - inthe
determination of the critical hehavio:-, Dther quantities rar, be important to
|
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Fig. 3.5. 1 demixion in PdH systems : chemical potential versus hydrogen concentration
U?goﬁmefeld. Phys. Stat. Sol. 32, 1969, 67),

determine this behaviour. Let us mention for example : i} the anisotropy of the "spin"
couplings (dipolar interactions) ; ii) the anisotropy in the jorder parameter space ; iii)
the anisatropy in the real space ; iv) the existence of a coupling of the order parameter
with other degrees of freedom (magnetoeiastic coupliqgs...). In this chapter, we
considered only isutrupic simple systems for which| the critical behaviour is

represented by an {unique) order parameter {dimansion n)| and is induced by isotrapic

and short range couplings. Their critical indices will depend only on n and d and the
critical behaviour ia shown in figure 3.2, All these systems define a universality class
for which the critical behaviour is determined regardless ¢f the physical nature of the
transitions. Our task is now to understand the origin of this surprising universality of

the critical behaviour,

INTRODUCTION TQO THE STUDY OF THE GINSBURG - L»T\NDAU - WILSON MODEL.
L, Introduction. - 1.1, Method. - The fluctuation are qu!lalitatively important in the
critical region for most of the real systems : they determir‘ie the critical behaviour and
can even change the nature of the phase transition, [t is t.hi n necessary ta develop new
methods which will take account of these fluctuationa and which will allow to 1)
understand the physical arigin of the homogeneity laws and of the universality of the
critical exponents 2) calculate these exponents. In this | chapter, we introduce the
"renormalization group” methods in a simple way and v;e show that they allow to
characterize qualitatively (nature of the homogeneous functinns) and quantitatively
qualitatively (value of the critical #+orenis' (bw critical behaviour,

These methods define & set u! transfurinations (R )iwhich relate the state L of
a system of a peculiar class (for example an [sing model| with interactions between
nearest neighbours v, the therrmodynamic putential of whigh is determined by K = v/T)
to anather state ' of a system of the same ciass (characterized by v* or of K'=v'/T). The
RS will be defined as "complex dilatation" and the ¢ritical point Tc will be related to a

e DA LR WY OT phase transitions X7

fixed paint L™ for these transfarmations i.e. a paint invariant by ail the operations
Rs H u' = Rs I.t‘ ; the critical exponents wiil be determired by the properties of Rs when
u is in the neighbourhood of u’ (i.e. when T= Tc)‘ GQualitatively, it can seem obvious
that the critical temperature must be related to an invariant noint ¢ the system is
invariant by a dilatation at T = TC( &remains infinite ') and this invariance is broken
when T # Tc. in order ta precise the nature of Lhe operations RS and their role, we
present in the Appendix 1 a detailed discussion of the physical argument first
developed by Kadanoff (1966).

1.2, Summary. - First we recall the description of a mactoscopic system by blocks (2)
and we extend the {andau theory to a system which has an order parameter M(r)
varying with r: the results we ablain in this section are essentially those we ablained
for modulated structures in the MFA (chapter 2). In the present study we must take
full account of the fluctustions to represent the critical behaviour : for this reason
we write the partition function es a "functional integral" (4). We introduce the simplest
possible model to study the role of fluctuations L.e. the Langau -ginzburg model ; we
discuss this model for an isotropic system with short range interactions. The partition
function Z is then the sum of the contributions exp- 875 {{M(r}}) of the states with

order parameter M(r): in the Ginzburg- L andau formulation, the so-called “hamilta-
nian"g(/ {{M(r)}) has the classical L andau form :
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Fig. 4.a. : Parameter space, physicel line L and renormalization lines ¢f

by Ty

and a state of this system is then determined by the set of coefficients © = (r, u,...c).

This model is the simplest possibie ; nevertheless, it is not possible tg oﬁtain

exact selutions for Z and F ! [f we neglect all terms of ﬁ:v except the first and the last

ones, we obtain the gaussian model which is soluble (section 5' but which is not

physically correct (the jow temperature phase is not defined 1 If we consider only the



contributions of the distributions M(r) = M which are independent aof r, we obtain the
MF A {section 6) which is not sufficient in the critical region. It is then necessary to
take account of at least the three firat terms of g’ te abtain a non trivial answer. An

exact solution of this model is only possible in some peculiar  cases fd = 1, n == ...) we

do hat consider here, )
In the second part of this chapter, we do not try to determine quantitatively Z

by analytical methods but we will investigate the properties of the systems
representnd by /,;({M(r) }) relative to the operations of the renormalization group,
The elementary pperatiens Rs are defined in the reat space and in the reciprocal space
(see section 7); we show how the Lhermodynamic potentia! F and the correlation
function ~ Mo} ~are transformed by RS. An gperation Rs relates a point j(r, u,...c)
ar the parameter space te another point of this space ; V' = Rsh. The critical behaviour
15 then shown to be determined by the neighbourhood of a peculiar fixed point
P R 1 {section B), We apply this praposition to the gaussian imodel {sectinn 9) and
we shu‘:n that the fixed point for the gaussian model determines the critical hehavigur
of the simple systems for d =4, We discuss the case d < 4 and we show that the critical
behaviour of these systems is governed by another fixed point the coordinates of which
(r',u'...) can be determined by an expansion in successive powers of « = 4-d. Finally
we discuss the general validity of the renormalization group method.

2, Blocks. - 1t is necessary to take account of the correlations which are neglected in

the Landau model. However, we are only interested here by the critical region for
which the correlations are long ranged { 4 >>a, a = interstomic distance). For this
reason we introduce a representation of the system which is valid when we are
interested by phenomena the scale of which is large as compared to the interatomic
distance (h»> a) but small as compared to the ecorrelation length giberr). F
determines, for a given temperature, the scale of the critical phenomena (see chapter
3). In such a representation, the fine (atomic) structure is no longer relevant and we

can use a continuous description of the system : the arder parameter M(r) is then

ri-fry-ele r ""I‘*"’"I 3
: : ! K
HFri 1 S -
i v T H ' (
' ! ' ) 1 !
[ S iy i o i) [ Y I
—_— —— ——
1 2z 3

Fig. 4.2, : Renormalization group: each operation R resu'ts from 1) a partial
integratine 2} 8 change of unit length, 3) a renormalizatiop of ™,

represented by a continuous function which is, as usual, a density prr unit volume {of
magnetization, prlarization...). This procedure is the same as classically used in
electrodynamics df continuous media see for rxample the definitions of the charge
density, :{rl, the |current density 7=y theee quantities are anly meaningful for
scales farge as compared to the distance belwesn chargas but small as compared te the
scale of the physﬁpal phenomena we study. In the present case, Mir} 15 assumed to be
real and the them{mdynamic potential is "a priorl™ a function af all the values that the

order parameter M{r) can have tor ail the points r. More preciselv, we consider the

systern as rPsuItinig from blorks centred on ¢ { - l....(!f)’, and of size b (volume . = hd)
such that a~< b L. The state nf oy r»-ﬁ::".ﬁ can then be characterized only by the
set of wvalues ! iMTi} of . e waieter ef each of the blocks (total
magnetization, polarization... of ¢4 7 Lhe Soeka ™ but the variat;on of the order

parameter on a sr‘}zaller scale can he thouqhit to he irrelevant for oor purpose. With
such an assumption and for ench scale ky we ran then, in principle, represent the
partition functmniz and the thermodynamic patential by a function af all the possible
values of the densities Mi=Ml’l‘L\»F « «this expression will be shawn in seetion 4. We ean
use the continuous limit (,XD' “)oand represent mathematically 7 as a functional
integral but, for bractical reasons Ji.e. for those who are nat familiar with such a
formalism) we will use only the discrete bloch representations : 7 15 then an inteqral
(Dr’uple] over th(*;variables Mi' In this chapter we use, as a ficst step, the block
representation to éxtend the Landau medel for ordered states chararterized by space
deperdent arder ;)prameters. Then, we take into account the fluctuatiors and disruss
the mathematical Hescription of 7 andF.

3. Extension of Lhé Landsu model. - 3.1, Introdiction. « In this secliun, we extend the
assumptions of thri; classical Landau made! to the case of an otdered state the order
pararneter Mir) Df!WhiCh is space dependent ; for simplicity, we assume here Lhat this
order parameter is a scalar {n = 1),

As prevlous}ly (see section 2 of chapter 1) we assume that @ i it is possible to
define a thermadynamic potentizl for each confiquration Mi LT, IMl Vs i) this
potential is arialyt:ic and can be expanded in successive powers of all the variables
{Ml W Ty p it the equitibrium state is obtained by aminbnization of this potent s
with respect to the variables [ M
et us now precise these steps : l

i) expansion of the thermodynamic potential * The [andau thermaosdenamic potentinl

can be expanded as follows [in the discret. mase; s

[Gia I\:/‘ S GETLe : to .
vl e ML S GMT Y o 9oLt Lo 5 S IS R B [
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[ ik
o
In the continuous | limit, Lthesn surms Liecor e ciegrals andid.ias can be writter as
follows ¢

GlTan f‘“'t“) = GR(T,pl 3, W M MG drdet s lg : bir,e',r") x

o BTN T de de det L 14,100



The coefficients a, b, c... are T and p dependent; they are determined by the
disordered state {they are obviously independent of M(r}!). We will assume for
simplicity that this state is homoneneous and isotropic : the :pnefflcients &, by ¢... are

then only dependent an the relative distance between the points r, !, ... ¢

k alr,) =zair-r}
J (4,7

Cobie,rt, ot o= b {r-rt, TP

i
ii) eguilibrium state: The equilibrium is ablained by the r?ninimization of G. G is
extremum when the following condition is satisfied (discrete case and zero external

tield (see eq. (4.1a}: i

5G -
-Sth = D& EJ aij MJ + lk bijk MJ Mk + 4o = 0 (4.3a)
'

In the continuous limit, this condition is equivalent to:

d‘%’(r) =0 @3%5)5 J a{r-r'} M(r') dr' + J bir-r', r-r")IM(r) M) dr' dr” +
+o =0 (4.3b)

%) is the "functional derivative" of G{ {M{r)}).

For a non zero applied field Ho(r) the thermodynamic potentiak becomes :
G-G- JM(r) H,(r) dr (6.4)

and the condition to obtain an extremum of G is:

Fo 0 < Tty = Ho®) .5

iii) Fourier transformation : When the disordered state is homogeneous, it is useful to

Fourier transform the previous equations. The ordered state is then characterized

by the F ourier components {M q} of the order parameter { M(r) ] :

' .
M= | M e T g
REVEY

1

Min - A Lo S

(4.6)

[he thermodynamic potential is then a functional of Mq' Using the properties of the
F ourier transforms (see chapter 2; we obtain :
r

J slr - MO M@ drar = £ algy i) (4.7a)
q

Ll
[ blr-r", c'-r'"} M(r) M{r") M(r") dr de' de" = I big,q") Mqu, M_q_q, {4.7b)
. a9’
with the definitions :
LAl [ alr) €!%" ar
(4.8}
N . -
blg,q" = lfo ) e’ e 9T g gp
and the thermodynamic potential becomes (see eq. (4.1} and (4.7)) ¢
1 1 “.
G(Tip, (M N =GATip) e 7 L B@MM_ e £ BGQIMMM_
q Qs (4.9)
1
+32 L elqohg" )M M M M e
4cu.ca‘-q" 999 4

The thermodynamic potential G{4.4) is obtained from (4.5) and from the relation :

J Ho(r) M(r) dr = ;f- Hy, {q) M_q {4.10)
with the definition :
.1 -ige .
Ho(q) -\/V_ J He (rye Tdr (4.11)

Using this form for the Landau expansion, we examine now i) the instability of the
disardered state {section 3.2,}, ii) the general form of the correlation function and iii)
the expression of G in the macroscopic limit (q +0) (section 3.4),

3.2, Instability of the disordered state physical meaning cf &{q). - The disordered state

becomes unstable if (at least) one of the coefficients a(g) -i.e. B(qc)- becomes negative

for T< Tc ;s a sufficient condition far this instability is :
g, T.)=0, 8(q,T>T }> 6¥q (4.12;

if the disordered state is stable for T> Tc’ both &{q,T) (Vq, T> TC) and the quartic
term are always positive. The coefficient 8(g} has a simple physical meaning - which is
the generalization of (1.11). The equilibrium state js obtained from the condition (see
(4,5),(4.9) and (4,10)) :

3
~§_’$ 20 &= g = H (@) (4.13)
q q
In the linear approximation we obtain :
H,(a) = 8(q) Mg (4.14)
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and &(q) is the q dependent suscrptibility we defined in chapter 2; if we apply an
external field H (r) = 1//V elqu (q) in the disordered state, the crder parameter
Mir) = l/,/VW e'q has the same per:odncnty as the applied field in the linear approxi-
maticn § thls order is proportional ta the applied field Ho(q), the coefficient of
proportionality being the suseeptibility x{g):"

Mq = Xq) H, (@) (4.15)
and (see (4.14) and (4.15)) :
P -1
{q) = &(q) {4.16)
when T>T_, x(q) is positive and when T~ T )((q (T) v fwhen T o Tor 8(q.) » O (see
(4.12)), In the next section, we restrict our discussion to the case of a transition for ﬂﬂd_) The fixed paint ;¥ i unstable relative 1o ¢
2 ot ..
i

which q,=0 (ferrp-para transitions), .
Note that fromj (4.12) &lq} increases with 0’ since we assumed thit the first value of

@ a, for which the instabiljty ANPLHLS L8 G. - N Far asecand order transiti

3.3, Correlation_function for T » T . - It is possible to have an estimation of the

correlation function from the Landau expansion; the results obtained are then on e
qualitatively the seme as those obtained in MF A, For this reason we summarize briefly o -
! ato, T % {
the methad used to obtain the correlation function. This function is defined by : - 4.23)
) and, assuming that 4(0,T) is an analytic functian of T ;
glr - r) = < Mlr) M{r'} " T~ Tl‘ (- M(r} o= 0) (4.17) :
Ao, To=alT - T o) her T SRS
The thermal average < >, 18 taken over the equilibrium (canonical) distribution (for when Tola 0 14.24)
= . i f H . ‘ N
Ho 0). The F ourier transform of gir) The correlation function (4.21) can then be written as folinws :
|
glq) = J qr) &1 gr {4.18)
‘ (4.25)
is related directly to the fluctuations of Mq in the equilibrium state : !
We recover the formula Previnusly obtained in the MF A | it s then varying as ;
(g)= «M M > (4.19) i
giq ar-q%0 : (1 -t R
qirl™ e v (d=3) (4.26)

The susceptibility x(g}is itself related to the correlation function glg) by (2.79) « ) | 12
where S{(T) . (f - TC) » The critical fluztuations bergme derminant when T T

~i

< MqM_ *o = kBT x (q) (4,20} their contributioh to the specific heat s sigrificant in the critical reqion far 4 - 4 isap
d chapter 2) and tHe Landau approximation is e tonger valid when T+ 7 .
3.4, L -
g{g) is then given by : 4. Ihetmodynamic potential_for 9 - "o-Inothe g0 limit, ae can expand Lhe
coefficient Alq} leq. (4.22)} and replace +ho nefficients bigg', ~.q,q0a"... by theis
kT 4y lghati, b
B values for q = Q' -g" =0 A, B, e b f ;
glg) = (4.21) o e e e i the fellewing mepression for oere
Afa) M, 02 i
We are interested in the asymptotic behaviour of g{r) {r ... Yand of qlg¥q . 0). It is then ‘ A |
. " GIT R M 1Y . b Jal : '
sufficient to expand &(q) in the successive powers of n for g, 0 & ‘Mq bt i Tip) 5 Mq r"_u. toro Mqu,M g
' q ' T

2
alg) = Ao} + kgl {4.22) *r TKOTGMM 9



In the real space G(T,p {MI(r)}} becames (Fourier tranjsforming (4.270) ¢

! .

G(T, p{MIr)} Y = GO{T,p) « B | M) e *‘?’ [ M) dr +
' : | (4.28)
+ ot % | ] :Z dar
il

4. Ginzburg L andau model, -4.1, Intinduction, - Weimust obtain  a mathematical
expression for the therrmod,nanic potential G which Jtakes full account of the fluc-
tuations. We will consider ooy nere s lerro - para trarusu:lcm and we will then assume
that the relevant fluctuations are those for which q= Q A macrosgopig description of
the states of the system ny (e density M(r) (or by the‘bluck densities M. )(see section
2} is then sutficient. But, du nat use the Landau assqutlons We defme the simplest
puzsile model (§4.3) whose singular behaviour for T;*T will be studied in the next

seclions.

4.2. Partition function - functional integral, - The free|energy F(T,V) is retated to the
partition function Z by the well-knawn reiation @

H

¥ =-kBTLogZ

-8 E ‘ (4,29)
Z:= e n
n

The sum is extended to all the passible states n. For ex :mple, in the lasing model : {see
chapter 2} :

R R - !
7 Lo “)Ukcu {4.30)
AEL
the partition function becomes :
-8 to,))
] [+ (4.31)

the sum being extended to all the “spin" configurations ({¢ Fy =t 11
In the macroscepic limit, and for a given scale b, of the system is determined by the
values of the densities M. =1, 2. 1) defined far all thF blocks {w= b9 £>>b >> a),

Fer an Ising model, M is g:ven by M = l/uT {10, 1 the surmation being extended over

all the sites ) of the ith block. [t i then physmally useful to write Z as follows. We
split the summation in tue BatTs s Tt we sum |over all the possible spin
configurations for which the f* dens,tics M are given ; ii) then, we sum over all the

states corresponding to different values of tne M By definition, the result of the first
by
step will be noted e -8 ([M and Z is given by :

e F
e

i i i i he M. are
g;({M,),J is the "free energy" associated to the configurations for which the M,
' y N at) -
i 5y 44 sse configurations ; it
fixed, We can also introduce the energy &4 “Mif ; associated to these q :

is defined by :

SERUM D g E((M) _

e # ok t ¢ gM.l}) (4.33)

where w ({M.}) is the number of different states corresponding to the same
i

distribution of M,. The entropy associated to these configurations is:
i

s({ ™, 1= kglog ({Mi} ) {6,34)

and the "{ree tarlerg)v"'f';ff is given as usually by :

(4.35)
ﬁ((mi}h E((M;}-TS({M})

n integral
The partition function Z can be written exsctly (for emch scale b) as a g

d:uple)z
{\J

ER M) (4.36)

z

oF

in the continuous limit Qp—m Y

:I n dM.i -
i=1

{;‘({M(r)}) is a "functional” of M{r} and Z is a "func-

tional" integral ¢
-8 H Mo

J’(‘/' Mir) e (4.37a)
the mathematical meaning of which is given by Z=1limZ. c/a R
The density probability for a given "configuration” M(r) is then given by :
-B@([Mm})” (4.370)
{P({M(r)} Y= e
meaning !

i ical
The previous mathematical expresasions {4.36), (4.37) have a simple physic

. . - by a
i ible microscopic spin configurations
we replace the surmmation gver all the possibl p

summation aver the possible order functionsM{r],

Ty
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Fig. 4.4, : Stability of the gaussian fixed point a)d -4 ; b) d- 4.

4.3. Ginzburg i_andau model for’j-'\ ({M]). - The determination of the thermodynamic
potential {4.29) requires the calculation of : i) the funetion ""F” M}) for each micros-

copic hamiltonian 4( (4,30), for example, in the [sing case - ; ii} the functional
integral (4,37). F ({M 1) can be - at least in principle obtained for each length b "step
by step" : startmg from the initial Ising model, we r:an define blocks of bd micrescopic
cells (b =2, 3, 4..), define the densities M, 1/D g( l,calf‘UlatPC b‘”‘ M, Db =2,
3...) from its definition, This procedure is appmprlate in some simple cases (lsing
model for d = 2...) but it is in general difficult to use. In these lectures we will use the
simplest "reasonable” i’um:'tinnf_‘}_‘:({Mi 1. This function will be obtained by phenomeno-
logical considerations similar to those we used to develop the Landau mode] ; this is "a
priori" sufficient for our purpose since we can think that, if jt is necessary to take into
account the fluctuations (to evaluate the functional integral (4,37)), the detailed
{quantitative) expression of jP({M}) is not important for the study of the critical
phenomena (universality of the critical exponents). Finally g ‘M 1} must be chosen so
that we recover the classical |_andau results when we neglect the fluctuations of M{r)
from its equilibrium value < M(r ).,
The transition results from a cooperative effect i,e. from coupling between the hlocks,

The sirmplest form for )cf can be written as follows :

7 e I
Fimby oy Fwy, L G
i . 1 FE
i i £
it results from the "free erergy! of each of the biocks
C)P Ml, MJJ l_et us examine Lhe sunulest assumplions we can use for ',, 1 and J"’

(Mi' M {4.38)

[N

¥

1 and of the pair intoractions

4.3,1. _)P - We will represent J‘\" by its expansion in successive powers of M ; this
expansion will have the general furm, consistent with the symmetry, we introduced for
the study of the Landau rmodel (see chapter 1, eq. (1,43} If we consider a simple
homogeneaus isotropic system characterzed by =a scalar order parameter and
presenting the symmetry M >-M  we obtain :

2 f

" M M )
G\}E(M)zuo*«uzﬂz— UL T e i,

ey
[t}
Rel
)
-

d ’:-’4.3'”1;'
with 2 { c
Z 4 ton (4,39) are
If the dimensionl of the order parameter is n, M~ and M7 an the expansion
|

defined in terms of the compenents 11 of &1 b

| Z Z ‘.80
| o v
; e ,
| |
|
20 L qadyP (4.41)
! iy ' Fasps when e order parameler varies
4.3.2 Couplings | Z(M M ‘ Pt Ct1creases when the o tr;er AP
' cyiant anaivtiral forme fnr s then i :
i ‘k’M \4,.‘- ciant anaivtiral 5
from block to b PL \ ﬁl
|
i
W .
W VR VI T R S YR A 2a
Yoy 2 be I J i]
i 3
|
‘ .l 3
For short ranqe ;cnuplmqs it will be sufficient 1o constder the paic (nteractions belween

5 > that the caoefficients k
neighbouring bldcks. For lang range couplings we gan assurme i

decrease as power laws (sre chapter 3, sectinn 5.5

! ’ y
k.. = {

. o |r~r dva

4.3.3. Symmary: Ginzburg Landau model for_an isatropic systemn with shart range

i ‘ s that {iM ) is given in the
cauplings. - In ithe foilowing sections we will assume CQ/\ i

discrete case (sée (4.28) for comparison] by @

(1) 4

Y [
i Z 2 K X L
(;({Mi}) “ﬂ'.o* = L Mg M 3

{4.43)

; ks i.
The summation L' in the last term of (4.43) ranges over neighbouring bloc

1n the CUH{II’]UD'JJS limit ﬁ (IMir)} Ybeoomes :

u u i N
[~ 2 Y 4 R
e *}P iM(l‘ :J dr LUD 5 M g M =

P e
with tha r.ip.finit:ion H

' N o o] ‘|Mt F ( 5
i My S 4.4

1= 1 i i

An equilibrium jsl.ale of the systein is then drtermined by the set of parametars ‘.“zmc)
| . .

and by thPrnaq constrainst {T,p), Thig simp!e form for (M) ! allows to recover the

classical Landdu results (section 3} when we neglect the fluctuations of MIr) (see

section &),



4.4, Ginzburg L andau model in the reciprocal space. - It

-equivalent- representation of Z in terms of the Fourier coefficients of M(r), M

a given scale b A’l, the relevant Fourier components M

. . g7 1
We introduce as previously the free energy # (1 Mq} ) whi
Fa 1

ave i
_:‘)"A({Mq[) :

2

represents  the  contribution to Lthe partition function

which the Mq(q <f Jhave fixed values. The partition func

Z:ji] dM
g<A 9

and

i ;
o L - sfom
(M b= 5 e A

is the probability of the configurations for which the F ouri
fixed.

JPA( [Mq 1) is a "free energy" which has the same phys|
qualitative

form for' X ({Mq i) is obtained using the same arguments
systems with short range couplings we have (see (4.27) for
ij({MqJ;=uof+% Loy rcadiMm o d

q<l a-q 9,9

M r {3
-9-q'-q

4.5. Parameter space (Fig. 4.1). - We haye defined & cla

{4.44) or (4.49). Each equilibrium state of a system of this

values of uz(T), ua(T)..

coordinates are {u

- It will be useful to represent this

2t Yy u6...). When the temperature T var
“physical" line in the parameter space, This line cuts the cr

parameler space as the lacus of all critical paints u(Tc}. Fi

the classical notation ;

4.6. Conclusion, - We have intro b, 4 Lnnple model

UM
s AN

2=t u, =y

13 possible to define another
For
are those far which q <j .

ch is defined as follows ¢

(4.46)

of all the configurations for

ion Z is then 3

{(4.47)

(4.48)

er components Mq(q< ) are

cal meaning asfjfgb({ Mi}J:

¥y this description is accurate for scales larger than b = 2 /A The simplest

as previously ; for isotropic

rornparison)

M "
?'q.. Ve MMy

(4.49)

s af systerns represented by
class is determined by the
state by a point | (T) whose
es, the paint ;; (T) defines a
jtical surface defined in the

inally note that we will use

4 /\J
for_fP(M) which represents

phenomenologically the isotrapic systems with short range interactions. The previous

considerations can be extended to more complicated sit

there is an isotropy in the order parameter space,(F is no

we must replace u M2 byZ u m2 (quadratic anisotropy
2 a 2u a

uations., As an example, if

longer a function of M2

4 4 4
t UQM by UQM +VFE:1 Mu

and

. . . . e
{cubic anisotropy)... In the same way, if the system is anisotropic, we must introdu

i i= 1. dh
different coupling terms ¢, (i=1, . . |
For a given system, the coefficients (uzn,c) are determiried by the microscopic

j nt to
hamiltonian ’3@ In this chapter, we do not try to determine them but we \.ﬁa
determine the gualitative features of the thermodynamic potential we obtain from
(4.29), (4. *6and (4.43) {er (4.47) and (4.49)). |
S, Gaussian model, - This model is obtained from (4.43} or (4.4% neglecting the terms

u 1)

?_p. p

' 2
Fj’(wq?):% I egd)M (4.50)

q<h g
The catculation of Z is then triviel since the integrals corresponding to the different

Mq becorne independent :

2. M2
-{r+a’ 29

i 2 _1 410 {4.51)
z- T JdMe = s 5) {
Q< a g r+q
and the free energy becomes :
F=F +kgT Liogir+ qz) {4.52)
r a<A

2 i fini Z has a physical
F  being the regular part of F.For T >Tc. the integral de |n‘|ng e
meaning (r > 0). When r<0, a positive quartic term (”a“’ 0) is hecessary to insu
the convergence of the integral : the low temperature phase has no physical meaning in

this Gaussian maodel. The specific heat is obtained from (4.52) ¢

‘A d-1
e oor@® L 1N dq. (6.53)
v a‘rz }0 (l‘*q)

v

We find the same expression and critical index u as discussed previously (see chapter 2,

section B} far the 1sing model :

a =0 (d>d) a2 gew 4.54)

N.l,

The correlation function is given by ¢

I treghym 1
Al pamge @ T a2 .5%)

2
gq<h q q r+q

2 1
g(qJ=< ‘Mq1 >c|" Zj

and has the same dependence as that obtained in the Landau model (see (4.25)): the
exponents of the Gaussian mode! are then classical :

Y =1 vz 1/2 n=0



Fig. 4,5, : Stability of the fixed polnts for d=4,a)d> 4 ; b) d< 4,

In conclusion, in arder to describe accurately the crities! behaviour, which |s

experimentally observed, we have ta take account af the caupling hetween fluctuations
(ua £0,...),
6. MFA and L.andav'a model., - 6.1. The MF A assumes that among all the configura-
tions M(r} which cantribute to Z, one of them is dominant in the thermodynamic limit
i.e. the most probable. If such 8 configuration exists, it corresponds to an uniform
distribution M(r) = M. With such an assumption, we replace the functional integral by
the term exp - 8'H(ND) where?(ﬁ) minimizes F(M) (to maximung‘icf(!&.}?)) :

. sTF
1w M)=0 — (M) 0 (4.56)
I M
The free energy F is then equal to C('/(l\_/l).
o
-8} 7
zze BAM F o PR (4.57)

and using {4.4), we recover the Landay expansion with A = uz( =r)C - Ugeer

f.2. - The previous M.E. results are exact if we negiect the spatial varintions of Mr) in

M)

p
(4.36) ; in such a case e~ B 4" becames ;

~
Ve N

(4,58)
and presents a maximum for M = M (see chapter 1, section 2)
P vy "o
(,_‘;l(M) - Ky, M) * ) (4,59}
_ u’jr‘{M}) - ﬁjlf'a) -um}”\(ﬁ) (M*E’?szz
e o ze e ' (4.60)

In the limit er ol, e'B HM) is a Gaussian the width of which is zero.
i

1 1
- w0 (==
fT = (/"J‘)
JME R A A
1 B &
The configuraticn M = M is then {infinitely) most prohable than the nthers : MR} -, W
We abtain for Z and € the results of a MEA {see (4,57)) :

ad -
o SRR L gt
J e BFUM, A [ - M-M; dh (4.61)
i
FeF_ .41 4.62)
o - 1 4.

6.3, Hawever, the MFA is no longer valid when we allow spatial flyctuations far M(r)
(except for couplings ki' independent of the distance) ant?f the contrihution ‘of l.he:e
fluctuations becu‘hwe dominant when T —,—TC. It 13 then tempting to tak-f: into account the
spatial fluctuations M{r) in the vicinity of the M.F, solution M} = M and neglect the
couplings Uppree We do not reproduce such calculatiors since we would get results
similar to those ¢f the Gaussian model, In conclusion, a relevant madel for the phase

transition must teke into account -at least- the terms tgs U, and c.

‘ .
Fig. 4.6, : The d$mﬂin of attraction of the fixed paints s for d~4 and " for d- 4is
{imited in the plahe (ua, Uﬁ) by the line Ly

7 Rmor'malizﬂtic;n group - definition and properties. - 7.1, Defirntion {reciprocal spa-
i a set of transformations F".q in the parameter

cel - A "renormalization” qroup is

space :
-1
; . ,
R _is defined for each real value nf <5 10 ! u'sz is detecmined from = 0
by the transformation :
o . - ]
- :",‘PU.HSU,HJIQ_." ‘ ; _‘,ﬁ_(“'th e
: = pip N . y i
& oL gt - ALY



—- T

E]
qu and obtain a function of the variables Mq {q< A) but the number of these variables

After a partial integration over the variables Mq(.‘\fs < qc A ), we replace Mq by i

heg been divided by sd by th::/_})artia! integration. Then, we write this result in the
vanonical formn {(4.49) exp -2 R{ 8¢ Mq] ) The factar .‘».is wZich renormalizes the
order parameter is then chasen in order that the coefficientaf g~ in {4.4%) remains the
same i.e. c=c'slo Let us now describe this transformation \;\rhich is performed in three

steps :

i} partizl integration : we first integrate aver all the vapiables 4 /s < qup : the new
“free energy B L") can oniy deseribe the phenomens fwhich vary over distances
Fab o 2psfr oo this stepis o scaling transfoumation.

i) cut off 1 The previous quantity depends un all the Mq f;br q < 54 we must change
the unit of length to obtain the sarne cut off after Lhe transformation ; this is
obtained by taking & unit of fength s times larger. Afteri this transformation r+ r/fs,
G- sqand £/ss A. |

iii} rencrmalization : Finally, we replace qu by squ xancii we choose this renormali-
zation factor such as c'zc: this choice insures that the coupling between blocks
keeps the same weight before and after the transformati bn.

7,2. Definition (real space). - The corresponding definition in the real space is :

R, M) ) - GK;J;( L M(F})
e =e

(4.64)

M(_‘)* Al M(r/s)

1) The operation Ks ("partial integration") allows to changLa the scale from b to sb:
after this transformation the system is characterized by the centaers r of the new
blocks made of s blocks of size w= 1% A state of the considered system is then
determined by the values M{r) of the order parameters pf the new blocks ; M(r) is
the average value of order parameters of the sd "old" blgeks ; exp-akg]f(u,M(r)) is
the contribution to the partition function of the statds having fixed values of
{ M{r)} and the partition function is given by :

H 'EK;}}(LH[ MIJ)
£=] p Mo | (6.65)

The integrai (4.65) is taken aver all the new blocks (volume (sb)d). The operation K

decreases the spatial resotution.
Z) Then, we multiply the unit of tength by s{r . r/s) 8o that the measure af each block

becomes b,
3) Finally, we renormalize the or.e pofaneler ussociated to each "new” block by

multiplying it by & constant A '3.

Thus, after the steps 2) and 3) we replace M(r) by :

M(r) + 3 's Mir/s) (4,66}

The result can be written in the Ginzburg Landau cancnical form (4.43); the

[}
coefficient \'s is chosensa that c =¢' = 1 :
7.3. Praduct R_R_, - serni group. - We can define the product of two operations Rs' Rs'
by the simple succession of these opetations :

i = w4.67a)
'{sRa' u= RS(RS'“ )
This operation is associative and the set of transformations F{s has 8 neutral e.lernen
(Rl ol RS} is then B semi-group ; it is not a group because the inverse of Rs does
not exist (we locse information by a scaling transformation !).
Finally, it is equivalent to do the transformation Rss' in one or two steps [RS RS,J :
= (4.670) i
Reg = Ry b
Cgiad Y.
This conditian is only satisfied if Ag varies as s’ 3
N (4.68)

This is easily verified from the definition (4,63) since (4.67b) is satistied only if the

functional equation degt = iy N is itself satified. . -
7.4. Renormalization group and Gaussian_model. - As an illustration, we apply the

i i : = = 1). In the present case
previous definition of Rs to the gaussian model : (ua 0, n 1) ' o] th;
the First step (partial integration) is trivial becauss there is no coupling between

different veriables Mq: - 2) N ) % e 2) Mq
- I ey b
[ M e 9% ‘q_z_q O Vi BT VR -4 ]
J beaca %«qq\ rra (4,69a)
3
The second and third steps replace the argument of the expenential in the rhs of ,
(4.69a) by :
2, 2y 2 _1 2y  Zy-1)2,,,2 (4.695)
% L (roq)syMSq:-Z- L(Srs +§ q)Mq/Z
q< 5 Qe

/
i c i i nd the new ccefficients
The rhs of (4.69b) defines' X (", {Mq] ) in the canonical form a

{u'zp }, ¢* are given by :

2y-1 ‘
Msr 82Y N u'zp z0(p>l) c"=s (y-1) {4.6%c)

The renormalization of the order parameter is determined in order to insure that

¢' = 1 ; this requires :

y=1 {4.69d)
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In conclusion, (see (4.69c) and (4.69¢)) we have shown that an operation of the renor-

malization group transforms a state of a Gaussian model into another state of the
same model 1

Rs(r,o,c...) = (rsz, 9,y 0yuu) (4.69e)

7.5 Rengrmalization group - carrelstion function and free energy. - It is important to

relate the free Energy perunit volume and the correlation function to the distributions
of probabilities }),(?’ defined (resp.) by , andy ' : this will allow tg relate the critical

behaviaur to the operations of the renormelization group. For the correlation function
we show in this section that :

2
glan) =1y glsg, Ry (4.708)

For the free energy density, we will not give the demonstration of the intuitive
relation (Rs is a complex dilatation) :

FIRyD =5 FLy) (4.706)

The complete demonstration of (4.70b) is given in the book by Ma. et us now establish
(4.703a) :

For g% , we can write glg, ) as follows ;

gla,u) = J i dM ,GD(U,[M MM (6. 70c)
q q q q

“t

where@(u,{Mq,}) is the probability for the system in the state i to have a distri-
buticn of order parameters characterized by{M } (q'<p , see (4.478)).

We first integrate over the variables Ms<q <« o and define a new probabitity

dlstrihlsllon?i(! Mq.}(q' < As)
(a1 2! . -
glg,u) * s dMq'{pl{"’ Mq' P \Mq |
5 (4.71)

g'
: f . e
Q(U,‘Mq W= I dMq. (p(ll,ﬂ\l‘fq"r

o “q A

This probability /'Dl is sufficient to determine the propertins which vary on a scale

q'7f fs. Now we can change the variables (q': sg") and define the probability
ney s
P M) DM

: - ) 2
ala, )= | 1M 49 G M1 M (.72}
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Finally we renorir'nalize the order parameter defining the new prohﬂbiiity@' ({Mq']}

by : i
| M) dMY :/E{CM oM {4.73a)
' q q - A il g q<h 9
- ' {6.73h
] Mq.. ’-qu {4.73h)
I
and we abtain fof g{g,u)
glap s e g2 ta.73c)

o

IS
The GDBI‘B(]DHS}WG defined previoosly (:-J-[)Jl-.)z--ﬁ)) are the same as those

introduced in the definition of the renormatization group and :

hence (4.73c) and (4.74) prove (4.70al.
8. Fixed point arLd ita neighbourhood. - 8.1. Sorme definitions, - Renormalization lines

(Fig. 6.1} : Starting from u, the set of points ' = Ry obtained when s Increases from
one to infinity defines a renormalization line in the parameler space.
Fixed point : A fixed point 14‘ is a point of the parameter space which remains
invariant by all the operations of the renormalization group :
| EYRTAETRNES R (4.70)
: 5

. . . E
Domain of attrgction of a fixed point ¢+ Wn can associate to each point ;7 the set of

i . . . - L] .
points . which are on the renormatization linee which gn towards |~ when s

lim R ut 14,75)

! 5 b :
i

. x
This set defines the "domain of attraction” of the fixed point ..

L3
8.2, Neighbourhood af a fixed point. - The properties of the neighbeurhood of o will

determine the critical properties. If 4 = 4 . is a point of rhis neighhourhood such as

& = {050, ) 1is assumed to be small, we van Lnearize the plfoct of "»-, :
S = o’ !
N N Z, 4,74)
L
i hreitoa N E natiar 12 chocat be
The operations F"\S defire in this himic s Heear transforinatio . which

represented by ;@ matrix ; for rxampin o baen unly the quadrato and quartic terms

art L, -
of ‘jf'(uzp sul bonp~2), we ottain:
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INtroducton 10 (e 51UCyY @ plidat ildalishiisls .l

& L L
I RAPRTY Re1z
o L L
av
: R Rs22

(8.7
su

It is then useful to diagonalize this matrix and to define local axis in the parameter

apace : these axes are defined by unit vectors g, whichi
i

satisfy the relation :

|
R, & <A | (4.78a}
Fror (4.67) the coefficient - , 'S then ne.ussarily equa‘.l ta some power of s. We define
the exponent Y through the refation ; |
_ |
L eyl L i
soesThy R, e, = ¢ e (4.78b)
A point in the neighbourhocd of b ® is then determined By its components in the
tocal coordinates :
U = ‘] t g (4.79)
and the effect of R, 006 will be given by :
L ey
Rs Sy o= }; 3 ti ’ {4.80)
The "free energy" density in the neighbourhood of .
~
? Hox ol i 1. 2
(b (M = JG ™, (MeD or grsuy MP o s aPm (4.81)
: 9
can then be written) using (4.79) in terms of ¢. ;
i
o RO o - 1 2, 2
_)Q(H,{Mqu- (u,LMq1)+__;Llai(M)472 qu (4.92)

i

Ihe scaling variables t. are obtained from (4.79)
duZi(GuZi :;Aij tj) and the ei(Ml - .J. Ai} M are the sca
Relevant vﬂriables, itrelevant variables. - From (4.80),

multiplying its tocal coordinates tiy "' Tre etfect of R
. 5
according to the sign of y. : «w'e: v - U, the renaemalizg
won the ith local axis (§u = Lsei) goes away from p" (syi
; 3 i
towards i~ when y, <0 (s +0 when s + « Y < 0). A sca

q

s linear combination of the
Rs Suis obtained fromdu by
is then qualitatively different
tion line assoviated to a point
tr owhen s+ ) whereas it goes

ling variable is relevent when

Y, >0. It is irrelevant when ¥ < 0 and it is marginal for Y = 0. In the following we will

choose the scaling variables so that :
Y B ¥p Bee 2Yq B (4.83)

Stability, unstability. - When y, > g, the fixed point is said to be unstable relative to

ts for Y| <0, it is sald to be stable.
8.3. Neighbourhood of e fixed point and critical exponents. - Let us consider the class

of systerns represented by (4.44), {4.49] ; each system is represented by & paini L(T) in
the parameter space ; the locus of all the critical points for all these systems defines
the critical surface SC In the parameter space. Let us now show the following
prapasition which relates the neighbourhaod of 8 fixed point to the critical behaviour
of a simple system : a class of systems charscterized by a fixed point u * unstable
relative to anly one scaling variable t) « a(T - Tc) has, at T = TC the same singular
behaviour af the thermotiynemic potential and the correlation function as experimen-
taily observed for simple systems (ses chapter 3.

Let us first note that the assumption 13 = alT - Tc) requires that the domain of
attraction of u* is & part of the critical surfece ; starting from a point w{m (T 2Tc).
the renormalization line will be characterized by points which go towards u" in all the
directions (i> 1, % <0) except ene (ei) {Fig. 4.3).

1) Correlation function: When T = T we obtsin from (4.79),(4.80) :

u(TC)=-‘: e

-1 (4.84)
glq,u (Tc)) = 52" glsg, u™ + L o Bj"i)
il
We choose s =A/2q >1 and obtain
2y A2y A o o b2
glg, ulT M =q = glz.w +if;l(-2-5) e,) (4,85}

In the limit of small wave vectors (q - 0) the correlation function becormes :

. f
fqu(TN=q 2 gz MR (4.86)
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and the expanent y for the renormalization of the order parameter is ther necessarily
related ton (see es. (3.14)) by :

y=1-n/2 (4.87)

When T = Tc we obtain from {4.79), (4.80}

2- Y 7
ola, 1) =5 "M gleg, WF s tys ! Gt L b oe) (4.B8)
i1

This relation is satisfied for all real g - 1 ; choosing

-1/yl

8= ll (':‘-89)

we introduce the "correlation length” £ (7} defined by :

-1/y -1lfy
(=a hory R (4.50)
When gaw (T+ TC) equation {4.88) becomes 3
_ 1 RVENT *
gl = —5 (q £} glag , ..+ “‘i) 4.91)
q |

The behaviour of Ga,.{T)) is then similar to the behaviour we described in chapter 3}
(see equation (3,14)) if :

1 [YENe %
u = ;1. {ar, ) iglge, eh e flar) (6.92)

Naote that we can obtain corrections to the eritical regime by an expansion of (4.84)
and (4.88) in successive powers of (T - Tc) i.e. taking into account the irrelevant

variables,

2) Freeenergy: The free energy F(;,) is related to F(RSU Yhy (4.70b) ie. by &

- K yl . i .
FOum s 13 e ‘i:] t s¥ e.l) =5 F(,” +E t; ei) (4,94}
when 1(T) is in the neighbourhood of the fixed point 3% Choosing 5 as in equaticn
{4.89" we obtain when's . :

-d/)’l

Faim=t, Fln e

-d/yl
¥ T-T. ! {4,95)

The critical index «is then given by :

20 = (4.94)
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L — e iR

and we obtain from (4.92) the Josephson scaling law (3.4).
In order to Db[lain the other exporents, we have to take into aceount the effect of a
filed H coupleLd to the other parameter M; we do not discuss this point in these
lectures (see book by Ma for example).

In COI"ICI}USiOI'I, the critical bebavigur is deterrnined by the expanents vy and Y,
which are mlat?nri tothe evporients 1 and ' by equations {(4.87) and [4,92).
9. Appllcationif stability of the (iaumsian fixed point. - We applv the previous results to
the study of lihe fixed point of the Gaussian model and we show the peculiar role
played by the dirmension d = &£ far **=~ s*abilitv of this fixed point.

If we r_‘c‘ﬁnsider the - -1 « . e parameter space (s reduced to the axis
r ~0andthe fixed point FRRTR IS sier - QL

From (6.69) this point is unstable bul we cannot define a low temperature phase
for this mode! fsee section ) ; for this reasan it i3 necessary Lo introduce (at least) the
quartic term (uas 0). Let us now assume H’mtr:)k (M} has only quadratic and auartic
terms (u2 = b, =, Up, = O0n - 2i:is this mandel able to describe the phase transition
of a "simple" system ? We apply the previnus propesition (section B.3) to answer this
question.
The space pariameter L =1ru) has now two d‘:m;nsions and the origin ;:‘ = {0, O} is

always a fixed point called the Gaussian fixed point ; it is then essential to study the

stability of this point and to know if its arighbourhood qovers the critical behayiour of
such systems, b ulr,ul is in the neighbourhood of ® it is easv (but tedious) to calrulate
the coardinatas of Rtu -keeping anly the terms preportional ta r and u, We obtain

y = 2 and (see {he ook by Ma):

2 -
| kr‘*s""r+nf';l-s7dj-ﬂfwzl
| - 14,973}
f -
f oo st o U N (uz“
|
B is a real number defined by :
: d-2 .
‘ B =1/ e W 4,976
-2 2
The malrix R: defined by (4.97)
L 5° (52 - s&id H
R- -
i <1 -4 4.98)
1 \ '
is rasily diagopalized ; the Joral aves £, arte, are given by :
|
I
: e ST PRSI SR (4.99)
v N ’
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and the corresponding eigenvalues are :
5 s (4.1G0)

i.e. RL g, = 52e . =5 e i (4.101)
s 1 1

We have to distinguish two sitoations |

1) d =4 2 L:: is unstable relative to ty (yl =250} but it is stable relative to LZ

(y2 =4 -d <0): the singulanities of the system age determined by (see section

8.3,

1
vE oo o=

= n = o (4-102)
"1

P =

2) d “4: ;,: is unstable relative to the variables ty and tz(yl, ¥y > 0) and the
renormalization lines go away from u;: it is then necessary ta look for the
existence af another ficed paint.

10. Critica! behaviour near d = 4. - We try to obtain the fixed points when d = 3 and to

identify the point which governs the critical behavioyr. The physical case d=3 is

difficult to solve directly and we use another approach|: the integrals which define Z

can be cdefined for all real values of d and it is then possible to expand the expressions

for Z... in successive powers of €= 4.d, We hope that tje behaviour and the expanents
can then be obtained by such an expansion {e =11) when d = 3. The expansion in
successive powers of &£ is easier than the direct calculstion and it is useful because
the fixed point u® which determines the critical behaviour will be shown to be in the
neighbogurhood of 4 :(u . ;|: when d -+ 4) : it is then sufficient to expand as previously

Rsp in successive powers of {r, u), We discuss qualitatively this case since it

illustrates the method of the rencrmalization group.

If we use the same method as in section 9 and if we keep in Rs“ the second order

terms (i.e. those proportianal to r2 and uz) we obtain -after a tedious calculation- twa

fixed points u; and ;¥ whase coordinates and exponents Y11 ¥ BTE given by :

x
‘»‘U:(ﬂso); Y1=21 Yo i€
{4.103)
l_( nt+2 £ Y _g-rlﬁ .
PRl cve SN s rawe TR S I e B R S
|
This expansion is valid whxn + . since (he new fixed point ;‘ remains in the neigh-
bourhood of u;. The values of ¥y and Yo show that we muyst distinguish two cases :

1) d »4 : The Gaussian fixed point L: is stable wiu%n respect to r.2 whereas 1_,‘ is

9).
2} d <4 : The "non trivial® fixed paint L™ is stable wFth respect to t, whereas the
\

unstable : the Gaussian fixed peint determines the Titical behaviour {see section
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(Gaussian point u; is unstable: the fixed paint u* determines the critical
behaviour.
When d increases from a values d> 4 to a value d< 4, the two fixed points u: and u*
exchange their stebility and the nature of the critical behasviour js modified. The
geornetry of the renormalization lines is shown in figure 4.5 and the critical exponents
are given for d 4 by (see (4,102} :

4,104)

It is possible to extend these calculations up to 3 and to use sophistivated methods to
determine the critical exponents when d = 3 from the above results “The results we
abtain for example for the Ising modet (n = 1, d = 3) with the previous methed ikeeping
terms up to ez) are in excellent agreement with numerical results. Note that the
exponents are only dependent on n and d {universality).

In Lhe{_Breviuus theary, we did not take into account the terms Ugp p»2inthe
expansion of X(M); u = g must then be positive for reasons of convergence. [t is then
possible to ask : 1) what is the impartance of the terms ug, ug ? 2) what occurs when
the Landau theory predicts & first order transition (”a < 0, Ug 0 for exampie) ?, The
answer to these questions s retatively simple. For d =4 -¢ , it is easy to show that the
fixed point 4® remains in the neighbourhood af u: {u:mg uZm I 2...) and the expansion
insuccessive powers of € remains meaningful. When we take inta account Ly we can
define two fixed points u: and b" (as previously). The first one is unstable with
respect to only one variable (T - TCJ (“; for d» 4, U* for d <4} ; however, the domain
of attraction af these paints is limited in the plane (uu, u6) (Fig. 4.6). It is then possibla
to define two types of systerns if we consider the possible values of Uy and Ug 1) if
LT} is in the domain of attraction of u: {d> &) orp (d < 4} the transition has the same
behaviour as previously ; 2) if 1 (T) is not in these regions , the renormalization line
qoes to infinity anditisimpossibie tc say something about the phase transition in Lhese
systems : in such a case - by analogy with the Landau results (see chapter 1} - we can

think that the system presents a first order transition,

11. Conclusion. - The method we discussed for simple homogeneous, isotropic systems
with short range interactions allows to characterize the critical behavicur by the

neighbourhood of fixed points unstable with respect to {only) cne relevant variable (the

® A detailed examination of the series n(e), 3(<)... shows that they are divergent but
it is possible to use ciassical mathematica! techniques ‘Sorel transformations) to
replace these series by convergent algorithms ; it is then possibie Lo obtain the critical

exponents with a reasonable eccuracy.
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temperature .. 1f the representative point of the system in the parameter space u{T)
is in the domain of attraction of such a fixed point, the system presents a second arder
phase transition and the critical expenents can be calculated from the dimensions of
the 1) real space (d), 2) order parameter space (n). When the renarmalization line of
u(T) goes to infinity, the transition is "probably” a first order (discontinucus)
trangition.

This methad can be generalized when the system is anisotropic (in real space, in
the order parameter space) and when there are external fields. These external fields
can be either without qualitative impottence for the critical behaviour of they can
change qualitatively the critica! hebaviour {relevant fields '} or even suppress the
transition (field coupled to the order parameter for example). When there are several
fields Pi we observe the competition between several critical transitions with a "eross
over" between these behaviours. Such cross over can be explained phenamenalogically
from the homogeneity sssumption (see Appendix 2); it corresponds in the renormaliza-
tion group method to an exchange of stability of the fixed points corresponding to the
different critical behaviours,

Finally, note that we did not discuss the tole of the fluctuations on the nature
{order) of the transition and on the predictions of the Lendau model (see chapter 1),
These predictions seem to be verified in most cases ;note however that there are
exceptions - for exemple the conditicn B # 0 does nat always mean that there must be
a first order transition,

APPENDIX ]

The model of Kadanoff : Definition of Rs. -Let us consider as an example an Ising
mods! defined on a square lattice with parameter a; we assume that the pajr
interactions are equal to v between twa nearest neighbours and zero otherwise.

A state of equilibrium is characterized by the value of k - v, f is by definition
the correlation length when we take the lattice parameter as the unit length (7 - 1,
T- TC); it is a function af k, ¢(k)to be determined. The idea comes from the fact that
the spins are strongly correlated in the volume (7 a)d (here d - 2} large as compared ta
the vell volume ad and which beccmes infinite when T = TF. The elermentary operation
l<1 = Rz(k) defines a new Ising model (characterized by kl) frorm the initial model. The
definition of Rz resuits from three operations and twon assurnptinnag,
l. Partial integrations. - We group the spins of the initial lattice by blocks {size
28 x 2a} and assume that the correlations bet ween neighbouring spins are so strong that
it works as if each black can have only two states 7 =il (i 15 the lahel of the block) :

the number of degrees of freedom is reduced.
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2. Renurmal]zhtjon. - An equilibrium state of the system is then characterized by the

roupling betwaen blocks. We assuine that these couplings keep the Ising form and that
they are still limited tn tte first nearrst neighbours. These interactions vl(m‘
k) :f?vl(T)) ar‘:b abviausly not equal to the initial interactions. An equilibrium state of
the system is how represented by an equilibrium state of a new ising madel built on a

! .
lattice 2a x 2ajand characterized by the intreraction ky=tvy. #1 is determined by k :

k, = k) )
and we can aslsurna that t- - i . . s 3palytic even far k - !eC(TrTC) since it is a
local c;uantit)-fE fonly the camsie s guantiting can present singularities in the

thermodynami;r: limit), The measure of the rorrelation tength - with a unit length 2a -
s S0, |

3. Dilatation. = The lattice parameter of the "new" Ising model being 2a, we change
the unit length in order to compare the final and the initial Ising models. Multiplying
the unit ]englth by two, the lattice becorme identical and the correlation length
becomes £{(k)/2. The same equilibrium state is then represented by two lsing models

and the correlation length being obvicusiy the samne, we have :

’fkl) lk¥2 (2

In the same w&y :

Fiv ) e roy
]

Comments. -~ L et us briefly comment an the previous definition. The essential
difficulty to d;hscribe the behaviour af a macroscopic system when T TC comes from
the fact that We must take into account the correlations between a large number of
particies {those which are in a volume '.d ). In practice we can cainylate the affart of
the rt«;rrelatior‘gs between two or three particles but, the calculntion is hapeless when
T T ! To sa‘Ive this problern, it is sufficient to relate sviteing with different
ccrreclatlon lengths : if we can seolve the problem for small correlation lengths /s 3
and if we know the transformation which allows to pass frem 5 /3 tn g 1} then we
have solved gur probhlem ' The aperatinn. of the rerorealization group are such
operations.

Wen wel have defined R?, Wi manoablain RS by iterantion s o™ defining hlorks
of Zd, Qd... ndispins. Note that the existen o of R? is probnble bul must be proved. Fop
example, the role of the intersctionn Setween 2d, 3d... nth neighbours, between
clusters of 3, Il’l different spins 15 mat receasarily oeagligqiile 0 the renarmalisation
procedure as hLas been assumed previausiy,

4. Renorrnalization goup and critical behaviour. - Let us naw show that if Rz exists and

; . . " . H
if k _is invaridnt under the operations RO ffk[_‘)) beo s a "tixed point™ o7 then the
o ?

rorrelation length 0 does not have a reqdolar behaviour when T TC, this hetayvinut
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being determined by f(k) when k = k .
k = kC requires that ‘(kcJ = \see(ZJ.' When k= k

fik) = fk ) (k- 2
} vl -kl e Ol <[k )T 4 = 1) (4)
{2} and (4) have then the follawing sclution :
kY Lk ek Y
L)tk k (%)
with
iy, fl-k
"""—"‘,4 Tl = TR ) {8)
o |
From (13 and (4) this eyuation becamnes
L=V 1
=3 N
The expanent v is then determined by the behaviour of flk) when k > k_:

, Log2
Vo :Igg—x i (B)
The 1
) important point here is to understand hbw the nan analytical behaviour of
% appeared when we considered the neighbourhood ¢f 1

APPENDIX 2

Exte i H
rnal perturbations : cross over between two critical behaviours 1 Let us  assume

th i
at the system is perturbed by an external field P (the pressure for example). We can

assume 3 priori that the correlation function and

he thermodynamic potenti
ial
the same harmogeneous form : ’ “r

O, H, P 2 e H

glt, r, H, P 1 £
' 1 rd‘ZH.‘ fl (t"‘" [ELH’ ¢p|'ﬂ)

tn consider twe situaticng ;

B L . H
1) Dp 0: the external fieis s revievant @ when

t+0, P/t p*ﬂ and the critical
behaviour is the same as the critical behaviour without field {P = 0) ;
r

b o 0 : the external field is relevant (H is a ralev{nt field ¢

I the critical region the Loaling variable P { replaced by P/t p and we have

)

>0 1) and introduces a

qualitative change of the critical behaviour : whén P <<t P the behaviour rema
ins

the same as described without field (P = 0) but when P>t° p the perturbation

Introduction 1o the study ol phase transitons st

becornes significant. There will be & cross over from the initial critical behaviour

to anather one when t* o pl/¢p. When t.0, the critical behaviour will be
deterrnined by ancther fixed point (ar there will no longer be any phase transition),

A gnod example of this cross over between two critical behaviours is given by the
spatial anisotropy. L.et us assume that the system is made of weakly ceupled chains :
the interchain (c_i_ is much smaller than the interchain c, couplings (9 B Ci’ At high
temperature, we will observe 1) a behaviour characteristic of a d = 1 system ; 2) &
- 3 2nd order phase transitiun at low temperature \ {Fig. 3.4). The fixed point d=1is
unstable with respect to the interchain coupling: the stable fixed point is the point

corresponding to d = 3.
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