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Abstract

The standard treatment of diffusion is linear in the sense that fluxes may be writien as linear combinations
of concentrauon gradicnts.

When the concentrations vary significantly over distances of the order of the range of atomic interactions,
higher order concentration dertvatives contribule to the flux. Such is the case for the description of chemical
diffusion duning coherent unmixing, or for diffusion of misfitting solules.

Cahn-Hilliard's continum theory of diffusion is recatled. An atomistic model with pair inleractions is
inroduced, which helps understanding the physical content of the various terms in the kinetic theory. In
particuldr the concentration dependance of the "atomic mobility™ in this theory is elucidated.

Further non lincaritics may occur when chemical reactions proceed during diffusion.

A bricf introduction to diffusion-reaction models is given including the general formalism and examples of
stability analysis and of pattern formation in the unstable regime.

1. Imntroduction

The purpose of this chapter is 1o discuss Cahn-Hilliard's diffusion model on the one hand and 10 inroduce
the bi-wes of diffusion-reaction models on the other hand. Both type of models have the power L0 generate
spatial patterns and Lheir time cvolution [1]. Beside this point, the two types of models have few in
common. Cahn-Hilliard's diffusion equation drives the system towards configurations which minimize the
appropriale free energy functional, while no such functional usually exists for most reaction diffusion
models : as a consequence the stability of a pauern produced by reaction diffusion models cannot be
assessed casily.

In the following, we treat in details a simple atomistic mode] of Cahn-Hilliard's diffusion equation (§§ 2)
and give a (somewhat superficial) introduction 1o reaction diffusion models (§§ 3).

2. Cahn-Hilliard's Type Description of Diffusion

Many presentation of Cahn-Hilliard's diffusion model are available. We strongly recommand reading the
original papers [2], the excellent review by Hilliard [3], a very simple introducuon by Flynn [4], and some
other usefull papers {5, 6]. The presentation of this model 15 unfortunately often associated with that of
spinodal decomposition of supersaturated solid solutions : this is the source of some confusion. As
discussed elsewhere |71, solid solulion coherent unmixing (i.c. unmixing without creation of new latlice
sites) may be described by two distinct tools : cluster siatistics (precipitate size distribution) and overall
concentration profile in the whole sample (spatial correlation between precipitates). Cahn-Hiltiard's
diffusion cquation provides one ool Lo predict the time evolution of the later. But before all, i1 is a
diffusion model of general applicability,

The presentation proceeds as (ollows © we introduce a very simple atomistic model the possible equilibrium
states of which are readily found ; a kinetic model is chosen in such a way that the possible steady states of
the model coincide with the cquilibrivm states, with identical probability - The expression of the
interdiffusion flux deduced from the model is thus a reliable one - We end the section by a brief discussion
of paterning and of stochastic models.
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2.1 STATICS : EQUILIBRIUM CONCENTRATION PROFILE

We choose a mesoscopic description of the configuration of a crystalline solid solution. Ac this
imtermediate scale, the configuration is defined a1 each ime 1 by a concentration profile c{r,t} where @ defines
the position. Obviously there is a dilficulty in defining the "concentration” at a point without defining
more precisely the lime and space scales at which we describe the system :© if we look at a given latsice site
with & time resolution sawaller than the vacancy jump period, the concentration in one constituant is 10
lor a while, then one, then zero again eic...If the system is at equilibrium, the Lime average over a very
long period of tme of the abave cecupation number (0;1) is the concentration at that poinL If the system
evolves in tlime, the latter procedure fails and we rather define the concentration as a spatial average in a
"prain”, the size of which must be chosen in a consistent way [6). Indeed, when the solid solution evolves
towards equilibrivm, many “back and forth” atomic exchanges (rapid dynamics) are necessary Lo anduce a
shight shift of the concentration profile (stow dynamics). It is concievable (by analogy with rigorous results
obuined on simpler models [8]) that the sysiem should be looked at a ume scaic 7 and a space scale A
connected by A ~ 112 for the following descriptions to be valid.

However, in the absence of & more strict discussion, we shall deal here, for the sake of clarity, with the
[ollowing one dimensionnal model : we consider N lattice planes (labelled 1 o N) perpendicular o the
X axis, distani by a ; cach latice plane contains £ siles. The concentration Cp in B aloms in the plane n

(c.atx=(n-1ya)is -?T" where By, is the number of B atoms in the plane n.

..
05______‘_ r_/___‘_.
’;7_ [ S
o 1”' n-1 n n+l "'N:' ;“'_-—
Fig. 1 : Planc # n-1 n n+l
Number of sitcs £} {1 Q
Number of B aloms B, Bn+l

-1
Onthispiclure :z=3,25=6,Z =12
Al the scale so defined, a configuration of the alloy is equivaiently defined by the concentration
profile ¢, = c(x) (0 £ x < (N-1)a) or by a series of integers By (1 <n < N) which may be viewed as the

. . . . . B .
components of a vector B in the appropriaic N dimensionnal space. Since cp= -5" B is defined by the sct

of the By, or of the ¢, equivalently : we use both definitions indistincily, For cach configuration so defined
an internal encrgy E(BB) may be computed. The probability for the configuration B 1o occur ai cijuilibrium
s
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-1 -BEB (1.2)

P(B) = 21 W (B)exp - [§ E(B)

with fp = ITII;:I“— and Z the normalization constant (partition function)

Z=Xexp-PEB) {1.b)

where the summation is performed over all the possible arrangemenis of the B and A atoms which keep the
overall composition constant.

Eq. (1.4) may be rewritien

PB): T exp - B F(B) (l.c)
with

F(B)=LkB)-TS(B) {1.d)
S(B) = kg Ln W (B) (1

F(B) is the Helmoliz free energy funclion, parametrized by B or by the profile c(x} 1 F {c(x)).

Let us build such a [unction in a specific case, look for il's extrema, and then discuss the various cquilibrna
thus predicied.
2.1.1. The Free Energy Funciion (2, 9, 18]
! 5 simplici SN i ingractions and a crystallographic structure
tor the sake of simplicily, we assume nearest n_mghbou{ injeractions an it
such that cach atom in plane n has 2g nearest acighbour in plane n, z in plane (n-l)_ anq £ 1n plane n+]
(c.g. {111} planes in the f.c.c. structure). The coordinence is Z = zg + 2z The coatributions of AA, Ap
and BB pairs W the cohesive energy are respectively EAa, EAB and £gg. and the ordening chergy o is

4 + ERB
dcﬁncdusm:(c,m - -M—z—)

[ sophisticati scripli : ion, the only thing we know is thal
To the degree of sophistication of the description of the configuration _ _ § tha
cach auumb in planc n has zg ¢y, (respectively z5 (1 -¢)) B (rcs_pccuvcly A) ncnghbou:s in plam,_n, .z
cut) (respectively z (1 - ¢y11)) B (respectively A} ncighbours_ in planes n + 1, Simple algebra yiclds
the following expression lor the internal energy of a configuration B :

N N-2
E{B):Q(Zm Yocall -cp) -2z ¥ cnlensl +Cn1-2cp) + A + G ) (2.3)
1 2

where & is a surface erm depending on ¢y, €2, ¢N.1. €N and B a constant. F_or a given cc_mﬁgumuon
(B given), all the B atoms may be inerchanged, as well as all the A atoms, without changing E(B). [n

' ar 9
cach plune n, therc ane 2 iso-caergetic arrangements of the By, B aloms among the 0 siles.
' B,! (€2 - B!
A configurational entropy S(B) results
3 2b
S(B)=- 02k ¥ fealncy + (1 - ¢ Lo (1 - ¢} 2h)
]

and the Tollowing Helmaotz free energy function may be introduced :

F(B) = E(B) - T5(B) (2.)

o
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¥ isan cxtensiy 1 in the 1 niy; : & cm
(L € quantty i the sense that it is Proponio al to €2, the normal section of the Sysl
.

The free energy per unit normal section (G = 1} writes, f(B) = mwim :
P :

N 2.4

N N-2
(B =Zw¥ e (1<) -2zw ¥ .
: w2z %,%(cn+|+cn-1-2cn)+kTil,[annc,,+(1-cn) Ln(l-cp)]+ A+ 8

The furst and third wrms in the RHS i

i | _ arc nothing but the regular soluti : i
RHS is due o the mhomogeneity of the alloy : simple algcgbra shoﬁsl?lnc;nnal:;i;c'?rcilﬁ(:? term in the
N-1 |

X (Cnet - Cn)z.
! (2e)

Omitting the surface term which i gl
_ 5 ch is negligible for N lary ize i
cxpression for the free energy functional of a non unifon'lg(;.y:l’:n:o'cognuc e (1D, Cabn-Hiltard's

la
flemi=" [ to@+K [Vei2ag
/ 2n
where ¢ and Ve in the RHS are functi iti
A tion of the position &, ¢ is the fi
oy . ne KH _ , ree encr; 10 i
ystem with composition ¢, and K the gradient energy coefficient ; for the rcgli);rps{:lzlior: :ll;)gcl:ﬂlfﬂml

1
K=52nZy 0y
v 3

where v refers 1o the v nearest neighbour shell and ry,, Zy,

distance, coordinance and ordering encrgy. Wy are respectively the corresponding,

The probability for the profile B 1o show up at equilibrium is therefore ;

P(B)= Zlexp-B F(B)
(4.a)
Since IF scales with Q (cf. eqs (1.a-c)), the larger €2, the more P(B) will be peacked on that profilc B

which gives f(B) it's absolute minimum value. In the thermod

configuration with finite probability is Beq such that ynamic [mit, 2 = o=, the only

F (Beg)=-kTLn Z
(4.b)

I Or “”lm valucs of !1, however, F (B) 1 [8 m { w
exhibits I(K:al maxima for the local minum: I (B h
a0 )v ich dcfmc

2.1.2. Extrema of the Free Energy

d Crc ed s R 5
¥ 4 4
We deal h wilh clos ! Sysicms, 1.e. sysiems which conlain a fixed number of A and B atoms on a
fixed number of lattice Sics (N.(I) We look for the exatremna of the free encrgy l(“) hUhJCCl 1o the :Ih()\'
C

constraint. As a conscguence, the extrema to be found are those of (B

concentration in B atoms in the system : )} + A NC where C is the average
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A is the Lagrange parameter introduced by the constraint of having C fixed. The extrema of the above
cxpression are found by sciting it's variation with respect to an arbitrary change in B (i.c. aset of &y
preserving C = constant) equal to zcro. After some algebra, it is found that, this condition yiclds for
2<n< N-1:

2w, Cn
'k_T_l/‘ e+ 2 (Cnal *Cny - 2cp)] + Lo c =@ (5.a}

- n

or calling ay, the LHS of eq. (S.a):op=a (5b)

and slightly different conditions forn= | andn=N.

The conterpant of eg. (5} for Cahn-Hilliard's continuum model is obtained by vanational calculus on cq-
(2.0} onc gets ©

d

9 ok ¥2c=akT ®

&

The (local) cquilibriuin concentration profiles, Beyyr, (with components £dcy) OF Coxyr (X) are given as
solutions of the difference equation (5) or respectively the partial derivative eq. (6).

AL this point the discrete model and the continuum model yicld distinct results. Indeed among the

numerous extremal By, solutions of eq. (5), those which are true minima are such that all principal
2

curvatures of ((B) are positive i.c. all the eigenvaiues of the bilincar form 53—;; maust be positive. The
|

function () exhibits a large varicty of extrema, most of which correspond neither 1o local maxima nor

local minima : 1, 2, ... N-1 among the N cigenvalucs of the sccond derivative of [ may have the sign

opposite 10 that of the remaining ones. Tt is scen that the occurence of a metastable configuration Bexo.

is cither linked to a local minimum of f{(B) or lo a bassin of f(B) with few unstable directions (i.¢.

dircctions in the N dimensionnat space (B} with a negative curvature of I(#)).

Eqs. {5} and (6) deflinc a function of ¢ (the left hand side) which, at cquilibrium, is gniform, independant
of position. '
This functicns of ¢ may be called the chemical petential by analogy to standard thermodynamics :

tn . . deg. .
_" in kT units of r;f_) is

20
indeed the standard expression for the chemical potential (- T Zcnp +Ln 1
n

recovered il we omit in egs. (5, 6) the inhumogencity contribution.

With the definition (5, 6) (or the chemical polential we get the result that at equilibrium (f extremal)
the chemical potential in the system is uniform,

Egs. (5, 6) may be given a dynamical representation. Eq. (5) defines cy 41 knowing ¢n, Cn-1- This
defines a two dimensional non lincar mapping (¢n-1 scn) = (€ncpat) 111, 12]. Eq. (6) may he
understood as describing the acceleration of a particle of mass 2K (position ¢, time x} in the potential

(- p+a kpTc) i1t 13] (Fig. 2)
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-\f’m(CkT‘

min max

Fig. 2 : Mechanical interpretation of ¢ ; i i
4. (6) : a particle with mass 2K moves i > polentis
POTA oves in the powential
de s
e phase * , vs ¢ for ey. (6)) gives an inferesting
representation of the configurations with cxtremal free energy. Al temperatures and compositions of

complete solubility between A and B, f(B ibi ; S !
solid solution (c(x) = C), . [(B) exhibits a single minimum corresponding (o the uniform

The phase portrait of these SYSIEms (cpy v8 oy for cq. (5)

In the iwo phase ficld of the equilibrium se di
phase diagram, the absolute minimum of f {¢ 15 obtaine
::)r l;l)uc Wdzl dcﬁnc~d 5 shaped concentration profile which corresponds 1o the movcmi:n(txgl’ :;eoll));::mj:
1 mass 2K leaving the .mp of the potential (- @ + ¢ a kT) at €min With zero velocity at ume - o and
reaching the second maximum at Cmax Wilh zero velocity at time + oo,

- In the physical sp: is
implies that the concentration profile starts at x = - oo with ¢ phy pace, this

i ' ofil = Cmin and a horizontal tangent, then
::f:rcases from cyyip 10 Cryax which is reached with horizonial langent at x = + «. The condilon for
15 Lwo phase state 10 be the cquilibrium one is that o is such that the common langent in Fig, 2 be

horizonial.
Less stble equilibrium concentration profiles correspond 10 the oscillalions of the particle with mass
2 . . 4 . H ' ‘
K in the well : these correspond (0 modulaicd structures with concenltrazion oscitlations between ¢
i

andcmax. The discrete model (¢q. (5)) gives stilt a reacher varicty of local cquilibrium profiles : for a
dewiled discussion, ¢f {11, 12),
Let us now wm to the dynamics of the : i

v alloy : when prepared in a non equilibri confi ion (i
f(Binjiiat) is not an extremum of [}, where docs the atloy relax 1o ? ch?:ﬂﬁ?gu;ﬂxzoﬁ‘eg:;‘:réf: E:u(l:l

find it's way towards the configuration which gi i’ ini
i ) gives f(B) i's absolute minimum. What ath i
will follow towards this very configuration ? We address this question in the next ScCliOll: s he pah

2.2, KINETICS : THE PATHES TOWARDS THE EQUILIBRIUM CONCENTRATION PROFILE

As we have just sccn., cquulibrium concentration profiles (i.e. profiles which correspond 10 an extremum of
the free cnergy functional (1.d) or (2)) are such that the chemical polential o as defined by ¢q. (S) or ©)is
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uniform in the alloy. As a consequence, the interdiffusion flux J must be such that it drives a 10
uniformity. If a is slightly non uniform, it is reasonnabic 10 assume that the flux is proporuonnal 0 the

(opposite of the) gradient of &

J=-MVa )

Such an hypothesis was done by Cahn and Hilliard (2]. Moreover, they identified M to the mobility
deduced from Darken's interditfusion model [Bocquet this velume]. Nolice that Hillert (9] was not able W
justify such a choice in a descrete model of the type discussed in section 2.1.. One question raised by eq. (1)
is indeed thal in such an expression, M is a function of the local concentration. Since @ is a funciion of the
local concentration and curvature of the concentration profile, is it plausible that M is the same as
that introduced in a diffusion model where the chemical potential simply depends on the local

concentration ?

In this section we elaborate 4 kinctic version of the discreie model of section 2.1. and show that indeed the
mobility M in eq. (7) does not reduce 10 that of Darken's model.

Fur duing that, we first choose an expression of the A-B exchange [requency between planes nand n t |
which guaranties that the steady states Bgg of the kinctic model caincide with the local equilibrium staws
of the static model : this requires two conditions

a) if By is such that ‘%: 0 then f(Bgs) is an exremum ;
. 1 2 Pss (B(l)) (1 2
b} if B(L), and B(2) are two such sicady stales BD) " exp - B QI (BWV) - [ (BN],
111

This Yast condition implies we are able 1o define the steady state probability of a configuration B : for that
purpose we need 4 swochastic descrption of the kinetics [14]. The lauter is established in section 2.2.2.

Finaly the general expression of the flux is established in section 2.2.3., from which M is seen 10 be 2
complicated function of the local composition and curvature of the composition profile !

2.2.1. Deterministic Kinetics

Let us introduce the exchange frequency Ty —, na 1 With which one B atom in plane {n) exchanges with
one A atom in plane (n+1), 'y - n.1 the frequency at which one B atom in planc n exchanges with
one A atom in plane (n-1).

The change in B concentration in plane n is given by :

deg
o zep [ -car) Tn s nl + (1 -€n1} Tn o 0t
+2(1-cp) icn+1 Mavt = n+Ca-1Tn1 - al (8.a)
which may be writien as
dey (8.b)

a Jol = n-In = nel
where I, _, na1 i the net flux of B atoms from plane n 10 n+1 per lawice site :

Joonel =216 {1 -Cne1) o nel - Cnad (1-Cp) el - ol (Bc)
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Indecd, ¢ is the probability that a site in planc n is occupied by a B atom and z (1 - cpyq) the
probahility 1t is linked 1o one site in planc n+! occupied by an A alom.

dc . .
Under steady state, f‘: 0 since we are in a closed sysiem (no exchange of aloms with the exierior),
the latter condition implics J;, _; ne1 = O wathever n.

From eq. (§.c). the steady state concentration profiles fullfill the condition :

cp (1 -cpyr) . el s n

cnsl {1 -¢n} * I'n 5 net @)
and we want this condition 10 coincide with eq. (5). Let us choose 'n = n+t as
nsnar=vexp-pEy o na (9.b}

with Ey, _, 141 the aclivation barrier for an exhcange between B in plane (n) and A in planc (n+1). Ey.
(9.3) Wogether with (9.b) rewrites, afier taking the log :

£n+l
L-enp

'En-+n+l+kTL“] nc =-Enst oy n+kTLa (9.0}

“kn
There are many choices of E ; — j which [ullfill eq. (9.c}. We usc the following model : E; — g the
cncrgy required o extract one B awm from plane i, one A atom from planc j und 10 insert the A and B

atoms into a saddle point position with a fixed encrgy E°*. Simple but lengthy algebra yiclds :

En ns1l =E®+ (€AB - ERB) (2 Cp.1 + 2 Cuyn + 2p €p)
+(EAA - EAB) (ZCn + ZCny2 + 20 Cna ) (10.a)

Ensl on=E°+(eAR-tpR)(ZCn+2 Cp+2 + 20 Cn+l)
+(€AA -EAR) (2 Cn.) + ZCpy + 2 Cp) (100

Introducing ¢gs. (10) into (9.c) reveals thai the steady state condition (eq. (9.¢)} is identical to the
condition of equilibrium (cqs. (5.a, b} &, = ax). In other words, the configurations B, which arc a
sicady staie solution of the kinetic model (eq, (8)) are the configurations B, which make f(I}) an
cxlremum.

2.2.2. Stochastic Kinetics

As just scen, the model (8.a), with the definitions (9.b), (10), garanties that B = B,y where By and
Beg arc respectively a steady state and an equilibrivm configuration. Let us now asscss the respective

probabbity of two steady stues B(SL) and Bg). We define P(B,1) the probability for one systcm o have

the configuration B-at time U : if we prepare a large number of samples with the configuration B ut
umie t =1, a frucuon P(B 1) of it will get the configuration B at time t. ‘The tme evolution ol P(B.1) is
gavermned by the master equation ;

IP(R, ~ .
BED S v Wi e B Wi L gl an

(W}

* According to this mode!, a1 eacl atomic cxchange, the system "knows" which staic it is leaving bui
“ignores” the swate it is moving 1o, beyond the saddle point,
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where (B’) represents the set of configurations which may be rcal_:l_lcd from the conﬁgurmipn B by umf
atomic intcrchange, and Wy _, g, the probability that the transition from the configurations B 10 B

occurs per unit time. Since atomic exchanges take place between neighboring plancs only, each
configuration B 18 linked 10 2N conligurations B', such that

(1)

- either By =Ba+1 and B =Bny-1

-or Béz)an-l and B, =Bne +1

andB;n:Bmforallmatnandm#ml.

As an cxample, the probability that, per unit time, a transition occurs beiween B and B 1) defined by

Bm=Bmcxccplf0r Bn=Bn+ 1 and Bn+l =Boyp-lis:

By Q-Bhi
WB 5 B'(n.l) =4 —3 nn+ In > ol (12)

with T given by egs. (9.b), (10) cvaluaied in the configuration 8. Indeed, W is larger the more
numerous the aloms in cach ptane : therefore O factorizes in the RHS of eq. (12).

Under sicady state conditions ‘(’TP= 0. detailed balance impfics that in ¢q. (11) -
Py (B) Wg g = Pss (B')YWp' B (13)

i e o
Let us choose one of the configurations as a reference state B®, and define a path [Bn] by which the

steady state of interest B may be deduced from BO. Recursive use of eq. (13) along this path {B'},
yields :

PO Yeiob (13.6)
PB) () W, ui

where the subscript "steady state™ has been omitted on P. I is the product along the path. Taking
{i o

advaniage of the expression of W {egs. (12, 9.b, 10}) detailed carclull examination of the RHS of ¢q.

(13.b) yiclds -

P _ xp- B LEB) - EB,) - T [S(B) - S(BOY]) (14.3)
P(B°)

or

Pgs (B) = exp - B2 ((B) (14.b)
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As @ swmnary, the stochastic model just discussed has been buill in such a way that the probabality of

a steady state concentration profile B is identical (o the probability of that profile as estimated Irom the
thermodynamacal model.

We may therefore trust the expression of the interdiffusion flux which appears in the modet
{cq. (8.c)) since iLdrives the sysiem (o the correct conligurations with the correct weight.

2.2.3. Expression of ithe Interdiffusion Flux

‘['hc.cxprc.s;sjun of the Mux of B atoms from plane n 10 n+1 {(and of A atoms in the opposile dircction)
as given by ey. (8.c) may be rewritlen as :

In s nsl1=P- 4 (15.a)
with
p=zen(l-cnaDnsnelig=zenr (L-cn) Thetl o n (15.b)

or equivaleatly :

Jaos o= Jﬁ(‘«%‘m (15.¢)

From eqs. (5.2, 5.b) and (15.b),

ﬁ= L
q 2
(16)

where @, is the chemical potential (in kT units) defined in egs. (5). Il the system is close to
equilibrium, @y, is almost uniform, so that (Gy4] - o) << 1 and eq. (15.¢) may be expanded as :

Jn o ne1 = - M (g4 - 0p) (17.a)
with

M=Tm (17.b)

E
M=zvYc,(1-c)ca (1 -c,..l)cxp(- p— atl ; Eanel ") (17.c)
Simpie algebra shows that the activation energy of M is :
Cn + Cusl “n * Cnel
- >N i+
E®+ (cAa -eBR) [Z—— +2 3 ] (17.4)

where €, is the curvature of Lhe concentralion profile al the plane n {c, =Cn+1 +<n.1 - 2n).

As 2 summary, th flux may indch be writien as a mobility times a chemical potential difference
between neighbouring planes : bul if the chemical potential conlains a non negligible conwribution of
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the concentration inhomageneity, such will also be the case for the mobility. To our knowledge this
contribution has been oaitted up o the presen Lme,

2 3. PATTERN FORMATION FROM CAHN-HILLIARD'S DIFFUSION EQUATION

1 the liverature, the interdilinsion fux is expressed by eq. (7) with o given it's expression [(rom the
conunuum model (eq. (6)) and M 1s given for a binary alloy, by the CXPICSSION ©

M = c(1<) [{1-¢) vig + c val (18)

where the v's are the atomic velocitics under a unit potential gradient. For sysiems with more than two
components, M is a walrix.

The conservation equation wriles

c a3
S=e5e(om) (—“5’ G o
or assuming M w be a constant :
i d (Weac adc
w5 (B 5)- 2% 55) e

When @ 1s given a Landau's form [15] this equation is someuimes called a time dependamt Gingzburg
Landay equation (TDGLE). It is oficn used as a pallem generating equation {16].

Eq. (20} is non lincar because of the ¢(x) dependance of ¢* =‘£¥in the RHS. Il we give ¢ the value it
reaches for the average concentration C, ¢q. (20) is lincarized and we get the "linear theory of bpm()ddl
decomposition”™, If we Taylor expand ¢"(c) in the vicinity of C, we get non lingar lerms such as (-é-—)

the RHS of ¢q. (20).

In the linear case, the amplitude of a sinusoidal concentration wave, with wave veclor k, amplities (if ¢" <
0} or shrinks (" > 0) exponentially with a relaxation time Ty such that :

1;1 =-k2BM [g_+ 2K k2] Qn
Fig. 3 shows the inverse relaxation lime as a function of k, when " < 0. The concentration waves with

wave length greater than Ao=2m a‘f - & grow exponentially. A maximum of the growth rate is
9

obtained for A, = ¥2 A¢. Since the growth is exponential, the length scale Ay will dominate the unmixing
paLtern,
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Non lincar terms in eq. (20} stop the growth of the concenwration oscillations when they reach the
cquilibrium value of the phases 1o cocxist, and adjust the shape of the interface concentration profile {17].
When strain energy tenms are laken into account |18, 19] the concentration wave in the soft dircctions will
grow morc rapidly, which cxplains the formation of oriented modulated structures.

2.4 FURTHER COMMENTS ON STOCHASTIC MODELS

The TDGLE (20} gives a detesministic description of the time evolution of the concentration profile ¢(x).
As such, it has the draw-back of giving infinilc lifelime (o metastable or even unstable equilibrium statcs.
To circumvent this difficulty a noise term is somctimes arbitrarily added to the RHS of cq. (20) which
becomes a Langevin type equation |20, 6, 21]. The noise term is chosen in a way to generate the correct
form of concentration fluctnations at equilibrium. But there is no basic reason why the same e should
operate during the time evolution towards equilibrium.

The stochastic model introduced in section 2.2.2 {egs. 11, 12) contains indeed a noise term which
originales in the "back and forth” alomic exchanges i.e. in the same atomistic mechanism which moves the

system towards equilibrium. Indeed the Master equation eq. {11), may be expanded with respect Sl_l 122} and

given the continuum expression [23]

@‘ELL .V(VP-DVP) (22.3)

with V operating in the N dimensionnal space on which the configuration B is defined (by the set of the
conlinuous concentrations cj,... cN), D is a tridiagonal N x N matrix with the clements :

1
Dpn = 'iai‘ (Wn+ + Wp + Wy o+ Woq )

1
Dnni=- o7 Wna++Wo ) (22.h)

1
Dpne1=- 'i_")_z(wn,+ +Wp )

and VU a N dimensionnal vecior with componenis

: .
Vo= 5 iWn,e - Wn) + Waeg o - Waeg 01+ 1@naly + Onacty y + Gnas gy ) (220)

n-1
In egs. (22.b, 22.¢) Wi . stands for the probability of tansition per unit time, between a conliguration B
and the configuration deduced from B by interchanging onc A atoin in plane i with onc B Laken in plane

i+1 ; W, cormrespomds to the exchange of one B atont in plane 1 with one A in plane i+l ; { )n means the

derivative with respect o ¢, U represents the delerministic evolution of the system, while D corresponds
10 the fluctuations which broaden P(B) away from those steady states which are only localy stable.
Allthough eq. (22.a) is for the nme being not Lractable, it shows an unambiguous way (o build the
fluctuations in a counsistent manner.

2.5 CONCLUSION

Even in a sunple Bragg Williams type approximation, the chemical potential contains an inhomogeneity
term. A simpie kincuic model based on the same approximation as the stalic B.W. description, has been
built and shown 10 be fully consistent with the thermedynamical model : the steady state confligurations of
4 closed system are identical to the equilibrium ones and there respective probability are the same, This
model is not unique. It is found that close to cquilibrium, the interdilfusion [lux 1s proportionnal to the
gradient of the chemical potentisl, but that, contrary 1o the commaon belief, the proportionnality cocfficient
(mohility) depends not only on the local concentration, but also on the local inhomogeneity of
concentation.

3. Reaction Diffusion Models for Driven Systems

[n mmuny cases of practical inlerest, materials are subjected 10 some sort of external dynamical constraint
which forces them away (rom their static-equilibrium confliguration : such is the case for sysicms
uslergoing rapid uxydation, or subjected to irradiation by energetic particles, or 10 sustained plastc strain
{e.g. in persistant slip bands in fatigue, or during ball milling lur alloy preparation by mechanical
alloying).

One gucstion raised is wether one may predict the structure such systems will achieve. There is a priorn no
peneral theory w answer such questions and one must rather build models and check with gencral
mathematical techniques the type of behavior they predict. Reaction duffusion maodels represent a usefull
class of such models of very broad applicability [24]. I the state of the sysiem is defined by the
compositions of the vanious consttuants ¢; (r,) a1 point 1, ume t, a reaction diffusion model writes :

b V., @)

where ¢ is a vector of components ¢ at point r, A represents the external control parameters, and V_I; is
the divergence of the flux of species 1, with

-Iiz‘zDijvcj (QA)
]

In most preseatations, D;) 1s restncted 1o a diagonal matnix (no cross diffusion term) with concentration
mdependent diffusion coctiicients. In the study of irradiation induced phase instabilities the off diagonal
terms and thewr concentration dependance umed ovat W play a crucial role [Reebec @ this volumic).

Knowing the mmatial values of ¢ and the boundary conditions, ¢q. {23) allows 1o compute o(r,1). Of special
. ‘ . dc - .
inferest is the case where the ~ystem exhibits stcady sules (a-= 0}, Then the sieady state concentration

licld depend on the controt paramcters A, In general, 1(e,A) is 4 non lincar function of {¢) : $0 thut scveral
steady states may be possible for a given value of &, For some critical value A = A the various steady state
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branches may coincide : this 1s what is called a bifurcauon. One technigue w detect such a bifurcation in a
model is 10 study the local stability of Lhe swady suue by checking the response of the syswem to a small
deviation from that stale : this is a so called lincar swability analysis. The occurence of dilfusion in the
system induces coupling belween the reaction dynamics al vanious points © c.§. 2 reaction at some location
muy be feeded by depleting Lhe surtounding over a range, where the reaction will not be pusible
paueming will result. Exaraples will be given, which are relevant 1o metallurgy.

Finally, when scveral stcady stales are possible for a given value of the control parameier A, there is in
general no means 0 assess g priori the global swability of various states i.e. which among the many steady
states if the "most stable” {25]. In some cases, however, a stochastic polential may be ntroduced which
plays role similar to the free encrgy in assessing the probability of various steady stacs. Section 3.4 gives
examples from irmadwation effects.

3.1. BIFURCATION BETWEEN STEADY STATES

To be speeific, consider a system Lhe state of which is defined by 1wo concentration fields ¢ (r,1) and ca(r .}
the evolution of which is governed by :

dc
E‘L= 1 {c1.62.8) + V(D Vc; + D13 Veg)

5 {25.a)
C

*5%= f3 (c1.c2.4) + V{Dy) Ve + Dg3 Vep)

and assume there exist a uniform steady solution ¢, ¢ :

0=1) (c1£2.0) = f2(c1.02.) (25.b)

1, ¢2 depend on A, and since [ (i = 1, 2} are non lincar functions of ¢;, ¢ and ¢ are usually not single
valued functions of A. When the sysiem is in the cq, cp “state” it is locally stable if a small
amplitude perturbation 8¢y, 8¢ about the uniform sieady state ¢ decays in amplitude, as Lime passes,

.. 8
whatever the perturbation (i.e. s-c—l-) One chooses 8¢ as a sinusoidal wave of wave vector q, so that the
2

local swability is assessed by checking the ime evolution of :
¢j =¢j + &¢; sin q.r (26.a)

By introducing the above form in the reaction diffusion equation (25.a), expanding the RHS to first order
in the amplitude &c;, one gets :

dbcj o of
T=ggl-!c bcy +¥12'lc 8cy - 2 (D11 8c1+ Dy2 8¢g) (26.b)

adcy  ofy al
T‘ac_l'c bcy + §c—2'lc 8ca - q2 (D2; 8¢y + Dy 8c2)

which may be wrilten in a vecilor form as ;

ade
Se=(F-@Dj& =L (26.)
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‘ of; T .
where € is Lhe vector of componcats ¢y, ¢2, F is the jacobian mauix (Fy; = gc-!-) and D the diffusion matrix
)
{1%). The latier two matrices are cvaluated for the steady stue value of ¢. ¢ may be cxpressed as a lincar

combiuation of the cigen vectors u of the matrix L, the eigen values of which are @) and wy. As scen
from 4. (26.4), caed of e gigen veclor gvalves axpononialy in tme ;

u=upcrpwl Q@n

so that the steady suue ¢ is lincarity siable if all w's are negative ; it is marginaly stable if one of the
cigenvalues is zero, it is unstable if one at least of the eigenvalues is positive. The characteristic equation
of L writes :

W -Cw+8=0 (28)

where T and 9 are respectively the trace and the determinant of L. The time evolution of the system
therefore depends on the sign of Lhe solutions of (28) : we are lefl with the discussion of the siga of the
discriminant B2 - 409 (fig. 4). In region I (fig. 4), both eigenvalues are negative, the amplitudes of &) and
Sco will decay exponcentially in time. The sicady state is stable : one speaks of a stable focus. In region 11,
one of the cigenvalues becomes positive. The stcady state is a saddle point or hyperbolic point. One of the
cigen veetor will grow exponentially in amplitude which prevenis the steady siate 10 be a stabic onc.
Marginal siability is reached when the comresponding eigenvalues is zero (8 = 0, T # 0). In region It the
two eigenvalues are positive : the sicady state is unstable. Any penurbation will grow in amplitude, one
speaks of an unstabie focus. In region [V and V the eigenvalues are complex conjugate so that the veclor

B¢ rotales in lime with a pulsation equal 10 the imaginary pant of @ . in region IV the rcal pan is positive
s0 that in Lhe course of the latter rolation the amplilude of ¢ grows in time : the sicady stawe is unstable ;
onc speaks of an unstable focus. In region V the real pant is negative, the ampliude of 8¢ decays
cxponentialy : the sicady state is stable, one speaks of a stable focus. When T is precisely zero, the real
part of @ is zero so that the amplilude of 8¢ is stable in time : this is a limi cycle. A socalled Hopf
bifurcation is met when, on varying the control parameter A one goes from region V to IV via the limil
cycle behaviour [26].

Indecd, the clements of the matrix L depend on A and g2, For the time being, forgel about the space
dependance g2 and lei us deal with homogeneous states (g = 0 in eq.(26) or perwurbation with infinite wave

lengih Z&TE_) On fig. 4, B and T arc parametrized by the conuol parameter A, If & is a scalar (one control

parameter), the possible values of & and € define a line in the 48, G plane (c.g. A on [ig. 4.a) : when
crossing the value A, the sicady stale will loose stability (fig. 4.b). If A is a 2 dimensionnal vector (A =
(Ay, A2)), a linc in the @, © planc comesponds 10 a line in the Ay, Ay plane (fig. 4.¢). The graphical
represcatation of the domains of stability in the plane Xy, A2 may be understood as a diagram of dynamical
cquilibrium, much in the same way as the domain of stability of equilibrium phases are skeiched in a
lemperature, concenlration diagram. Bul one should keep in mind that the line A in fig. 4.c is 4 line of
instability somewhat similar to the spinodal line in equilibrium phase diagrams.

P
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EE]



144

Fig. 4.a : Behavior of the normal modes at the stcady state, as a function of the trace T and of the
determinant 8 of L. - - - - skciches the (hypothetical) variation of S8 and B with the (scalar) control

parameter A,

stable unstable
> } + ’/\

Fig. 4.b ; Dynamical equilibrium diagram corresponding to the curve - - - - on fig. 4.a

Ae

AQ unstab

I stable
I

A1

Fig. 4.¢ : Dynamical equitibrium diagram (hypothetical) for a two dimensionnal order parameter (A, A3}
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Indeed at a bifurcation point such as A = A, on fig. 4.b, 4.¢, the swady state looses stabitity and the sysem
cvolves towards another steady slate, Similarily to equilibrium phase transitions which proceed cither by an
abrupt or by a progressive change of the order parameter (for first and second order iransition respectively)
transitions between steady stales may occur abruptly (beyond A, ¢ and ¢ jump towards a new branch of
values which differ by a finite amount from the previous one) or smoathly : i.e. on the new branch, ¢'
tends wwards ¢ as A — Ag. Fig. 5 gives schematical represeniation of various possibilities. As seen on g,
S.a and 5.¢, hysteresis effects may be found (and are indced quile commaon). Between A,and A the cross
hatched siweady states branches are only locally stable. If the system is putled too far away from one branch,
it will jump o the next onc. Each stable branch (attractor) is surrounded by a "basin of atracuon”
wherefroms the system will go back o the auractor at infinite time. When the state of the system ¢ is
defined by mare than two variables (¢, ¢7), a very intriguing possibility shows up besides the auractors
scen on fig. 4 {nodes and limit ¢ycles) ; strange attractors may occur. These are regions of the ¢ space
within which two imtially ncighboring stales ¢ and ¢* will remain but the distance between the 1wo siates
diverges as time grows. Despite the fact such systems are govermed by very simple equalions with few
degrees of freedom, they exhibit a cahotic behovior (deterministic cahos). indeed since the initial state of the
system 15 never known with infinite precision, the rajectorics leaving from the area defining the initial
state diverge as time grows (allthough they remain in the strange attractor) : it is not possible to predict the
future state of the system ! {27].

We close this scction by a few words on quasi steady states © in many cases (in particular for crystals under
iradiation, where the dislocation microstructure evolves slowly), the sysiem under consideration is not
strictly in a steady state. One may still perform a lincar stability analysis of the reference stale ¢, in the
manner just described, allthough I in eq. (264} is now time dependant, Usvally one assumes (and
sometimes cheeks) that the evolution of the reference state ¢ is much slower than the exponential growth
or decay of 8¢ and proceeds as Tor a strict steady state. In some dynamical systems however such an

. . . 5
approximation docs nol hold, One deals then with the time evolution of e One shows |28] that the

trapectory is asymptoticaly stable if and only if :

t
limy e J‘ w (1) dt=-00 29
L

. . Loode
lor every cigenvalue of the non integrable part of the matrix L associated 1o the reduced variable = This
theorem has been used i the theory of shear bands formation in strained solids [29],

3.2 PATTERN FORMATION

In the previcus section, we deall with homogencous perturbation (g = 0) of uniform sysicms. We now
bricfly discuss the effect of diffusion.

Il onc of the cigenvalues of L becomes real positive for = A, |ql = qc # 0, then the unstable perturbation

) . . 2 . .
15 & concentration wave with wave length -q:(ﬁg. 6.a). For & > A, a paticrn will be formed at a scale of
n
the order of —.
4

If two complex conjugate cigenvalecs have a vanishing real part for & = A¢, q = g, one gets travelling or
standing waves.
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5¢ ¢ In fig. 5.b and S.c, -I-I-1- represent
mclastable states. The system exhibits

histeresis between Ay, and A,
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Fig. 6 : Beyond the cntical value A of the order parameier the modes with ¢ < § < gy become unstable

n
and build a patiern at a scale ~ —q—

For finding how the system behaves atter the bifurcation point (A > A.) one must go beyond the lincar
approximation of eq. (26). In the weakly non linear regime {fig. 5.a, 5.b) several wchnigues are available w
construct an evolution equation for the amplitude of the unstable mode (24, 30]

- looking for an expansion of the amplitude §c, it's time and space derivatives and of A - heinoa power

series of a small parameter and find the solvability condition |

- or expanding the amplitude 8cg of the stable variables in power scries of that of the unstable mude ey .
introducing the expressions of 8cg thus oblained into the evolution equation of Lhe unstable mode, one
chiminates the stable variables and onc is left with a panial derivative cquation for the amplitde of the
unstable mode. This techaigue is called the adiabatic relaxation of rapid variable, or the slaving principle (in
Haken's terminology [16]) : it is based on the idea that the stable modes decay rapidly in amplilude, while
the unstable one keeps on growing more slowly.

‘The ampliwde equation which results has the form of a TDGLE which we introduced in the previows
scelion. An cxample relevant to dislocation pauleming in solids under imradiation is given in (31].

3.3. APPLICATION OF REACTION DIFFUSION MODELS TO SOLIDS UNDER IRRADIATION

As examples of the use in Materials Science of the techniques just discussed; we summarize in this section
two models dealing with microstruciural evolution under irradiation. Indeed, under iradiation by energetic
particles, a metallic crystalline solid experiences a permanent production of Frenkel pairs : vacancics and
sclf interstitials are created, diffuse, associate with, migrate together with and dissociate from solute atoms,
chiminate by mutual recombination or un defect sinks (grain boundarics, dislocation network or dislocation
Wwops). Various types of palleming may occur such as solule clustering due to the mutual recombination of
solute-interstitial with solule-vacancy complexes (section 3.3.1) or, (section 3.3.2) vacancy dislocation
loop spatial organisation due 10 enhanced Lthermal vacancy emission from the smaller loops (line teasion
cffect).

3.3.1. Irradiation Induced Clustering of Soluie in Dilute Solid Solution [32]
We describe the state of the solid solution by the three concentration fields (¢, ¢y, c5) of interstitials,

vacancies and solute atoms. Assuming local equilibrium beiween solute atoms and cuch defect
individually (i or v), the above tree ficlds are sufficient : it is not necessary Lo introduce solute-defect
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complexes as independant constiluants. Moreover because of the conservation of lawice sites the
concentration ticld of the solvent is readily deduced from the above Lhree fields. The state of the solid
solution evolves according 1o :

0ci=Gi-Reiey - V. )i
dcy =Gy -Rejey -V 0. 1, 30)
a|C5=‘V-Js

where Gy, Gy are respecuvely the interstitial, vacancy, production rate, R the rate constant for the i-v
mutual recombination reaction, Jj, Jy, J¢ the interstitial, vacancy and solute diffusion fluxes. The laver
write with a, B =1, v, 5:

Ju=-ZDgpVep (31)
B

The diffusion coclficients Dyxp have been expressed according Lo the "1 shell” model as described in this
book by Alnatt. Indeed, with the “five frequency model” for vacancics, and a eight frequency model of
the same kind for dumbbell interstitials, one may compute the matrix of the phenomenotogical
cocfficients Lyp (cf. Alnaut this volume) from which the Dgp matrix is deduced by :

Dap =¥ Luy Eyp (32)
Y

where gop is the second derivalive of the Gibbs free energy of the solid solution with respect to the
concentrations Cg, ¢. The latier is given a very simple form in the dilute approximation [33]. The rate
constant R is proportionnal 1o (Dj; + Dyy) ; one assumes here G; = Gy since no cascade core collapse is
occuring in the experiments under discussion. All the quantities were estimated with parameter values
typical of AlZn where Za irradiation induced clusiering has been discovered 32, 331,

The control parameters in the system (30} are the defect production rawe (G; = G, = G), the temperature
(which scales the diffusion coefficients) and the solute concentration which enters the Gibbs free encrgy.

Equation (30) has a uniform steady-state solution (c) : indeed if ¢ is uniform, Jo; = 0 from eq. (31) and if

CiCy = %. e = Ay = 0, dcg = 0 since J; = 0. The above sieady state solution represents the

uniform solid solution, The lincar stability analysis of ¢ shows that a symetry breaking transition may
occurs in the appropriale region of the control parameter space (cf. fig. 7). The unstable modc is mainly
solute, with a wcak segregation of vacancies and a slight depletion of interstitials. Solute clustering
results, [t should be emphasized that the lauer clustering occurs despite the fact the D matrix is definite
positive in this problem. The unstability results from an interference belween Lwo otherwise stable
processes : Lthe diffusion, and the Frenkel pair recombinauon !

A more detailed discussion of solute clustering under irradiation is given by Brebec in this book.
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Fig. 7 : Surfacc of instability of the uniform solution of egs. (30} in the temperature, defect production
rale, solute concentration controf parameter space.

3.1.2. Dislocation Network Patterning Under Irradiation [31, 34}

Under certain irradiation conditions, well organized defect clusters arrays are formed under irradiation :
these include woid lattices, stacking fault tetracdra arrays, periodic arrays of dislocation loops tangles
[35], or periodic sacking of dislocation thick wall [36]. The stale of the system is described by three

concentranon fields : intersttial {¢j), vacancies ¢y, and vacancy loops pr. The latter is expressed in
Iength per unit volume,

The state of the systcm cvolves according (o ;

Blci=G—Rcic.,+DiV2(:i-DiciZi(pN+p[)

ey =G (1-2)-Rejcy + Dy Vg, - Dy Zy [pN (ty - cyN}H + L {Cy - Sl (%)
dpy = . (G - pL ID; Zi ¢ - Dy Zoyp. (o - cylLY)
bl toL

PN is the neutral dislocation network density. Z; (Zv) are capture elficiency of dislocations for
interstitials (vacancies) : usually Zi > Zy. ¢y|, {resp. cyN} arc the equilibrium vacancy concenrations
close o the loops (resp. the neutral network). € is the fraction of the vacancy produced which collapse in
the core of the cascadces, producing loops of radius £y, with Burgers vector b.

The control parameters are the wemperature T (which adjusts defect mobilities and thermal vacancy
emission lrom the dislocations, and the defect production rate G.

The system (33) accepts a uniform steady state solution, the stability of which is destroyed beyond a
certain wemperature dependant defect production rate = a periodic modulation of py, builds up, Obviously
pL is the slow variable (since it's evolution results from o balance between ¢ and ¢y), The evolution
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cquation for 8py, the amplitude of the perrbation of py_. is obtained by expanding in eq. (33) the defect
concentralions as a power series of the vacancy loop density ; according 10 [31] onc gets

R - b 2 2 2 3
alpr=(.'b‘t . al (4 + v ]SpL+v8pL-u8pL (M)
where b is a reduced control parameter and b, the critical value where the bifurcation occurs, g the wave
length of the lirst mode 10 become unstable, a, v, u simple functions of pN and py, and BpL is scaled by
PN

Severall spaual organizations of py, are solution of eq. (34) :

- wall structures ;

- rodtike hexagonal or triangular siruciures

- BCC lattices or filamental siructures of cubic symmetry.

The bifurcation diagram is schematized on fig. (8) where A is the steady stale solution of eq. (34).

A WALL%

m
m
nN

Fig. 8 : Bifurcation diagram of pi_ in eq, (33).

When scverall branches are locally stable for the same control parameter value, the question of the
global swbility is met : is one of the locally stable branches 1o be chosen by Lhe system and if so,
according o which criterion,

3.4. STOCHASTIC POTENTIALS

As already discussed, when a dynamical sysiem presents several sicady states, it is usually not possible w
define the global stability of the fatier, There are however some cases where a stochastic potential y(s) may
be defined such that the probability of a sicady state wriles P(s) = exp w(s) (where s is the siate variable) ;
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much in the same way as lor an equilibrium state where w(s) = - B & (s). For such dynamical sysiems, the
higher y(s) the more probable the state s.

One technigue consists in adding to the RHS of the ampliwde equation {e.g. ¢q. (34)) a noise 1erm of
amplitude g : the ainplitude equation then becomes a Langevin Llype cqualion.

dA = {{A) di + g dw (35)
with <dw> =0 and <dw (D dw (1)> =8 (' -0 du

Rather than solving the latter one builds the associated Fokker Planck equaton which governs the time
evolution ol the probubility of a given amplitude :

)
P(A.t):%(f P+ 52— '%-E— (36.)

which accepls as a steady staie solution :
Pys{A) o exp - ¢ (A) (36.b)

whure ¢ (A) is such that :

5 K.
o e (36.)

b
When [ in eq. (35) contains V. operators, 5_::— in eq. (36.c) must be understood as a functional derivative.
$(A) is a Lyapunov function of the amplitude equation.

Because of the arbitrariness of the choice of the noise term in eq. (35), it is not clear wether eq. (36.c) is of
any help 1o predict the respective stability of various steady states.

In some cases however, the noise term can be deduced from the microscopic model which yields the
amplitude equation as a deterministic limil. To be more specilic, the procedure followed in section 2 can be
applied 1o reaction ditfusion models [38, 24, 22]. The partial derivative equation of type (23) are replaced by
4 Magler equation governing Lhe lime evolution of the probability of a state, much in the same way as eq.
{11) above is a stochastic "interpretation” of ¢q. (8.a). The Masier Equation may be expanded into serics of
powers of the inverse volume of the system, up 1o sccond order, as was done in seciion 2.4, yielding eq.
(22.4). Notice that if the state of the system is defined by a scalar (s) rather than a vector (B in section 2} U
and D in cy. (22.a) arc scalars. As already discussed in section 2.4, the noisc term D in the Fokker Planck
cyuation is now buill from the atomistic processes which drive the system 1owards stcady state, contrary o
the former procedure where an anificial noise was added 10 the deterministic moddel, The stochastic potential
now wries ;

Div=vy (37.a)
or, in the scalar casc :
52
(2061 = | s 37h)
$1

The above procedure has been used receatly 10 construct dynamical equilibrium phase diagrams for ordered
compounds under external forcing [38) @ indeed when ordered compounds are forced away from their
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cquilibrium degree of long runge order by cnergetic pariicle wradiation or by shearing, one considers the
order-disorder reaction occurs because of the superpositon of two dynamics © thermally acuvated awmic
exchanges between the sublattices and forced exchanges induced by so called ballistic jumps (the frequency
ol which is proportiennal 1o the irradianon flux, or the frequency of shearing). The wechnique procecds
much in the samc way as in scction 2 : build a simple thermodynamics description of the order-disorder
ransition, then adjust a kinetic madel such thay, in the absence of external forcing the sicady state
solutions of the kincte model comcide with the equilibrium solutons of the thermodynamical model, with
the same prubability ; then add w the thermaly activated exchange frequency thus chasen, the contribution
of ballistic jwnps ; compute the siochastic potential as desenibed above @ the latter will depend on
temperature and on the ratio of the forced 10 the thermaly acuvated exchange frequencies.

Figure 9 15 an cxample of the dynamical equilibrium phase diagram computed for NigMo under irradiation
[38].

200 400 600 800 1000 TKI

Fig. 9 : Dyoanucal equilibrium diagram of NigMo under irradiation @ three structures {(disordered FCC solud
scelution, 1/4 <420> (SRO) and 1/5 <420> (LRO) superstructures) compele 5 ¥g is the pre-exponential
factor of the ballistic 1o thermaly activated atomic exchanges frequency ratio ; b is the number of replaced
atoms per cascade ; BUW are existing experimenial data.

It should be stressed however, that in many dynanncal systems, the noise amplitude 1s very small oy
compared Lo the barriers between minima of ¢, so that the system will be clamped in a localy stable steady
stite the selection of which results from the dynamics of the propagation of the front between the former
and the new steady state or from the dynamical properties of defects in the patwemn [39).

4. Conclusion

Two classes of kineue models have been discussed :

- Cahn-Hilliard's diffusion maode! which aims at describing how a concenurated solid solubon reaches i's
cyuilibrium configuration.

- Reaction diffusion models, winch help identifying the various posstble steady states for a broad class of
dynanmcal systems and the bifurcauons between the latter states.

Cahn-Hilliard's modet has been discussed in the light of a very simple atomistic descripuon of the suates
and dynamics of the sohd solution © as 1s well known, the chemical potential i this model contains an
mhomogeneity term ; close o equilibrium (uniformity of the chemical polential), it 1s found thist the
nterdiffusion flux 1s proportionnal 1o the gradient of the chemical potental, as expected, but that the
proporionnality constant contains an inhomogencity term which has been overlooked up 1o now,
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Reaction diffusion madels are presemted tegether with standard tools : lincar stability analysis of steady
siates, amplitude equations, stochastic potentials, Problems taken from the irradiation clfects Literature
have been used as examples,
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