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GENERAL INTRODUCTION

The objective of these notes is to provide a self-contained introduction
to the subject of polygonisation, recovery, dislecation patterning and
recrystallisation for students with a physics rather than a

metallurgical backgreound. To this end nothing is assumed and the
technical terminclogy is explained as the lectures progress. The minimum
tackground will be some appreciation of the theory of elasticity, an
viementary introduction to dislocaticns and other crystal defects and an
understanding cof cartesian tensors and differential equations. Wherever
possible the lectures use examples from real engineering materials rather
than idealised alloy systems and the final objective is to equip the
student with the tools to tackle problems to understand micrestructural
evaluation in relevant engineering alloys and ceramics, The emphasis is
on the high temperature operation of structures and the asscciated
annealing and deformation processes. Some time will be given to cold

working and irradiaticn behaviour but these areas are net the main theme

of the notes.

The notes are arranged in five lectures. Lecture 1l describes the
experimental and microstructural observations of dislocation ordering and
recrystallisation and how these have been reconciled in the past
enpirically and by phenomenological models. Lectures 2 and 3 provide the
necessary background to understand dislocation interactions, with one
ancther and with precipitates and solutes, and the evolution of
precipitate and cavity populations. Lecture & describes how dislccatien
ordering can be modelled as part of the larger problem of modelling creep
and recovery behaviour. Lecture 5 looks at the modelling of primary and

secondary recrystallisation processes in complex alloys.

-iid-

LECTURE 1
EXPERIMENTAL OBSERVATIONS OF DISLQCATICN ORDERING AND RECRYSTALLISATION

1.1 INTRODUCTION

The plastic deformation of crystalline materials is accompanied, in all
but exceptional cases, by the multiplication of dislocations. The
multiplication process is heterogeneous in character and the dislocation
population after deformation at low temperatures (<0,3Tm) is non-uniform.
Deformation at higher temperatures or annealing of dislocations forned
from cold working results in a more ordered dislocation populatien.

This process is referred to as polygenisation when a uniferm structure

is fFormed but in circumstances dependent on the material the dislocations
form planar arrays referred to as sub-grain boundaries. The decrease

in yield stress produced by annealing, arising from a reduction in
dislocation density and the ordering of the remaining dislocations, is

referred to as recovery.

If the dislocation density is high, annealing at high temperatures some-
times results in a sudden change in structure where a new smaller grain
size is formed. The dislocation density within these new grains is low.
This process is termed primary recrystallisation. Subsequently there

is a rapid growth of the new grains and the material strength drops to a
minimum. During this process a few grains grow at the expense of the
rest; this is known as gecondary recrystallisation or abnormal grain
growth, Subsequently, once a more uniform grain size distribution is
obtained 'normal‘ grain growth proceeds at a slower rate. The terminology

defined here is summarised in Transparency 1.1,

The character of the material - the nature of the atomic bonding
(metallic, covalent, ionic), the crystal structure, the stacking fault
energy, the presence of sclutes, the presence and evelution of
precipitates, the occurrence of shear (martensitic) transformations - has
a strong effect on these dislocation and grain boundary phenocmena and
thneir associated macroscopic preperties such as creep strength and plastic
yield stress. HMaterials subjected to cyclic stress have dislocation

substructures that are dependent on the magnitude of the cycling, These

1.1
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systems are surprisingly stable.

Having defined some of the terminology let us lock at some of the

observations of the behaviour of real materials.
1.2 DISLOCATION ORDERING DURING DEFORMATION AND ANNEALING

Plastic defermation is a very heterogeneous process and the micro-
structures of cold worked materials reflect this. Dislocations formed at
favourable locations (sources) move until blocked, interact with
dislocations on other slip systems during the process and eventually form
complicated tangles with wild spatial fluctuations in density and local
concentrations of dislocations of a particular sign. The degree of
disorder depends not only on the character of the materizl but also on the
type of lcading and the previous loading history. Temperature can also

have effects at surprisingly low temperatures.

The stress-strain curve of a well-annealed pure single crystal of an foc
metal shows three stapges of hardening, see Fig !.1. The first stage, or
easy glide, has little hardening snd only one slip plane is invelved. The
dislocations are generated on & few slip bands and are spaced out along
these bands as they are generated. Stage II ideally shows linear
hardening resulting from the intersction of dislocations on other slip
planes. The dislocation distributions become increasingly complex, as the
dislocation density increases, with the formation of dislocation dipoles,
multipole bundles and, in some cases, cellular structures. In Stage II1,
the hardening starts to saturate, because of dynamic recovery effects
permitted by the nigh dislocation demsity and movement of the dislocations
off their original glide plane. The dislocation distribution becomes more
heterogeneous with regions of very high dislocation density and regions

free of dislocations.

In pure polyerystalline materials Stage I is essentially absent and
complex dislocation structures are present from the earliest stages of
deformation, propagating from interaction at the grain boundaries.

Figure 1.2 shows the tangled dislocation structure of cold worked

stainless steel.

v ocratozter of clross strein curves in cther clezzes of netals and
cvramics ere different and the presence of sclutes er seccrd phases have ¢
profound effects, However the appearance of increacingly cooplex
Sielecoticn structures with defornstien is universal and the ebility te
foym low ererpy dizlocation structures increascs with tenpereture, In bec
cotele this iz conditicned by a high flow stress for the screw compenents
of dislecaticns and the irportance of thermally activated glide. In icnic
zvd covelently bended materizls there is ¢ high flow stress foer all

dietecaticns aend dislocation re-arrengement 15 again restricted to high

&)

TenzeTelUTE

in 2.l reterials there are profourd chznges in the neture cof cdislcecation
ctructires at temperatures where diffusive processes are important

15,27 end edge dislceations can move ner-conrervetively.  Loose cellular
c-ruceures that form at lower temperatures can be pulled into tighter and

ceore writorm srrays that define sub-grain boundaries. Figures 1.4 to 1.7

ciow cove examples from etch pit and transmission electron micrographs of
ctruciures séen in real metals. Such structures can also be formed by
recovery of cold worked metals at temperatures below those required for
recrystaliisation. It is observed, however, that unless the sub-grain
bouncaries are pinned by precipitates they are mobile and the sub-grain
cize increases with time. There is also a tendency for the misorientaticn
between sub-grains to increase as the structure coarsens and eventually

the eub-greins will produce new grains.

During ¢reep and hot working the sub-grain structure is often stzble and
cherscterictic of the load, at least for steady state creep. The
miccrientation tends to be independent of stress and after a trarsient
inde;endent of strain es well, but characteristic of a particular
zsterizl, see Fig 1.8. This obrervation is scmetimes tzker to indicate
1=t e schogralns are dynmamic features constantly being nuclested and
somitilated, rather then persistent structures.

The sck-grein dismeter d is found to be irvercely related to ine lcad, ie
/cam where m is freguently found to be I tut is often closer to 1.5
in t'.e case of hot working rather than creep. A fregquently veed relation

ig:

To= Kabsd (1.1
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b is
Ehe Ruigeys weciur and K is a éanstant characteristiec of khe material.

where 1 is the resolved shear stress = oa/2, H is the shear modulus,

Figure 1.9 shows some examples of the relationship for single crystals.
Typically K is around 10 for metals but is considerably higher for ionic
solids. The dislocation density inside the sub-grains is frequently found
to be proportiocnzl to (r/pb}? and hence from eq (1.1) the sub-grain size
is inversely proportional to the square root of the dislocation density,

This observation has some significance as we shall see in Lecture 4.

Not all materials show clear sub-grain boundary formation. The presence
of large fractions of second phases or alloys with over-sized solutes tend
not te inhibit sub-grains, but accumulated dislocation formed uniformly or
as debris around inclusions. In fce metals with low stacking fault energy
(eg stainless steels) the sub-grain walls are less well defined (or well
knitted) and are sometimes only observed at high strains. This has been

interpreted as due to the splitting of dislocations into pairs of partial
dislocations interfering with dislocation climb.

1.3 OBSERVATIONS OF RECRYSTALLISATION IN WORK HARDENED ALLOYS
Recrystallisation can be approached by looking at the mechanical

properties of an alloy or by looking at the microstructure.

of al]l look at the strength of cold worked materials during a

We will first

nnealing.

Host cold worked materials exhibit some degree of Tecovery on annealing,

but in some materials, such as precipitate hardened alloys the recovery

can be minimal. single phase and particularly pure materials can fully

recover their softness without recrystallisation, but hearly all work

hardened materials will recrystallise if annealed at & high enough

temperature. Typical behaviour is shown in Fig 1.10 for isothermal

annealing for & fixed period. The difference between recovery and

recrystallisation is concerned with timescales and homogeneity, Recovery

is a pregressive brocess which occurs more or less uniformly over the
material, Recrystallisation is a sudden process leaving the material
tully softened, but it occurs locally and macrosco

pically can appear to be
progressive.

The kinetics of recrystallisaticn of a complex alloy (316 stainless steel)
can be zeEp in Fig 1:1i: T¥Riealiy YREAWErY pragresses rapidly then
saturates to a value which is insensitive to the temperature, but is
dependent on the past history. Recrystallisation occurs after some
incubation pericd, which decreases with increasing temperature. Full
softening is also achieved within a shorter period at higher temperatures,

Most of the softening effect comes from primary recrystallisacion.

Recrystallisation is important in the design of & high temperature
structure both from the point of view of the plastic strength and the
Creep strength. Figure 1,12 shows that in the dislocation creep regime
cold work can increase the creep resistance provided the material has not

recrystallised. We will investigate how this can happen in Lecture &.

Turning new to the microstructural observations. The reduction in
hardness or strength coincides with the nucleation of a new grain
structure inside the old grains. This process is termed primary
recrystallisation. It is shown Behemetieally in Fig 1.13. These new
grain nuclei are found to grow linearly with time untjl they impinge on
cne snother. This marks the end of the primary reerystallisation process

and determines the new grain size, Db' see Fig l.14. The recrystallised
grain size is thus:

b = G(t-to) (1.2}

where t, is the incubation time and G is & measure of the grain boundary
velocity, t, and G are both functions of temperature. A useful concept is
the fraction of material recrystallised, F, which may be used to assess
the evelution of the scftening. We will investigate the time and

temperature dependence of these Processes in Lecture 5.

The behaviour of single and multiphased alloys differ in many respects and
the recrystallisation behavicur is intimately connected with the evolution
¢f precipitate populations. In particular the incubation time for primary
recrystalliisation will often be controlled by precipitate coarsening
rates. In some cases recrystallisation is nucleated on precipitates.
Irradiation is also important in affecting recrystallisation rates.

Invariably displacement damage reduces the incubation times. This is

1.5
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probably due both te an increase in hardening (but it must be remembered
that irradiation can soften heavily worked materials) and irradiation

induced effects on precipitation-precipitate dissolution and coarsening.

Once the primary recrystallisation phase is over, the new finer grain size

is generally found tc be unstable. Secondary recrystallisation takes the

form of abnormal grain growth where a few grains grow at the expense of

others. Figure 1.15 shows an optical micrograph of such abnormal grain

Note the curvature of the boundaries adjacent to the shrinking

growth,
Secondary

smaller grains. This is the driving force for the process.

recrystallisation continues until the new larger grains impinge on one

another., Subsequently grain growth proceeds slowly by mormal grain

growth. MNormal grain growth is a process where the smallest grains in a

size distribution disappear leading to an cverall increase in size.

Narmal grain growth is observed to follow:

" (1.3)

where ¢ is rate constant which is a function of temperature, Do is

the initial grain size and n lies between 2 and 5. Abnormal grain grow:th

lowever is found tc follow a linear growth law of the same type as (1.0)

but of course with different values of G and t. The final grain size is

determined by the number of abmormally growing grains. These phenomena

are again addressed in Lecture 5.

1.4 RECRYSTALLISATION DURING HOT WORKING AND CREEF

Dynamic recrystallisation is simply recrystallisation that takes place

during deformation. It is important as it is a precess that reduces the

load required for hot working at the high strain rates needed in varicus

manufacturing processes. Dynamic recovery processes, where dislocation

density is reduced by mutual interactions during deformation, is better

known and better understcod. Dynamic recrystallisation involves the

continucus or periodic nucleation of new grains during deformation, with

their subsequent growth sweeping up dislocations and precipitates,

softening the material.
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Frequently the new grains that drive the dynamic recrystallisation are
nucleated at the grain boundaries as a necklace that then propagates
inwards as a seguence of necklaces, see Fig 1.20. There is then a
coarsening phase that minimises the material strength and then hardening
builds up again. At high strain rate there is not time for this
cocarsening to take place, and as the grain size increases & new grain
structure is nucleated. It is this lack of coarsening that inhibits the
cyclic behaviour. The development of the grain size with strain is shown
in Figure 1.21, For lower strain rates there is an overall grain
coarsening with time and several stress peaks, marked as ?i, cver the
strain range. For the higher strain rates there is overall grain

refinement and only an initial stress peak.

1.5 DISLOCATION STRUCTURES DURING CYCLIC LOADING

It might be imagined that fatigue loading would result in very tangled
irregular dislocation structures. In fact, cyclic loading produces some

complex and persistent patterns that are worth noting.

The range of behaviour can be seen most clearly in pure metals. The
eyclic stress-strain curve at low amplitude for copper is shown in Figure
1.22. There are three regions. In region A the cyclic hardening is not
saturated and the dislocations are found to form multipolar bundles, often
referred to as veins. An example of this is shown in Figure 1.23. 1In
region B the cyclic hardening saturates and is constant over a substantial
strain range. In this region the dislocations mainly lie in bands normal
to the glide plane. Thin lamellae of slip bands link the thicker bands.
The glide piane of the dislocation are parallel to the lamellae. This
type of structure is referred to as persistent slip bands (PSB). An
example is shown in Figure 1.24, and an idealised schematic structure in
Figure 1.25. At high strain ranges, region C, the structure becomes
sensitive to the strain range and hardening recommences. The structure
becomes tighter with increasing strain range and is characterised by

elongated cells, an example is shown in Figure 1.25.

Such structures are seen in bee and fec metals at moderate temperature and

low strain ranges, which are relevant to many engineering applications.

1.8

dislecation components.

The scant configuraticn is dependent on parameters like the material

stacking fault energy and the ratio of mobility of screw and edge
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Transparency 1.1

Terminology
Dipoles a stable pair of dislocations
Dislocation a stable cluster of dislocations
bundles of mixed sign
Slip two dimensional arrays of
bands dislocations of finite thickness

Polygonisation formation of a uniform dislocation
network

Dislocation clustering of dislocations into
cells more or less tight walls

Subgrain jow angle grain boundaries formed
boundaries by uniform arrays of dislocations

Recovery reduction of strength by rearrangement
and annihilation of dislocation

Primary reduction of strength by the nucleation
recrystallisation of a new smaller grain structure

Secondary further reduction of strength by
recrystallisation ‘'abnormal’ grain growth ie rapid
growth of a few grains

Dynamic continuous recrystallisation during
recrystallisation deformation

Normal grain uniform grain growth by the elimination
growth of the smallest grains

polycrystal

Stage |l

single
crystall

€

Fig. 1.1 Stress-strain curve for pure fcc metal
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simulated torsion bar. The torque contributions of the
individual shells were then summed and the effective
stress—flective strain curves were deduced by the method of
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Fig.23Three-dimensional view of loop patches corre-

sponding to region A of the cyclic stress—strain curve

(plastic shear strain amplitude, 2.6 x 1075; shear stress
7= 19.8 MPa; region A). CT

CMmaknJ-a{ 3

Jpo—

Fig. j2a#Dislocation arrangements in a PSB in a fatigued
copper single erystal (stress applied state and neutron
irradiated; section parallel to the primary glide plane).
((a) From ref. 25; (b) from ref, 24,) (MUAJ



Fig. 25 (a) Idealized schematic representation of the
entrapped dislocation debris and dipolar structure
within a PSB, in a view parallel to [121], showing
how the dislocation slip planes are staggered so as to
achieve the dipolar tilt wall arrangement (the wall
width is exaggerated); (b) schematic view of screw
dislocations advancing in coordination along the
channels of a PSB, viewed from normal to the pri-
mary glide plane (compared with the width of the
channels, the displacement of the dislocations is
exaggerated). The groups of screw dislocations are
labeled to indicate their stacking as seen in (a).
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LECTURE 2
DISLOCATION INTERACTIONS

2.1 INTRODUCTION

This lecture provides the background necessary to understand Lecture 4 on
the modelling of dislocation structures during recovery and deformation.
This background is essentially in two parts: the forces between
disleccations that drive movements to lower energy configurations; and the
mobility of dislocations that permit the configurations to be attained.
The mobility is partly determined by the intrinsic mobility of the
dislocations due to the crystal symmetry and atomic cchesion and partly by
interactions with the solutes and precipitates present.in any real

engineering alloy.
2.2 DISLOCATION-DISLOCATION FORCES

The energy of dislocations is made up of an elastic contribution, which
results from a long range elastic strain field and a contribution from the
effects of atomic cohesion in the vicinity of the core, which results from
a breaking of the local crystal symmetry. Solutions for the elastic field
for arbitrarily shaped dislocation loops are extremely complicated for all
but the simplest cases. It is possible to calculate the stresses and
strains using a Green's function technique and integrating over the
dislocation length (see Micromechanics of Defects in Solids by T Mura,
1987, for a description of the method}, but for the purpose of these
lectures we can make do with solutions for straight infinite dislocations

in an isotcopic elastie continuwm,

The dislocation is characterised by its Burgers vector. A dislocation
with a Burgers vector parallel to the dislocation line is known as a pure
screw dislocation and a dislecation with a Burgers vector normal to the
dislocation line is known as a pure edge dislocation. Dislocations with
Burgers vectors arbitrarily oriented to the dislocation line are referred
to as mixed dislocations. The stress field for our long straight

dislocation is described generally in cylindrical cc-ordinates by:

uij = pb fij(B)IZHr, (2.1)

where u is the shear modulus, b is the magnitude ot the Burgers vootor, r
the distance trom the dislocation and IijLG) is & function dependent on
the relationship between the Burgers vector and the dislocation line (sce
Fig 2.1).

The stress field around a pure screw dislocation is isotropic and shear in

character, ie:

frB(GJ = faz(e) = 1, (2.2)

all other components are zero.

The stress field around a pure edge dislocation consists of dilatatien and
compressive parts below and above the dislocation line (see Fig 2.2). The

slress components are:

frr = (8) = fee(e)

~sinB/(1-v},

fre(e) = cosb/(1-v), fzz(e) = -2vsind/(1-v) and
£ g= g, =0 (2.3)

where v 1s Poissons ratio for the material.

The self elastic energy of a dislocation is complicated by the stress
singularity at the core. We assume the core energy is small and a cut-off
is made at a distance of | atomic spacing. The elastic energy per unit

length of dislocation is approximately:

E, = (ub?/4nK, ) In (R/a) (2.4)

where R is the dimension of the body centaining the dislocation and K, = 1
tor pure shear dislocations and K, = (l-v) for edge dislocations. As R is
4 variable and the logarithmic term is not particularly sensitive to the

value of R/a, In(K/a} is frequently taken as 4n:

Ey o= b1/, (2.5)

U



The seif energy of dislocations is large and because of Lhis dislocations
are thermodynamically unstable as the configurational entropy is too small
Lo provide an otfset, The dependence of the dislocation energy on the
square of the Burgers vector means that dislocations usually have Burgers
vectors corresponding to the smallest lattice vecters, ie in the close
parked directions. Occasionally dislocations are formed with other
lattice vectors, from reactions between dislocations or from peint defect
clustering and in some materials several types of stable dislocations are

found.

There are two types of force that must be considered when determining
equilibrium dislocation configurations: forces that arise from inter-

actions with elastic fields (applied or from other dislccations and cther

parts of the same dislocation if it is not straight), and forces from the
curvature of the dislocation line-line extension., We will just consider

the elastic field interacticn fer the time being.

The elastic force acting on a dislocation can be derived by leoking at the
elastic work done on moving the dislocation. If we imagine a dislocation
moving in its glide plane in response to an applied shear stress T, acting
in the glide plane then the work per unit length done in moving the
dislocation a distance dx in the glide plane is dW = btadx. The force per
unit length of dislocations is thus F = bta. This can be generalised as

the Peach-Koehler formula:
F=bsxl (2.6}

where 1 is the vector lying along the dislocation line and s is

: . H \ ; ,
the deviatoric stress tensor (s = o - 7/3 [ trace o, The deviatoric
stress is used rather than ordinary stress as dislocations do net interact

directly with hydrostatic stress.

As we shall see dislocation motion is of two types: (1) conservative

(#lide); and (i) non-conservative climb. To investigate dislocation

motion we need te resolve the force intc the components that act on these
two types of motion. Glide is determined by the farce resolved into the
slip plane:

Fg = b.s.n z.7)
where n is the normal to the slip plane, Climb is determined by the
force resolved into the direaction normal to the dislocation and slip

plane:
F =-1. (n x s.b) (2.8)
For a pure edge dislocation (2.8) becomes:

Fc = -b.s.b/lklI (2.9)
Transparency 2.1 gives the mutnal forces between parallel dislocations.
This enables us to determine the equilibrium configuration of dislocation

dipoles, Let us first consider screw dislocations of opposite sign.

[n this case the interaction is always attractive. If the motion of the
dislocation ig restricted to a single glide plane, then the dislocations
will move together along the glide plane until they are at minimum
separation, see Figure 2.3,a, Screw dislocations of the same sign are
always repulsive and there is no equilibrium separation. A large
population of screw dislocations of mixed signs will tend to clump into
bundles (veins). A large population of the same sign will tend toseparate

so as to maximise the distance between individuals.

The behaviour of edpe dislocations is more complex. For dislccations of
opposite sign the interaction is attractive when the dislocations are side
by side, but repulsive when the dislocations are one above the other, If
the motion of the dislocation is constrained to the glide plane, the
dislocations are attracted to form a staggered dipole, see Figure 2,3.b,
When the dislocations have the same sign the reverse is true; the
dislecations are attracted when one above the other and repelied when side
by side. 1f the dislocations are within the altractive region they will

torm a dipele with one vertically above the other, see Fipure 2.3.c. If

2,4
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outside the zone of attraction they will repel one ancther. As we shall see in
Lecture 4, the behaviour of large populations of edge dislocations of mixed sign
is complicated. Dislocations of the same sign however, have a particular
configuration with low enmergy - the tilt boundary, which is formed by a wall of
edge dislocations one above the other. This configuration can only form
properly when some degree of dislocation climb is permitted, as the base energy

is lowest when the dislocation spacing is regular.

Transparency 2.2 gives the interactions between straight parallel dislocations
when they have different Burgers vectors. Dislocations of orthogonal sign are
generally attractive, and form stepped dipoles that can continue to move
together by glide, unlike dislocations with the same Burgers vector but opposite
sign. Pairs of such dislocations can lock together and become immcbile until
unlocked by a dislocation of opposite sign or by a local stray concentration.

In fcc metals such barriers are known as Cottrell-Lomer barriers, and are
particularly sessile as the dislocations interact in such a way as to split into
particles with stacking faults that prevent motion. In some systems the locked
dislocations form a dislocation with a new Burgers vector that can be mobile

with a glide stress higher than usual.
2.3 DISLOCATION CLIMB AND GLIDE MOBILITY

Dislocations have two main types of motion: glide which is the propagaticn of
slip through the crystal lattice with only local atomic rearrangement at the
dislocation core 4s the dislocations move; and non-conservative motion or climb
which requires the absorption or emission of point defects by the dislocations
as they move. Pure screw dislocations only move by glide, and a number of glide
planes within the slip system are generally available for the glide, Edge
dislocations are constrained to a single glide plane and have to c¢limb to move
off it.

A glide loop is a dislocation loop lying on a single glide plane, see Figure
2.6a. Inevitably, it will have have parts which are edge in character and parts
which are screw in character. Unless the dislocation is rectangular, most of
the loop will consist of mixed dislocations. Under the action of a shear stress
the loop will expand or contract in such a manner as to relax the stress. This
glide will start when the shear stress exceeds a threshold stress, the glide or

flow stress of the dislocations. This stress can be quite different for screw

2.5

and edge components, If the dislocation meets some obstacle, a pure
dislocation can cross-slip onto a new glide plane, see Figure 2.6b, but an edge

dislocation has to climb,

The flow stress for dislocations is dependent on the nature of the atomic
bonding and the crystal symmetry. When it is dependent only an the stress
required to push the dislocation one atomic spacing, it is known as the
Peiezls-Nabarro stress, and can be estimated from simple atomic models, The
intrinsic flow stress in pure fcc metal is very small, of the order the stress
being rather larger for a screw dislocation than an edge one. In fce metals
with a low stacking fault energy (copper, stainless steel etc) the dislocations
can split into partials with smaller Burgers vectors. Not only does this
reduce the energy of the dislocation, but it also significantly reduces the
flow stress. Metals with bcc structures are important for many engineering
applications, and this class of metals show a strong temperature dependence of
yield point, which is not seen in fcc metals, It is frequently observed that a
high proportion of dislocations have a flow stress not too different from fcc
metals, but the core structure of the screw component is split in a manner to
impede glide. The screw dislocations have to move by nucleating kinks (steps
into the glide plane on the dislocations). Dislocation glide then proceeds by
motion of the kinks along the dislocation., The apparent glide stress and the
dislocation mobility is controlled by the energy to form a kink. The same is
true for covalent crystals, where the extreme nature of the bonding forces
dislocations to lie closely to particular crystal axes. Ionic crystals also
have a large flow stress, typically 10_2p, which again results in a tendency to
the flow being thermally activated and the dislocatjion mobility sensitive to
temperature. Dislocation glide mobilities in pure metals are reviewed in

Transparency 2,3.

In practice, linear mobility laws are found to break down as a series of power
laws (Gilman) where the power changes according to the stress range. Another
way of looking at it is to have a threshold stress for dislocation motion T
and an upper limit to dislocation velocity determined by the shear wave

velocity A
Vg~ Hgb (Tg—rc)/[(1+Mgb(1g—tc)/vsl (2,10)

2.6
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Cross slip often requires a local stress which is greater than that for primary
slip, and is usually a thermally activated process in fce metals, where primary
slip is easy. The reason for this is that in fcc metals the screw dislocations
are dissociated into partials which have edge components. For cross slip to
occur the partial dislocations have to be pinched together locally. 1In all
systems cross slip has to be nucleated by a segment of screw disiocation
sufficiently long to overcome the line tension as the cross slip segment bows

out onto the cross slip plane.

Dislocaticn climb proceeds by the emissicon or absorption of vacancies or
interstitials., Interstitials are not usually thermal defects. They are
important in radiation damage &s they are produced in large quantities as
Frenkel pairs, with vacancies as part of the displacement damage process. They
can be produced under certain circumstances during dislocation climb at high
stress levels. Vacancies are thermal defects, and are present with
concentrations that increase with temperature. At temperatures above 0.3Tm
there is a significant exchange of vacancies, with dislocations causing local

random climb events.

The understanding cof dislocation c¢limb relies on a similar process to kink
propagation, but in this case the step on the dislocation is out of the glide
plane and is known as a jog, see Figure 2.7. There are essentially two regimes

for dislocaticn climb:

(i) where the climb is hindered by jog concentration, and

(ii)where climb is limited by sources and sinks of vacancies.

The dislocaticn climb mobility under these regimes is summarised in

Transparency 2.4,

After hardening is established, dislocation motion is more likely to be
determined by interactions with other dislocations., Dislocations that are
inclined with some component parallel to the dislocation under consideration
will modify the force seen by the dislocations, because of their electric
fields, Dislocations that are inclined with some component normal to Lhe
dislocations under consideration will provide obstacles that have to be cut.
These are often referred to as trees or forest dislocations. A dislocation

moving through a forest of other dislocations will bow outwards, increasing the

2.7 N
wi

force at the point of contact, see Figure 2.8, During the cutting process a
jog is formed at each dislu . :on at the point of contact. 1TIn the case of
intersecting screw dislocations, the jogs formed have edge character and in
arder for further glide to oeccur, the jog has to climb, as it is dragged along.

Transparency 2.5 gives the mobilities in these cases.

2,4 DISLOCATION SOLUTE INTERACTICONS

In most engineering alloys, oversized solutes are added to increase the
strength, and these dominate the mobility of dislocations. Solutes can affect
dislocations in a number of ways. Stationary dislocations can attract an
'atmosphere' of solute atoms that arises because of the elastic interaction
between the mismatch field of the solute atom and the dislocation strain field.
It is only with the edge components of dislocaticns that this interaction is

significant. This atmosphere is referred to as the Cottrell atmosphere,

The motion of dislocations with an atmosphere will be controlled by the rate of
diffusion of the atmosphere as the dislocation drags it along. There will
however be a stress above which the dislocation can break away from the
atmosphere and will then move much more rapidly, see Figure 2.9. This type of
behaviour is thought to underly the Pottevin-le Chatelier effect, Solutes that
are trapped at dislocation cores will have a profound effect on their motion,
and when saturated effectively render the dislecation immobile. Both types of
solute effect are important in determining recovery and crystallisation

behaviour. These effects are quantified in Transparency 2.6.
2,5 DISLOCATION-PRECIPITATE INTERACTIONS

Precipitates and inclusions of various types are used to provide high
temperature strength to alloys, and they alsc are important in determining the
recovery and recrystallisation of work hardened alleys. There are two main
possibilities in the interactions. The dislocations can bow out between the
precipitates until they meet the other side and then move away, leaving locups
behind; this is known as the Orowan mechanism, see Figure 2.10. Alternatively,
if the precipitates are coherent or soft enough, the dislocations can cut
through them. In either case, the mechanism of moving through the precipitate
population will be controlled by the volume fraction cf the precipitates and
the spacing between the precipitates. Transparency 2.7 shows some of the main

features,

2.8
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(b) glide toop cross slipping

Fig.2.6 Schematic diagram of glide loop expansion
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Fig. 2.10 Schematic diagram of dislocations bypassing

a spherical particle by the Orowan process.

TRANSPARENCY 2.1

Force between parallel straight dislocations, with same Burgers vector.

The force between pure screw dislocations is radial:

e,

ar 2nixtyyiik

The force is repulsive if b, and b, are of the same sign and attractive

if they are of opposite sign.

Tt both dislocations have the same glide plane the force to glide is:

= _ “ubyb;x
Fg Fr cosl (x3ty7)

The force between edge dislocations is more complex.
There 1s a radial force:

LT
r  Zn(l-v)r
and a tangential force
F, = F_ sin2o,
r

The force to glide is:

F, = F_cosB + Fy sin® = -pbib;  x(x?-y?)
£ 2n(T-u) (xieyi)e

The [orce to climb i

%]

Fo = F sind -F, coso = -ubibyy  (y*13x)
2n{1-u) (x*+y3)?



TRANSPARENCY 2.2

Force hetween parallel straight dislocations

with different Burgers vectors

A more general expression for the force between parallel straight dislocations

has the following components;

Glide
Fg = plballbbl cos B ;os 2¢
2n(1-v)
Climb
Fc = p!ballhbl sin 8 - s;n(2¢) cos @
2n{l-v)

The configurations are shown in Fipure Z2.4.

For the particular case of ¢ = 8 the equation reduces to those in Transparency
2.1,

For the particular case of ¢ = n/2 - 6, i.e. when the dislocations have

orthogonal Burgers vectors, then:

Glide

Fo= plb l1b | x{x? - y2)
g allbpl lx? - yE,
(i) X vy

Climb

F = yulb ||bb| y (y* - x%)
g a (x7 + y3)3

TRANSPARENCY 2.3
Dislocation Mobility in Pure Metals

For many purposes dislocation velocity can be expressed as:

where M is the dislocation glide mobility and Fg and Tg are the force per unit
length and shear stress resolved conto the glide plane. Activated dislocation

motion against lattice friction (Peierls-Nabarro stress) can be expressed as:

vg = uob exp (~AG°/kT) sinh (Vgtg/kT)

M Vg exp (-AGofkTJ/kT

g Va

where Y4 is the dislocation vibrational frequency, Vg is the mean activation
volume and AGG the free energy to overcome the lattice friction barrier. When

the glide is controlled by propagation of kinks:
Mg = 2h%a vy exp (*Hkm/kT) exp (*Aka/kT)/kT

where h is the kink height of the order of a (the atomic spacing) or b, Hon is
the enthalpy of kink migration (-10k to 100k} and Aka is the free energy of
kink formation (~100k to 10%k). These energies are much larger in covalently

bonded materials.



TRANSPARENCY 2.4

Dislocation Climb

An upper limit to dislocation climb velocity is given by:

v =MF =Mbr1

c cc c c
vhere

HC = DLb/kT
D, being the lattice self diffusion coefficient,

L

If jog concentration limits the climb rate:
= 3
HC DLb Cj/kT

where Cj is the jog concentration which, if controlled by thermal fluctuation

forms 10g pBiTS.‘
C. ~ ex -4G. _/kT) /b

AGjE is the jog formation free energy which is typically of the order

pa/15 ~ 5x10%k to 10*k

For fcc metals with low stacking fault energy, the splitting of the
dislocations lead to geometrical facteors that have to be taken into account.

Argon and Mceffat have suggested:

= 3 1 1
MC 10 DLb Cj (I/ub)1/kT

where [ is the stacking fault energy.
When the climb rate is limited by sources and sink of vacancies, then:
MC =2n DLb/I(kT In{R/A)]
or for dislocation pipe diffusicns

M_ = 2m D_b*/ (kT A2)
c P

whare A is the vacancy path length (—l/p%). Dp is the dislocation pipe

diffusion coefficient, and R is the dislocation core effective radius.

TRANSPARENCY 2.5
Dislocation Mobility limited by Forest Cutting and Jog Drag

The velocity of a dislocation impeded by forest dislocations of spacing A is

given by:
vg = vy A sinh (1g b1 A/2kT) exp (*Aij/kT)

For low strvsses the mobility is:

M =

A3 -
g d b exp ( Aij/kT)IZkT

Jogged screw dislocations drag the jogs along, which limits their mobility.

the jog spacing is L the dislocation velocity is:

v =D, sinh {(t_ b? L/kT)/b
e L { g /kT)/
and for low stresses the mobility is:

Hg = DL L/kT

(e
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TRANSPARENCY 2.6
Dislocation-Solute Interactions
The mobility when dragging a Cottrell atmosphere is:
M, = D, KT/{cB* in (R /R,)]
where Da is the solute diffusion coefficient, c, is the solute average volume

concentration, Ro is the outer cut off radius which is of the order llp% and

Ri is the inner cut off radius which is the greater of the dislocation core

radius or B/kT and B is a measure of the mismatch:
B = (pub/A3md[{1l +v)/{L - v)] (Qs - Qa)
where QS is the solute effective volume and Qﬂ the crystal atomic volume.

The dislocation will break free from the atmosphere when 1_ 2 17 c, B/b. The

residual friction stress is of the order m Co g/b.

In some cases solutes are trapped at the dislocation core and the dislocation

velocity is given by:
vg =2b vq eXp (_Ham,kT) sinh (Tg b'La/kT)

where Ham is the activation enthalpy for core diffusion of the solute and La is
the spacing of the solute atoms along the dislocation., Dislecation breakaway
from core solute atoms will occur when Tg M (ﬁs - Qa)/Laﬂa. which for

saturated dislocation cores is a very large stress.

TRANSPARENCY 2.7
Dislocation-Precipitate Interactions

For small volume fraction the Orowan stress to pass through a population of

inccherent precipitates is simply:
T, 2 4 b/A

where M\ is the spacing of the precipitates on the glide plane which is of the

order of JZrPCp where rp is the precipitate radius and Cp the volume

concentration.

When a dislocation bypasses a precipitate and a ring of dislocations is lett,
the dislocation ring repels the next disleocation and the material hardens.

Part of the recovery process is the removal of these rings.

Particles with lower elastic modulus than the matrix have lower Orowan stress
in the particles, attract the dislocations. If the strength of the particle
rp <6 pb/rp. then the dislocation will cut the particle rather than bypass it

by the Orowan mechanism,

s



LECTURE 3

EVOLUTION OF CAVITY AND PFRECIPITATE POPULATIONS

3,1 INTROQUCTION

The recovery and recrystallisation behavicur of real engineering alloys is
intimately connected te the behaviour of precipitates. Precipitates, as we
have seen, pin dislocations, impeding recovery and reducing the work hardening
index. They also stabilise dislocaticn populations and subgrain boundaries,
deiaying the onset of primary recrystallisation. They also affect grain growth
and in many alloys determine grain boundary mobilities. In this lecture we
will prepare for Lecture 5 by laying down the basic principles of precipitate

behavicur.

First of all, it is werth making some general remarks. In most alloys, there
is some degree of solubility of elements that generate precipitate phases.
There may be a sclution temperature where the amount of alloying elements will
completely dissolve, although this temperature may be above the melting point.
Apnealing above the solution temperature will produce a single phase material.
Subsequent cooling will permit precipitation, although there will be a finite
time to bring this about. For temperatures close to the solution temperature,
the driving force for precipitation will be small, but the kinetiecs will be
rapid. In these conditions, large precipitates will grow rapidly and continue
to coarsen (ripen). For temperatures much lower than the solution temperarture,
the driving force for precipitation will be large, but the kinetics will be
slow. Fine precipitates generally result in this case. In some systems
diffusionless phase changes can occur, and these will occur spontaneously when
the free energy difference is large enough. These are often called martensitic
transformations. The best known and mest important of these is in the
iren-carbon system and the resulting distorted martensitic crystal structure is
produced by the presence of interstitial carbon, which could produce carbides
if there was time for diffusion. Figure 3,lsshows schematically a time-
temperature-transformation diagram illustrating these peoints. In ccmplex
allcys, such as commercial stainless steels with many alloying elements, there
will be overlapping sets of precipitating processes that interact with each

other, see Figure 3.§kfor an example.

3.2 PRECIPITATE NUCLEATION

Precipitation has three phases in its development:

(i} nucleation;
{ii) growth;

(iii) ripening (coarsening).

Coarsening can take place by coalescence permitted by some degree of mobility
of precipitates, but we will discuss that later and restrict curselves here to
what is known as Ostwald ripening, i.e. coarsening by atomic diffusion. All
three phases can, and de, occur gimultanecusly but from the point of view of
medelling they are cften treated separately and are assumed to occur

separately.

Let us first look at the classical thecry of nucleation of precipitates as
developed for solid reactions by Turnbull. Nucleation can occur by random
interactions of solute in the matrix and is then termed homogeneous nucleation;
alternatively, nucleation can occur at preferred sites, which could he
dislocations, grain boundaries or other interphase boundaries. In the latter
case, the nucleatien is said to be heterogenecus. In some cases heterogeneous
nucleation can result in viable nucleii, but in most cases heterogeneous
nucleaticn is censidered in classical nucleation theory as having to overcome
an energy barrier. This arises from a sensitivity of the free energy of an
atom's cluster to the number of in the cluster. The energy barrier is
manifested by a critical cluster size for nucleation., Clusters below the
critical size are termed embryos, at the critical size are termed nucleii and

at above the critical size precipitates.

The nucleation barrier arises because of interfacial effects; simply expressed,
a small precipitate has a larger interfacial energy per atom than a large
precipitate, This is a universal concept that applies tc the nucleation of
solids in melts, aerosols, cavities, bubbles, pcint defect clusters during
irradiation, as well as precipitates in alleys. Transparency 3.1 outlines the

details of the classical nucleation theory.



If we ignore the possibility of elastic strain energy for the moment, the free
energy charge per unit volume is determined by the supersaturation of the

solute, At the solution temperature,
AGu = A, - T A5 = b, ATiE LISy

and AT = (TS—T} is the degree of undercocling, In this case AG" is inversely
proportional to AT? so the height of the nucleation barrier decreases sharply
below the solution temperature. For sufficiently low temperatures, nucleation
is entirely determined by diffusional processes, The rate of nucleation

therefore has a peak at some temperature below the solution temperature.

The chemical nucleation theory has been very successful in describing many
features of nucleation of precipitates. However, it is not very compatible
with calculations of the growth or ripening. A technique well suited to large
scale computation has been introduced, known as hierarchical modelling., This
technique has been very successful at investigating the early stages of
nucleation, but is unsuitable for large clusters of atoms. A hierarchical
scheme is illustrated in Transparency 3.2. Some progress has been reached
recently in reconciling the two approaches and an cutline is given in

Transparency 3.3.

Some precipitations do not have nucleation in the classical sense, as there may
be no barrier. Nucleation and growth then merge into a single preblem. An
example of this is precipitation onto flat platelets; here, both the volume of
the precipitate and the interfacial energy are proportional to the area cf the
platelet, provided it grows at constant thickness. The shape of the
precipitate will depend partly on the anisotropy of the interfacial energy and

partly on the strain energy of the precipitate as it grows.

Coherent precipitates will always have some degree of misfit with the host
lattice. Incoherent precipitates have a variable degree of hydrestatic strain
interaction which will depend on whether any misfit can be relaxed by plastic
or diffusive processes. The situation is quite complicated for small atomic
clusters, where atom-atom interactions can render the simplistic description of
a sphere in a continuum invalid. The free energy of the cluster will fluctuare
wildly with the number of atoms and their configuration. There will always be
some low energy clusters that will tend to persist. Despite this, the

continuum description is surprisingly accurate at predicting the form and
development of precipitatien.

~

If the elastic moduli of the precipitate and the matrix are the same, there is
no preference between spherical, flat or needle-like precipitates. When the
FPRCHAtEdPE §3 PAFORF FRAR FhE MATrid, ¢RE SPRRFIcal presipiiate is fevoured.
When the precipitate is softer than the matrix, then a platelet is favoured.
Needle-like precipitates are never favoured by strain energy, but often

anisotropic interfacial energy or elastic effects can favour them.

Heterogensous nucleation occurs at a site when the free energy of small
clusters can be reduced. This can be where the interfacial energy change is
reduced at grain boundaries or other precipitates. If y b is the interfacial
energy of a grain boundary, the effective interfacial energy of a platelike
precipitate is simply Ti_rgb'

If the new precipitate wets an existing precipitate, i.e. when ri+7ab(rb' where
Y is the interfacial energy between the new precipitate and the matrix, Yap
the interfacial energy between the new and old precipitate and L is the
interfacial energy between the old precipitate and the matrix, then the
effective interfacial energy for nucleation will be Y Tt ane Also, the
effective radius for nucleation will be the radius of the old precipitate,
further enhancing the process. In this way, the nucleation barrier can be
completely avoided. Other heterogenecus nucleation sites stabilise atomic
clusters by offsetting strain energy contributions or by providing locally
disturbed crystal symmetry. Dislocation cores or the regions immediately above
or below edge dislocaticns may be favourable, and nucleation rates are enhanced

by increased local concentrations of sclute due te elastic interactions.

3.3 PRECIPITATE GRCWTH AND RIPENING

The nucleation process will continue alongside growth until all the solute
supersaturation is used up, but as precipitates grow they compete for solute,
and if growth is limited by diffusion then growth will dominate over diffusion

when r C_»>2a c_.
P P a
For most purposes the expression:

8 =4nr_D_c (3.2)

L



is adequate to describe precipitate growth rates, but more accurately the
recursive relation may be usad:
= l+r ¥8C1D ¢ (3.3
Bn am o t p ﬁn p] aa
In some cases the growth will be limited by transfer of atoms at the interface
between the precipitate and the matrix, in which case:

Bn = 47 Ka rp1 c, (3.4)

where Ka is the interfacial transfer velocity.

When precipitates are in the form of facetted polyhedra, the growth rate may be
constrained by the number of sites on facets where solute atoms can be
accepted. We will discuss this further when we describe the mobility of small

particles.

Growth of precipitates on grain boundaries can be described simply if growth is

limired by grain boundary diffusion of the solute;

g = nd D ¢ (3.5)
n ga

ga "a
ZIn(C/r ) - Bil-r 1/63
[4 In( /rp) %< T /€3]]

where oga and Dga are the effective width of the boundary and the boundary
diffusion coefficient for the solute, C is the radius of the circle
representing the area occupied by each precipitate on the boundary, and the
radius of the precipitate on the boundary. When there are very few

precipitates on the boundary and C))rp, then we can use:

B =126 {(3.6)

D c
n ga ga a

Growth of precipitates on boundaries can be limited by diffusion of solute to

the boundary through the lattice, in which case:

B = 4nC? D, c/3d 3.7)
n a a g

provided there is no trapping of the solute by other precipitates. S3imilarly,
the expression for Bn can be found for precipitates lying on dislocations,
where growth is limited by either dislocation pipe diffusion or to dislecations

by lattice diffusion.

Ideally, to study growth of precipitates, we should set up a system of
hierarchical equations and solve them for the whole range of precipitate sizes.
However, this can only be done for studies of small atomic clusters, and some
means of simplifying the problem must be fournd. Closed form solutions are
possible, but only when Bn< @, for large n, which is a case not directly of
interest to us, The problem may be reduced by replacing individual classes of
cluster by groups covering a range of sizes, and this is useful for some
problems. Where there is no nucleation barrier, a moment analysis can be used,
an example is shown in Transparency 3.4. Where there is a barrier to

nucleation, a Fokker-Plank method can be used,

Treatments as described above will effectively cover nucleation, growth,
ripening and dissolution if the supersaturation of the solute turns into a
sub-saturation. For most modelling purposes however, much simpler descriptions
of ripening and growth will suffice; the main problem being the fixing of the
initial precipitate concentratien. In these simplified treatments, a
representative precipitate radius is used. Some examples of simplified growth

and ripening expressions are given in Transparency 3.6

Precipitate ripening or c¢oarsening is very important to the understanding of
recovery and primary recrystallisation processes. Ripening kinetics for
isolated precipitates are of the form rp x(Da T)1/3, for grain boundary
precipitates rp m(Dgat)%, and for precipitates on dislocations r °-=(Dpat)1'/5
or (Dpat)1/6 depending on the network configuration. This leads to great
uncertainty on the time for critical coarsening and reduction in the apparent

activation energy of the ripening process.

3.4 MOBILITY OF PRECIPITATES AND CAVITIES

The mobility of precipitates is perhaps a concept that does not come easily,
but it is none the less important, as we shall see in determining grain
boundary growth rates and in some circumstances precipitate coarsening. The

mobility of cavities and bubbles is a special case with its own features.

3.6



Mobility of precipitates implies a transfer of material from one side of the
precipitate to the other, see Figure 3.2. The precipitate mebilities for the
various paths are described in Transparency 3.7. At any one temperature and
precipitate size, a mobility mechanism will dominate. Figure 3.3 shows an

example of a mechanism map [or precipitate mebility.

Mobility of bubbles or cavities is different in that only the transport of
matrix atoms is involved, see Figure 3.4. The presence of gas in the bubble
has a profound effect on the bubble mobility. An example of bubble diffusion
in stainless steel is shown in Figure 3.5, Additionally, small bubbles and
precipitates are often facetted and not spherical. In this case the bubble or
precipitate diffusivity is controlled by the nucleation of ledges on the
surface of bubbles. The diffusivity is multiplied by:

L exp (-» E L/2kT)

where L is the ledge length, Ty and E is the energy to nucleate a ledge. The
correction for bubble or precipitate facetting is controversial and not yet
fully understood.

3.5 GRAIN BOUNDARY MOBILITY

Grain boundary meobility is controlled by the intrinsic grain boundary mobility
in the absence of precipitates, or by the driving force for boundary motion teo
break the boundary away from the precipitate. Otherwise, the grain boundary

motion is dependent on the mobility of the precipitates.

The velocity of a precipitate is given by the Einstein equation:
v_=D_F /kT
P P P

whers Fp is the force acting on the precipitate. The velocity of a grain

boundary is given by:

Veb = Mgn Peb

where Hgb is the grain boundary mobility and pgb is the pressure driving the

grain boundary motion, usually a grain boundary interfacial energy pressure.

The force on a particle lying on the boundary is:

where Ap is mean grain boundary ares per particle. If it is assumed that the

boundary touches a random distribution of particles within a distance of ir
then:

A =311 3/3f
P s

where F is the volume fraction of precipitate. Fer purely grain boundary
precipitates Ap would be defined in terms of a grain boundary precipitate
density,

When grain boundaries are pinned by particles, the grain boundary mobility is
simply:

Hgb = Db Ap/kT

If the force on the particles is large enough the grain boundaries can break
away. Zener propcsed a mechanism for unpinning where 'the force on the particle

exceeded the force needed to break the interfacial energy:

Fp)nrpTi

This leads to the relationship:

pgb >3 f ri/2 rp

Rios has evaluated another model based on the boundary sweeping through a
population of precipictates and bypassing them by bending arcund the particle
and enclosing it in the same way as the Orowan mechanism for dislecations. The

criterion for breakaway in this case (in normal grain growth) is:
r >6 fR
P gb

3.8
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where Rgb is the grain boundary radius. In practice, this is about an order of
magnitude larger than the Zener model and closer to experimental observations.
A machanism map for regimes of grain boundary mobility is shown in Fiture 3.4,
and micrographs of grain bcundary bubble and precipitate interactiens are shown
in Figures 3.Pa and b. Ripening control is where particle mobility is low, but
ripening eventually results in the boundary being liberated when the

precipitates grow beyond the critical zone.

The mobility of grain boundaries is also influenced by solutes in a similar way
to that of dislocations. Solutes segregated to grain boundaries will limit the
intrinsic mobility as the sclutes are dragged along with the boundary. At
sufficiently high pressures on the boundary the boundary may break away,—see—
Figoee—3=F. The intrinsic mobility of boundaries is determined by the
diffusion of atoms across the boundary thickness (a relatively low energy

process) and the intrinsic mobilities can be very high.

3.9

Temprature (T/Tm)

Solution Temperature

Coarse

Equilibrium

U L

0.8

Precipitate

Structure

Fine

G.6+

Metastable

—

finish

L

2=
Vﬂ'
o

Martensitic structure

0.2

Time

Fig. 3.1.Schematic time-temperature-transformation diagram.



FuUSION OF
"‘/MATRU( Dmm e

- R
g g :E rr: 3 :g ~ o~ - 3 - - DIFF05|0N OF ®,
2 ® ™ -~ o oA g oS *{,’, THROUGH PARTICY
(=)
L o
+ - o
s A —
[ ™
~
L )
x (=] £,
S > "~ g
e e M D’FFUSION QF @’
— 5 IN MATRIx D
G
o
= E Fig. 32 Diffusion paths
| [«]1]
4]
) RTIC ity « 10
- PA LE Mablity © 10" mN T /—‘
J4 = . o MOBILITY DIFFUSION IN Y o2
w o PARTICLE A
4 X - Daa® 10 ads” / o
- & P R I 9
4 __(_:i Oap» 521073 mis*
o ) Ko » 5234 mint 2"
_ 5. ” Comain’? — / ©
Q g RTy # 20 /
— qi-: o G /AT m ok
o~ o Go /AT =12 _ -~
n o /AT = 23 BIFFUSICN TN
— L)) d Q/RTy = 4 MATRIX
— C)- é = / Q4
= -
4 5 E o :
+ 5 Y
¥ o ( }
v o /
1 | 1 1 1 1 i = g‘ ) ] ]
- > & 5 INTEAFAGE o
= g Uo_‘ 8 ‘?1 g 5_:,‘ o o @ = T | wnNETIC CONTACL BIFFUSICN
= ‘
Cal - A @ g T
— E o
. P <
de J8NLVHIdHIL |
'oo o 2 ry [+3X-] (=]

[=2
HOMOLOGOUS TE\IPERA: URE T/Ty,

Fig 3k

Fig. 373 Pacticle weokily mp (Ably )

- Tty

oy



|

]
Q
4]
Y=
[
2
1]

diffusion

v G opraggen Wvpsg T 0 gp By

A 3UNL¥Y3dNEL SNODOTONOH

Q:l B8-0 | : _ I _vo NO 00_
N/ M

@-Ol PNgWy Ol g D1 -0l 02-Olgp Oy e Of ¢ =y o
-Oi = ) v = Y0
WO = 8 2T TN 0
_ fgeO'*e = :.:. Z1 = My %0
.o Fl= My 0

— TOHLINOD — .\_ca oz s " vo
\ DILINDA o1 = M o
NOISN4410 — O =%
IOV4U3ILNI - QXL ="
1.5 pu vbﬁ-m - Oy

(oW sOiEs = ¥og | ol

XigLviN YL -
L] O w weg
Ni NOISNAHQ rET

3NLHvd Ni
ZO_mDu..Fa\

iz ¢ Ol = g
'Illljlll-l

AOYLNOD
ONiNIdIY

P

Y T

o

.- Fw_'.,ll o_.o_ﬁ o_b... o_xo_h Ot 5_“50_2 «lu_l o
ALITIBCW 2JISNIYLNI ALITIEGONW
_ : _ AIYANNOY
Ne |

O (rotal}

F';S . 30-"D.if-—4-—-\. }74@( fre corilinn el bolblay

Log 10
19

{,-5 zW) SIUBIDL§90D uoisnyy|P ALADD

%%, SNIAYY ITIDILEV] Q3SIIVHON

14

Cavity radius {nm)

Fig. 2§ Cavity migration in an austenitic steel. Experimental

data (@) from Walker [10] and lines given by equations in

( Goenlions)

text.

L.



<y.37b G e
5 + }
3{ W--L-.MJ , N stbide ced  glalow stZed
- 1o56°C . Eladhiom v f“k)‘\. -
{A.IG.M‘,HUU(-[[;, ('!‘rk)



TRANSPARENCY 3.1 TRANSPARENCY 3.2
Classical Nucleation Theory Rierarchical Nucleation and Growth Medels
The simplest case is for spherical precipitates where the precipitate free We follow the notation of Fell and Murphy.

energy is given by:

The hierarchical equations lok at the growth of clusters of atoms of each size

AGP = 4y rpl Ty + 4n ;p: AGV/3 and the transfer of atoms from cne size to the next:
AG is the free energy change per unit velume, This is made up of the chemical . » w

v o G, =G-2BC. -) bC +Y act
free energy change per molecule divided by the molecular volume and the local 1 171 oy mB S, nm

increase in elastic strain energy. AGV must be negative cverall for nucleation

to occur, AGp goes through a maximum as the size of the precipitate increases,

see Figuse-3-b. The height of the maximum AG * is a measure of the nucleation 62 = Blcl - GZCZ - BZC2 + a3C3
barrier:
86" = 16w y,3/3 4G, Cy = 8,8, ~ gy - Byly ¢ a,C,
and the embryos have to reach the critical size T to become nuclei: Cn = Bn—lcn—l - Gncn - Bncn * un+1cn+l
r* - Ti/ﬁﬁv where G is any source term, Bn is the probability for unit time that a cluster

size n accepts an atom and moves to size n+l, a is the probability that n

. . . . . reiects an atom and moves to size n-1.
The nucleation rate is given by the rate at which embryos take the final step ;

over the barrier to become nuclei:
B =45Dcr
n a’an

and
M * *
N=HN A texp {-AG /kT) exp (*Ham/kT) a = Bn (ce/ca)[(n—l)/n] exp [—(AGn - AGn_l}/kT]
- *

where T is the atomic vibrational frequency (-10%3s 1), A is the number of where Ce is the equilibrium cencentration ef a and L is the radius of a
sites at which an atom can join the embryo, No is the density of possible sites cluster size n.
for nucleation, and Ham is the activation enthalpy for migraticn of a solute
atom. ce/ca = exp (—AHan(Ts_T)/kTTs)

4G - MG =2 7,/7,



TRANSPARENCY 3.3
Reconciliation of Classical and Hierarchical Thecries

Clement and Wood have shown how the classical and hierarchical theories of

nucleation can be reconciled for the case of steady state nucleation.

In this case:

N=pC ~a

164 - aC

22 7 Pl ol = By G - ey

up to the critical nucleation size, assuming Cl is approximately constant. A
real barrier is needed for the nucleation process:
L
7 1

J=gc o +n§2 §02947/B5)

After some approximation:
*
= = E] P 2
AG AGP (nc) 16 8; [Ts/ﬁﬂv (Ts T)}

n, = {(33n/3 ﬂa) [Ti Ts/AHv (TS~T)]‘

which is derived from de(n)/dn=0 when
AGp(n) = kT[1/3 !n(ncln) - n !n(ca/ce)} + AGn

The nucleation rate is:

N= -1 4286 () BB (2a1/am® exp (86" /KT)
S ne a
2nkT dn?

TRANSPARENCY 3.4
Moment Analysis for Precipitate Growth with no Nucleation Barrier

All clusters of atoms of two or above are considered as precipitates, and the

pepulation is characterised by three gquantities: the total number of
o

precipitates C_ = § C ,
n=2

«®
the mean number of atoms per precipitate A = ] n Cn/Cp
n=2

and the second moment of the distribution Hz =Y (n-R)? Cn/N. Expanding Bn
n=2

and n; about their values at n, and putting in & set of nierarchy equations,

the following set of equations can be obtained after neglecting moments higher

tnan the sacond:

:Eil =G-d(iC)
dat. 4ak

dC
_p=pBC-acC
at 171 2

d(nC_) i} Cp (Bn ~a )} +MC g;] (Bn - an)ﬁ + 2B1C1 ~ uch
dt 2

4 (Mch) = cp(ﬂn -a) + ML A (B +a) +MC 4 (B - &) =

2 =3 27°p

n
dt 3 dn? dn

+ (5-2)’B1C1 - (ﬁ-l)’u2C2

These equations can now be solved numerically fairly easily, except that a

value is needed for C2. This is dealt with by assuming a distribution of sizes

of precipitates, e.g. log-normal:

- 2.5
Cy = G [15 Finddn
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and

P(n) = 1  exp [-[&n{(n-1.5)-n]?
nov 2n 202

A= 1.5+ exply + 0/2)
M, = exp(2yu) exp {o?) [exp(o?)-1]

p and o? are the mean and standard deviation of the corresponding normal

distributicn and an cffset of 1.5 has been used,

TRANSPARENCY 3.5
Fokker Plank Equations for Growih of Precipitates

The Fokker—Plank Equation is:

%C(n,t) _ _gﬁJ(n,t)
where the flux of atoms through the distribution is:

In ) = 7 Clny - &2 Cmbl

The first term F = f§; — an is the drift term and the second term is 2 = 4(fn + an)
which is the drift term.

Hierarchy equations can then be used to generate the growth of small clusters up to a value

n.. Larger clusters are described by:

1 = J(ac)
din _ 1 [(ne—0)J(net) + P Clnc,t)] + F
HT_U;[( i) (ne,t) {nc.t)]
M. - [(nc—ﬂ)LM?]tI’_(nc,t) + n[(nc—ﬁ)cg net)+ 1.
P p

The drift and dispersion terms are evaluated at f and C{nq1) is found by assuming a
distribution function — as in the case of the moment method.
The nucleative flux is:
J{tie,t) = Pnc-1Cne-1 — OneCae
The value of n. is chosen by finding n where @, = fr or by choosing a sufficiently large

value.



TRANSPARENCY 3.6
Simplified Growth and Ripening Equations
Initial phase of growth where solute is not depleted

g{n = Dana(Ca—Ce)/rp:

I - (Dat)i.
As the solute is used up the concentration varies as:
4 Ca = _ 4 (aC,) = ~{47)»/3(30 1) C,Da(Ca-Co).

For surface transfer controlled growth
g—i‘ﬂ = Kaﬂa(ca"ce)
and for growth on grain boundaries
drp _ 8:3D..0{Ca—Ce)
Jro = SpaDpaCaCe),
Ripening is the growth of the precipitates by the transfer of solute from the smallest
members of the population to the largest driven by the interfacial energy.
For ripening by lattice diffusion we may use Greenwood's expression:
drp _ aDaCelly 2y
T = tp3 kT
where o, is a constant between 1/3 and 3.
For ripening of grain boundary precipitates
dr, _ Gefigal 2aCefladyi
T = tp? T
where in this case o, varies between 1/20and 2 and is dependent on the shape of the

precipitate.

[Sep)

TRANSPAKENCY 3.7
Precipitale Mobility
Diffusion in the matrix
solute diffusion
Dpa = 3 CuDaft/47 1,3
matrix lattice diffusion
Dag = 3DLﬂf47r .
Diffusion in the matrix precipitate interface
Dig or Di, = 3 §Di0/2m,4.
Diffusion in the precipitate
precipitate atom diffusion
Dpa= 3DLPQ/41r Ip?
matrix atom diffusion
Dpn =3 CoDafd/d7 rps.
Interface reaction control
Din 0r Dyg = 3K0/27m,2

The various contributions to bubble diffusivity are combined by:

D :[ 1 . 1 R | ]
n Dnn+Dim+me Dla+Dia+Dpa Dﬁ D_i:;
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TRANSPARENCY 38
Mobility of Cavities and Bubbles

Lattice diffusion

Dy, = 3D, /47Ty
Vapour transport

Dy, = 3 226P 2, D/d7 kT 131,
where J is the departure from gas ideality, Pyap is the vapour pressure of the matrix and
D, is the diffusivity of vapour in the gas which is dependent on the gas pressure.
Surface diffusion

Dys = 34Ds0 W(np)/27 rp!
where W(ny,) is a parameter controlled by the presence of gas atoms interfering with the
surface diffusion.

Win) = exp [~ 1223 (1 + o + (i
where Q is an interaction parameter which is dependent on gas and vapour species.

Dy = Dy, + Dy, + Dos

LECTURE 4
MODELLING DISLOCATION POPULATION EVOLUTION

4,1 INTRODUCTION

In this lecture we will look at the formation of leow energy dislocaticn
contigurations using different modelling techniques. Each technique has its
limitations and we have yet to develop a fully satisfactory set of tools for

repreducing all aspects of dislecation behaviour.

The first technique we will look at is the modelling of the dynamics of
individual dislocations and their interactions, This can only be done by
making some major approximations. Despite this, many features of observed
structures can be reproduced. The second technique aveoids describing the
spatial variations but uses reaction kinetics (or rate theory) to look at the
average behaviour of the material. In this way the structural changes can be
used to predict macroscopic properties. The third technique is the modelling
of spatial variations of dislocation density by continuum methods, This
technique is in its infancy and has the potential of being a very powerful

tool,

4.2 DISLOCATION DYNAMICS MODELLING

We will use the work of Amodeo on two dimensional arrays of straight
dislocations to illustrate this technique. In principle, the modelling of
three dimensional dislocation interacticns is possible, but will require
enormous computing power to be useful. A simplified model of the two
dimensional dislocation population behaviour has been prepared for these
lectures as a BASIC program that permits an interactive animated display of the
dislocations on a PC screen. This program permits the effects of ratio of

climk to glide mebilities, fiow stress and applied stress to be investigated.
For a two dimensional simulation the following items are required:
(a) Dislocation Configuration
First of all, the dislocation system has to be specified. In most of the
examples given below either sets of dislocations with the same Burgers

vectors, but with mixed signs or sets of orthegonal dislocations are used.

4.1
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(b)

(c)

(d)

(e)

There is no reascn why real slip systems cannot be simulated, but once
dislocations on different glide planes interact and dislocations bow out,
they cannot be treated as points representing straight lines. A meso-scale
model of curved dislocations is required, but ne bright suggestions have

been made yet.
The forces on the dislocations

These forces arise either from the mutual interaction of the dislocations
or from an applied streass. The forces between dislocations are described
in Transparencies 2.1 and 2.2, The forces are resolved into climb and

glide components and summed up for each dislocation.
A boundary condition

Twoe boundary conditions are commonly assumed. The dislocation can be
contained in a repulsive box, where it feels a repulsive force as it
approaches the box boundaries. This boundary condition can represent the ?
image forces for a surface or a grain boundary. Alternatively. a periodic

boundary can be applied.
Dislocation mobility

The velocity of each dislocation is calculated from the forces and the
dislocation mobilities., In Amadeo's DISLODYN model, realistic mobilities
are calculated representing the true mobilities of dislocations in real
materials for a given temperature. In the simplified medel used in the
demonstrations, only the ratio of climb to glide mobilities is specified,
but a thresheld stress is applied to glide to account for the material flow
stress.

Definition of dislecation interactions
Before modelling starts, the range of dislocation interactions has to be
specified. Dislocations of opposite sign that come within a critical

distance:

Yo T H b/2n Te

will annihilate. If they are a slightly larger distance they may be
immobilised and form a dipole, or if the leocal stress con the dislocations
is large enough they may pass by one another. Dislocations of the same
sign will attract one another if they come within the zune defined in
Figure 2.3c. Edge dislocations of different Burgers vector are generally
attractive and will form a lock if they come within a similar distance Y.
Locked dislocations can be unlocked by the arrival of a dislccation of

opposite sign to one of the locked dislocatiens.
(f) Other features
Dislocation sources can be introduced where a new dislocation is generated

if the local stress is above some critical value representing say, a

Frank-Read source.

—

tg) Time steps

The evolution of the dislocation population is described by taking short
time steps over which each dislocation moves a distance determined by its
velocity. At the end of the time step the forces and velccity are
recalculated for the new positions. In the simple model, a fixed timestep
is used, but in a DISLODYN a complicated set of criteria are used to ensure
that no distributicon reaction is missed due to too large a dislocation

movement,

Such dislocation dynamics models can be used to study a wide range of
dislocation patterning behaviour, where there is no dominant three-dimensional
interaction. Figure 4.1 shows a sequence from the DISLODYN model for the
generation of persistent slip bands in fatigue in copper at 25°C. Figure 4.2,
shows a sequence describing dislocation cell formation in iron at 600°C. The

data used in the calculations are given in the attached Tables.

4.3 SUBGRAIN FORMATION AND DESTRUCTION
The formation of subgrains results in a reduction in elastic energy compared
with a random or uniform distribution of dislocations. If we take the exanple

of a heavily ccld worked material, the dislocations will form sub-grains of a

4.3
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characteristic size during recovery. However, this is not an equilibrium
condition and continued annealing will result in a continued coarsening of the
subgrain structure, The driving force for this can be seen by looking at the

energy per dislocation in the boundary:

E (per dislocation) = p b2 i n
4n{l-v) b
or = _pb?

anfiy) I bo, d

where h is the spacing of dislocations in the boundary, is the density of

P
b
sub-boundary dislocations and d is the sub-boundary diameter.

Holt has shown that a uniform distribution of dislocaticns is unstable to any
small perturbation, and this will result in a heterogeneous structure with a
characteristic wavelength. He looked at perturbaticns in the dislocation

density for the continuity equation.

We will return to his methed under continuum models in Section 4.5, but for the
moment we will note that the wavelength for rhe dislocation clustering has
value which is proportional to lfpox, o, being the initial dislocation density.
This technique, however, cannct provide the constant Kc in the empirical
observation:
%

d = Kc/po

Values of KC measured for iron are typically around 5 and this compares well

with values of around 6.4 to 8.4 estimated from the DISLODYN model.

Gittus has used a free energy minimisation argument to arrive at a value for KC

This requires a specific model for creep and has the unexpected result:
K - 1.58/¢,%0"
c ]

This gives the observed values of KC for rather unrealistically high values of

The key to the understanding of subgrain size during creep is that there is a
continuous process of subgrain nucleation and destruction. Subgrains are
mobile and their mobility will be a function of their complexity. The mebility
will be constrained by the slowest moving components and will inevitably
involve climb processes as well as glide. In real materials the subgrains may
act as precipitate nuclei and will also tend to have saturated solute
atmospheres. Subgrains will coarsen in a similar way to grain boundaries. The
driving pressure will be the boundary energy and the smallest grains will

disappear first.

The description of subgrain growth and destruction in the lecture is taken from
Section 2.6 of the paper entitled "A Dislocation Model for Creep in Engineering

Materials" by Ghoneim, Matthews and Amodeo, which is appended to these notes.

4.4 REACTION KINETICS MODELLING OF CREEP AND RECOVERY

The description of reaction kinetijcs modelling of creep with subgrain formaticn
is taken from the Choneim, Matthews and Amadeo paper. Transparency 4.1 gives
an overview of the rate equation used to form the CREEP computer program.
Figure 4.3 shows an example of the stress distribution found within subgrains,

taken from the work of Gibeling and Nix.

4.5 CONTINUUM MODELLING OF DISLOCATION SPATIAIL DISTRIBUTIONS

Continuum modelling of dislocation distributions is as yet only in its infancy.
There is a need tor a good tensor to represent the dislocation distribution.
The Nye tensor is inadequate as it only permits the net excess crystal
distortion to be monitored, which is fine for lattice curvature calculations,
but is not of much use for plasticity studies. The dislocation loop tensor is
mote useful, but has some drawbacks. Much of the work done so far has used the
Scalar dislocaticn density. Despite this, many of the results have been
impressive. The main technique has been to perturb a uniform dislocation
distribution to look for symmetry breaking effects with dominant growth

behaviour,

We will start with the continuity equation:

1l
(3]

dp +div J
dt



where J is the dislocation flux and G is some generalised source or loss

term for the distscations. ¥ will have contributions from drift of
dislocaticons in any elastic field and a diffusive term:

J =-pD, grad E + Ddgradp
kT
where Dd is the dislocation diffusivity = kTHg or kTHC.

Holt in his analysis of dislocation cell formation, just used the drift term.
Ke considered thai on average dislecations of positive and negative sign were
equal, but locally there would be a distribution f{(r) dependent on the overall
dislocation density that favoured dislocations of opposite sign close to a
particular dislocation, and slightly disfavoured them further away, bit that
beyond & radius T, there would be equal numbers, see Figure 4.4. The elastic

interacticn energies of dislocations would be described by:

I
E[ = J‘rz r {(r) yb? In (R /r)dr

where T, is the dislocation core radius and Ro the overall crystal radius. A
dislocation distribution in space is now considered as a perturbation of a
uniform distribution Py i.e. p(x,y) = Ap(x,y}. Up to several crder terms the

interaction energy fluctuation is:

B, = F| & - F, V*Ap

where

m
n

T
Irz (v/p ) E(x) yb? Rn(r_/r)dr

T
F, = J“r‘; (r3/4p) £ {r) wb? In(R_/r)dr

If there are no source terms then from the continuity equation neglecting the

diffusive term:

%%9 - PD4LF, 7% Ap + F9c Apd

|

The solutions of this equation are:
Ap = A(B) exp (Bt) cos (B.r)

B=pD Fl B* ~p D F2 B

the fastest growing value of B is given by B? = ];'IIZF2 with a characteristic
wavelength Am = 2n(2F2/F1) . Any reasonable choice of f{(r) gives Amx rEp,
Aifantis and co-workers have used the diffusive part of the continuity
equation. They also split the dislocations inte mobile and immobile
populations with a particular model for the exchange of dislocations between

the two populations:

dp.
1 = = 3 o+
T glpy) - bop *oypp; b Ve,

dpm
—_— = - ki ]
dt b Py TPt Dm v Pm

As can be seen from these eguations, the immebile population is the only real
source of new dislocations. There is no annihilation term. Mobile
dislocations are immobilised at a rate determined by the interaction term

PiPn and the local stress, which is determined by the immobile dislocation
density. 7The remcbilisation of immobile dislocations is found to be a critical
parameter. These particular choices of terms are only one of a range that
could have been chosen, but they have proved useful in the understanding of
persistent slip bands (see Walgraef and Aifantis in Res Mechanica 23 (1988)161)
for a description. However, even the analysis of homogeneous steady state
perturbations in cne dimension have given the encouraging result that there is

a characteristic wavelength which can be shown to be propertional to l/pi%.

The above model can be further elaborated by differentiation between
dislocations of opposite sign. So far, continuum models have been handicapped
by a lack of ability to deal with local interactions whose rate is determined

by small scale heterogeneities.
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CReeP Meodel with Sub - g, Bruwdars Kinekics

Creep Strain-Orgwan Equation
de/dt = b,amvg
obile Di t si

dpg/dt = Production from the mobile population and subgrain walls —

annihllation at subgrain walls — climb recovery -— dynamic
r!CDVEr}f
don /2 ARy o 372 Vem
ac v&[pm * h2 T2 Rgeb - B ’m (q) i Spm(pm + ps):l
tatic Dislocatio sit
dpg/0t = Immobillization rate at subgrain walls — climb recovery —
dynamic recovery
dpg

Pu s Ves
at Vg[(Z Rsb) -8 h (vg ) - E'amps]

Bounda c e

dpy/3t = Production from static population — annihilacion by
creation of new subgraln surface

dpy Ve  Ph 2
raie B(1 - Zf)ps i (E;Emsb(ps - 2"rprYSb)

Subgrain Rad
dRgp/dt = Growth by reduction of surface energy — shrinkage by

nucleation

dR
sb 1 172
dt Hsb(ps ) 2:rrPNP15b) ) p"chRsb[(Pm * ps}
K, 710Dg
"3 Rsb]ﬁ

TABLE |
Data for PSB Simulation Cases

Material

Dipole width f";l)ir;rp”
Annihilation width as5h

VSST ) 112/15

Applied stress Ay M[;'

Imitial dislocation density ;~Hh xdlll'" 'm
Friction siress ;Ml" o
Temperature 25 °Cd

TABLE 2

Data for Dislocation Cell Simulation Cases
Matenial Iron
Dipole width 1306
Annihilation width 656
Junction width 40b
Applied stress 100 MPa
Initial dislocation density 4-00 % 10" cm~?
Friction stress 14 MPa
Temperature 600 °C
Initial dislocations 400
Dimensions 1 um®
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LECTURE 5
MODELLING RECRYSTALLISATION

5.1 INTRODUCTION

Modelling of recrystailisation is not as well developed as the modelling of dislocation
substructures. This may be because the mechanisms for driving the processes involved in
nucleating new grains are not well understood. Classical nucleation theory has been
applied and found wanting and in real materials segregation and precipitation are often

dominant in controlling the microsiructural evolution.
5.2 THE DRIVING FORCE FOR PRIMARY RECRYSTALLISATION

It is usually stated that plastic strain energy i8 the driving force for recrystallisation, but it
is not as simple as that. Incubation times are reduced for higher levels of cold work, but
tecovery processes remove most of the strain energy prior to any recrystallisation. In fact

recovery is probably a neeessary prelude to the nucleation of the recrystallising grains.

Classical nucleation theory, as already described for precipitate nucleation, requires an
embryo created by some thermal fluctuation to exceed some critical size and start to grow
ie the free energy change is
AGT =471 g — 4x 13 AGf3,

with a critical radius for growth is:

Ig = — 27gberw
and the free energy barrier that must be overcome is:

AG " = 167 15b/3Gy

In this case AQ, is the stored plastic energy from the cold work.

An alternative approach is to look at nucleation of new grains by the coalescence of
sub—grains. In some cases sub—grain coalescence will result in the formation of a high
angle boundary. Such a high angle boundary is likely to have a higher interfacial energy h
but also a higher mobility. In a few cases when such grains are formed they are large
enough to grow, rather than shrink and their driving force for growth will be the absorption
of sub—grains, see Fig 5.1. It should be noted that the growth of sub—grains is probably
limited by dislocation climb and cross—slip processes, in which intrinsic grain growth is
only limited by diffusion across the thickness of the boundary. An estimate of the
sub—grain interfacial energy is:

Y5b = pb2pnd /6.
Alter deformation pp - (7/ub)? and d - (10/pb*). This gives an estimate of the

g -

sub--grain energy as a function of stress or strain through the work hardening refation:
Y5 @ 10b7/6.
The grain boundary interfacial energy is typically 0.5 J/m?, compared with the sub—grain '
boundary energy which is expected to lie in the range 0.03 to 0.2 J/m?, depending on the
degree of cold work. This corresponds to an energy density of - 672/n ie 108 to
3.6 x 107 J/m3, which is comparable to siored energy measurements in deformed metals. A
grain nucleus would in general terms only have to be a factor of 2 to 10 larger than the
local sub—grain boundary size in order to grow. The incubation time for primary

recrystallisation nucleation will be determined by the timescales of sub-grain evolution:

LR

g 4 = 8ub2ouMup/3
if no precipitates are present and My is controlled by either dislocation pipe diffusion or
by lattice diffusion. Nucleation should occur when d has increased in size by a factor of 2

to 10.

53 PRIMARY RECRYSTALLISATION AND PRECIPITATION
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Precipitation can alfect primary recrystallisation in many ways. If the precipitate
distribution is fine enough it can anchor the sub—grains and prevent sub—grain growth,
Some slow evolution of the sub—grain structure may occur or more likely recrysiallisation
has to wait until the precipitate density ahs coarsened sufficiently to release the
sub—grains. Irradiation can play a role in this as precipitate coarsening rates can be

considerably enhanced by radiation resolution of precipitates and enhanced diffusion rates.

Large precipitates or inclusions can also provided sites for primary recrystallisation
nucleation, see Fig 5.2. Large hard precipitates act as barriers to dislocations and also
provide sites for local stress concentrations. The larger the particle the more likely that
recrystallisation will be nucleated in the vicinity of the particle. It is generally observed
that the recrystallisation nucleate at sub—grains ciose to but not at the particle surface.
Often recrystallisation nucleated in this way will continue unti' | it covers the deformed

zone around the particle and then stops, see Fig 5.3.

The subsequent growth of grains once they have been nucleated will be determined by the
grain boundary mobility and the driving force provided by the sub—grain structure. The
pressure driving the grain growth is:

Pen = 142 — 182 % u bo/6,
which is essentially constant during the growth. hence the kinetics are predicted to be that
which is observed where

G = vgo = Mgp 1 b2 /6.

Mgy, will be determined by the intrinsic mobility, solute drag values or particle mobility as

apprapriate.

The experimental observation of grain size after primary recrystallisation is that the grain

diameter is smaller for larger amounts of cold work strain. This corresponds well with the

e

model of nucleation from sub—grain coalescence, where we would expect the number of
grain nuclei 4o be directly related to the original sub-grain density, ie inversely related to
the sub—grain diameter. Where ptimary recrystallisation is nucleated at large particles,

the recrystallised grain size will be proportional to particle spacing.

For small particles, if the particle spacing is small compared to the sub-grain size and
particles are dragged as the grain grows, the task gets harder as time increases. The area
occupied by particles decreases and the grain boundary mobility will markedly diminish.
Where the particle spacing is wide, the grains may be undented between particles. The
grains will grow until they touch the particles. At this grain growth may cease if the
driving force for growth is insufficient, ie if:

p < 121 ¥gn/1p.
Further grain nucleation may occur before particle mobility or ripening will permit further
grain growth. This will put an upper limit to the grain size to approximately the particle

Spacing.

54 GRAIN GROWTH AND SECONDARY RECRYSTALLISATION

In the previous lecture we have described in some detail the factors influencing grain
boundary mobility. In this lecture we will look at the grain growth subsequent to primary

recrystallisation and compare the driving forcs with those for normal grain growth.

Normal grain growth is a more or less uniform increase in grain size that arises from the
smallest grains in the size distribution shrinking at the expense of their neighbours. The
driving force is the resulting decrease in grain boundary energy. Usually a spherical grain
boundary model is used to derive the driving, but there are geometric considerations to be

taken into account. In fact for a two—dimensional array of grains a stable polygenal grain

Aoy



structure can be established. For three—dimensional grains this is not possible, although
the grains are polyhedral in geometry. This is because no boundary can have the ideal
tetrahedral set of angles at all its nodes. Such geometrical effects can influence grain

stability and it is not always the smallest grain that shrinks.

The simplest treatment of normal grain growth just models pressure driving growth as a
function. of the mean grain size, ie:
p=C /D
where C is a constant greater than 1 reflecting thai the grains shrinking will be smaller
than the average. The grain growth rate is then proportional to the velocity of the
boundary:
-0y gt
or
D3 — Dy = Kt,
which is known as the parabolic grain growth law. The parabolic growth law can be
derived from more complicated analyses that take into account a realistic distribution of
grain sizes. In particular a Fokker—Plank equation can be written to represent the

redistribution of grain size. Feltham and Hillert use just the drift term

A s (tvgy) =0,

where f(D,t) is the grain size distribution function. The problem is essentially the same as
that for ripening of precipitates. Computer simulation techniques are currently being
developed that permit a more realistic simulation of a limited population of grains.
Monte—Carlo models are commonly used. The results of three—dimensional models, made
possible for usefully sized lattices by super—computer, indicate kinetic with higher power
laws than the parabolic law:

Do —D,® =kt

where n lies between 3 and 4. This is close to observation values.

(Y

Higher values of m can be derived when the mobility of the boundaries is dependent on
drag of precipitates or pores. The mobility of a boundary sweeping up precipitates will
diminish rapidly. The value of m will depend on whether there is coalescence of particles.
If there is no coalescence and the precipitates are uniformly distributed we might expect n

to lie between 4 and 6, which is the observed range.

This type of normal grain growth is usually only seen at the end of what is known as
secondary recrystallisation. In secondary recrystallisation, the relatively fine distribution
of grains grows by a few grains absorbing the rest. In a similar manner to growth during
primary recrystallisation the growth rate is constant after an incubation period. This is
because the driving force for growth remains constant once the cannibal grains start to eat
the others:

P = Y/ Dpe
where Dy, is the mean grain size at the end of primary recrystallisation. The anticipated
grain growth rate is simply: *

D
%T = Mgb'l’gthpc-

Secondary recrystallisation may in faci start with normal grain growth but the very large
driving forces involved may lead to an instability. It is also possible that some grain
boundary relationships have a particularly favourable orientation for growth which causes a
few grains to grow rapidly initially and nuclear the abnormal growth. If such relationships
are rare the possibility of a few occurring in a sample is more likely when the grain size is

small, b

The presence of a solute segregated to boundaries may also destabilise the grain growth. .

A grain that can break away from its solute could grow rapidly and again nucleate

abnormal growth. However, there are special features of the grain distribution after



primary recrystallisation that may predispose the grains to abnormal growth. Firstly, the
random nature of the primary recrystallisation nucleation process will lead to a distorted
grain size distribution which will have a few grains much larger than expected from a
normal distribution. Secondly, the grains after primary recrystallisation will tend locally
to have a pronolunced texture arising partly from the deformation process and partly from
the original unrecrystallised grain structure. This texture also appears to destabilise

growth.

The relationships for pinning of grain boundaries during abnormal grain growth are
different from those in normal growth. The critical size for a grain to grow by abnormai
growth derived by Rios is:

D.> Dpe/[3(1-Dpef/rp)].
Rios has derived a map relating the probability of normal growth, abnormal growth and
pinning to the size distribution of the grains, see Fig 5.4. Precipitate pinning can

destabilise grain growth in a similar way to solute segregation.
55 DYNAMIC RECRYSTALLISATION

In Lecture 1 we have outlined the main observations in dynamic recrystallisation. We note
here that at high strain rate and large initial grain size continuous dynamic
recrystallisation is observed and with grain refinement. For low strainrate and small initial
grain size cyclic softening behaviour and grain coarsening are observed. See the map from

Sakai and Jones given in Fig 5.5.
Theory to describe these processes is not very well developed. Nucleation of new grains at

the grain boundaries is probably related to a smaller sub—grain size adjacent to the

boundary, caused by local stress concentrations produced by grain boundary sliding.

Ly

Subsequent nucleation of rings of grains propagating inwards from boundary is probably a
direct consequence of softening associated with the recrystallised grains. The softened

grains deform more and mismatch stresses trigger the nexi stage of the recrystallisation.

The difference in behaviour between high strain rate and fow strain rate hot working is
simply related to the timescales for nucleation and growth of the recrystallising grains. At
high strain rate a new set of recrystallising grains is nucleated befote the first set is fuily
grown. The grain size is refined until the driving forces for grain growth match the strain
rate. At slower strain rates there is time for full secondary recrystallisation before the next
round of nuclei are formed. There is a tendency for the whole of the material to be brought
into step to produce the strong softening cycles, as any region out of step will harden or
solten more rapidly than adjacent regions. Solute effects may enhance the cyclicsoftening

by lengthening the incubation period for grain nucleation.
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FIGURE 51 Schematic representation of the formation of a primary
recrystallizarion nucleus by subgrain coalescence. (After Hu, ref. 244.)
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Thg conditions of strain and particle size under which particle
stimulated nucleation occurs in Al-5i. {Humphreys 1977).

Fig._5.3 Schematic diagram of subgrain structure around sSio,
particles in cold rolled copper (Porter and Humphreys 1979)°
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