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List of Symbuols and Abbreviations

u distance
A4 darei
A amplitude
A differential operator
dy, dy constants
b arbitrary parameter
B selfadjoint differentiad operator
AC mascibility gap
cC coustants
C, eutectic concentration
C,, Cy. C,.etc.  concentration
¢y specific heat at constant pressure
o atomistic length, capillary length
D diftuston constant
d, capillary length
D, transport coefficients, diffusion constants
D; thermal diffusion coefficient
E (P} exponential integral
erfe error function complement
F Helmholtz [ree energy
! scaling function
T} Gibbs free energy density
AG change in Gibbs free energy
G free energy per surface element
GiUléN free energy
Gy constunt temperature gradient
J probability current
K curvalure
k sepregation coefficient, wave number
ky Bolizmann constant
L natural scale
{ external length, diffusion length
T thickness of layer, diffusion length
L. latent heat of melting
my, hig liquidus or solidus slope
; particle number of species
P pressure, Peclet number
A principal value
PLES probability of configuration
Y wave pumber, inverse length
Qi minimal work
r radius of nuclews, radial distance
Ki(y) lucal radius of curvature at point §
- 1—_

“(5)
bl
i, 6

e

List of Sympols ani Abbreviations

vushius of curvature

critacal radius

posttion on the interface. entropy

change in entropy

lcmpcr'.ilurc

tume

change in time

reference temperature

eulectic lemperature

interfuce temperature

melting lemperature

dimensionless temperature field or concentration ficld
energy

speed

maxind speed. absolute stability

critical velocity

growth rate

probability of fluctuation

extensive vanables

intensive variibles

partition function

space coordinate

mterfuce kimeties

+1old anisotropy of the kinetv coeliicient

surface wension or surface ree energy

ratio of §- L interface energy 1o specific melting entropy
Green's function integral

supercooling (negative temperature field » at finiy)
local concentration gap, surface tension ansotropy
relative strength of unisotropy of capillary le 1zt
deviation of the interfuce

courdinate

angle of orientation relative to the erystallographic axes
function of (x, )

mobility

interface spacing, wavelength

solvability function

wivelength of side branch

wavelength of the fastest mode

stability length

chemical potential

effective kineue prefuctor

vuriible

position vectors
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small normal displacement
Ivantsov radius
sculing-function

variable

atomic volume, atomic area

diffusion limited aggregation

directional solidification

faceted

left-hand-side

non faceted

pivalic aad

right-hand-side

succinonitrate

WK B-technique for singular perturbations

T

10.1 Intreduction

This chapter on solidification discusses
the busic mechantsms of the liquid-sold
phase transformation. In particular, we ad-
dress the phenomena of cellular and den-
dritic patterns formed by the interface be-
tween liguid and solid, as the interface, or
selidification front, advances into the lig-
uid during the solidification process.

The atomistic processes of the lquid-
sohd transformation ure stil not wetl un-
derstood. Therefore, we will remain on a
phenomenological level of description. The
processes on very lurge scales, such as cast-
ing or welding. depend significantly on the
expertmentil equiprmenl and are discussed
elsewhere in this series (see, for example,
Volume 13, Chapters | to 3).

We will restrict our attention accord-
ingly 1o phenomena occurring on some tm-
portant intermediate length scales Tt turns
out that there s a natural scute L oof the
order of microns (or up to miflimeters)
which gives a measure for the microcrys-
talhne structures formed during the solidi-
lication process. In its simplest form this
natural length s the peometric mean
L ~ /d1 of a microscopic intrinsic length
d defined by typical material properties
and an external fength { defined by the
macroscopic arrangement of the experi-
mental equipment. The intrinsic correla-
tion lengths in liquids and solids near the
freezing point are rather short, of the order
of atomic size. or severul Angstroms, be-
cause sulidification is a phase transition of
fiest order. The experimental equipment in
contrast gives external length scales in the
range of centimeters to meters such that
one consegquently arrives at the mentioned
scale of microns.

Assuming for the moment that only two
lengths are important, why should one ex-
pect L 1o be given by the geometric mean
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rather than. for example, the arithmetic
mean? An intuitive argument goes as foi-
lows: The patterns formed ax the solid-lig-
uid interface and in both adjucent phases
during the solidification process result
from the competition of two “forces™, one
being stabilizing for homogeneous struc-
tures, the other being destabilizing. The
stabilizing force here clearly must be asso-
ciated with the intrinsic atomistic length o,
since we have argued that i1 is related to
the length of correlution or coherence in-
side the materiad or at the interface. In con-
trast, we must associate the external length
Fwith  destabilizing force. Again this is
a quite natural assumption, as the phase
transformation or destabilizition of the
nutrient phase is induced by the experi-
mental environment.

11 is now obvious that the result of such
a competiion of “forces™ should be ex-
pressed by the product d { of the two repre-
sentative quantities rather than by ihe
sum. since the datter would chunge the rel-
ative importance of the two lengths when
their values become very different.

Admittedly. these arzuments look 4 little
overstressed  considering  the many pa-
rameters controiling the details of o solidi-
ficution process. Note, however, thal noth-
ing has been said so fur about the precise
relation of o, [, and L to any specific pro-
cess nor have we defined the proportional-
ity factor. In principle, d and ! could atso
enter with different expouenis but fortu-
nutely things are usually not that compli-
cated right from the start.

Being still courageous crough to make
one more step on this slightly unsafe
ground, we may. finally assume that the
external length scale Fis related (destabitiz-
ing force!) to the speed 1 of the solidifica-
tien, which gives a length when combined
with a diffusion constant D for heat or
matter as [~ DAV, From this we immedi-
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ately oblain a relation between the speed ol
phase change ¥V oand the lengih scale L of
the resulting pattern:

VI o constant - (10-1)

Surprisingly enough, we have arrived at

about the most celebrated equation for

processes of dendritic, directional, and

cutectic solidification without even defin-

ing uny of these processes! Two remarks,

therefore, may be in order here. First, de-

taifed studies of the ditferent solidificution

schemes in recent years have attempted to
extract the common and universal aspects
of these processes. Such common features
indicate a common basis of rather general
nature, as outlined above. Second, we have
of course ignored most of the specific as-
pects of cach individual process. In direc-
tional solidification, for example, a band of
possible wavelengths for slmior!ury pat-
terns are found and up to now it is not yet
cleur if and how a specific wavelength from
that band is finally selected. The assump-
tion of just two independent length scales
in many cuses is also a rather gross sin_l-
plification of the avtual situation. We will
therefore leave this line of general argu-
ments and look at some concrete models
which are believed to capture at least some
essentials for the fascinuting patierns pro-
duced during solidificanon.

Some remarkable progress has been
achieved in the theoretical treatment of
these phenomiena during the last ten years.
In the list of references, we have concen-
trated our attention on recent develop-
ments since there are some good reviews
on older work (for example, Langer, 1980
Kurz and Fisher, 1984, 19%9).

An experimentalist may finally wonder
why we have expressed most of the equa-
tions in a nondimensionally scaled forin
rather than writing all matenal parameters
Jown explicitly at each siep. One reason is

that the equations then appear much sim-
pler than il one attempted 10 carry along
all prefuctors. The second and more impor-
tant reason is that the scaled form allows
for a much simpler comparison of expe-
riments for different sets of parameters
which usually appear only in some combi-
nations in the equations, thereby leading to
cancellutions and compensations.

In Seetion 10.2, a quick summary of the
ingredients for a theory is given, starting e
nucleation, then deriving boundary condi-
tions for a propagating interfuce between
two phases, and finatly discussing some
general aspects of the diffusion equation
with a propagating boundary. This is [o!-
lowed by an introduction to basic expen-
mental techniques in Section 10.3. [a Sec-
tion 104, the case of a simple solid growing
in a supercooled melt is discussed in somne
detail. leading o the present understand-
ing of dendritic growth. {n Section 10.3
the technically important process of dirce-
tional solidilication is presented. The ¢vo-
jution of cellular putterns above a critical
growlh rate can in principle be understood
without the knowledge of dendritic growth.
Actually, the parumeter range for simple
sinusoidal cells is very narrow 50 that one
usually operates in the range of deep cells
_or even dendrites, which suggests our se-

" quence of presentation. Finally, these con-

cepts are extended in Section 10.6 to alloys
with a eutectic phase diagram and the re-
sulting complex phenomena. As this ficld
currently is in rapid theoreucal dcvz.el-
opment, our discussion here ncccssunl‘y
is somewhal preliminary. The chapter is
closed by a summary with complementary
remarks.

....éf‘
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10.2 Basic Concepts in First-Order
Phase Transitions

The dilferent possible phuses of 4 mate-
rid existing in thermodynamic equitibrium
must be discriminated by some quantity in
order to Tormulate o theary. Such quan-
tities are culled “order parameters” and
shoutd correspond to extensive thermody-
namw varables. The difference berween a
solid and u liquid is defined by the shear
modulus. which changes discontinuously
at the phase transition. This definiton de-

seribes the difference in tong-range orienta- -

tonal correlations between two  distant
puirs of neighboring atoms. Normully, one
uses instead the more restrictive concept of
translational order as expressed through
two-point correlation functions, or Bragg
peaks, v scattering experiments.
Althowgh these different order-parame-
ler concepts pose o number of subtle ques-
tions, particudurly in two dimensions where
Auctuations wre very important, we will
simply assume in this chapter that there
is sume quantily which discriminates be-
tween dosolid and a biquid in a unigue way.
Such an order purameter may be the den-
sity, for exumple, which usually changes
during melting, or the composition in a
twa-component system. We would like o
stress, however, that these are just auxiliary
quantities which chunge as a consequence
of the solid-liuid transition but which
are nat the fundamental order parameters
ur the sense of symmetry arguments, For
a more general discussion see Chapter 3
{Binder) and literidure on order disorder
transitions (Brazovsky, 1973; Nelson, 1983).
First-order transitions are characterized
by a discontinuous change of the order pa-
rameter. All intrinsic length scales are
short, typically of thesize of 4 few atomic
diameters. We may therefore assume local
thermal equilibria with Jocally well Jefined

BE]

thermodynamic quantitios hke lemperi-
ture, el and smoot virttions 10 theye
quantities aver large distanees. loterfices
in such systems witl represent sigularites
or discontinuitics in some of the Guantities.,
sich as the order pacameter or the asso-
clated chemical potential. but they will
still leave the temperature as a continuous
function ol the position in space.

10.2.1 Nucleation

A particular conseyuence of the well-de-
tined local equilibrium is 1he existence of
well-detined metastab ¢ stutes. correspond-
ing to a local. but not global, minimum of
the free energy. But so far we have ne-
glected thermaliluciuations. The probainl-
ity for a fluctation gor devition from the
average statet of o large closed system s

o~ eAn(AY) (102}

where AN 1 the changze in eniropy of the
systenn due o the Noctuation (see, ey
Landau and Lifshie, 1970). Defining Ooin
i e minmal work necessary to create
this change of thermedymumic guantites,
we oblain

A\ = (-..)mm" [5) [“)':‘]

with 7, being the aveage temperature ol
the system. Note that this holds cven for
large Huctuations, as long as the change of
extensive quantites i the Quenition re-
gion s small compurad to the respective
quantitics in the total system,
Considering this system as a metasta-
ble liquicd within whica a fuctuation has
formed u small solid re zion, and assuming,
furthermore, that the li quid is only slightly
metastible, one arrives at the well-known
resubt handaw and Lifshits, 1970) in 3 di-

mensions for d oo Compondl syslen:
3

dar .
Qo = = Vo o ) )] b e - B
n (lir4)

..q’
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which together with kEqgs. (10.2) and (10-3)
anves the probability for the reversible for-
mation ol a spherical solid nucleus of ra-
dius r within a slightly supercooled liquid.
Here 2 is the atomic volume, P the pres-
Sure, go > gy the chemical potentials of lig-
wid and solid in 4 homogencous system,
and y the there isotropic) surface tension,
or surface free energy.

A few remarks should be made here.
When deriving Eq. (10-4), one uses the con-
cept of small deviations from equilibrium,
while Eqgs. (10-2) and (10-3) are more gen-
erally valid (Landaw and Lifshitz, 1970). In
the estimation of the runge of validity of
Eq. (10-4), it turns out, however, that it
should be applicable to even very large su-
percoolings for most hiquids, since the thee-
mal transport is either independent of, or
faster than, the kinetics of nueleus forma-
tion (Ohno et ul., 1990). The range of valid-
ity of Eq. (10-4) is then typically limited by
the approach to the “spinodal” region,
where metastable states become unstable,
even when fluctuations are ignored (see
Binder, Chapter 7).

Assuming, therefore, that we are still in
the range of well-defined metastabie stutes,
we may write Egs. (10-2) and (10-3) as

w=vyexpl—AG/T,) {10-5)

identifying the change in Gibbs free enerpy
AG by Eq.{10-4), with an undetermined
prefactor vy, Here we do not discriminate
between surface tension and surface free
energy, despite the fact that the first is
4 tensorial quantity, and the latter only
scatar (although it may be anisotrapic,
which is ignored here). A dilference be-
tween surface tension and surface free en-
ergy artses when the system does not equil-
ibrate between surface und bulk so that, for
example, the number ol atoms in the sur-
face layer is conserved. Throughout this
chapter, we will assume perfect local equili-

bration in this respeet, and we may then
ignare the difference.

- The extremal value of Euys. (10-4) and
(10-5) with respect to the vanation of r
gives the critical radius

R
r, = ;-;.t-g (3-dim) (10-6ay
= 0 (2dim) (10-6b)
An

so that for r<r,. the nucleus tends to
shrink, while for r > r_ it tends to grow and
at r=r_ it 15 m an unstable equilibrium.

The same thermal fluctuations causing
such a nucleus to appear also produce de-
viations from the average spherical shape.
This leads to power-law corrections in the
prefactor of Fy. (10-3) or logarithmic cor-
rections in the exponent (Yoronkov, 1983;
Lunger, 1971).

So far these considerations have dealt
with static aspects only. Since the fluc-
tuations vary locatly with tme, Eqg. (10-5)
may be interpreted as the rate at which
such fluctuation oceurs, and, consequeatly,
with r=r_  one obtains the rate for the
formation of a critical nucleus which, after
appearance, is assumed to prow until the
new phase fills the whole system. This is the
classical nucleation theory. A very clegant
formulativn was given by analytic conti-
nuation into the complex plane (Langer,
1971). Further additions include the defini-
tion of the prefactor in Ey. (10-3) and a
more detxiled analysis of the Kinetics near
r = F, (Zettlemoyer, 1969, 1976},

Cuonsidering the many uncertainties en-
tering from additional sources such as the
runge of atomic potentials and the change
of wionie imteraction in the surface, we will
ignore abl these effects by absorbing them
inty the effective kinetic prefuctor v, in By
(10-3), to be determmed experitnentally.
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10.2.2 Interface Propagation

An interface between two regions in
space of different order parameters (solid
vs. ltquid) will be treated in this chapter as
a jiomp discontinuity and as an object of
infinitesimal thickness. In this section we
derive a focal equation of motion for the
interface, which will serve as a boundary
condition in the remaining part of the
chupter.

For simplicity, consider a one-dimen-
stonal interface in a two-dimensional ST
tem. Tenoring the atomic structure, assume
that the interface is a smooth continuous
line. Marking points at equal distunces o
on this line, we may then define velocities
of the points in normal direction as

A

N (10-7)

where AZ s the small normal displacement
of point i IF we assume these points to be
keptat lived positions & for the moment.
afrestricted) free caergy GIE) may be
assigned to this restricted interface. The
probability for this configuration is

PUEN = Z7 exp(—G/T) (10-8)

with temperature T in units of k, and Z the
partition function. Since the total proba-
bility is comserved, we obtain the continu-

- 1ty equation

-
3

-,__f-) +div,,, (S =0 (10-9)
with J = 1J, ! as the probability current in
i-spuce
aop

i (10-1t
O
and the divergence taken in the same ab-
stract space, The first term in Eq. (10-10) is
a drift, the second term, the constitutive
relation with ransport cocflicients D and

the derivistive is taken normal to the intes-
face. We now assume local equilibrium to
exist on length scules a (ie: i -+7 + 1) such
that the probability cusrent is zero

e
VP =D, ”r

&,

(10-11)

and with Eqs, (10-7) and (10-8), we immedi-
ately arrive at
ag; D, CGIED

& T

(10-12)

Taking, the contmuum limit a0, one ob-
tains the final form

a8 86

a T o
This 15 the time-dependent Ciinzburg-Lan-
dau equation (Burk haredt et al. 1977}, Here
¥ denotes a position on the interfuce, 45(8)
i5 the aornal displicement, o 3.(5) the
vartanonal derivative, and »215) the “mobil-
y" which may depend on position and
orentation. G s the free Ccuergy per surface
clement.

We will aow make some explicit as-
sumptions iwhout G in order w arrive at an
explicit equation of motion. Let g be the
normal direction on the interfice, 3 (4ig) the
interface free energy, J the angle of orienta-
tion relative to the crystallographic axes.
R(8) the local radios of curvature at puoint
S on the interfuce. and A, the areas cov-
ered by liquid or solid. The Gibbs free en-
ergy of the total solid-liquid systemn with
interfuce is
Go=[dSy + | did gy (6 +

h Liguid

+ f ditgggtn

Sl

(10-14)

from which the vinational derivative in
Eq. (10-13) s Tormally obtamed by

T
1(1_‘.{ ‘_,—‘n;lh‘)
y 00

8G,, - (10-15)
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where 82181 is a small arbitrary displace-
ment of the interface in normal direction.
Expiciily this is written as

Sy, =) (radS) + dS a7 - (10-16)
b
— [ A8 335} [y A5 — yslS)]
3

with free energy densities g given here per
atomie “volume™ (or aread 2. As usual, one
huas (o extract teems 3¢ out of the terms
S(d8) and 67, Assuming ;v to depend only
on locul orienlation,

3= ' 0y -17
)] dHo (10-17y
and with (10-13)
gy Ggs 4 _drd d
TS T ds  ds dyTdsT T R
one oblains

TP L (10-19)
ST T g R AT

The other werm simply gives

. | ..

S(dS) = R ds é: (10-20

Lncorpocating Fgs. (10-19) and {10-20) into
Fq. (10-16) and integrating Eq. (10-19) by
pirts. one obtains through comparison
with Euq. (10-15) (10-24)

C‘: B y . 1 . dl.-ll
ar = V.L - /l'“ {AylS] R (r + d‘r)l)}

as an explivit local equation for the ad-
vancement of an interface in 2 dimensions
with normal velocity V. anisotropic ki-
netic coelfivient » (), surfuce free encrgy
(), and jump Ag =g, -~ ¢ of free encrgy
density at position $ along the interfuce
(Burkhardt etal, 1977L The Gibbs free
encryy density ¢ hereby corresponds to an
infinite sohd or liquid without influences
from curvature teems. For a single-compo-

nent system, g= g &, where gis the cheni-
cal potental of the respective phase. The
generalization 0 3 dimensions adds an-
other curvature term into Eg (10-21),
which then corresponds (o two curvatures
and angles in the two principal directions
{For isotropic ;. the curvature 1R is sim-
ply changed into 2/R).

Two useful observations ¢an be mude
already at this stuge. There is o solution
with ¥, =01if the term ...} in Eg. (10-21)
is zero. For finite radius of curvature R,
this corresponds precisely to the critical
nucleus, Eq. (10-6b), bul now with aniso-
tropic 7. This equation therefore deter-
mines the shape of the criticul nucleus in
agreement with  the Wulfl construction
(WLl 1901). Second, for very lurge mobil-
ity (3 the deviation from cquilibrinm
f...V may be very small in order 1 produce
a desired normal velocity Vo We will use
this simplification of equilibrivm at the
wterfave

Ay = , (7 + 9. 2-dim. 1§40-22)
R >

wherever possible, but we shall comment
on the changes due to finite x(H). The
double-prime means derivatives as in Eqg.
{L0-21). In many cases this seems 1o be jus-
tified by experimentu! conditions. On the
other hand, very little is known quantiti-
tively about (). A last point to be men-
tioned here is our assumption that the in-
terfaces are not facetted at equilibrium. 1f
they are facetted, as crystals typically are at
low temperatures in equilibrivm with their
vapor, the situation is considerably more
compticated and not yet completely under-
stood (Kashuba and Pokrovsky, 1990).

bt is now generally believed that Tacelted
surlices undergo a kinetic roughening tran-
sition even at small driving forces, so that
a rough surface is present under growth
conditions. The concept outlined abuove

- A -
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then generally applies wan effective fash-
o, Actually. faeets muy persist over ex-
perimentally relevant length scales, which
are not covered by this analysis in the ki-
netic region. A summary of recent theoret-
icad developments can be found in the arti-
cle by Krug and Spohn (1990}

To complete this section on the basic
theoretical ingredients, we will now discuss
the influence of diffusive transport of heat
or matter on the propugation of a solid-lig-
uid interface (see also Langer, 1980a).

10.2.3 Growth of Simiple Crystal Forms
ay Flat merfuce

The simplest mode! for a solidifying sys-
tem consists of 1wo halfspuces filied with
the liguid and solid of 4 one-component
material of invariant density and separat-
ed by a Mat intertuce. The interface is ap-
proximately in equilibrium Eq. (10-22)
melting temperature 7, but advancing at a
speed b in the positive z-direction into the
liquid. During this freezing process, latent
heut L, has to be transported into the su-
percooled liquid, the solid remaining at T,

The equation of motion is then the ther-
mal diffusion equation

3 Tix.t) =D, V2 Tix.1) {10-23)
o

with thermal diffusion coefficient Dy and
appropriute boundary conditions. At infin-
ity in the supercooled liquid the tempera-
ture T, < T, is prescribed, and T, is the
temperature at the interface, 1tis now very
convenient to replace the temperature field
T by a dimensionless 4 through the trans-
formation

T(.l'._f) :— Tm

ubeth ="y (10-24)
miCp

where ¢, is the specific heat of the liyuid at
constant pressure. I, instead of tempera-

ture or heat, a second chennedd compuonent
is diffusing, a similar transformation o
the same dimensiontess equations can be
made. This is descrised i Section 10032
We would like to strass the importance of
such a scaled representation as it allows
one to compare at ¢ glance experimental
situations with different sets of parameters.

L this dimensionjess torm, the ¢guation
of moution 1

—u=D.Vu 110-23)
&

and the boundary conditions are
w=u, < for z- s (10-264a)
=0 at inte face (10-26b)
So far we have not saecitied how the inter-
fuce motion is coup.ed 1o the equation of
motion. Obviousty, the latent heat L gen-
erated during this freczing provess ata rale
proportional to 1 as to be carried away
through the diffusion field. This requires a
continuity cquation at the nterface

Vo= —Dpn-Vu (10-271
and sinee in the model here only the z-uxis
15 important

V=1 f ulz, o) at interface  {10-28)
e

The growth rate is therefure proportional
10 the gradient of the diffusion field al the
interface in the liquid. As the interface is
moving, we convenicntly make u coordi-
nate transformation from [z,¢) for |21
into a frame of reference moving alung
with the interfuce at 27 = U

)
M e LA UL: (10-29)
0

’

&=t

Performing that transfornution, we obtiin
the following for che diffusion eguanon

~11-.

iy

e

e
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jafter having agam dropped the primes for
conveniencek

Dl{- g'r' =Viu+ f g” {10-30)
which defines a diffusion length

F=2D.v {10-31)
The interface is now always at - = 0 which

mitkes the boundary condition Ey. (10-26b)
and the continuity Eq. {10-28} definite.

We can obtain a siationary solution by
combining Fq. (10-30) with Egs. (10-26)
and {10-28) when &u O =

22
u:c\p(—f l)—-—l; =0

This equation is consistent with the as-
sumption that « - 01T = T_}everywhere
m the solid.

This equation deseribes the diffusion
field abead of the interface. It varies expo-
nentially from its value at the imterfiuce to-
witrd the value far inside the liquid, so that
the diltusion field has a typical “thickness™
of 1.

Note that we have not used Fq (10-26a)
as a boundary condition at infinity, but
find from Fq. (10-32) that « - — | implies
the socalled “onit supercooling”, which
corresponds 1o

{E0)-32)

Tz 7y =T, —ih, i

) {10-13)

This baswally suys that the difference in
melting enthalpy 1., between liquid and
soulid must be compensated by a tempera-
ture ddference in order to globally con-
serve the energy of the system during this
stationary process. In other words, if Fq.
(10-33p1s not fulfilled by Eq. (10-264), the
pracess cannot run with a stationary pro-
file ol the thermab fiekd, Eq. (10-32). On
the other hand, a particular value of the
prowth rate V or {) is not specified, but
seems to be arbitriry, This degeneraey s

4

practically efiminated by other etfects such
as interface kinetics (Collins and Levine,
1985} or the density difference between
solid and higud §Caroli et ab., 1984, so that
in practice a well-defined velocity will he
selected.

by Growih of a sphere

The influence of the surface tension -
when it is incorporated through Fg. (10-21)
is most eusily understood by lovking a1 a
spherical crystal. This will not lead to sta-
tionury growth. In order to make the anal-
ysis simple, we will invoke the socalled
“Tguasistationary approdmation”, by set-
ting the left hand side in Eg. (10-23) cqual
to zero. The physical meanming is that the
dilfusion field adjusts itself quickly to &
change in the boundary structure which,
however, is stll evolving in time because
the continuity eyuation is veloeity depen-
dent. Of course, this approximation repro-
duces the stationary solutions precisely {if
they exist), and it addidon, it exactly iden-
tifies the instability of o stationury solution
as long as itis nbt of the Hopf iype{i.c. the
eritical eigenvalue is not complex) [ is
generidly wssumed that the approximation
is good as long as the diffusion length s
large compared with other lenoths of the
evolving pattern.

In o spherical coordinate system, the
equation of motion then becomes

a 2t v
b g :,{‘5 ST }u {10-3h

as a simple Laplace equation.

The interfuce s at radius R 60 and 1s
advaneing with time. The continuity equa-
tlon requires

dR, Cu
= =- D

I'y = = {10-35)
K e N

L
Concermng the boundary condition, we
note that [ar o simple substance the difter-
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ence i slopes of the chemnical potentials for
solid and hquid at the melting point {Lan-
duw and Litshitz, 1970 s LT, giving

A= = LT~ T)T, {10-36}

With Egs. (10-21) and (10-24}, the bound-
ary condition n the case of isotropic y be-
COIMes

wlinerface) = ~ d, K — gV (10-37)
with curvatore

S T
capillary length

O T o (10-39)
and mterlace kinetiees

B VT ek, {10-440)

Ihe generalization to nonisotropic + fol-
lows Tram Ey. (10-21) and comments.

Note that in Eq. {10-37) both curvatore
and nonequitibrium oceur at the bosnd-
ary s epposed to the simple case in Eq.
(10-26 k1 shown above, At infinity we fi-
nally impose

v, =uls = =1

(10-41)

as the now arbitrary dimensionless super-
cooling. This equation together with Ey.
(10-2dy s the definmition for o,

The solution to Fy. {10-34) with Fgs,
{10-35), (10-37)  and (10-41) in the liquid s
then simply

{10-42)
R 2d N i3]
wrp = A e T B
) r ( Rn { RU
where we used K = 2/r as the curvature of

the spherteat surface in three dimensions.

The growth rute, accordingly. is
(10-43)

LR Dy P 2y (1 . ,rm,‘)
#® de K, R, J ‘ R,

ad it s found that for laree wdii R the
growth rate is proportional to the super-
cooling I

.D ! D,
Iy = '-.i(l———~ji’ ‘+-...) {1044y

R(l . RII
t can also be seen that the kinetic coefit-
cient ff becomes less important i the limit
of lurge radhi and correspondingly small
growth rates. This inomany cases justifies
our previous equilibrivun approsimation.
Eq. (10-22y,

We have not discussed here the solidifi-
cation of @ binary misture. As the details of
the phase diagram will become important
later. we will postpone this topic o the
section on directional solidification. We
would Like to wention, however, that the
representation of the dilfusion field in di-
mensionless form, found i Fq. (i0-24), has
the virtue that several results can be ear-
tied over directly from the thermal case
to compasitional diffusion. although there
are some subtletios i the boundary condi-
tions which make the Litter more ditheult
to analy ze.

10.2.4 Mullins-Sckerka Instability

We now combine the considerations of
the previous Sections 1023 4) and by to
study the question of whether an originally
et anterfuce will renwain Aat during the
growth process. The results indicate that a
flat interface moving nto a superconled
melt widl become rippled (Muolhins and
Sekerka, 1963, 1964)

The basic equations are almost exactly
the samue as in the previous section o) Fygs.
CHO-300 (00270 (10-26.0, but anstead of the
boundary condition Y (10-26b), we now
hive to consider deviations from a flat in-
terface as we move parallel Lo the nterface
i the v-divection, This is provided by T,
(10-37}1 as the boundary condition, where
wyosel i - for stmphienty,
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Denoiing the deviation of the interface
from = = 0 as {{x, ), we designate the cur-
vature for small anplitudes simply “as
A o= — 0% 9x%, where, in agreement with
L. §10-33), the sign of K allows for the
curviature to be positive for a solid protru-
sion into liquid. We follow here the nota-
tion of Langer (1980a).

In 4 quasistationary approximation, for
the sake of simplicity we set the Lhs. in
Eq (10-30) equal to zero, which of course
altows for the stationary solution, Eq.
(10-32). It is not difficult to treat the fully
time-dependent  problem  here, but the
modifications do not change the results
substantially, We shall now perturb that
solution by making a small sinusoidal per-
turbation of the Mat interfuce:
et =g cexplikx + 200 {10-45)

Similirly, a perturbation of the diffusion
ficld is made in the liquid and in the solid

2:
uix, z, t} :exp(f 7‘ ) — 1+

+ 6, explikx — gz + 1);

{10-46}

divz =1, explikx +4'z+ Q0

where the uaprimed form is for the liquid,
and the primed values are for the solid.
Inserting Eq. (10-46) into Eq. {10-30) with
ou/0r = 0, we obtain

2+t —k=0

2t g =k =0 (10-47)

Replacing z in Eq. (10-46) by {(x.1) from
Eq. (10-45), we can insert this into the
boundary condition Eq. (10-37) for f=0
10 obtain

= =250+, = —dk* L (10-48)

where we have linearized the exp(...) with
respect to . Instead of the velocity in Eq.
(10-27), we must now use ¥, = 2D/l + 80t
With (his equation and the same lineariza-

twn J4s before (10-49)

Q5 = =DV + Dy + Dy i

is obtained for the conservation luw, Fq.
(10-27), (und for small values of {, pric-
tically Eq. (10-28)). Eliminating #, here
using Eq. {10-48) and eliminating ¢ using
Eq. (10-47) in the limit klplorkxzgxy,
we obtain

Qo =V (-2 —(Dyg+ D1y k*

EVIL =i+ DyDyLd, k*) (10-30)

il

o

This formula describes the basic meciia-
nism of diffusion-controlied pattern forma-
tion in crystal growth. Although, in gen-
eral, diffusion tends to favor homogencous
structures, in the present case it works in
the opposite direction! This is casy to un-
derstand; the foremost points of a sinu-
soidal deformation of the interface can dis-
sipute the latent heat of freczing by a larger
space angie into the liquid than the points
inside the bays. The lauer points will there-
fore be slowed down. The tip points will be
accelerated in comparison with the aver-
age rate of advancement.’

The formula therefore consists of a de-
stabilizing part leading to positive €, and
a stabilizing part controlled by the capil-
larity dy- The stabilization is most efficient
at large k values or short wavelengths; at
tonger wavelengths, the destabilization due
to diffusion into the supercooled liyuid
dominates.

The dividing line is marked by the com-
bination of d,, {, which is most conveniently
expressed as

o= 2mjks = 2m Syl

assuming D = D", This will be denoted as
the “stability length™, which gives a meu-
sure of the typical lengths for dilfusion-
generated ripples on the interface, since
the fastest-growing mode has a wavelength
A= \ﬁ Ag. This is the first explicit exam-

{10-51)

- 14 -

ple tor the tupndamental sealing relation Fy
(10-Hmenvoned in the mtroduction to this
chapier.

10.3 Basic Experimental Techniques

Before “discussing the various growth
models, a short vverview of selected recent
experiments that contributed to our pres-
ent understanding will be given.

An exhaustive treatment of the subject is
not intended here; only some of the charac-
teristic technique will be described. No
specific reference will be given to the many
solidification processes available. The main
emphasis will be on growth of crystals, be-
cause direct evidence on nucleation mecha-
nisms is not vet avaulable. The reader inter-
ested in nucleation experiments is referred
to a review by Perepezko etal. (1987).

There are two essentially diiferent situa-
tions of solidiflication, or, more generally.
of phuse transformation (Fig. 10-1y

i) free (undercooled or equiaxed) growth,

1) constrained (columaar of directional)
growth.

In the first case (Fig. 10-14), the melt un-
dercools, before transforming into a crys-
tal, untl oucleation sets in. The crucible
which contains the melt must be less effec-
tively catalytic to crystallization than the

or equitxed] growth
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heterogencous pacticies in the melt. The
crystals then grow with an imerfuce tem-
perature above {ne temperature of the
surrounding undercooled bguid. Heat is
carried into the liguid. The tempersture
gradient at the solid-liquid intertace i the
liquid is therefore neganve and approxi-
mately zero in the solid owing to the im-
tially small crystal size relative to the ther-
mal boundury layer.

In the second case of constrained growth
(Fig. 10-1b}, the remperature gradient is
positive in both hquid and solid, and the
first solid is cither formed in contact with
the chill mold or s already present, s in
surfuce treatment by lasers, for example,
where growth occurs epitaxially after re-
melting. In case 1), nucleation is essential in
controlling the microstructurse (the grain
size), while in case i), nucleation is of minor
i[ﬂpUl'lill'lCtL

Typical technical processes with respect
to these two clusses of solidification are as
follows:

1) custing into low conducovity molds
(ceramics), producing small temperature
gradicnts, or additing inoculating agents
or stirring the melt, thereby producing
many heterogeneous or homogeneous nu-
clei;

ii) processes with high heat flux imposed
through strong cooling of the solid such as

E‘Tj |

. ¥

- - P R T

.‘!’_'; : .
e .

,l [ ,-___;'[._4_. SRR

al Free lor undercooled b} Directional lor constrained
ot columnar) growth

Figare 10-1, Growth in {a) under-
couled mels ree growth) and

1b) superhearcd el (directional
grawthy The wiraws an the out-
side ol the mold represent the
bt Mux, and the artoss at the
solid hgwid interhuee, the growth
direetion

-4~
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continuous custing, welding, laser treat-
ment. or thirough heating of the melt and
cooling of the solid, such s 1o singte crystal
growth or Bridgman tvpe directional so-
hdification experiments. (See also Vol 13,
Chuap. 1)

In Iree growth, the undercooling AT of
the melt s given and controls the growth
rate Foand the scale (spacing 2 or tip radius
) of the forming microstructure. In direc-
tional growth, the rate of advance of the
isotherms is tmposed by heitt flux leading
to an imposed growth rate. This, in turn,
controls the interface temperature {under-
coolingl and the microstructural scales.
These three vanables (tlemperature, growth
rate, and microstructural sizey have to be
measured experimentalty for & quantitative
comparison of theory and experiment. A
number of material parameters of the alloy
svstem have to be known, such as the solid-
hguad mterfacial energy. the ditfusion coct-
ficient, the stable and metastable phase
disigram, ete,

The experimental techoigues are divided
e two classes: those which produce rela-
tively small growth rates and those which
aim for high solidification rates. The corre-
sponding experimental setup s quite dif-
ferent. and some of 1ts important elements
will be deseribed below.

10.3.1 Free Growth

Smedt grovetle rades

In free growth, the undercooling AT or
the temperature of the mell T, = (T,, — AT}
ix imposed on the system, and the growth
rate 17 and the microstructural scale are
the dependent variables, For small under-
caolings, and therefore small growth rates,
all three variables can be pwasured pre-
cively if the substanee s transparent, The
erystullization of pontransparent metals,

however, 1s the major issue in solidilication
studdies relevant lor technical applications.

Instead of investiguting the crystalhiza-
tion of metallic systems directly, suitable
madel substances hive 1o be found. These
are generally organic “plastic crysals”
which, like metals, have simple crystal
structures and small melting entropies
(Jackson, 1938) One of the substunces
which behaves very simikurly to metals and
ts also well characterized in its properties is
succinonitrile (SCN} {Huang and Glicks-
man, 1981). Substannal results with fhis
material have been obtained by Glhicksman
et al. Their careful experimental approach
has not only produced the most precise
measurements known at that time but has
also stimulated new ideas about possible
mechanisms of structure formation throwgh
the discrepancy found between the obser-
vations and the predictions of previous
theories.

Fig. 10-2 shows the experimental setup
developed by Glicksman et al. (19761 to
study [ree dendritic sohdification. Alter
zone melting the matertal is introduced in
the growth chuamber (C). whicl is then
slowly undercooled with the heaters (A}
and {B) in order to avoid premature crys-
tadlization. By careful adjustment of heater
(A) growth starts there, and a crystl
grows through the orifice in chamber (C),
From then on, the dendrte can grow freety
into the undercooled liquid and its shape,
size, and growth rate, depending on super-
cooling, is measured with the wd of photo-
graphs. In order to choose a proper projec-
tion plane ol ubservation. the whole equip-
ment can be translated, rotated, and tilted
at (D) A series of similar experiments have
been performed at low lemperatures with
rare gases (Belgriam et al, 198Y)

fo this kind of experiment, it is inipor-
tant to averd thermal or solutad consee-
tion, as this transport mechanism wilk

chunge the resalts and make them difficult
to compare with ddfusional theory. Glicks-
man et sl 119%8) have shown the effect of
thermally driven convection on the growth
maorphalogy of pure SCN dendrites. Fig.
10-3 clearly shows a strong deviation of the

Hotuepr

Figure T2 Lguipment for free growth of oreanic
dendrnes réilicksman etal, 1976) A and B control
heaters: € erowth chamber; Y nitine

2and rotating
tevice, Itk cover: Goand H zone-relining tubes,

f—— -

00 a1 10
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growth rate at undercoolings simaller then
LK where convection is believed 1o aceel-
erate dendrite prowth. Here 1), is the den-
drite tip rate of pure diffusion controlled
growth

Another type of slow dendrite growth in
tndercuoled media has been analyzed by
Trivedi and Laorchun {1988), These au-
thors made tnteresting in situ observations
during the crystallization of glusses. Even if
the driving forces in these systems may he
very farge, srowth is heavily restricled due
to siow diffusion and atachment kinetics.

Larse gronctl raies

to order 1o explore solidification behay-
ior under very lurge driving forces, Will-
necher et el (1989) have measured dendrite
growlih rates m highly undercooled Niand
Cu Ni alloys. Nueleation is avoided by
levimation melting in an ultraligh vacuum
environment. Undercooling of more than
MUK Jeading to growth rates of up to
70m s hive been reached. Such large un-
dereootings have been obtained by severul
authors before, but growth rates have not
been measured. Interesting results in Ni Sn
oys have also heen abtained by high
speed cinematography of highly under-
cooled samples. These results were pro-
duced by Wi et al (19875 by encapsulating
the meltin glass. They tricd to measure tip
radii from the photograph. In that case,
however, only the thermal images of the

T "7
Fiswee TO-X. Rauo af measured
arowth rate Toroe prede el
T rate rome dittusion theory. 1,
A fimchion ol ondercooliny
i PG hck i et alb . [Hssy
10
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dendrites could be seen, their tips being
controlled by solute diffusion. The radit
from the thermal imuges are theretore be-
lieved to be much larger then the real radin.

10.3.2 Directional Growth
Small growth rates

Understanding of solidification improved
in the 1950s when the need for better semi-
conductor materials stimulated research
using dircctional growth techniques such
as zone melting and Bridgman prowth.
Later, directional custing became an im-
portunt topic of research for the produc-
tion of single crystl wrbine blades. Fig.
10-4 shows the essentials of two tech-
niques: Bridgman type and chill plate di-
rectional solidification. The first of these
processes (Fig. 10-4a) has the advantage of
being able to produce u constant grdwth
rate and constant temperature gradient
over considerable length and 1o allow fora
certain uncoupling of these two most im-
portant variables. 1t was this latter advan-
tage which, in the beginning of solidifica-
tion research, guve deep insight into the

mechanisms of growth. With one growth
rate, but varying temperature gradient {or
vice versa). plane-front, cellular, or den-
dritic motphologies could be grown, and
their evolution studied. lmportant con-
cepts (constitutionat  undercooling, cell
growth, etc.) have been developed with the
aid of ubservations made with the Bridg-
man type of equipment. The experiments
by Hunt etal (eg. Burden and Huul,
1974} deserve special attention. us the qual-
ity of the measurements has been pushed
to high standurds. .

Furthermore, most of the work on direc-
tional eutectics and their growth mecha-
nisms has been performed with the aid
of this technique. In eutectic solidification,
the microstructure after transformation is
the same size (interphase spacing 4) as that
found at the growing interfuce and thus
allows for direct conclusions 1o be drawn
concerning the growth process. This im-
portant variuble cun therefors be eusily de-
termined in nontransparent metals, This,
however, is not pussible with the corre-
sponding quantity of the dendrite, the tip
radius R, as discussed carlicr.

heater

cooler

insuwlation

Figure 10-4. Busic methods ul di-
rectivnal solidificaton, (b Budg-

man type furnuaee and (b) dicee-

uonal cisting.

)

Oune disadvaniage of the Bridgman ey-
perintent is the need for o small dumeter
due to heat flux constrannts, This is avoid-
ed iy the provess shown in Fig. 10-4b (di-
rectional custing), for which, however, a
separation of the vanables ¥ and G is not
passible. Therefore, this method s less in-
teresting for scientific purposes.

For in situ observation of microstruc-
ture formation, one can also use plastic
crystals in an expenimental arcangement
which resembles o two dimensional Bridg-
man apparatus, as shown in Fig. 10-5, Two
ghiss slides which contain the organic an:-
logue are mioved vver a heating and coal-
ing device producing a constant temperi-
ture gradient G This cun be controlled to
ceriun limiats by the temperature difference

3
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Figure 10-5. Schematic dugram of growth cell {u, by
for ebservation of directional solidilication of trans-
parent subslinces under avicroscope (Esaka and
Kuts, 19851 § solid 2 Liyuid; 3 thermocouple; 4 cell
5 low melting glass; 6 araldite seal; 7 and 8 heaters: 9
couler; MY drive mechanism; 1L microscope. In fe) the
wmperature distribution in the growth cell is shown
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Figure 10-6. Array o dendotes approaching a fine
thermovauple for measurement of the up emperatare
and temperatore eracient. Dameter of the bead, ap
proxvinuely 30 um ol saba and Rure, 1983),

and distanee between heater and cooler.
A thin tiermoeoiple incorporated inlo
the alloy allows for measurement of iner-
face temperature (Fig, 10-6) and tempera-
ture gradient in liquid and solid (Esaka
and Kurz, 1983; Somboonsuk and Triveds,
1983 Trivedr und Somboonsuk, 1983;
Trivedi and Kurz, 1986).

Large growtht rais

There have be:n attempts 1o push the
growih rate in Bridgman type experiments.
The lirst to reach rates of the order of sev-
eral mmys were Livingston etal. (1970)
The best way to rzach nuch higher rates is
through Luser resc lidification using a stuble
Righ-powered laser. In this case. a small
melt pool with very steep lemperiture gra-
dients is created (for a remelted Tayer of
100 nun thickness, the temperature gradi-
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cnt Gpois ol the order of 3000 K mm). The
microstructure is then constrained to fol-
low closely the heat low which is perpen-
dheular o the isotherms (Fig. 10-7). There-
fore. knowing the angle ) between the
dircction of growth and the direction and
rite of movement of the Taser bean allows
for the growth rate 10 be obtained locally,
even in the electron microscope (Zimmer-
mann etal, 1989), Note that the growth
rate increases from zero at the interfuce
with the substrate up to a maximum at the
surface, The enly unknown which would
be extrenely difficult to measure is the in-
Letfuve wemperature

Consequently. in the case of rapid diree-
tional growth one can deterntine the past-

Q

b
Figure 10-7. Schematic diagrams of o Laser
trace Lo, b and of the local imterlace veloany
ten 3yoas the Biser seanmmg selocity and 1
The vefociy of the solid tiguid iterfice
which inereases from zero at the bottom of

c thy trace toa maamum s the sarlace B oand

D are the wadth and depth of the toace.
respectivel s ind i the angle betwoeen the
growth dircction and the scanning Jdirectuon,

solidification microsiructure and its growih
rate as well as the bath temperature and the
growth rate in rapid undercooled growth,
In both cases. the measurement of the in-
terface temperature s not possible for the
time being and must be evaluated through
theory alone.

10.4 Free Dendritic Growth

The most popular example of dendriti-
cally {= tree-like) growing crystals s given
by snowflakes. The six primary arms on
eich snowfluhe Took rather sumilar but
there s an cnormaus varicty of [orms be-
tween different snowflakes {Nakaya, 1954,

"7 -

Aveording to our present knowledge. the
similarity of arms on the sume snowflake I8
anindication for similir growth conditions
aver the arms of a snowfluke, the variation
ol structure wong each arm being an in-
dication for a time-variation of external
growth conditions.

In order to formulate a theory, some
specific assumptions about these environ-
mentil conditions must be made. Unfortu-
nitely, the growth of o snowflake is an
extremely complicated process, involving
strongly anisotropic surfuce tension and
Kinetics and the transport of heat, water
vapor.and even impurities, Therefore, at
first we will drastically simplify the model
assumptions. o the same spirit, a number
of precise experiments hus been performed
to identdfy quantitatively the most impor-
unt myaredients for this mechanism,

I #ts simplest form, dendritic growth re-
quires only a supercooled GIc-component
liquid with 4 solid nucleus inside. so that
the heat released at the solid-liguid inter-
lice during growth is transported away
intte the liquid. This is precisely the condi-
lion given i Section 123 concerning a
sphere growing into the supercooled, and
therefore metastable, liquid. A relatively
straightforward stability analysis (Mullins
and Sckerku, 1963, 1964, Langer, 19802
shows that the solid tends to deviate fram
spherical form as soon as its radius B has
bucome bigger than seven trmes the criti-
cal radius R, = 24,71, A time-dependient
anilysis was alse made recently {Yoko-
yama and Kuroda, 1988). During the fur-
ther evolution, these deformations evolye
into essentiadly independent arms, the pri-
mary dendrites,

The growth of such dendrites is a very
widespread phenomenon. as will become
clearer in Section 1005 on directional solicl-
dication. There wre also close relations to
processes called diffuston-limited dugrep-
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Bon iDL A) tor o review see Meakin, [988:
for relation 1o crystal growth, see Ulwaha
and Saito, 1990 Xjue et al, 19885 For
these processes. sume specific assumptions
are mute ahout the incorporation of atoms
o the advancing interface which are not
eisity carried over into the motion of sur-
fuce tension, ete. Another line of closely
relited problems concerns the viscous fow
of two immiscible liquids (Satlminn and
Taylor, 193%: Brener etal, 19%8: Dombre
and Hakim, 1987 Kessler and Levine,
1986 c) We will briefly refer (o this in Sec-
tion 10,3,

10T The Needle Crystal Solution

In this subsection, we will look an
solated, needie-shaped cevstal  growing
under stationary conditions into a super-
couled melt, A stationary  condition, of
course, only heldds ina frame of reference
moving at velocity I in tlhe postlive z-di-
rection. Foraone-companent crystal, the
latent heat of freezing must be dilfused
away inlo the liquid

The provess is theretore governed by the
heat-ditfusion Bq. (10-25)

RN

0=Vt 10-32)
{ oz

where we have used o dimensionless torm,
Bg. (10-300 for & stationy pattern to-
gether with the definition of 1he diffusion
length, Eq (10-310 17 the difTusion Colt-
stanls i ahe erystal and the tiquid are dif-
ferent, we would have 1o use 1wo diltusion
lengths, The continuity Eq ¢10-27) a1 the
interface is for nenmal velogity

Vi =D NYu, + D Vi, (1033

where the subseripts I and S denote eridi-
ents taken on the liguid side and on the
solid side of the meerface. This is hiown s
the “two-sided” model ¢ Lanver wid Tugsha,
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1977} and, because of identical diffusion
constants, as the “symmetrical” model. The
generadization o different diffusion con-
stants is simple.

The boundary condition at the inter-
face 15

= —dy K=V (10-54)
and at infinity
u, = —4 {10-33)

as introduced before in Eqs. (10-37) and
(10-41), respectively. Note that a constant
like -4 may be added on the right hand side
of both equations without changing the re-
sults apart from this additive constunt in
the u-ficld, as frequently appears in the lit-
erature. The definition of 1 follows easily
from Egs. (10-24) and (10-41).

In general, the capillury length d, and
the kinetic coefficient ff are amisotropic be-
cause of the anisotropy of the crystalline
lattice, but they are not direcily related
{Burkhardt et al, 1977). For the moment,
we will assume ff=0, ie., the interfuce ki-
netics should be infinitely fast. Even then,
the curvature K in Eq. (10-54} is a compli-
cated function of the interface profile. The
simplest approximation for the moment,
therefore, is to ignore both terms on the
r.h.s. of the boundary condition, which cor-
responds to setting the surface lension 1o
zero. The boundary condition is then sim-
ply 4 constant (=0 in our notation).

A second-order partial differential equa-
tion such as the diffusion equation can be
decomposed in the typical orthogonal co-
ordinate systems, and on¢ therefore ob-
tains a closed form solution for the prob-
fem with a boundary of parabolic shape: a
rotational paraboloid in three dimensions
and a simple parabola in two dimensions.
This is the famous “fvantsov™ solution
(Ivantsov, 1947).

The straightforward way to look al this
problem is as a courdinate transformation
from the cartesian Lx, o) frame, where - is
the growth direction, to the parabolic co-
ordinates 3, 4}

S=(r—zhe; =0+

where r is the radial distance /x* 427
from the ongin, and g is a constant, After
transforming the differentiad operators in
Egs. (10-32) and {10-533) to {&, ) (Lunger
and Milller-Krumbhaar, 1977, 1978), it can
be seen immediately that y(E) =1, =1 for
the interface is @ solution to the problem
confirming the parabolic shape of the in-
terfuce, with ¢ being the radius of curvature
at the tip.

This Hrantsor radins. o, s now related to
the supercooling 4 und the ditfusion length
{ by the relation

. PP EP) 3dim o (10-36a)
ST nPeerfe(P) 2-dim {10-36b)
which lor small .1 €| gives

‘ Pi—lP—-05772..) 3-dim

R NE Y < 2-dim

and for 4—1 asymptotically

. t— 1P 3-dim
Tli-172p 2dim

- where the dimensionless Peclet number Pis

defined as the relution

P=gfl=0uV2D (10-57)

between tip radius and growth rate. £, (P)
is the exponential integral
foaTt

EfP)=§ ——di (10-58)
Pt
and erfc 15 the complement of the error
function.

Eq. (10-36) muy be interpreted as an
expression of supercooling in terms of the

__22’.

Peclet number. This explination s impor-
tant because the following considerations
of surluce tension give only very small
corrections to the shape of the needle crys-
tal. Thercfore, Eq. (10-36) will be essentiul

valhid ulso with nonzero surface tension’

at typical experimentad undercoolings of
4= 107" An important conseguence is
that the scaling results derived betow then
become independent of the dimensionality
(2 or 3, 1f the supercooling is expressed
through the Peclet number.

The basic result of Eqs. (10-37) and
(10-48) is that the growth rate ol this
parabolic needle is inversely proportional
to the tip rudius, but no specific velocity
is selected, For experimental comparison,
one makes a fit of the tip shape to a parab-
ola. The tip radius of that parabola is then
compared with the Tvantsov radius ¢, The
actual tip radius will be different from the
Ivantsov radius of the fit parabola, because
of surfuce-tension cffects. Before we con-
sider surface tension explicitly we now give
an integral formulation for the problem
using Green's functions, which has proven
to be more convenient for analytical and
numerical calculations (Nash and Glicks-
man, 1974).

The value of a temperature field wix, ) in
spuce and time is obtained by multiplying
the Green's function of the diffusion equa-
tion with the distribution for sources and
sinks for heat and integrating the product
over all spiace and time. [n our case, this
explicitly gives (10-59)

]
ulx, =, ) = j df'jdx’G[x—.v’.:—C(x.r']

Vi k-0 v+ 2
+ V- e =)V + 50

{Langer, 1987b), with the Green's function

) I [%]* + 22
Glez b= gy expl— o o
a = Grp g “p( 4Dt )
(10-60)

10.4 Free Dendntic Growth bh7b

for ditfusion i an onfote three-dimen-
sionid medium {symmwetrical case). J s the
- coordinate of :he interface, The source
werm ! in this equation is obviously the
interface in the fame of reference moving
at velodity ¥ in the >-divection. This equa-
tion already contains the conscrvation law
or the continwty equation at the intertace.
Furthermore, it is valid everywhere in
space and, in particular, at the interfuce
s=2x 0, where the Lhis of Eq. (10-39)
is then set equad 1o Eq. (10-3 Here w s
assumed 1o vanish atinfinity, so 1 must be
added on the Lhas.

In the two-dimensional case and lor sta-
tionary conditios, this can be rewritten as

!(l . - . -
G-I =P e LN, (10-61)
[
(Langer, 1987b} with
1 de *y
AP O = dy' - (10-62
PN 2n.}, R _|| X { )

[P v . L )
Cexp “a [tx - x l-+‘h’(”7:('\)+”u]f
(n addition, it was shown {Pelee and
Pomeau, 1986) that with the parabolic
Ivantsov solulicn

S =gy = — )x? (10-63)
one can vbtain
PLAP X hix) =4

which is independent of x, with ¥ coming
from Eyg. (10-56b). Notw that from Ey
{10-59) 1o (10-61) we have replaced x by xp
ete., which mirrors the scaling form of Eq.
(10-37),

We are now ready to consider u nonsero
capillury lengtt dy Eq. (10-39), which we
generalize 10 be anisotropic
dyg -rd = dy{(1 - scosd)) (10-64)

where )1y the @ngle between the interliuce-
normal and the o axis (2-dim, 4-fold an-

_u__

P

ey .

ry

v 3
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tsotropy) and ¢ > 0 is the relative strength
of that anmisotropy. This form trises from
the assumplion

e rabl 4 o cos 4

{10-63)

for anisotropic surface tension, which gives
through Eq. i10-22) & = 154. Note that it
is the stiffess o7 which deminates the he-
havior, not 7 directly. Along the [vantsov
parabola, the angle 3 is related to x:

d=dy dtx): Al =1—-z+ ——7:---‘——
{10-066)

amd the deviation from J,(x) can he ex-
pressed as

d
_ !\\‘;:[
'_’P =1

(10-67)
] B ) AR ) .- 1
|P- Vosy — "_‘11-'\~~.l\|
For consenience we combine some param-
eters into a dimensionless quantity ¢

20d, b, .
TS Tapp Ho-o

so that the Lhas, of Eg. t10-67) becomes

{
o K=—ag.tk (10-069)
vb
the curvature as usual being
KoL e (10-70)
iy TENGN F‘,\'):]" 2 '

e should be ¢lear at this paint that the
parameter o in Eg. (10-68) plays an impor-
tant role, because it multiplics the highest
derivative in Egs. (10-61yand (10-67). More
specifically, one can expect that the result-
g siructure Sty of the interface depends
on the material properties and experimen-
tul conditions only through this parameter
a (within the model assumptions) which
becomes o function of P and &

Gooatd ) {10-71)

The importance of the parameter o wis
recognized in un earlier stability analysis
(Langer and  Miller-Krumbhaar, 1973,
1980) of the isotropic case it turned oul
luter, however, that the anisotropy 1s essen-
tial in determiming the precise value of .
This is msofar crucial as £—0 implies g -0,
ie. no stationary needle solutions exist
without antsotropy,

We will now briefty describe the analvsis

of Eg. {10-67). The details of this singular

perturbation theory are somewhat in-
volved, und we therefore have to omit theén
here. The basic method was formulated by
Kruskal und Segur (1985), and the first
scaling relations for dendritic growth were
obtained for the bounduary-liyer muodel
{Ben Jacob etal. 1983, 1954, A good in-
troduction 1o the mathematical aspects
can be found in the lectures by Langer
(1987b), on which the following presen-
tation 15 bused. The most mathematically
sound {nonlinean solution seems o have
been given by Ben Amar amd Pomeuau
{1986). For convenience, we have shetched
a slightly eurligr linearized version lere,
while the nonlinear treatment leads 1o ba-
sically the same result.

Lovking for a solution te By {10-67) in
lincar approximation, one sturts hy ex-

panding to first-order in
Crlxy = {(v) — Iy (v) {10-72)

In the limit of the small Peclet number, and
with the substitution

colx) = (U xOM 2 ) (10-73;
is given
B+ AL Z(v) gl ) {10-74)

where 8 is a selfadjoint dilferential opera-
tor

d® (1 by 2

i 4 Oy 110 75)
Ty A

and
) 1yt
Aczig =l {10-76)
2 Hx)
I AN T IR T
S ) dy t ) VAR

2 (x =X+ L+ 1)
with .# denoting the principal value,

The integral seroel in Eq. (E0-76) is anti-
symmetric apart from a prefactor A(vp L
A anatytic solution to Fy. {10-73) has not
yet been found. A necessary condition to
be fulfitled by the present inhomogeneity is
that it should be orthogonal w the null-
civenvectors Z(x) of the adjoint homoge-
neois problem:

1B A - Ziv -0 (10-77)
such that
Zix)
el = d ; =0 10-78
i J v TR { )

In fuct. this is already a sufficient condition
tor the sobvability of the inhomdsencous
eytitlion, but it is not very simple.

A solution for Z(x} can be found by a
WK B-technigue, for which we refer 1o
the titerature (Kessler etal, 1987, 1988;
Langer. 1987 b, Caroliet al,, 19864, b). The
result for the solvahility condition, Fys.
(L0-7 1 and {10-78), is that the parameter o
should depend on anisotropy ¢ as

g xant (10-79

in the limit P50, &0, with some constant
prefactor 6, of order unity,

Eyg. (10-79) is the solution for the needle-
shaped ervstal with capillary anisotropy
=8, together with Eq. (10-68), Note again
that @ is the anisotropy of capillary length,
which differs by a Tactor from surfuce-ten-
sionanisotropy  Eq. (10-65), Formally,
there is not jast one sulution but infinitely
nany. corresponding to slow, (a1 needles
which are dynamically unstable, Only the
fastest of these needle solutions wAppears o
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be stuble wiinst up-splisting fuctuations
and may thus represent an ‘observahle
needle erystal. as expressed by Eq. (10-79),
For practical comparisen, experimental
datu as best compured with numerical solu-
tions of Fg (10-61). because the applicabil-
ity of Eq. 110-79) seems to be restricted to
very small values of  (Meiron, 1986 Ben
Amar and Mouwssallam, 1987, Mishah,
1987}, This will he discussed further in the
next section. Finally, one notable point
is that we bave only considered the two-
dimensional case here, but the solvability
condition n three dimensions  (Caroli
etal. 1986 b Barhien et al., 1987; Kessler
and Levine, 1986d) produces exuctly the
same scaling result for axisymmetric den-
drites,

10.4.2 Side-Branching Dendrites

This section gives a summary of the
present understnding of dendrite growth
10 s centered around numerical simula-
tions of isolated side-branching dendrites
inaone-component system where heat dif-
fusion is the relevant dynamicat process,
Altlernatively. it also deseribes dendritic
growth from a two-component system at
essentially constant temperature. In the
Litter case. one should also discuss the
phase diagram which will be covered later
in the section on directional solidification.
For muny typical cases of growth from a
dilute solution. however, the information
contained in this section should be suffi-
cient.

We start with the definition of the nrodel
as resulting from the set of Egs. (10-52) to
{160-535). The dynamics come from the con-
servation law, Fq. (10-33) at the nnerlace.
As m the previous section, one uses here
the form of dimensionless units which were
mtrodiaced i Section 10.2.3 for the arse of
heat ditfuston, The case of chemical dif-
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[uswon (lemperature then being assured
constaat = Ty can be treated by the sume
eyuations. The normalizution is described
‘A Section 10.5.2. For convenience, we will
simply summarize here the basic formulas
for both cases.

In contrast to Egs. (10-37) and (10-54),
we will now normalize the following equa-
tion 1o obtain u =0 at infinity, which re-
sults from adding the constant A4 (o the
field-variable w in all equations. Then, the
Jiffusion field becomes

‘ (T—T,N(Lye, ")
- thermal dlﬂ-u::lOli (10-80)
(-t AC T T0)
l chemicul diffusion
where g is the chemicul potential differ-
ence between solute and solvent and AC
(0 < AC < 1) is the miscibility gap at the
operiting temperature T

The dimensionless supercooling is given
u4s (10-81)
B {m, T, bk, Y thermal
- (He, — i, KAC o, 8Cy  chemical
The capillury length is then
d=[+ o

) {Tmc,, L}t
AC™3H@ueC) " chemical

{10-82)
thermal

The quantity du/0C is not cusily measured,
but for small AC <1 of a dilute sulution, it
can be related 1o the slope of the liquidus
line dT/dC at Ty=T, by

dq L 3dT
oC ~ T,AC \dcl
(Mullins and Sekerka, 1963, 1964; Langer,
19804). Note that the chemical capillary
leagth can be several orders of magnitude
larger than the thermal length.

The boundary condition, Eq. (10-34),
then simply changes 0

tr) = .4 —dK - fiV

(10-83)

{10-84)

where now the anisotropic capllary length
Jd was used. The kinetic coetficient also may
depend on concentration (Carolt et al,
198%). which we ignore here. Far away
from the interfuce in the liquid, the bound-
ary condition becomes

u, =0 (10-85)

For the chemical case, we may practically
ignore diffusion in the solid.

The diffusion Eq. (10-32) and the conser:
vation law. Eq. (10-33), remain unchanged,
and the diffusion length is defined as befbre
as 1= 20/ V, with V' being the average
velocity of the growing dendrite.

There are. of course, important difter-
ences between two and three dimensions,
a5 a Lthree-dimensional needle crystal s not
necessarily rotationally symmetric around
its axis. Snow crystals, for exampie, show
Jarge anisotropies 1n directions orthogonul
to the growth direction of the prinwry
dendritic needle (Yokoyuma and Kuroda,
1988). In the immediate peighborhood of
the tip, however, the deviation from this
rational symmetry is often small, There-
fore, one may work with this two-dimen-
sional model by using an “effective” capil-
lury length. The scaling relations given
below are expected Lo be insensitive o this
apart from u comstant prefuctor of order
unity in the aie-relation (Kessler und
Levine, 1986 b, J; Langer, 19874a).

The numerical simukitions were per-
formed for a two-dimensional crystal-
liquid interface. In Fig. 10-8, we show a
typical dendrite with side-branches resuit-
ing from the time-dependent culculations
{Saito et al, 1987, 1988) (compure with the
experimental result by Glicksman et al.
{1976) in Fig. 10-9). The profile is symmet-
ric around the axis by definition of the cal-
culation. An approximately paruabolic tip
has been formed from which side-branches
begin to grow further down the shaft {only

_ 2 i_-

Figure 10-8, Free dendute in statonary growth com-
puled 101 quasistationary approximaton for the fwo-
dimensional case. Capillacy anisotropy was £ = (1
(Saito ot al. 19881 The parameter-dependence of the
wrowth rate, tip-radws and sidebranch-spacimg
corstient with analytical scubing results from salv-
abiliny theney of the needle crystal. |

’

the early stage of side-branch formation
was considered). They have o typical dis-
tance which, however, is not strictly reg-
ular,

As it first result, the scaling relation, Eq.
{10-6%), was checked using the Peclet num-
ber rom Eq. (10-36 b). Experimentally, this
requires the anisotropic capillary length
and the supercooling to be varied indepen-
dently. In Fig. 10-10, the scaled numerical
results are shown as dots (and broken ling)
fur two different supercoolings and com-
pired with the results (full lines) for the
stutionary needle -crystal. The upper line
corresponds to the model with diffusion in
the liquid only (Misbah, 1987) as used in
the numerical simulation here. The lower
line corresponds 1o the symmetricul model
with equal diffusion in liguid and solid
{Ben Amar and Moussaliam, 1987). Appar-
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Figure 109, Dendrite tipin pure succinaniciie (S0 N)
at small oodercochings aml mseniboed parabola loe
measucing the Gip s (Hoasg and Glicksman,
149511

B U-1l0_" "-Oi‘ir -
[

Figure 10-10. Scal.ng purameter 6 et for {ree dendnitie
growth depending on capilary ansustopy & and Tor
two-dimensionles i superconlings 1. Average capillary
Length is dy,. diflt sion constant P, and Peclet oum-
ber P Comparisan of numercal results reios ol
squdres, Fig, 10-4, one-sided model) wih salvabihty
eesults: (1) one-suded moded (Mshaly 1437), b} 1wo-
sided madel (Ben Amar and Moussadlan, 1957). The
agreement is exeellent, te mdependence tpon super-
conling i seen e work Ji least up to 1. 03 ’
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ently. the two results look the same, apart
[rum a facter of approximately two in o,
The extrapolated simulation results {bro-
ken line) Hie in between buat follow the scal-
ing form both with respect to a variation of
supercooling 4 and anisotropy £ Note that
in unscaled form (e, multiplying with P?)
the data for the two supercoolings would
differ by about two orders of magnitude!

From an experimental point of view, it is
better 1o use Fig. 10-10 rather than Eq. (10-
79) for comparison, as the range of validity
of Ey. (10-79) seems to he restricted to
rather small values of &. For unknown ma-
terial parameters such as diffusion con-
stant, capillary length, and anisotropy, one
still can check the scaling relation of the
growth rate ¥ through the Peclet number,
Ey. (10-36) depending on supercoeling. Eq.
{10-68) should then give o constant, al-
though arbitrary, value of 4. This scaling
result has adready been confirmed experi-
mentally in the 19708, when the full theory
did not yet exist (Langer and Miiller-
Krumbhaar, 1978, 1980). At that time, it
wias assumed ("marginal stability” hypoth-
esis) thut a universal value of o = 0.03 wius
determined by & dynamic mechanism inde-
pendent of anisotropy. The results Tor the
needle erystal together with these numeri-
cal simulations now show that & depends
on anisotropy ¢ as shown in Fig, §0-10.
Experimental tests on the e-dependence
(Section 10.4.3) are still rather sparse and
do not quite (it that picture for reusons not
well understood.

So far we have only looked at the rela-
tion between growth rute, anisotropy, and
supercooling, We will now consider the size
of the dendrite which is approximately
parabolic, and which can probably be
charactenized by the radius of curvature at
its tip,

This 15 o subtle point, as the tip radios
cannot casiy be directly measured. As an

alterpative. one can try to it a parabola to
the observed dendrite in the tip region. The
tip radius of that ftted parabola should he
interpreted as the [vantsov radius ¢ wiich
turns out to be slightly lurger than the true
tip radius R of the dendrite. The deviation
of R from ¢ does not depend on supercool-
ing 1 but depends on anisotropy & This is
shown in Fig. 10-11, where a comparison is
made between the dynamic numerical sim-
ulations (Saito et al., 1988) with the neddle
crystat solution in the limit of small Peclet
number (Ben Amar and Moussallam, 1987).
It can be seen that there is excellent agree-
ment and that the actual tip radins 8 be-
comes smalier than the Ivantsov radius p
atinereusing «.

We now can refate the growth rate ¥
and the up radius R or the Ivantsov radius

‘¢ in order to check the scafing form Fq.

(10-68) mvolving the radeus rather than
the Peclet number. The Ivantsev parabola
and its radius ¢ busically originate from a
global conservation law for the quantity
{heat) released at che interfuce, while the tep
radius R is a local geometric quantity. In
practical experiments, by fitting a parabola

Figure W11 Liperwdios of free dendrite over Ivan-
tsov-radius plotied versus anisotropy us a function of
dimensivoless supereosling, The numerical resulbts
e also Fig BERCT0-10) are consistent with the poe
dictions from Ihé necdtle solution (Ben Aman amd
Maoussallun, 1987).

0.20
(RIS -
204, ~ E
ve! 005: ]
oL ]
003 4
PRiFd o p
0.0 L 1 1 1
0 01 0.2

£ —-
Figure 10-12. Numerica) scaling result conlirming
bR = const. for fres dendritic growth independent
of supercooling 1. depending on anisotropy ©oonly
(Sintor et al., 1988),

to the tip, one can interpolate between
these 1wo numbers, the result depending
on how fur down the shaft the fitting pa-
rabola is used. Using the actual radius R
rather thun the Ivanisov radius g, perfect
scaling can be seen in Fig. 10-12 with re-
spect to supercooling A, even up to the
very large value of 4=03. Since for
smaller supercoolings, 4 001, the differ-
ence between o and R becomes negligible
as shown i Fig. 10-11. one may safely use
Eq. (10-68) as

FR™ = I'g? = 2228 = constant  {10-86)
independent of supercooling 4, to interpret
experiments and to make predictions, The
term “constant™ here means that the prod-
uct ¥R depends on material parameters
only. This is precisely the relation, Eq.
(10-1), derived from qualitative consider-
ations in the introduction of the article.
This relution has been confirmed by the
analysis of many experiments {Huang and
Glicksman, 19813,

The final point w be discussed here con-
cerns the side branches and their origin,
spactng. and amplitudes. This issue is theo-
reticalty not completely settled, for afl
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availuble analytical approximations can-
not correctly handle the long-wavelength
limit of side-branch perturbations. More-
over, the subject is somewhat technically
involved. Thercfore, we will only summu-
rize the main arguments below and refer
to the above-mentioned numerical simu-
tations (Saite et al., 1988) for comparison
with experiments.

Animportant quantity which character-
izes the stability of lat moving interface
ripples is the socalled stability length

o i, (10-87)

where d,; is the capillary length. and / the
diffusion length, Perturbations of wave-
lengths 4 longer than 2 will grow. while
shurter wavelengths will decay with tme.
This quantity characterizes the competi-
tion between the destabilizing diffusion
field through { against ehe stabilizing sur-
face tension through d, A derivation of
this Mullins-Sekerki instability was given
m Section 10.2.4,

It is naturad to assume, that this lenyth
seitle is related to the formation of side-
branches. A direct guess for the typical
wavclength 2, of the side-branches is

joo=x 2
ig=2n

Ayzis=2n Jldy = 2ng Vo (10-88)

The remarkable result of the numerical
stmulation is shown an Fig 10-13. Ap-
puarently, the ratio 4,74, is a constant of
approximately 2.5 which is independent
of supersaturation and anisotropy, This
seems to be in quite good agreement
with experiments {Glicksman et al,, 1976;
Dougherty et al, 1987 Honjo et al., 19%5;
Huang and Glicksman, 19315,

The experimental  comparison  was
made, in fuct, with an older theoretical
concept {Langer and Miller-Krumbhaar,
1978), which did not correctly consider an-
isotropy. By acvident, however, the experi-
mental anisatropy ol the material sue-
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Figure 10-13. Scaled sidebranch-spacing 4 =4, nor-
malized with Bvantsov-radius R, and i)' %, plotted
versus capillary anisotropy for two supercoolings. No
dependence on s or s found as expeced (Suito et al.
$9Rd)

cinonitrile {Huang and Glicksman, 1981)
£ = 0.1 gave the sume a-value as the theo-
reticul concept, and since & cannot be var-
jed eusily, there was no discrepancy.

To summarize these results, it appears
that the seabng relation, Eqg. (10-83), shown
in Fig. 10-13 from the numerical solution
of the model in two dimensions is in agree-
ment with the experimental results.

We will now give a somewhat qualita-
tive explanation of the mechanism of side-
branch formation as far as this can be
deduced from the theoretical approaches.
A linear stability analysis (Langer and
Mailler-Krumbhaar, 1978, 1980; Kessler
and Levine. 1986a; Barber etal, 1987,
Barbieri et al, 1987; Bensimon ¢t al., 1987,
Caroli etal, 1987; Kessler etal, 1987,
Pelce and Clavin, 1987) indicates that the
relevant modes for side-branch formation
in the frume of reference moving with the
tip consist of an almost periodic sinusoidal
wave travelling from the tip down the shaft
such that they are essentially stationary in
the laboratory frame of reference {Lunger
and Miller-Krumbhaar, 1982, Deissler,
1987). The amplitude of these waves is not
constant in space, but first grows exponen-
tially in the tip region (Barbieri et al., 1987,

Caroli etal. 1987). The exponentiat m-
crease of that emvelope in the lip region
depends on the “wavelength” of the vsalla-
tory part (Bouissou et al, 1990},

lu contrast to the earhier analysis by
Lunger and Miiller-Krumbhaar, all these
modes are most likely stable, so that with-
out a triggering source of noise, they would
decay, and a4 smouth needle crystul would
result. Some driving force in the form of

noise due to thermul or hydrodynamic

fluctuations is needed to generate side-
branches, but apparently this is usually
present. Estimates of the strength of these
fluctuntions {Langer and Mdiller-Krumb-
haar. 1982 Barbicri ctal, 1987, Lunger,
1987 a) are still somewhat speculative,
Given such a small noise at the tip. the
exponentially increasing envelope over the
side-branches into the direction of the il
then amplifies that noise so that the side-
branches become visible. This happens
over a4 runge of about two 1o ten side-
branch spacings. The actuul selected wave-
length of the side-branches in that tip re-
gion (assuming ,a white nois, triggering
all modes equivalently), according to these
considerations. is defined by the mode with
the lurgest amplitude at a distance of about
one “wavelength™ away from the tip. This

“is the product of the uverage amplitude due

to noise at the tip and the amplification
factor from the envelope. Recent experi-
ments (Bouissou et al., 1990) have qualita-
tively confirmed this frequency-dependent
amplification but give a selected wave-
length which is larger than theoretically
proposed (Barbieri etal, 1987, Caroli
etal, 1987). The reason for this discrep-
ancy may be the different dimensionality
{2d in theory, 3d in experiments) or, more
likely, that the theory up to now may
underestimate the long-wavelength side
branch modes. We-have to Jeave that puint
to further considerations.

e D

We now suminarize the presently estab-
Lished findings for free dendritic growth
with respect Lo their experimental signifi-
camee. A discussion ol additional ctfects
sich s Facetting will be given in Section
10.5.7 in the context of directionad solidifi-
cution. '

For a given material with fixed D, d,.
and &, the growth rate ¥V depends upon
supercooling _§ through Eq. (10-68). and
with Peclet number P taken from Eq.
(10-36). The dimensionless parameter & is
given in Fig. 10-10. This is demonstrated
for various materials in Fig. 10-14. The size
or tip radius of the dendrite is reluted to its
velocity by Eq. (10-86) and can be taken
from Fig. (0-12, The typical wavelength of
the side-branches then is given by Eq.
(10-88) und can be taken from Fig. 10-13,
This gives all the basic information whic))
should be valid in the tip region.

The fact that dendrites are really three-
Jimensional objects while the caleulations
were basically performed for two-dimen-
siona! models should not be a serious
drawback. as long as the three-dimen-
sional dendrites are approximately cylin-
drical in the immediate neighborhood of
the tip.

We have so far ignored the influence of
Uie hinetic coetlicient # in Eqg. (10-84). This
omission is not likely to be very impor-
tant for small growth rates, but for high
prowth rates. as in directional solidifica-
tion, f should be tuken into account, We
will return o this point in Section 10.5.

10.4.3 Experimental Results
on Free Dendritic Growth

The answer Lo the question of whether
dendritic growth is diffusion controlled or
controlled by anisotropic attachment ki-
netics, wis sought by Papapetrou (1935),
who wus probably the first to make sys-
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Figure [10-14. Dimension ess growth rate Febd, 20
versin dimemsioaless undercoolimg 1 The scahng
guanhty for the full carve (Banger and Mulier-
Korumbhaar, 1977 1978) was tahen as @ = D023 womn-
cidentally in agrecoent with the anisotropy of suc-
cinogitrilel. Foe referenc s o the experintental ponts
we (haneer, B8, Eacellent agreement belween
theory tsobid lue wnd evpenmient is found

teniatic in situ experiments on free den-
dritic prowth. He examined dendritic erys-
tals of transparent salts (KCL Nadl
NH,Br, PhiNO ), and others) under mi-
croscopd in aguecus solutions aud pro-
posed that the tip region shoudd be close to
a paruboloid of ro ational symmetry.
Many years later, the extensive and sys-
tematic experiments by Glicksman and his
co-workers made an essentiad contribution
to our understand ng of dendritic growth
in pure undercouled melts {Giwcksnan
¢t al, 1976; Huang and Glicksman, 1981,
This research  was initially  concerned
mainly with highly purified succinonitrike
(SCN). [t has beey extended to cyclobex-
anol (Singh and Glicksman, §989), water
(Fujioka, 1978, Tirmiad and Cill, 198Y),
rure gases (Bilgram ctal. 1989) and o
other pure substances with a crystal un-
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{a}
Figure H-15. Dendrite morphologies of two trans-
parent materials with small melting enlropics and
cubie crystat structures {plastic crystalsk {a) pivalic

wsotropy different from SCN such as pivalic
acid {PVA) (Glicksman and Singh, 1959).
Work on free growth of alloys includes
NH,Cl H,O {Kahlweit, 1970; Chan et al,,
1978), NH,Br-H,O {Dougherty and Gol-
lub, 1988), SCN with acetone and argon
{Glicksman etal. 1988; Chopra etal.,
1988), PVA-Ethano! (Dougherty, 1990),
and others.

The specific merit of the work of Glicks-
man et al. was that the systems for which
they charuacterized all the propertics, in-
cluding surface energy, difusion cocffi-
cient, phase diagram ete, have been exam-
ted. This led to the clear evidence in the

-

—
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6]
acid (PVA)Y and (B} succinenitrite {SCNy (Glicksman
and Singh, 1939

mid 1970s that the theory of that time (us-
ing extremum arguments for the operating
potnt of the tip) was not able to describe
the results quantitatively,

At the same time. Miller-K eumbhaar
and Langer worked on precisely the same
problem and proposed a theory based on
the stability of the growing dendrite tip
catled marginal stability criterion {Langer
and Muller-Krunibhaar, 1977, 1978). Most
of the existing experimental data could be
fit using this criterion. Despite the fact that
this theory incorrectly ignored the impoz-
tant role of anotropy (as we know mow),
itanspired a number of new experhiments

awd also attracted  the interest of other
physicists.

As has beer said before, today's theory is
consistent with the older approximate the-
ory if one allows Tor a o (£} value which
varies with the antsotropy of the capillary
length. The corresponding central equa-
tion tor dendritic growth (Eq. (2) in Kurz
and Trivedi, 1990) should therefore stili
apply.

Pure substances (thermal dendrites)

Fig. 10-15 shows dendrites of two differ-
cat transparent materials with cubic crys-
tal structure. face-centered cubic PVA. and
body-centered cubic SCN {Glicksman and
Singh. 1989). Qualitatively, both dendrites
iook similar, but their branching behavior
shows some important differences. The
unperturbed tip of PVA is longer with a
shurper delineation of the cerystallographic
arentattons, Glicksman and Siglgh (1984)
found that PYA has a teafold Larger surface
energy wilisotropy than SCN (see Table
10-1). The tip radii and growth rates as a
function of undercooling for both sub-
stanees scale well when using the values
0.2 and 0195 for a respectively (Fig.
[0-16). Accordeng to solvability theory, the
great difference in the anisotropy constant
# should make a larger difference in o(«)
{compare with Fig. 10-10). The reason for
this discrepancy is not known, and we have
to leave this point to future research.

T he secondary branch formation which
starts in SCN at a distance of three tip radii
behind the tip is defayed up to about seven
radii in PVA. This is quite consistent with
the recent caleulations discussed in Section
t0.5.4. The ratio of initiai secondary arm
spacing A, over tip tadius R is also indi-
cited in Tuble 10-1,
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Luble 10-1. Faperimentalls Jetermined dundrite p quantites.

Sysmem Growth at R iR " Relerenae
ype fum® 5]
Fhoroad dendrites Pure
Succnunrile (SCN) Froe 00193 3 (I3 Huane and
Glicksnan, 1981
Pivalic ucid (PVA) bree 02 7 0.03 Ghcksman and
sSingh. {956, 1984
Cyclohexanol Free 0.027 Singh and
Cihcksnun, 1959
Sodutad dendrites At
NI Br- 49 wtte RO Free DO%I+002 1513 32 N6 +00H  Dougherny aid
Gollub, 1983
SON L Awet ACE Directional [IETE R 1301 Ry e Esaka and
Kurz. 1983
SN 4wt ta ACE Directend LXVRY g 431 £330 22403 Sumbeonsuk
clal. 1984
Cr,-79 w1 C,C1, Directionai 1444+ Wikt ¥ 3y Suctharanun
etal., (Y89
C.C1L, 895 wi% CBrg Durectional [IXTRE B 1241l 347 Secihardnan
etal., 14989
Tivcrnnd wnd solurad Afton
demdrites
SUN-ACE Tree See referenes
SUN-arzon I'ree See reterence 4 Chopra o al,
[ EHY
EyA- 1wty ethanol Iree Q.05 £0.02 [ 0.006 1.2 Dougherty.,
1990
PYA -2 4ol % ethunol Free 0.032 +£0.006 33 6.8 Bowssou <t al.

1954

+ Due to dilferences in the delinitions of @ these values. Ja given in the corresponding laerature. are sobler
by a factor 2 with respect 1o 1he values used by Dougherly and Gollub (1958) aud defined in this paper. The
values given here huve been obtained by multiplying the original dat by a Lactor of 2 in order o compare with

the sume (vne-sided) model. {See also Fig, 10-10.)

Free alloy groweh
(thermal and solutai dendrites)

Lu the free dendritic growth of alloys, an
interesting observution has been made by
various authors. For constant undercool-
ing, the growth rate first increases when
smadl amounts of o second substance are

added to a pure material, then reachys a
maximum, and finally drops and converges
with the pure solutul case. Earty experi-
ments in this area by Fujioka and Linde-
meyer were first successfully apalyzed by
Langer (1980¢) Fig. 10-17 shows some
results on SCN-ACE alloys from Chopra
etal. (1988). The incicase in b is accompa-

- 2w -
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Figure 10-17. Effest of dimensionless compaosition st
commtant undetesoling of 0.5 K 124 of umt under-
cooling) on (4 dimensivnless growth rate and 1b) on
dimensionless hip radius for [ree dendrite growth i

nied By a Jecrease in the tip radius. which
sharpens due to the eficet of solute. The
experimental findings can be compared 1o
two models; Karma and Langep (1984)
(broken lined and Lipton et al. (1987) {fukl
line). Both models provide at least quaita-
tively good predictions of the observed be-
havior. In their more recent calculations,
Ben Amar and Pelee (1989) concluded thit
the simple model by Lipton et al. (1987) is
consistent with their more rigorous ap-
proach.

Table 10-1 gives a summary of represen-
tative reselts of in situ experiments con-
cerning the dendrite tip.

Large undercoolings

Interesting experiments have also been
performed with pure and wlloyed systems
under large driving forces, which reach val-
ues of more than hall a unit undercooling
{for example by Wu et al., 1987; Willnecker
eral., 1989 In Fig. 10-18, some of thosc
are reproduced together with predictions
from theory (with o) = 0.025) and includ-
ing interface attachment kinetics (Trivedi

R0

vV {m/s]
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SO N-gectone alloys (Lipion ctal, L9870 Points. ex-
perments (Chopra et ol 19883, solid e LUK
model PLipton etal, 1937) mterrupted line: Karma
and Lunger (1984 modsl.

et sl 1987). Up o undercoolings of 200 K.
there is reasonabie agrecinent between ex-
periment and theo sy jinterrupted tineh At
higher undercouliigs, other phenomena
which wre not yet well understood take
over.

B0 T
Ni {
80 |
w
20
0 'l

200 300
AT (K]

Figure H-18. Growth rate of Tree dendrites in kighly
undercoled mickel (8 linecker et al L 198 Points:
cyperimients; sulid anc inteereplal line LK moddd
(Lapran etal, 19x7), atthout amd wiale atiachment
kinetics, respectively
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10.5 Directional Solidification

Dhirectional solidification is the most fre-
quent way in which a muterial changes its
state from solid to liquid, The necessary
removal of the latent heat of freezing usu-
ally occurs in a direction prescribed by the
location of heat sinks: For a freezing fuke,
it is the cold atmosphere above it. in cast-
ing iron in a foundry, 1t is the cold sand
mold, into which the heat flow is directed.

At first, it may seem surprsing to think
that anything teresting should happen at
the solid-liquid interfuce duning this pro-
cess. I contrast to the situation deseribed
earlier in Sections 104 and 10.2.4, the solid
ina casting process 1s cold and the iquid s
hol, so that one would expect the interfuce
to be stable against perturbations.

However, so far we have just considered
the sotidification of 4 one-component ma-
terial, while i reality a mixture of materi-
als s admoest always present, even if one of
the components may be rather dilute. 1f
therefore. we assume that material diffu-
sion is the rate-determining (slow) mecha-
nism, while heat diffusion s much faster,
the origin of a destabikization of the flat
interfuce can be easily understood on a
qualitative basis. We may consider one of
the two components ol the liquid as an
“impurity”, which, instead of being tully
incorporated into the solid, is rejected at
the interface. Such excess impurities have
tor be diffused away into the bquid inmuach
the same way as latent heat has to be car-
ared away in the case of a pure material as
i rite-deterimining mechanism.  Accord-
ingly. precisely the same destabilization
and subsequent formation of apples and
dendrites should oceur

Based on these gualitative arguments
one cun expect the fullowimg modification
of the Mullins-Sckerka instability (Section

10,24y to oceur i the present sitwation of

directional solidification, The diffusion of
material together with capillury effeets pro-
duces 4 spectrum for the growth rates or
the decay rites similar to Eg. (10-30), while
the temperature field acts as a stabilizer,
independent of the curvature of the inter-
face, when a constant term (independent of
) inside the bruckets of Eq. (10-50) is sub-
tracted. At small speeds of solidification,
the flat interfuce is stuble; above a critical
speed, it becomes unstable aguinst the for-
mation of ripples, cells, and dendrites.

In the next section, a few thermodyt
namic questions related to interfuce prop-
ertics in lwo-component systems are con-
sidered, belore describing putterns in direc-
tional solidification.

10.5.1 Thermodynantics
of Two-Component Systems

There is a vast amount of literature
available on the thermodynamies of sohidi-
fication and on multi-compoenent systems
(for example Caflen, 1960; Baker and Cahn,
1971). Despite this fuct, to further the clar-
ity of presentatiof, we would like to atleast
sketch the tools which may be used 10 gen-
eralize some approxinuitions which will be
made in the next sections.

The fundamental law of thermodynam-
ics defines entropy us a total differential in
relation to energy and work:

dU = TdS ~ Pdl + 3 p dN, (10-89)
with energy U, entropy S, volume ¥, pres-
sure P, particle numbers N, for each spe-
cies and chemical potential j The encrgy
15 a homuogencous function of the extensive

varthles (10-909
UhS AV, ON )= DUYS, TON )
with an arbitriry scale paramceter b = 0.

With the dilferentiation rute d(.XY)
= X dY 4+ YdX, other thermodynamie po-

tentiads O are obtained from U by Legen-
dre transforms
=0 -Y X

1

(10-91}

where X, are some extensive variables,
and ¥, the corresponding intensive vari-
ables. The Helmholtz free energy F. ac-
cordingly, is

FIT VNG ) =U =TS
dF = =SdT — PdV + T dN,  (10-92)

and the often used Gibbs free energy G is
GIT.PNL ) =U-TS + PV =3 N
JG o - SdAT 4 VAP + Y i dN, (1093

At atmospherie pressure in metallurgieal
applications, the differences between F and
G often can even be neglected, but gener-
ally the Gibbs free energy, Eg. (10-93), is
most frequently used. Tt follows immedi-
ately that the chemical potentiads g, are
defined as

e
(C*'\I- e s

The thermodynamic equitibrium for a
system 13 defined by the minimum of the
respective thermuodynamic potential with
respect to o all  unconstrained internal
paramelers of the system. If the system
consists of two subsystems « and fin con-
tact with cach other, then in thermal equi-
librium the tempecatures, pressures, and
the chemical potentials for each particle
type § must be equal:

L=T,. I B, = Hip

(10-94}

{10-95)

For the case under consideration we have
asohd phase x {with assumed fow concen-
tratzon of B atomsy and a ligquid phase B
(with higher concentration of B atoms).
For ssmplicity, we lurther assume that the
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atomic volumes of both species are the
sume and unchanged under the solid-lig-
uid transformation.

For w system with a curved interfice be-
tween asolid and a hquid of different com-
pusitions, the chemical potentials can be
caleulated as follows. Assuming that N,
particies of solvent and Ny, particles of sol-
ute are given, there will be an unknown
number of Mg purticles in the solid and ¥,
particles in the hquid, whose composition
15 stll undetermined. Define the number n
as the number of B particles in the solid.
Keeping N iand o itially fixed, the Gibbs
potential is obtained as

GING N N1 NGt Cod b N g (0 +

pdm Ry (10-96}

where a3 the surfuce-free-encrgy den-
sity, R s the radius of the solid sphere
Ny =1 R (umt atomic volume). and g
and ¢, are free-eneryy densities for homo-
reneous solids or liquids at concentrations
Cy amd 0 Removing e constraints on
N and nowe obtain thermodynamic equi-
librium by minimizing G with respect to
Ny and asothat G = GV N, Together
with the chemical potentials from  Eq.
(10-94). this gives

F4 oy, = - ‘(;, (,L,) K (l(]-‘J?]
with curvature K =2 R and gy — iy
being the difference in chemicul potentials
between sojute and solvent. The vatues p,.
V', € correspond to equilibrium at 7 = 0
as a reference, around which ¢{C) was tin-
earized. Here ; wis assumed to be indepen-
dent of curvature and concentrations, but
this can eastly be incorporated (for effects
of surface segregation, for examplel).

This equation is the boundary condition
[or the chemical potential o the surfiace of
A solid sphere of surface tension  coexist-

ing with a surrounding liquid of higher

-
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concentration ¢ of B atoms, From a prac-
tical pomt ol view, the formulation in terms
of chemical potentisls does not look very
convenient, as they are not directly mea-
surable. From a theoreticul point of view,
this has advantages, as the chemical poten-
tial is the generalized force controlling
matter flow and phuse changes. In particu-
kar. the spatial continuity of chemical po-
tentiuls together with continuous tempera-
ture and pressure guarantees local thermal
equilibrium, which we will assume to hold
in most of the following discussions.

We now come to the discussion of a typ-
ical phase diagram for a two-component
systemr (Fig. 10-19), The vertical axis de-
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Figure 10-19. Typical selid-hiyud phase diagram fora
Iwu-component system with the possibility of cutectic
growth, ¢, C, are the liquidus and solidus lines with
a solid-liguid two-phase region in between. For a
rebatively low concenteation €, of solute in the liquid,
a single solid phase at the same composition ci=C,
can show stationary growth, Lo directional selidifica-
tion. a positive temperature gradient 3T/8z is us-
sumed 1o b given perpendicular to the solid-liguid
iterface and to advance in +z-direction. The ad-
vuineing interfige chooses its position to be at temper-
ature T, he concentration in the liquid at the inter-
face is then at C). Ahead of the interface {2 =0)
the concentration profile C{:) decays towards €, al
== & (dushed curvel As longas C(2) > CL[Ti:l] with
Tizb= 1, + 270z, a Nat anerface remains stable.

notes the temperature, the horzontid axis,
the relutive concentration of “solute™ in @
=solvent™, or. more generally, B atoms rela-
tive to A atoms.

At high temperatures, T > T, the system
is liqud, regardless of concentration. As-
suming a coneentration €, to be given ini-
ually, we lower the temperature uatil Ty,
AL this temperature, we first hit the lig-
uidus line & {7}, and the system begins to

solidily, producing a solid of very low con-

centration marked by the solidus line
Co(T). When the temperature i slowly
lowered, solidification becomes complete
at T,. At lower temperatures. the whole
system becomes solid,

The region between CdT)yund C i s
the two-phase region: If we prepure o sys-
temm al i concentration between €Y and ¢
at high temperatures and then quickly
quench it to T,,. the system starts Lo sepi-
rate intw @ solid phase of concentration ¢
and u liquid phase of CP. In practice. this
is u very show process, with lengths varying
with time ¢ approximuely as ' * (Lifshitz
and Slyozov, 1961; Wagtier, 19617 Kawu-
saki, 1990).

In the case of directional solidification, a
therma! gradient in the system delines
direction such that the liquid is hot and the
solid is cold. A flat interfuce may then be
present at a position in spuace at temperi-
wure T,. For equilibrium between solid and
fiquid at that temperature, the concentra-
tion in the solid must beat € = €, and in
the liquid at €} = €, (To). We now assume
that the liquid at infinity has concentration
€, . Clearly there must be a decrease in
concenteation as one proceeds from the in-
terface into the liguid. In order to maintain
such an inhomogeneous concentration, the
interface must move toward the liquid.

In other words, when the liquid of com-
position C} [reezes, the solid will only have
a concentration €. The difference in con-

~ AR~

ceritions

AC =V - Y (10-98)
is not mvorporated buot is pushed forward
by the advancing interfuce and must be
carried away through difusion into the
biquid. This is equivalent to the latent heat
generated by u pure freezing solid, dis-
cussed in Section 10.2.3. Therefore, we ex-
pect o spatial concentration profile ahead
of the interface which decays exponen-
tially from €} au the interfuce 1o C, far
away from the interface. But why should it
decay to O, {orr why should the interfuce
choose o temperature position, such that
Cl=C,n

The answer 13 quite simple, and again
wits given i similar form in Section 10.2.3,
Eq. (10-33) for the pure thermal case: [FCY
were not identical to €, then during the
soliddication process there would be gither
u total inerease (or decrease) of concentra-
ton  which clearly is impossiblg - or at
least the concentration proflle could not be
sttionary.

Tiis is o rather strict condiuen, which
we can reformulate as follows: It we impose
a fixed temperature gradient 8T/0: and
muove Lhis at fixed speed V, over a system of
concentration C, at infimty in the liquid
(toward the liquid in the positive z-direc-
tion), then the interface will choose a posi-
tion such that its temperature is at T, the
concentration in the solid will be C (aver-
aged paraliel to the intecface), and the hig-
uid concentration at a flat interface will be
at CP. This follows from global conserva-
tion of matter together with the imposed
stationary solidification rate,

As u final point, we even can derive a
condition for the stability of the interface.
The concentration profile in the liquid will
decay exponentially with distance = away
from the interface as

Cny={CP = C)e ¥+ €, (10-99)

t0.5 Direchonal 3olicditication BISh]

by anatlogy to B )-328 Sinee we assume
the temiperature gradient

G, =0T ¢ » 0 {10~y

to be fixed, the temperature varies hnearly
with distance = from the interface. This
may be written by Gy = (T - T, - as

C-L(,l-)z‘(‘:-,“(“]':flil Fob Gy 'M(-'
{(10-101})

and incorported inty Fiz 10-19 0y a Jash-
Jdotted line. Note that the diifusion length
tis again defined as 1= 20 1, with D be-
ing the diffusion constant of solute atoms
in the solvent. and I, the interface veloaty
imposed by the advancement rate of the
temperature gradient

From Eq. ¢10-101}4 10 n obvious that the
dashed-dotted concentration line m Fig.
10-19 converges very quickly to ) for
large sobdification speeds b As long as
that concentration fine is fully in the hgoid
region ol the phase dingram, nothing spe-
citic happens. Bul f the dash-dotted line
partly goes through the two-phase region
between Cy(T) and O tT) the ligud in
front of the interfuce is supeicooled! This
beurs the possibility of un instability of the
solid-liquid interface, which is completely
analogous o the discussion in Section
10.2.4.

A suflicient condition for stabibity of
the interface in divectional solidification is
therefore

e

} dCL
DG,

dT

so that the dash-do ted curve remains oult-
side the two-phase region (Mullins and
Sekerka, 1963; Langer. 19304). Here we
have assumed that material diftdsion in the
solid can be ignored. As it turns out, in
practical situations, vielation of this condi-
tion typically means “instabiliny™ of the -
terface, so that cellubar o dendoiie pat-

AC {10-102)

“3‘1—

e L



592 10 Solidification

terns ire formed. The reason [or this lutter
conclusion is that the effect of stabilization
due to capillarity (or surfuce tension) is
rither weak for typical experiments ut
threshold.

In summary, in this section we have
derived both the boundary condition - in
terms of chemical potentiat  for a curved
interfuce and a baste criterion for interface
stability during directional solidification.

10.3.2 Scaled Model Equations

A theoretical analysis of practicul situa-
tions of directional solidification suffery -
amoung other problems  from the many
relevant parameters entering the deserip-
tion, The usual way 1o proceed in such
cases iy W scle out as miany parameters as
possible, writing the problem in dimen-
sionless varables. We have done this al-
ready in the discussion of free dendritic
growth by introducing the dimenstontess
diffusion field & m hydrodynamic applica-
tons, it is common  practice to  use
Reynolds and Ravleigh numbers {(Chan-
drasekhar, 1901

For vur present problem, we will pro-
ceed in an analogous way. The first step
is 10 express all experimental parameters
{wherever possible) in length units (e, dif-
fusion length, capillary length, etc). For
presenting results, we divide these tengths
by the thermal length introduced below, as
this 15 & macroscopic length which will ap-
proximately set the scale af the anset of the
instabilily.

Directional sofidification involves chem-
ical diffusion of material together with heat
diffusion. As heat diffusion usually is faster
by several orders of magnitude, one may
often assume constant temperature pradi-
ents to exist o the Tigqud and in the sotid.
Furthermore, we will also assume that
there are equal thermal diffusivities in lig-

uid and sotid. which is often the case within
a few percent, but this has to be checked for
concrete applications. The diffusion field to
be treated dynamically then corresponds
to the chemical concentration,

It is clear from the discussion in the pre-
vious section that for a flat interface moy-
ing at constant speed there is a concentra-
tion jump AC = P — C¥ across the inter-
face, while asymplotically in the liquid and
in the solid, the term C, is approuched
becuuse of the condition of stationary
movement together with the global conser-
vation of matter. We therefore normalize
the diffusion field in the liquid to

u, = e (10-103)

so that it varies from one to zero in the

positive z-direction from the interface at

z=0tw -=. I the interface is not at
position = =) but at {, we must require
u,=1—2/1, because at a distance
AC ) dT
bp=— -1 (10-1G4)
Gy [dCy

the liguidus concentration has reached the
asymptotic value. This is the thermal length
which we assume to be fixed by the thermal
gradient G, the concentration jump AC,
and the liguidus line €{T), which is here

assumed to be a straight line in the T vs. € -

diagram.

The equation of motion in quasistation-
ary approximation then becomes tn anal-
ogy to Eq. {10-32) with [ =2D, /1"

b I
D& B s 0= Vi + ) (;_j":L (10-105)
This equation applies equivateitly to the
solid but with a different chenucal dilfusion
length 7 due to different chemical diffu-
sion constants, The boundary condition in
analogy to Eg. 110-84) obviously hecomes

i) =1 — dK = J0and, ~ [V, (H106)

.-..40‘-

where we now have 1= 1 as the first term
on the rhus., with curvature K being posi-
tive for the tip of a solid nose puinting into
the liguid The capiltary length o is dis-
cussed beluw and interface kinetics with
##0 will be discussed in Section 10.5.4,
The solid boundary condition is simply

ty = ki, —1) (10-107)

with segregation coefficient & (equilibrium
value assumed) defined as

d4T

- 0-108
Jé, (10-10%)

;\-:"”['

'J(-:x. i

through the stopes of the hquidus and soli-
dus line. When they intersect at [T, € =0}
this is equivalent to the conventional de-
lnetion & = C4'C,, but in the above for-
mulation, k= | may also be true for a con-
stant jump in concentrations, independent
of temperature.

The conservation law at the interface
T = L finally becomes '

Vollri =kt — 1) =
= =Dy Ny + Dy Vg (10-109)
where b is the interface velocity in direc-
tion A normal 1o the interface. For k =1,
the brackels |} give 1 corresponding to
4 constant concentration jump while for
h =0, they give u,, since for a solid in Eq.
{10-107), 1y = 0.

This standard model for directional so-
lidification (Saito et al, 1989) therefore con-
sists of Eqs. {10-103) to (10-109) together
with un additional diffusion equation as
g, (10-103) inside the solid phase.

The openr point is finally the relation of
the capillary length o (Fq. (10-106)) with
experimentally measurable material pa-
ranwerers. As w first step, we interpret the
p-fickl, Eg. 10-103), s a scaled form of the
chemical potential g (see Section 10.5.1)
near T,
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=i,

“T AR, ) (101 oy
assuming that lincarizing g around its cqui-
librium value at the liquidus line CoUh) s
sufficient 1o describe its dependence upon
C. By the definitions in Eq. (10-97) together
with Fy. (10-106}, one now obtains the cap-
Wlary length in the form given in Eg. (10-82)
for the chemical case. Here we have gener-
alized to anisotropic 7 as derived in Eq.
{10-21). Tt can finally be related to measur-
able quantities using the Clausius-Clapey-
ron equation for the latent heat L of freez-
tng ol a solution w1 T,

L= - T, 8C K dT,, tIo-111)

(e 3Ty, is the stope of the coexistence
line when g is plotted against T, Together
with

“dpe VAN , o
d7 /e c-c) dr ' or

this gives for the chemical capillary length,
d, in the fimit of small AC

110-112)

e L
=Ll ACL, 0T 00 ]
Certatn approximations used here such as
the lincarization involved in Eq. (10-110)
or neglecting of 88T in Eq. (10-113). may
not be safe for the case of a large segrega-
tion cocflicient k=t or wlen AC is large
(Langer, (980). In most practical applica-
tions, however, this is a small source of
error in comparison with other cxperimen-
tal uncertainties. Fusthermore, the concen-
tration jump AC in Eq. (10-113) is kept
fixed, while in reality it should correspond
o the temperature-dependent difference in
concentrition between the liquidus and
solidus line. Both for small and large
growth rates, however. this only gives a
miner correction, and we will ignore iy
eflectin order to facilitate comparison with
free dendritic growth

{10-113)
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n summary. with this model we now
fave all the ingredients to discuss some
basic features of directional solidification
by anabytical and pumerical tools. The pre-
sentation in the scaled form miy not scem
at first 1o be the most convenient means
for dirgct comparison with experiments. Its
great advantage over an explicit incor-
poration of all parumeters is that quali-
tutively different behavior always corre-
sponds to different ratios of length scales
or time scales rather than some differences
in absolute measures, and, consequently,
this presentation allows for a more intu-
itve formulation of results.

- 10.5.3 Cellubar Growth

A plune interfade between the solid
phase and the liguid phase of a4 two-com-
punent syslem tries to locate its pusition in
a thermal gradient so that the chemical
potentials of both components are contin-
wous dcross the interface, Under stationary
growth conditions, that posilion corre-
sponds to a temperature, such that the con-
centration in the solid (solidus line of the
phase diagram) is equal to the concentra-
tion in the distant liquid. This growth
mode persists for velocities up to a critical

velocity, above which the interface under-

goes a Mullins-Sekerka instability toward
cellular structures. A necessary condition
for this instability to occur follows from
Eq. {10-102), which cun be written in chem-
ical diftusion length { = 2DV and thermal
diffusion length Iy, Eq. (10-104), as

iy <2 (10-114)

The 2 comes from the specific definition of
I, and the inequality for instability is only
approximate because small elfects of sur-
[ace tension have not been considered yet
here. [ncorporation of surface tension re-
veals that the instability first occurs for a

critical waselenath 4, larger than the sta-
bility length 4, = 2x Wl Shghtly above
the critical pulling specd o, the intertace
makes periodic structures of finite ampli-
tude. This was analyzed by Wollkind and
Segel (1970), and for other specific cases, by
Langer and Turski (1977). A more general
treatment was given by Caroli et al {1982},

The result of these investigations is that
in a diagram of pulling speed ¥ versus
wavelength 2 there exists a closed curve of
neutral stability, Fig. 10-20, At fixed Foa
small umplitude perturbation of the inter-
fuce al a wavelength on that curve neither
grows nor decays, Perturbations al wave-

lengths outside that curve deviy. inside the

curve they grow to some linite amphtude.
This is similar to periodic roll patterns
in the Rayleigh-Benard system of o fluid
heated from below (Chandrasekbar, 1961}
but here o maximal speed. 1, is present,
above which a flut interface is absolutely
stable. For normai atloys, this speed is very
high. while for liquid ¢rystals, it is more
easily accessible in controlled experiments

1 1 i ek 1 —_ 1
b6 i
|
10 ogV
Uh3TaBE KT lh
&= -
- 7 -2
Z had \ NELTRA (URVE [
.
STA3LE ~
e e i T ot
- -3 -2 -1 0 1

mlug)\ .
Figure 10-2h. Neutral stability curve for a Mut solid-
liguw! interlace in directional solidification {sche-
maticl. The dependence of the growth rue (pulling
speedy ¥ oou the wavelength £ of the interluce-pertur-
bation is approumately ¥~ 4 7% buth fer the short
and long wavelensth pact ol 1he meutrial stabiliy
cunve, K, and ) arethe lower critical velueily and
upper limil of absolute stability, respectisely

&2 -

Bechhoeter eral. 1989) The diffusion
fenzth 2t 1 is of the vrder of the cupillury
lenygth.

At low speeds, but slightly above the
critica! velocity, V) sinusoidal “eells™ will be
formed for systems with segregation, coelfi-
cients & near unity. For small segregation
coefficients, however, the neutral curve
does not define such a normal bifurcation
but rather an inverse bifurcation. This
means that immediately above ¥, large
amplitude cells with deep grooves are
formed. A time sequence of the evolution of
a sinusoidal perturbation into elongited
cells at 1% above ¥, due to inverse bifurca-
tion is shown in Fig 10-21. This can be
understood theoretically (Wollkind  and
Seael, 1970: Langer and Turski, 1977, Car.
oli et al.. 1983) by means of an amplitude
equittion valid near ¥
(10-115)

e (V=Y e
a T\ v ) AT A

where A is the (possibly complex) ampli-
tude of a periodic structure exp(ik x} with
k= 2n:l,. The coeflicient a, is calied the
Landau-cocfficient. ITit is positive, we huve
a normal bifurcation with [4] ~ \/Vi—glv_{.
while for ¢, <0, the third order term does
not stabilize the pattern but allows very
kirge amplitudes feading to elongated cells
Fig. 10-21, which will be stabilized by some
higher-order effeets.

A second phenomenon is usually associ-
ated with this inverse bifurcation, namely,
the splitung of the wavelength A, —A4./2.
Quulitatively, this is understandable from
nonlinear corrections since the squaring of
the original pattern ~ expfik x) produces
terms ~ exp(i2kx). This effect has clearly
been observed in experiments (de Chev-
eigne et al, 1986).

We will discuss some aspects of the very
high speed region in Section 10.5.7 but
devote the main part of the following dis-
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T Y

L)y YT

)

AF iy

Figure 10-21. Fume wrolution of an mterface from si-
nusowdal to cellular <tructure shightly above the coiu-
cul threshold b for the case of ivverse bifurcation. A
secondary instability quickls leads to a halving of the
wivelenglh

cussions to the most interesting region for
practical purposes, which s not o close
to the upper and lower bounds ol the
growth rate F, und b

Approximiatir.g by struight lines the neu-
tral curve of the logarithmic plot Fig. 10-20
in the intermediate velocity region, one
finds for bath thz small and the large A-lim-
its the relation

V A% = constant (10-1t6)

Again we have recovered the form Fy.
(10-1)y mentioned in the intreduction as a
scaling law whe ¢ 4 here is the cell spacing.
This suggests that the cellular pattern
formed in actual expurimcnts would ulso
follow this behavior. Unfortunately, this
problem has not yet been seetled to u satis-
factory degree from a theorstical point of
view. This is partly due to the difticulty of

43 -
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fnding good analytical approximations to
the cellular structures, which makes au-
merical culeulitions necessury 10 a large
degree. We will return to this point in Sec-
tion {0.5.5.

For smalt amplitude cells obtainable un-
der normal bifurcation, some progress has
recently been made (Brattkus and Misbah,
1990). A phase-diffusion equation has been
derived describing the temporal evolution
of a pattern without complete periodic
variation of the interface. The basic idea is
to replace the periodic trial form exp(ik x)
by a form expli@(x. 1) so that ¢qlx,t)=
= 06, v is now no longer 4 constant but is
slowly virying in space along the interface
and evolving with time. One can derive a
nonlinear phuse diffusion equation
Cog =00 DD, g (10-117)
wilh a diltusion coelfictent 5“” depending
ina complicated wiy on . The procedure
is well known in hyvdredy numics and it is
associuted there with the so-called Fek-
haus instability (Eckhaus, 1963). This in-

2m/ A
Figerre 10-220 Siubibuy digram b ovs, 20 near the
lower entical threshold for a llat moving mterface in
directivmal solihification. The soiud line is the peutral
stabiliey crve g 10-200 the dotred curve is the mest
dangerows mode, the dashed cirve s the limit of the
Fehhaus stabuliny from the amphiude equation, The
ngles mark the Fekhaas long s obtined from the

stability eventually ciuses un falmost) peri-
odic spatial structure 10 fose or main one
“period”, thereby slightly changing the ay-
erage wavelength. Tn directional solidifi-
cation, the result (Brattkus and Mishah,
1990)is shown in Fig, 10-22, where velocity
is plotted against wavenumber in a small
interval above the critical velocity, The full
ling is the neutral curve, the full triangles
mark the Eckhaus boundary of phase sta-
bility. A periodic (sinusoidul} pattern is
stable ugainst phase slips only inside the
region surrounded by triangles. thereby -
lowing for an Fekhaus band of stationary
perindic solutions with a substannally re-
duced spreud in wave-numbers as com.
pared to the linear stabiity results. Note
also that the results for phase stability
{dashed line) from the amplitude equation
only hold in un extremely small region
above V., while already 20" above 7, it
shows no overlap with the result from the
present analysis (triangles). The short-
wivelength branch has i very compheated
structure,  while  the  long-wavelength
branch far from the threshold scales as

—

ull nonlinesr analyss (Wratthus and Mishah, 1990),
with stabde cellular interfaces possible only msde that
region. The band width of possible wavelengthe for
cellulise interfaces accondingly 15 smaller by a factor of
=04 as compared tothe band width given by the
neutral thaear) sty curve.

a oL e

"7 aguin tike the neutral curve.

This also scems to be in agreement with
experimentally observed results, s dis-
cussed later (Billia et al. 1937, 19%9: Som-
boonsuk et al. 1984; Esuka und Kure,
1985: Eshelman and Trivedi, 1Y87; Faivre
etal, 1989 Kurowsky, 1990).

At higher velocities, the cells quickly
become elongated Fig. 10-23 with deep
grouves forming bubbles. This was first
obtatned through numericil calculutions
by Ungar and Brown (19844, b: 19854, b).
Calcutations with a dynamical code in
quasistationary approximation (Suito et al.,
1989) confirmed the stabdity of these struc-
tures with respect to local deformations
and short-wavelength perturbations. The
long-wavelength Fekhaus stability has not
been invesugated so far for these cells. All
cufculations were made in two dimensions
which are believed to be appropriate for
cxperiments of dircctional solidification in
anarrow 2ap between glass plates,

At higher velocities and wavelenglhs
tor vell sizes) not much smaller than the
dilfusion length, the grooves become very
narrow, similar to Fig. 10-21 {Ungar and
Brown. 1984, 1985; Kurma, 1986; Kessler
and Levine. 1989; Mc Fadden and Coriell,
L984 Pelee and Pumir, 1985). [ the veloc-
ity 15 hixed and the wavelength 4 is reduced
significantly below the diffusion length [,
one rewches the Salfman-Taylor  limit
(Brener etal, 1988 Dombre and Hakim,
1987; Kessler and Levine, 1986 ¢), which is
cyuivalent to a low-viscosity fuid being
pushed into it channel of width J filled with
a high-viscosity fluid. The low-viscosity
fluid forms a finger just like the solid in
directionul solidification. Near the tip, the
width of the finger 4, corresponds to

S~

VRETIN
with cell spacing 2, where 1< 1 iy the ac-
tual supercooling at the lip{remember that
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Figure 10-23, Computed example for o deep cellulur
nterface it s S 17 with bobble frmanson ar the bot-
tom of the groose (Sairto et al . 19

A=1Tor & flat mterface at =0 and 1: 0
for a Mat interface at =1, This serves
to verify the consistency of numerical cal-
culations {Saito et al, t989) An even more
detaded aualysis was made recenth by
Mashaal et al (1990,

For compurisen with experiments, i is
uselul to draw o V' ovs /2 diagram (Vg
10-24). Here the full line is again the ney-
tral curve. the broken line is the most dan-
gerous (or most wistable) mode, and the
dotted line denotes the relation f - 4,
where the diffusion length is equal (o the
impused wavelength, The stars mark some
detuled numerical investigations  (Saito
etal. 1989) The star furthest to the left is
close to the above-mentioned Suftmann-
Tuylor limit At slightly lurger wavelenaths
where A < f sl holds, one is in a scaline
region, where the rudios of curvature ot
the tips of the cells is about t 5 of the
cell spacing. as also found experimentally
(Kurowsky. 1940). Al these considerations
eive sullicient confidence that the nomeri-
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cal caleulstions may provide insight mto
tie mechanism of directional sehdification
also for the most interesting case of den-
dritic arrays formed at higher growth rates.

A few words on numerical methods and
system parimeters may be in order before
we discuss the dendritic region. The nu-
merical code is equivalent to the one used
for the free dendritic case with the modifi-
cation that it is necessiry 1o integrate over
several cells to arrive safely outside the Jif-
fusion length. Furthermore, in principle,
diffusion has 1o be considered in both the
liquid and the sold. Since the diffusion co-
efficient for material in the solid is usually
much lower than it is in the liquid, it is
found that diffusion in the solid alloy can
usually be negiected on time scales for the
formation of cells. For long duratons, of
course, microsegregation takes place, and
solid diffusion then becomes important
{Kurz and Fisher, 1984),

A more serious difficulty in directional
solidification is the large number of puram-
eters defining the system. We will concen-
trate here on typical parameter values used
in experiments performed for some trans-
parent materials between ghiss plates. Sev-
eral tests and specific calculations also
done for alloys, however, indicate that a
large part of the results can be carried over
to these more relevant situations from a
metaliurgical point of view without quali-
tative changes.

10.5.4 Directional Dendritic Growth

The diagram in Fig. 10-24 showing ve-
locity versus 4 in logarithmic form indi-
cates that qualitatively different behavior
may be expected depending on whether the
diffusion length is larger or smaller than
the cell spacing. In the previous section, we
discussed the first case. When the diffusion
kength becomes smadler than the cell spac-

ing we expect that the indisidual cells be-
come more and more independent of cach
other. until finally they may behave hke
individual isolated dendrites.

In order to test this hypothesis, a series
of numerical experiments were performed
at a fixed cell spacing and increasing
pulling velocity (Saito et ak., 1989}, The nu-
merical parameters of the model were rep-
resentatively tuken to correspond to steel
with Cr-Ni ingredients {(Lesoult, 1980). In
dimensiontess units, the critical velocity
and wavelength for the plane-tront irista-
bility were ¥, = 1.136, 2, =051+ The an-
isotropy of the capillarity length wus not
known and was taken as = 0.1 to allow
for comparison with the previously men-
tioned calculations on the free dendritic
case. The cellular wavelength was Nixed to
i = 0.36 corresponding o the stars at in-
creasing velocity and constant 4 in Fig.
10-24,

Al the Jowest veloeity still below the

[ = ; dividing line, rounded cells were ub-
served; the tip was not well approximated
by a parabola, At higher speeds V' = 12 the
purabolic structure of the tip already be-
came visible, Fig. 10-23, und at even higher
speeds ¥ =20 the dendritic structure with
side branches was fully developed, Fig.
10-26.
, We can now compure the resulting tip
radius with the predictions from free den-
dritic growth. Note that in the present case
the velocity is fixed rather than the super-
cooling, so that the dendrite now uses &
supercooling corresponding to the given
velocity. This means that the tip of the den-
drite is no longer at a position in the tem-
perature-gradient field like a flat inter-
face, but has advanced toward the warmer
liguid.

Fig. 10-27 contains the ratio of the tip
radius divided by the radius from scaling
Eq. {10-63) {(where the Peclet number P was

PTT
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Figure §0-24. "Phase™-diagram tog (V) vs. log(4) for
interface paticrns in directional solidification. The
wolid and dashed curves denote the neuteal stability
curve, and the dash-dotted curve the mast dungerous
mode. Stars mark fixed parameter values discussed
herealier. The lower critical threshold here is V=1,
aox03 for velocity and well spacing. For other
parameters see lext At low pulbng speeds and large
wavelengths cellular patlerns with parrow grooves

are found 12). AL very short watvehengths and moder-
ate spevds cellular patteens with wide grooves are
[eund. cunsistent with theories for viscous lingening,
Al high pulling speeds, such that the cell spacing a5
significantly wider than the diffusion length 1, side-
branching dendnitic acrays dre formed 1o} {Saito et al,
19910, The speeds wie soll much smaller than the ab-
solute stability i ¥

—a

| SR T

Figure 10-25. Transition from needle-shaped te den-
dritic cells at increasing pulling speeds, ¥ =4is below
the dotted fine in Fig. 10-24, and ¥ =12, above it.

e
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Purabolus adjustec. to the Hip radius are not a goud fit
tu the profiles.
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Figure H-26. Dinte seguence of 1 dendne arnny at
| IV

HE240 Ehe stariog structure corresponds 1o 1 12,

AL worrespoiding eopont i Fig

s fo i 302y The cellubae arin quickly con-
serges W statondy side-branching mode ol opera-

Lo

Figure 18-27, Ratros R

matnericall ol g HE24)0 over twn theoreticul predig-

e Bob tip radius computed
oo where ®0s cnther the Toantses racins (errchoss
ur the radis from sobatiits theory (suarst See dabo
Fre 10-10 The vesubt s mooeady perfeet agreenent
with the sobabddiny theory down o vers sl specds

used in the original form as the ratio of tp
radius to diffusion lengthy Furthermore,
this figure gives the rativ of the tip radius
o the Ivantsoy radius, which comes from
the Peclet number through the relation
for the supercooling at the tip, Eq. (10-36).
The data are instantaneous measuremenlts
rather than time-averaged measurements.
[t is obvious [rom Fig. 10-27 that the scal-
ing relation, Eq. i10-68), holds very well at
vather low speeds. where neighboring cells
still interact substantiatly theough the dif-
fusion field, while the relation from the
Ivantsov formula for the Peclet number
only holds at higher velocities. The obwvi-
ous reason for the latter deviation at small
velocities is that the Ivantsoy relation rep-
resents a globul conservation law for an
isolated  parabohc
clearty not valid when several cells are
within a ditffusion length,

The observution that the scating rela-
tion, Eg. (10-6%), is very robust obviously
his to do with the fact that 1t results from
asolvability conditton at the tip ol the den-

structure,  which s

—_— =

Vo o———
in e eellular revwon. The Bvantsey radins tor hee
growwih) s not o sood approsimanon there as the
dillusion ~elds of neighbonng cells strongly overlap
AL hieh specds, essenalfy Tree adendrie growih sy
cetliried [Saite e al, 1990
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Figure [-28. Supercooling at the tip of a cell or den-
dente vs pulling speed as obtained from numerival
simubiation. Foroa Mat interface at smatl speeds. the
glubal comservanon liw forces § .2 1. then it lirst de-

drite. which s only very weakly influenced
by deformations further down the shaft.

In the same study, it was also confirmed
that the side branches fulfilled precisely the
sane scaling relation Fig. 10-13 as the free
dendrites at relatively low speeds of V=12
shown in Fig. 10-25. In this case. the side
brinches are just beginning to show up,
while the tip is not very noticeably para-
balic.

Up to this puint these investigations were
done it a constant anisotropy of £ = 0.1 of
the capitlarity length, In Fig. 10-28 the nor-
malized supercooling A has been plotted
against velocity ¥, where A =1 for a flat
interface at stationary growtl, Two sets of
data for =00 and = 0.2 are shown. If
one nereases the pulling speed above the
critical value ¥z 1, the supercooling at the
tip of the cellular patterns first decreases,
hecanse the forward bulges come into a
range of higher temperatare. At intermedi-
e velocities, 1 goes through o mimum
el finally approaches the broken lines
corresponding to the seuling relation, Fy.

e
50
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4
Vo o——
creases apdil £ 2 2 oand Ninally approaches the slowly
mereasiiy relation 1) ohiuned lor the Tree dea-
drstee case e also Frg 100301 The expeeted depen-

dence on caprllany wisotrope iy b recovered

[10-68), together with Ivantsov refation,
g (10-56k At intermediate welogities, the
supercooting Tis above the corresponding
cure mestiing that the Peclet number. and
therefore the Tvamtsos vadis s larger than
expected from the free dendritie scaling,

This s an agreement with Fig, H0-27
shown above. The numimum of the .1 ver-
sus 1orelation s in the range where the
ditfusion length is comparable to the cell
spactng, as expectad  from the diegram
Fig. 10-24.

As o final example. Fig 10-29 shows
dendritic array at the relatnels high veloe-
ity I
dendritic growth, the shructure appears
sharper than the structure in Fig 10226 a1
smaller anisotropy.

The opposite duection of extremely
small anisotropies has pol set been ana-

Yy at ansotropy £ 020 Asan free

Ivredimgreat detinoand s vather unclear
what liappens both from o theoretical and
an evperimental poimt af view. Most biely,
al scro dmsotrepy oo 00 the cetls widl tend
o spht il the cell spacing becomes mnch
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Figure 10-29. Pronounced parsbelic directional den-
deites at speed b =40 and £ =902, a3 used i Fig
10-23. Note that the up-radius here s about 033 and
the shuct-wavelength lmit of newtral stability 0.03 in
units of the cellulae spacing. This s gualitatively con-
astent with experimental observations of large inter-
Jondriti spacings in umits of op radil. Tip splistnyg
was only observed at much lower vitlues of capillary
WILSOITOPY.

larger than the diffusion length. which al-
fords the possibility for chaotic dynamics
at high speeds. But this is still speculative
today.

Let us tuke a quick look at the kinetic
coefficient f§ in Eq. (10-106), As can be con-
cluded from its multiplication by ¥, ff be-
comes more and more important at high
growth rates. For the free dendritic case
with kinetic coefficient § and 4-fold un-
isotropy fi, of the kinetic coefficient, a scal-
ing relation similar to Eq. (10-68) was de-
rived by Brener and Melnikov {1990 b):

9 92
ﬂl/ﬁan(:%i) PUUETE (10-118)
ty

with a constant prefactor g, = 5 and with
Peclet number P as used before in Eq.
(10-6%). The scaling refation, Eq. (10-115},
consists of several nontrivial power laws:

only the one with £ = R { relating tip ra-
dius to velocity has been confirmed o date
(Classen etab, 1990L With regard to the
generul agreeient between analytical and
numerical results obtained so far, however,
there is little doubt that these scaling re-
sulls (and others given by Brener and Mel-
pikoy, 1990a) will also hold for the den-
dritic region 4z | in direcuonal sohdifica-
tion.

A last point Lo be keptin mind is that the
lip supercooling A1 in dircctional solidifica-
tion is not small, as required by thecap-
proximations used for the derivation of the
scaling relation. On the other hand, P=1
corresponds to a supercooling as large as
A20.75; 0.6 for 2-dim and 3-dim, respec-
tively, and the scaling relations can be ex-
pected 1o hold over a large runge of veloc-
ities, as already indicated from the other
free dendritic case, Fig. 10-12.

In summary, these investigunons have
shown thal there appears o be a smooth
transition from ceblular o dendritic struc-
tures. The dendritic growth laws are very
well represented by the scaling relations for
the free dendfitic case. This scaling should
hold in the region
(10-119)
where 4 is the primary cell-spacing. It was
recently proposed {(Karma and Pelce, 1989)
that the transition from cells to dendrites
could oceur via an oscillatory instability,
for which the present investigations under
quasistationary approximation have shown
no evidence. A fully time-dependent calcu-
Jation is possible in principle with Green's
function methods {Strain, 1989}, and re-
sults may appear in the near future.

dy<Rxl<i<l

10.5.5 The Selection Problem
of Primary Cell-Spacing

An important guestion from an engi-
neering point of view appears to be the

_bO’

following: Suppuse we know all the mate-
rial parameters and the experimentully
controllable parameters like thermal gra-
dicat and pulling speed for a directional
solidiication process: can we then predict
the distance between the cells and den-
drites”?

A positive unswer to this question is de-
sirable because the mechanical properties
of the resulting alloy are improved with a
decrease in the primary cell spacing (see
Kurz and Fisher (1984, 1989) and refer-
ences therein).

[n a rigorous sense the answer today is
still negative, but at least arguments can be
given for the existence of some boundaries
on the wavelengths {or cell spacings) which
can be estimated with the use of simplifica-
tons.

The situation here shows some simi-
furity to the formation of hydrodynamic
periodic roll patterns (Newell and White-
head, 1969; Kramer et al., 1982; Riecke and
Paap, 1986). In & laterally infinite system,
a whole bund of parallel rolls is present
above the threshold for roll formation, the
so-calied Eckhaus band. This was aiready
mentioned in Section 10.5.3 for directional
sulidification.

The reason for the stability of these roils
is that an infinitesimal perturbation is not
sufficient to create or annihilate a roil, but
a perturbation must exceed a threshold
value before such an adjusiment can oceur.

In directional solidification, the situa-
tion is different insofar as the envelope
over the tips of the cells could make a
smooth deformation of very long wave-
length, thereby building up enough defor-
mation eaergy so that a cell could be cre-
ated or unnihilated at isolated peints. One
indication for such a process is the oscilla-
tory instability of cells postulated recently
{(Karma and Pelce, 1989), but that point is
still controversial (Kessler and Levine,
19N,
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The valy bard argument for the setection
of & unigue wavelength comes irom 4 re-
cent analysis ol a spatially modulated ther-
mal gradient ceting on a cellular pattern
of smadl ampiitude (normal bifurcation)
which imposes a ramp on the pattern (Mis-
bah, 198% Mirbah et al., 19904a). The idea
originally proposed for the hydrodynamic
case (Kramer ot al., 1982} is to have a peri-
odically varving thermal gradient parallel
to the interfucz, which keeps the mnterface
flat in some re zions and allows for the for-
mation of cells in between (Fig. 10-30}, For

. such u spealic setup it was recently shown

{Misbah et ul,, 19904) that & unigue wave-
tength must be selected in the center of the
small-gradient area. The reason for this
special construction is that it allows for
the Tormation of cells at arbitcarily small
amplitudes {and therefore small pinning
forces) in the 1egion of strong thermal gra-
dient.

In general, however, Lhe boundary con-
ditions on the other sides of the cells, due
to the container walls, are not well speci-
fied and typically will rot provide such g
ramp structure (sce Misbah (1989), how-
ever, lor growth in a rotating vessel). For
the time beinz, one therefore can try v a

THERMAL GRADIENT

Figure (0-30. Numerical study of cellular wavelength
selection at the ir weefuee by introduciog i camp en the
thermal gradient field. A high thermal gradieat on the
sides approximately normal to the interface Keeps the
interface Rat, the smalker geadicnt m the center allows
for ells 10 deve op. At fixed ramp profile a umque
cell-spacing s selected in the center, startng o
dilicrent imgnd conditions (Misbah 199 wnpab.
Lished).
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least Nnd some boundary similar to the
Eckhaus-band Tor the himits of large and
small wavelengths in the cell spacing.

Il is not easy to extend the corres-
ponding analysis of small-amplitude cells
{Brattkus and Misbah, 1990 to cells with
deep grooves. as these essentially infinite
grogves present o kind of topological con-
straint on the number of longitudinal cells
in a given lateral interval, The creation or
aunihilation of cells is therefore likely to be
a discrete process.

A nutural mechanism for the local re-
duction of cell spacings (or creation of a
new celly is cither a nucleation in one of the
grooves (the liquid is supercooled), or even
more ltkely, the formation of a new cell out
of a side-hranch in such a groove. Allerna-
tively. tip splitting of a cell may give the
same result (Fisher and Kurz, 1978, 19500,

The opposite mechanism for the increase
of cell spacing for anmhilation of an exist-
ing cell) could oceur through the compeli-
tion of neighboring celts for the diffusion
field. such that one cefl finally moves at a
slightly lower speed than the neighboring
cells and. consequently. will be supressed
relative 1o the position of the moving front.

These two mechanisms have been con-
jectured by many authors in the past. Some
progress has been made recently by the
cenfirmation of the scaling refations in the
Jdendritic region. 1t seems, therefore, worth-
while to reformulate those conjectures with
the help of these scaling retations. Let us
first consider the short-wavelength 2 (cell
spacing) argument. Assume that we are at
dendritic growth speeds, Eq. (10-119), 1~
noring here kinetic coefMuients. The solidi-
fication front then looks like an array of
indivadual dendrites which oaly weakly in-
teract with cach other through the diffu-
sion field [« 2.

Ihe sotidilication front [ = 0 will be un-
derstood here as a smooth envelope touch-

ing all the dendrite tips, sa that detorma-
tions of the front have @ smaliest wave-
length £ equal to the cell spacimg. There are
now basicadly two “forces™ acling on de-
formations 20 (x.1),¢¢ of that front. Il some
of the tips are trailing a livtle behind the
others, they will be screened through the
diffusion field of the neighboring tips, as in
the conventional Mullins-Sekerka instabil-
ity, but now without a stabilizing surface
tension interacting between neighboring
tips. Tuking this into account. the destabi-
living force is F, = " 7, with {9 = 1jkj
for a sinuseidal perturbation of amplitude
T of a plane interface without surface ten-
sion moving at velocity Fand wivenum-
ber k. The maximum lies at & =274 The
actual aren under this perturbation 7 con-
tained in the selid eollfs is smaller by a fuc-
tor = 2R 2 We thus armve at o maximal
destabilizing loree of

SR QW M s An bR (L0-E0)

corresponding o a depression or enhance-
ment of every second dendrite.

On the other band, each of these individ-
uat dendrites knows its operating point.
and through the given velocity its super-
cooling at the tp. We approximale this
by the asymptotic form of Fg.{10-56)
A =1 -1 P since basically the variation of
A with Poenters below, even though 1F may
not be very lurge compared to umty. Cap-
illary effects seem to be not very impaortant
in this region and are thus neglected here
for simplicity. By definition, 4= 1 -z, {,.
and the two expressions tor . can be eval
wated: 7, = LR The stabilizing fores
Fox 00 Tollews from the obvious rela-
tion QN .odlb] dz, as

N P

S}"J-___‘\ R H”'l)“
!

As expected. The sign of that “Toree™ s op-

posite i the destubilizing force. by (10-

§ 200 Setting the sum of the two equal o
zero, we expect an instability to oceur first

at cell spacings

<l (10-122)

T

for sezrezation coefficients around one, We
cannot say much about small segregation
coeflicients because the nonlinearity in Eq.
{10-109) replacing Eq. {10-36) becomes im-
portant there, Of course, a number of rough
approximations were used specifically in
the treatment of the destabilizing force,
but this argument should at least qualita-
tively cupture the competition mechanism
butween neightoring dendrites. A recent,
more  detatled  analysis  (Warren and
Langer. 1990) locks quite promising at
targe velocities in comparison with experi-

ments (Somboonsuk et al., 1984) {see ulso

Kussler and Levine, 1980 ¢ Bechhoefer and
Labehaher, 1987

Let us now look at the large-wavelength
it 4. The ioitial growth conditions are
assumied o be just as before Eq. (10-119),
but now at pussibly farge cell spacings 4. In
the numerical caleolations, it was found
{Saito etal, 1989) that for fixed cell spuc-
ings 2 at increasing velovity, a tail instabil-
ity oceurs (Fig, 10-31). A side branch in the
groove between two dendrites splits off a
ternary bianch. which then moves so last
in the strong supersitturation in the groove
that it finally becomes a new primary
branch. In the plot, the imposed micror
symmetsy is, of course, artificial, but iteven
acts opposite to this effect, making the pro-
cess more prausible in reality. In fact, this
s also observed experimentally (Esaka and
Kurz, 1989), in particular when the sofid
consists of slightly misaligned regions sep-
arated by grain boundaries. so that the
growth direction of two neighboring den-
driics iy slightly divergeat. Our basic as-
sumption now is thats this vl mstabihty
vectts when the intersection of parabolic
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Figure 1031 Aer o sudden snerease of the growth
fate n the dendotic region at Txed cell spacing. wl
instability occurs. One of the side branches near the
up pruduces & proteberance in the forward direction
which then becomes a new poimary cell (the imposed
mirror symmetry iy not present in reality of coursel. In
accordance with the stability of deodnnie cells againsg
up spiiting lwompare Fig: 10290 this col instabibins
appears W be an inportant selection mechanism for
printary cell spacing. See alse Frg 1043

cnvelopes vver neighboring dendrites oc-
curs al a peint 2 < 0. where, theoreticalls.
A > 1o In this case. there s no need for
long-rage diffusion around a side branch.
for its dynantics become local. Of course,
this assumption ignores geometrical com-
petition between neighboring side branches
to a certain extent. but for the moment
there seems to be o betier argument o
hand.

Tuking into account the point that
neighboring paribolas with tip position at
Zup = 0 cannot intersect further down to
the cold side than at -=0, we obtam
2 = F FRCfrom the two relations for |
just as in the previous case af snall wave:
kengihs, But now, we must use the pari-
bolic relation z,,, = 2%, 8 R for the miersee
ton of two parabolas of radios Rat 2 =10,
which wre at o distance 2 apart fron cuch
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wther, The tail instability accordingly is
eapected Lo occur for

22 \'l'.f (1-125
again with a prefacton roughly of the order
of unity lu comparison with Eq. (10-122),
it can be seen that in both cases the same
scaling relation results. The scaling with
the inverse growth rate [ follows the neu-
ral stability curve W velocities safely in
between the two critical values and again
recovers Eq. (10-1} by noting that {~ 7!
and therefore ¥4 = constant. The results,
Eqgs. (10-122) and (10-123) seem to be in
agreement with experiments {Somboonsuk
etal, 1984 Kurowski, 199, Kurz and
Fisher, 1981, 1989) concerning the scaling
with respect to diftusion length ! and ther-
mal length I, The liniit & -0 for the segre-
sation cocfficient as a singular point is not
rebably tractable here.

The previously given relution 4~/"?
(Hunt, 1979; Trivedi, 1930 Kurz and
Fisher, 1981) seems to be valid in an inter-
mediate velocity region (Fig. 10-28) where
.1 does not vary signiticantly, so that
Zapfy = 12 {8ee also Section 10.6.1.)

A serivus point is the neglecting of sur-
fuce tension and anisotropy in these deri-
vations. [n the experiments analyzed so far

the relation V22 < const. seems to hold ap- |

proximately, but what happens for the cap-
illury anisotropy ¢ going to zero? Numeri-
cally, tip splitting oceurs at lower velocities
for smaller & In 4 system with anisotropy
:=0 lund zero kinctic coefficient) the
siructures most likely show chaotic dy-
namivs at velocities where the diffusion
fength {15 smaller than the short wawve-
length limit of the neutral stability curve
Fig. 10-24, bul this is still rather specula-
tive (Kessler and Levine, 1986¢).

In considering whether the tail instabil-
ity (lirge 4) of the competition mechanism
{small 4} will dominate in casting pro-

-y -

cesses, we tend w fuvor the former. If the
solidification front consists of groups of
dendrites shightly misoriented against each
other due to smatll-angle grain boundaries,
cells will disappear at points where the lo-
cal growth directions are converging and
new cells will appeur through the tail insta-
bility at diverging points at the front.

To summarize, the most likely sculing
behavier of the primary cell spacing 4, de-
pending on pulling velocities, follows Egs.
{10-1) and (10-123) as a vonsequence of the
arguments presented in this section. This
conclusion is supported by a number of
recent experiments (Billia et al., 1987; Som-
boonsuk etal. 1984 Kurowsky, 1990;
Esaka and Kurz, 1983), but more work re-
mains to be done.

10.5.6 Experimental Results
on Directionul Dendritic Growth

Since 1950, in situ experiments on direc-
tonal solidilication (DS) of transparent
model systegis  have been  perfermed
{Koiler, 1930). However, it took some time
until such experiments were specifically
concetved o support  microstructural
models developed in the 19305 and early
1960s. The work of Juckson and Hunt
{1966) is 4 milestone in this respect (Hunt
et al., 1966). Their experimental approach
on dendritic growth has been developed
further by several groups: Esaka and Kurz
(1983), Trivedi (1984), Somboonsuk et al.
{1984), Somboonsuk und Trivedi, (1983),
Eshelman et al (1988), Seetharaman and
Trivedi (1988). Scetharaman et al, (1988),
de Cheveigne et al. (1986), and others, Sub-
stantial propgress has been made during
these years, This research is still producing
interesting new insights into the dynamics
of interface propugution during crystullizi-
tion.

The specific interest of 1S is that growth
morphologics cun be studied not only for
dendritic growth but also for cellular and
plane front growth. We will discuss these
phenomena in the sequence of their ap-
pearance when the growth rate is increased
from V., the limit of first formation of
Mullins-Sekerka (MS) instabilives (also
called limit of constitutional undercool-
ing), to rales where plane front growth
again appears at velocities above V,, the
absolute stability limit.

Maorphological instabilities. The onset of

plane front interface instability is observed -

to start ut defects like grain boundaries,
subgrain  boundaries, and dislocations,
forming a more or less pronounced depres-
sion at the intersection with the solid-
liquid boundary as shown in Fig. 10-32
{Fisher and Kurz, 1978). 1t 1s inherently
difficult 1o quantitatively observe the break-
down because the growth rates are small,
and a long peniod of ume is required to
reach steady state.

The umplitude and wavelength of the
perturbations us a funciion of V develop-
ing in systems with small distribution coef-
ficicnis A (of the order of 0.1) are shown in
Fig. 10-33. In CBr,-Br, (de Cheveigne
et al., 1986) and SCN-ACE (Eshelman and
Trivedi, 1987), the bifurcation is of a sub-
critical type. ie, there are two critical
growth rates, one for increasing growith
rate, ¥V.*, and another lower value for de-
creasing growth rate, ¥,”. Therefore, a pe-
riodic interface shape with infinitesimally
small amplitudes cannot form in these sys-
tems. As has been discussed in Section
10.5.3, only systems with k near unity will
give supercritical (normal} bifurcation with
a single, well-defined critical growth rate V..
The evolution of the wavelength for two
temperature gradients (70 and 120 K/cm)
is shown in Fig. 10-33b. At the onset of
instability the experimentally determined
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Figure 10-32. Morpheological instabilities of a planar
solid diquid interface. Photograph (1) was taken at an
eariicr stage than (b}, The beginning of the breahdown
a1 defects such as dislocations, sub-grain boundaries,
or grain boundaries intersecting with the sohdliguid
interfuce is evidemt. The widths of the photographs
correspond to 100 um.

wavelengih is larger than the critical wave-
length by a factor 2--3 compured 10 lin-
ear stubibity analysis. Increasing the rawe
above the threshold deads to a decreise
of the wavelength proportional 10 ¥ "

e

e
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Figure 10-33. Amplitude. A, and wasclength, £, of
pecodic deformation of the solid Tgud interface of
CHBr, Hr. soluton versus putling speed (de Che-
wergne ot ab, 1986). Disgram (a) shows the hysteress
between appearance and disappearance of perturbi-
trons i pical for an ioveese bilurcation)y Tor o temper-

(e Chevergne et al. 1986; Kurowsky, 1990).
Oncee instability has started, the structure
evalves to a steady state cellular or den-
dritic growth mode. Which one of these
structures will fnully prevail is o question
of the growth conditivns.

Cells and dendrites. Through an increuase
in ¥ {or C, ora decrease in G, ) a colum-
nar dendritic structure can be formed out
of a cellular array (Fig. 10-34). All three
morphologies (instabilitics, cels, dendrites)
appeur 10 have their own wavelength or
array spacing. Owing Lo competition be-
tween neighboring erystals, the mean spac-
ing of large amplitude cells seems o be
always larger than that of the initial pertur-
hations of the plane front, and the mean
trunk Jistance {primary spacing A) of the
dendrites, larger than the spacing between
smaooth cells. The reason for this change in
tvpical spacing is not clear vet, We will
cenwe buck to this subgect Liter. Before we
Jdo soo some relevant observations on tip
prowth need to be discussed.

10
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ature gewdient of 12K mme The Hines by diagram (b
represent the calculated neutril stability curves fur
the two grndienes imhcated  Open ciredes are avperi-
mental results for 7 Komm. and crosses, for 12 Komn
See also Fre 10-21

The tip ts the “head™ of the dendote
where most of the structural features are
imtiated, Fig 10-35 shows a dendrite tip
of succinonitrile (SCNY with 1.3 wt %o ace-
tone (ACEY e an imposed temperature
eradient, Gy =16 K cm and a growth rate,
=83 pmus. The smooth tip of mitally
parabolic shape (Fig, 10-35b) s clearly vis-
ible. In contrast to free thermal dendrites
(Fig. 10-9}, in DS of alloys the secondary
instabilities stari forming much closer to
the tip. The imposed temperature gradient
abso widens the dendrite along the shaft
refutive to a parabota fitted to the tip. This
effect increases with an increasing lemperi-
ture gradient (Esaka, 1986)

The sequence of steady state growth
morphologics, from well-developed lurpe
amplitude ceils 1w well-developed den-
drites. is shown in Fig. 10-36. Besides the
information on the form and size of the
cocresponding prowth morphologies, this
figire also conting indications spectfying

the diffusion length ! - 2001 and the rano

J_fh’

Figure 10-3. Time evolution of the solid-liquid in-
terface morphology when aceelerating the growth
rate from (1o 34 gm s at a temperature gradient of

of the hall spacing over tip radius. The
characteristic diffusion distance decreases
muore rapidly than the primary spacing of
the deadrites (Fie 10-36). When {2 4 the
ratio 22 R of directionally solidified SCN-
Twe"s ACE alloys is between 5.5 and 6
in agreement with numerical caleufations,
Section HL3.3,
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B3 s td) S0 s, ) PV ) 740 Uit amd Somhoon-
sub, 9%

These ebservations are summarized in
the dingram of Fig. 10-37. Three areas of
growth can be dilferentiated for this alloy:

i) at dow speeds, cells are found showing
no side branches and a non-parabolic tip:

i) ot intermedite rates (over a factor 3
in F), cetlular dendimes are formed with
weahly developed secondary arms, and they
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show an increasingly sharpened parubolic
up:

i) at large rates dendritic arrays grow
with well developed side branches and a tp
size much smaller than the spacing.

It is difficult at present to judge the inllu-
ence of the width of the gap of the experi-
mental cell, which had approximately the
same size as the diffusion distance, when
+ =1{. The corresponding growth rate also
marks the transition from two- to three-
dimensional growth of dendrites, as can be
seen in Fig. 10-36. Under conditions A 0
C, no secondary arms are vbserved perpen-
diculur to the plane of observation, while
conditions D 1o F show well developed 3d
dendrites even far behind the tip. There-
fore. the gap might somewhat influence the
values of the transition rates but not the
qualitarive behavior of the transition. As
menuoned above, the theory (in quasi-
stationary approximation) only indicates

Figure 10-3%, Deadnte tip of
SCN 1.3 wits avetune solu-
tion in directional growth,

) for ¥ =83 umys and

G =16 K/mm, (b purabola
litting the tip geowing at
b=3pumes and G = 44K 'mm
ibsaka and Kure, 1983; Feaku,
1986}

Qistance
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Figure 10-36. Cellelar and dendrine

ad ,“ ”':1 prow by morphologies i SCN
1 L 3wty acctone thermal gradient
; ; R < G 103 Komm (Fsaka,
: ! 1986) The growth rate, 4 nopm s,
. Ay the dilfusion lengah (20 1) mon.
f'J v : 4 and the rabo of the priary trusk
ks b ;

spacicg to the up Jdiameter are as
Tollows: A - 160 1.6, 20 B~ 23,14,

E=3 008 75 Fo X3 00k i

Figure 10-37. Primar/ trunk spucing, dillusion length,
and tip ridius of SCH 13 wi % acetone demdiites us
i function of the grovah rae for o emperiture gradi-
ent of 9.7 K. mm. The varnious points correspond (o
the cendivons aad m crostroctures given i Fig -6
(Esaka, 1986) lu region A no side arms dre ubserved
and the wips are of noaparabolic shape. i B the tip
becomes parabolic ad some side atins appear: ia O

well-devetoped side o nins and a purabuolic up are the
sign for solated fips
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a very pradual change i morphology. It
ks interesting to compare Fig. 10-36 with
Figs., 10-25 and 10-26. 1t cun be seen that
both the theoretical and the experimental
approaches show qualitatively the sime
behavior, even if the material constunts
used are not the same.

The scaling of the mitial side-branch
spacing 7, with respect to the tip radius is
shown in Fig. 10-38, Both quantities scale
closely with L2 F - -const or B2 C, = const.
{where Lo~ R or 4,). Fig. 10-38 b shows also
the quantity A, the distanee from the tip

down the shaft, where the lirst signs of tip
perturbations in the SCN-ACE system can
be observed. Here 4, i of the same order
HE

The ratio 4,‘R obltamed by Fsaka and
Kourz (1983) for SCUN-£.3 wi.% ACE 15 in-
dependent of srowth rate according to the
precision of the measurements and takes a
vitlue of 2.1 £ 0.2 {see Fig, 10-39 and Tuble
10-1y. This s in good agreement with the
measurement of Somboonsuk and Trivedi
(1985 who tound a value of 2.0 on the same
system over i wide ringe of prowth rates.
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1 . [, 1943)
1 10 100
vipmis)
I .
Cells | cellular dendrites rsalated dendrite tips
— C e — —_— - N 1 -
T
b el T e o e e
—
= T
- /g d T - i
. ' - 0
D ! X
LS. : Ff/ \!
o . i
5 - !
g w“ i
E s = |
& ki -4, |
}id 3 - ; Ml
R Sea 17 At e wure 13 ll.l-]lpi.f tures
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compusitions, and temperature gradients
{Trivedi and Somboonsuk, 19848 This
ratio ancreases with crystal anisotropy
in agreement with numenical caleulations
{Figs. 10-26, 10-29, 10-13) and dccreases
with mcicasing temperature gradient. On
the other hand, its value is lirger in the
case of free dendritic growth (Table 10-1).

The tip undercooling of the dendrite is a
measure of the driving force necessary for
its growth at the imposed rate 1” Fig. 10040
shows the variation of the tip temperature
with | the undercooling being defined by

the difference between T, and the tip tem-
perature. During an increase n growth
rate, the celtular growth region is charae-
terived by a decrease in undercooling,
while toward the deadritic region, the un-
dercooling increases agam (Fig. 10-28),
One of the churacteristics of directional
solidification of dendretes s the formation
ol array structures with a primary trunk
spacing 4. Ny growth-rate dependence has
been shown already i the log log plot
(IFig. 10-37). One can sea that the slope of
A vs. b s onitiadly smaller than the slope
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Figure 10-42, Distribution of nearest dendrite den-
deie separations (primary runk spacings) measured
on L Intsverse section of a directionably solidilicd
Ni-hase superalloy (Quested and Melean, (984),
Sold Tines for 16.7 pmys and interrupted lines for
%33 pones.

of R ovs. 1o 11 one takes the three points
around Vif= 7). where the tip temperature
5 approximately constunt, the slope is
about 0.25, while a mean slope through all
measurements shown gives 0.4, This is fully
consistent with recent data by Kurowsky
(1990). Furthermore, it is in agreement
with our arguments in Section 10.3.5.

Most of the measurements give a rate
exponent somewhere between the two lim-
iting values 0.25-05. Taking the lower
value expressed by temperature gradient
and concentration gives a rclulinnship'
A~ GESICT (Hunt, 1979 Kurz and
Fisher, 1981; Trivedi, 1984} Therefore. a
normalized spacing 2* G} Vik AT, is plot-
ted vs. ¥V in Fig. 10-41, showing that Jiffer-
ent materials behave simikurly except for a
constant factor (note that the solidus lig-
widus interval of an alloy, AT,. is propor-
tional to C,

Primary spucings, however, are not
uniguely defined but form a rather wide
distribution. This is shown ia Fig. 10-42 tor
one superalloy which was directionally so-
lidified under different conditions. This be-
havior can be undersiood by examining
the mechanism of wavelength (spacing) re-
duction through tail instability, which is a
complicated process. A series of competi-
tive processes between secondury and ter-
tiary arms in a region behind the tip {of the
order of one primary spucing) finally causes
one tertiary branch to grow through und
to become a new primuary trunk (Esuka
et al, 1988), as shown in Fig. 10-43 and
Fig. 10-31.

Effects ar high growth rates

As the final 1opic in this section, some
interesting eftects at very high growth rates
which huve been observed recently will be
discussed. In laser expenments of the type
shown in Fig. 10-7, the interface may be

~62-

T g (P‘UL%M

Figure 143, Mechanism Tor 1the formation of & new
prnmary trunk by repeited branching ol side arms ul
wprun houndary (gb) The invreasing spacing at the
wh allows G ternary branch to develop and 1o compete
1n iy growth with other secondary branches (thatched
arnisg (Esaka vt al. [URS)

driven to vetocities of several m,s. Under
such lngh rates. the structures becomes ex-
tremely fine. Poimary spacings as small as
§0 i have been measured (Gremaud et al.
19904, Fig. (0-44 represents measured pei-
mary spacings {bluck squures), measured
secondury spacings (open squares), and the
caleulated tip rudius of the dendrites, using
Lvantsov's solution and solvability-scaling
critenion (Kurz et al,, 1986, 1988). 4 and 4,
vary as ¥ "3, as does the lip radius when

W - - T
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the Peclet number of the up is oot o
large, At large Peclet numbers (or small
dilfusion distances), capilliry forces be-
come dominant, which 1s the reuson for the
limit of absolute stability, F.

Since the classici] paper by Mullins and
Sckerka (1964), it has been known that
plane front growth shoudd also be observed
at interfoce rates where the difusion length
reaches the swne order as the capillary
length. This critica rate, called the limit of
absolute stability. can be caleulated from
linear stability ansbysis (for temperature
gradients which are not too high) approxi-
mately as

V= AT, D AT

Here £ s the ratio of solid-liguid interlace
energy to specilie relting entropy. Typical
limats are of the order of mus, The precise
value depends also on the effect of u vary-
ing solute dilfusion coetlicient {due o the
lirge undercoolings). on the variations ol &
and AT, with the growth rate associated
with the loss of local equilibrinm, and, -
nally, on interfuce Kinetics, which cannot
be dgnured. According o an extensive
study of several a loy systems, it may be
stated that at 1) one generally does not
observe a simple ane front growth but

AlFe 40 wts

Figure 10-44. 'xperimentadly determned
prntary spac nes thlack squares), see-
ondisry arm -pacings lopen syuirest and
caleulated i radias thney for Al 4w
Fe alloy rapedly seluliticd by Luser weeat-
ot Fhe nemmuin o up leaperatuie or
the masigieo in uodecooting is due 1o
the deeteising curvature undo, oohing
when the derdnte approaches die hiit al
absolute stabidiy, b (Giremd o al
1990)),
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Al-Fe2 % wt

Vi=lm/sec

Figare 1045, Transmission  eloclron  mucroscopy
ITEM) image, revealing the sharp transition hetween
the dendntic structure and the banded structure in
laser resolidified Al 2 wi.% Fe atloy. The laser sean
direction is parallel to the narcow. The growth diree-
hon is from hattom lelt w top right. in the lower half
of the photograph a columnar dendritic grain struc-
ture with a geain diameter of approvmately | pnycan
be abserved tGretmaud et al, 1990)

rathier an oscitlating interface, which pro-
duces bunds of plane front und dendritic
morphology. Fig. 10-45 shows such a tran-
sition from columnar denddritic grains to
bands. The possibility of chaotic interfuce
motion was shown recently (Misbah et al,
1990 by, and oscillatory motion of a plane
interfuce with time was suggested (Corriell
and Seherka, 1983; Temkin, 1990). Growth
rates moch higher than 1, are needed in
order to detinitely produce an absolutely
stable plane solid-liquid mierface (Fig.
10-16)

PLANE FRONT

2547
gy BANDS

)
E 20 (Dandritas « Plans front)
) ;
"
< .
=
3 15
-]
=
[T}

kron concentration [wi pot]

Figure 10-36. Nicrostructure selection dingram for
Al Fe abloys after laser resobdification {(Gremand
ctal, 19901, The experimentally determined trans-
tions from dendrites to bands and from hands 1o
preciptation free growth (plane-front growth) are in-.
dicated by squares and triangles. For a delintion o
calcutated F(A7,,.} and F, tbroken lines) see Fig,
10-44.

10.5.7 Extensions

In this section, we summarize a few re-
cent impravements of the theory of solidifi-
cation regarding various effects which are
important in the pructical experimental sit-
uation. They are observed when expen-
mental parameters are outside the range of
the simple models considered in this arti-
cle, or when additional factors influence
the growth of the solid.

The modets of this article are minimal in
the sense Ut they were intended to cap-

ture the essence of 4 phenomenon with the
smullest possible number of experimentul
parameters. Despite this simplification,
however, the results appear to be of general
importance.

The discussion of free dendritic growth
has been restricted so far to small Peclet
numbers or low supercoolings. In direc-
tional solidification. however, we are usu-
ally at moderate or even high Peclet num-
bers {Ben Amar, 1990; Brener and Mel-
nikov, 1990a). It was shown by Brener and
Melnikov (1990 4) that in this case a devia-
tion from dendritic scaling occurs if P! ?
Increases approximately beyond unity. At
high growth rates, furthermore, kinetic
coufficients can no longer be ignored at
the interface. A proposed scaling relation
{Brener and Melnikov, 1990b) was con-
firmed numerically (Classen et al, 1990).
wid combined anisotropy of surface ten-
sion and kinetic coefficient was treated
analvtically (Brener and Levine 1990; Ben-
Jacob and Garik, 1990). A general treat-
ment of kinetic coefflicients on interface
stability was given by Caroli et al. (1988).
tor eutectic growth, this was formulated
by Galikman and Temkin (1984). For
higher anisotropies than considered so far,
vne encounters fiucets on the LIOWINE CTYs-
Luls. This was analyzed for single dendrites
(Adda Bedia and Ben Amar, 1990; Maurer
ctal, 1988: Raz et al., 1989; Yokoyama and
Kuroda, 1988) and for directional solidifi-
cation {Bowley et al, 1989). Unusual den-
dritic networks were observed in restricted
geometries (Raz et al, 1990).

In our treatment of directional solidifi-
cation, oaly one diffusion field was treated
explicitly, namely the compositional diffu-
sion If a simple matertal grows dendriti-
cally (theemal diffusion), small amounts of
impuritics may become a matter of con-
cern. This was reconsidered recently by
Ben Amar and Pelee (1989, confirming the
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previvus conclusion (Karmi and Langer,
1984 Karma and Kotliar, 1985; Lipton
et al, 1987) that impurities may increase
the dendritic growth rate.

A subject of appreciable practical impor-
tance concerns the late stages ol growth,
where coarsening of the side branch struc-
tures oceurs together with segregation
{Kurz and Fisher, 1984). If elastic forces are
not of primary importince, it is now gener-
ally accepled (see Chapter 7, Section 7.4.1)
that arelation L* = 4 + Be'? (Huse. 1986)
is a4 good representation of typical fength
sciles L* varying with time t during diffu-
sional coarsening processes. This conlirms
the classical Lifshitz-Slyozov-Wagner the-
ory (Lifshitz and Styozov, 1961; Wagner,
1961; Kawasaki, 19900, The result, how-
ever, s nol specific colcerning the geomet-
ric details, for example, in directional solid-
thcation, and it also assumes constant em-
perature

We hinve only bridly mentioned the
transition from dendritic arrays back to a
plane front during directional solidifica-
tiorat very high speeds. The importance of
kinetic coefficients was demonstrated by
Brener and Temkin (1989), and recenily,
the possibility of chaotic dynanics in this
region simitur to those described in the
Kuramoto-Sivashinsky equation was sug-
gested by Misbah et al (1930 by,

A richness of dynamic phenomena was
obtatned in a stability analysis of eutectics
{Datye et al, 1981). The possihility of tifred
famellur arrays in eutectics was demon-
strated recently by Curoli et al. (1998) and
Kassner and Misbah (19904} and, sinui-
larly, for directional solidification at high
specds by Levine and Rappel {19900, Thiy
wis observed. o experiments on nematic
Liguid erystals (Bechhocfer et al 19893 and
tineotectics (Fuaivre et al., 1984}

Fraally, the density difference between
hyuid and selad should have some miarked

A K-
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imfluence on the growth mode (Caroli et al,
954, 1989} For dendritic growth, forced
flow was treated in some detail by Ben
Amar et al. (19883, Ben Amar and Pomeau
(1990, Bouissou and Pelee (1989), Bouis-
sou et al. {1989, 1990); Rabuud et al. (1988).
Other sources ol convective instability
(Corriell etal, 1980; Vol. 15, Chap. 12)
cannot be discussed here in any detail, as
the literature is too extensive and not yet
specific enough in the spirit of this chapter.

10.6 Eutectic Growth

10.6.1 Basic Concepts

Eutectic growth 15 a mode of solidifica-
tion for a two-companent system. Operat-
img oear i specific point in the phase dia-
sranm, it shows some unique features (Kurz
und Fisher. t984: Lesoult. 1930; Hunt and
Jackson, 1966; Elliot, 1983).

The crucial point in eutectic growth is
that the solidifying two-component liquid
at a concentration near Cy (Fig. 10-19) can
split into two different solid phases: The
first phuse consists of a high concentration
of A atonis and a low concentration of B
atoms; the second solid phase has the op-
pusite concentrutions. These two phases

appear alternatively as lamellae or as fibers -

of one phase in a matrix of the other phase,

One condition for the appearance of a
cutectic alloy is apparently a phase dia-
gram (as sketched in Fig. 10-19) with a
temperature 7. The two-phase regions
meet at (T, Ci), and the two liquidus lines
intersect before they continue to exist as
metastable liquidus lines (dash-dotied line)
at temperatures somewhat below Ti. This
i5 i material property of the alloy (Pb- Sn
fur example). The other condition is the
experimental starting condition for the
concentration in the high-temperature lig-
uid. Assume that we are moving a con-

tiner filled with digquid at concentraton
C, in a thermal grudient field where the
solid is cold, the liquid s hot, and the solid-
iication front is proceeding towards the
liguid in the positive z-direction. As a sta-
tionary solution. we and a similar condi-
tion to the simple directional solidification
case; that is the concentration in the solid
€ averaged across the front must be equal
to €, to muintain global mass conservi-
tion together with a stationary conventril-
tion profile neur the froat.

Assume now that the liquid concentia-
tion at infinity. C, . is close to O and the
temperature at the interface is at T, The
solid may split into two spatially alter-
nating phases now on the equilibrium
(binodal) solidus lines Cy(T;). one located
near C -0, und one located near C— 1t
Ti < Tp.. To see what happens, ket us look s
the situation with the concentration in the
liquid C, being precisely at eutectic vom-
position C, =C,. Al T < T, there muy
now be alternating lamellae formed  of
solid concentration & and CF (Fig. 10-47),
the corresponding metastable liquidus con-
centrations bemng at €7 and ¢ For bath
solid phases now the liyuid concentration
C, =Cgis in the mewastable two-phase re-
gions at T;: (e C, <« C2 . ClaC, < CE
[n principle, one has to consider the possi-
bility of metastable solid phases {Temkin,
1983), which we ighore here for simplicity.

Diffusion of excess material not meorpo-
rated into one of the lumetlae does not
have continue up 1o infinity but only 1o the
neighboring lumetla, which has the oppo-
site composition relative to C, . Assuming
again for simplicity a symmetric phase dia-
gram, we may write this flux balance as

AC

VC(l—ky=D |
L i G2
where the lelt hand side describes the lux
J of material to be carried away from each

(10-124)

‘GQ_’-

Lumelkn mierfice during growth at veloc-
ity F, which then must be equal to the
dilfusion current iconcentration gradient)
vover a distanee 22 1o the neighboring
Linella (aeross the Liquid, as we ignore dif-
fusion in the solid). AC = O — W s the
concentration difference in the liguid at the
interfaces of the lamellae, and k <1 s the
segregation coethcient.

With the help of the liquidus slopes
d'!‘fd("‘,_ as material purameters, one can
express the temperature depletion AT, =
=T =T as

dT

¢,

AT =AC 2 (10-123)

{symmetrical phase diagram assumed about
¢y and thus
Al =12

Coll =k ’l {10-126)

dT
df,
Again, {=2D 1V is the diffusion tength.
So far we have ignored the singular
points on the interface where the liquid
and two lamellae 2 and B meet(Fig. 10-47),
At this triple point in real space (or three-
phase junction), the condition of mechani-
¢l equilitrrivm requires that the surface
tension forces exerted from the three inter-
faves sepurating %, B, and the liquid cancel
te zero. In the simplest version, this condi-
tion defines some angles 9, 8, of the two
solid-hyuid interfaces relative to a flat in-
terfuce. Accordingly, the growth from will
become rippled, and the interfuces will
have local curvature. What is worse, there
15 no guarantee that the 2- B solid-solid
interfuces are really parallel to the growth
direction. Making a symmetry assumption
for simplicity again, we can ignore this
problem for the moment. The curvature K
of the growth front at cach lamella is then
proportional to 27! This curvature re-
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t E S

al b)

Figure H-47. Sheweh of symmetrical cutecue phase
dragram L and cutectezally growing Limellar cells i),
where % is the solid phi se with concentration €7, snd
B the solid phise winh concentration & The average
wmperature at the nteeface s around 1) below the
cutectic temperature T, The hywid at the ieterface s
at metastable concentr thons (dashed lines in e The
solid-hguid interfages b are curved and they mect
with ¢ - fhinterfices al three-phise coexislenee paints

guires. through the Gibbs-Thomson rela-
tion. Eq. 110-97) another reduction, AT,
of the interfuce lemperature below T
AT, = T.dK (10-127)
where o is un effective capillary length, de-
pending on surluce tensions, with K now
tuken as A ~2 7"

The 1otal reduction of temperature be-
low T, during ecutectic growth cun thus be
written o ;

e {10-128)

: !
AT = AT, + ATy = Ty - {u. ’I + g *.}
A

with dimensionless coustunts oy and ay.
Plowting this supercooting us a function
ol lamellar spacing, one finds u minimal
supercooling 0AT, Q4 = 0 at
. - i
=y lay U (10-12%)
Again, this is the lundamental scaling rela-
tion conjectured in Eqg. (10-1) and encoun-
tered in various places in this chapler,
where the origin is 4 competition between

.-.é.'f._
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drivimg foree and. stabilizig forees, most
intwitively expressed in Fy. (10-128),

A more thorough theorctical analysis of
eutectic growth was given in the seminad
paper by Juckson and Hunt (1966), which
i ostll a standard reference today. One
basic approximation in this paper was Lo
average the boundary conditions on flux
and temperiture over the interface, This
fed o Eq. (10-123), and it was argued that
the minimum undercoeling would serve as
the operating point of the system with
spacings given by Eq. (10129},

This stationary calculation was extend-
ed by Datye and Langer (i981) to a dy-
namic stability analysis, where the solid -
sobidd-liguid triple points could move paral-
lel and perpendicular to the local direction
of growth, coupled however 1o the normal
direction of the local orientation of the
front. 1t was found that the marginal stabil-
ity coincided exactly with the point of min-
imum undercooling.

The basic model equations for eutectic
growtl in a thermal gradient field can be
written n scaled Torm as follows (Brattkus
et al., 1990; Caroli et al, 19901 Neglecting
diffusion in the solid tone-sided modely and
assuming u single diffusion coefficient D for
solute diffusion near eutectic concentri-
tion €. (Fig 10-47}, we assume i symmet-
nic phuse disgram about Oy for simplicity.

We define a refative (local) congentration
Ziup as

AU,
TOAC

3 (10-130)
with AC, = €, ~CHTY), AC,=CHT)-C,.
and ACTAC, HAC.

The dimensionless composition is then
delined as

¢«

(1o-130

and (in contrast 1o the previous definiuons)
we express lengths and nmes in units of 4
diffusion length [and time ©

[=DV, i=DV"

{Note that T here differs by a factor of 2
from previous definitions.) Restricting our
attention lo two dimensions correspond-
ing to lamellar structures, we now define
the diffusion equation as

(1-132)

Ot , Al

— =¥V u+ - u (10-133)
ot i .
The conservation law at the interface

s =olx s
—aVu=Atanil+ . (10-134)
with the unit vector 1 normal to the inter-
fuce and (10-135)
d for xin z/2-front regions
Alx, 1) =4 . . . o
d =1 for xin f a-lront reglons

The Gibbs-Thomson relation for the
boundary becomes

—d, K — S in afi-regions
Wit = 1 (10-136)
- dy K - -;' in i A-regions
[t

{Kinetic coclfivients were considered by
Geilikman and Temkin, 1984.) Finally, and
this is # new condition in comparison with
the simple directional soldification. the
triple point where three interfaces mueet
should be in mechanical equilibrium

Tar, F ¥t 2y = 0 (10-137)

with the surfiace tension vectors y oriented
so that cach vector points out of the triple
point and is tangent to the corresponding
interfuce. K s the local curvature of the
interface, being positive for a sodid bulging
into the liquid. The dimensionless capitlary
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( Figure 1048, Turhulent behay-
wor of lamellar spucings with
\ / timy g simplificd model of
( cutectic growth {Datyve et al,
FRPS.IOU SN A L MY L 1Y% 1),
Position

and thermal lengths associated with the -
phase are

L L
=g m,“\'(i[.; (10-138)
Lo (AG) )
| G, (10-139)

amcl are equivalent for the f§ phase, with
m, = [dTACT as the absolute liquidus
slope. Gy as the fixed thermal gradient and
L, as the spectfic latent heat. At infinity.
- -»«, the boundary condition to Eq. (10-
133)is i, . depending on the initial concen-
tration in the liquid. This then lorms a
closed set of equations.

Ahead ofl the eutectic front, the difusion
fictd can be thought of as containing two
ingredients: a diffusion layer of thickness 7

" associated with global solute rejection and

modutations due to the periodic structure
of the solid of the extent (4 <T). When the
amplitude of the front deformations is
small compared to these lengths, the aver-
aging approximation by Jackson and Hunt
(1966) {and also by Datye and Langer,
1951} seems justified.

This point was recently taken up by
Caroli et al. (1990) who found that only in
the imit of large thermal gradient )

Gy o U m{ACED {10-140)

is the approxination safe. This approxi-
matien appears difticult to reach experi-
mentatly, though,

In an attempt to shed some light on
wavelength selection, Datye ctal. (1981,
{Langer. 19800} considered finte ampli-
tude perturbations of the local wavelength
Fig. 10-48. This type of approach was used
in a somewhat refined version by Brener
etal. (1987). They derived un upproximate
petential function for wavelengths £ and
argued that under finite amplitude of noise,
the wavelength selected on average is de-
fined by a balunce in the creation rates and
the annibhilation rates of lamellae In other
words, if fumellue disappear through sup-
pression by neighboring lamellae and ap-
pear through nucleation, then an equal
rate of these processes leads to a selection
of an average spacing 4. because both de-
pend on 4 The operating peint was found
in a hmited interval near the wavelength
corresponding 1o minimal supercooling
(or maximal velocity in an sothermal pro-
cess) and, accordingly, is deseribed by Fy
(10-129),

More recent extensions of the theory
(Couliel et al, 1989) gave mdications that
the orientation of the lamellae (under iso-
tropic material pariameters) ;lré'ﬁccu.w;mly
paraklel to the growth direction of the frent
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but nuty be tilted and travel sideways at
some specific angles {Caroli etal, 1990;
Kassner and Misbah, 19904q), Finaly, i
was found (Kussner and Misbah, 1990 b}
that the standurd model of eutectic solidifi-
cation has an intrinsic scaling structure

i~ U filide (10-141)

with a scaling function f depending only
on bl so that A~V 75 for 20£1, or
for high enough velocities, while at smaller
velocities the exponent should be smaller:
4~V "3 This is in good agreement with
the arguments given for ordinary dJirec-
tional solidification and also explains a
larze number of experimental data (Lesoult,
1986

To summarize, the selection of lamellar
spacings in eutectics again seems to follow
Eqg. (10-13 or {10-129), but the field is very
active at the moment and some further in-
sight into the detaiked mechanisms of pat-
tern selection in solidification may arise in
the near future. (See also the remarks in
Section 10.5.7)

10.6.2 Experimental Results
on Eutectic Growth

Eutectic growth was a subject of much
interest to experimentalists in the lae
1960s and carly 1970s, Substantial research
has been molivated by the possibility of
developing new high-temperature materi-
als. The in sity directional solidification of
two phases of very different properties is
an interesting method of producing com-
posite materials with exceptional proper-
ties. However, since these materials could
nut vutperform the more conventional, di-
rectional solidified dendritic superalloys in
the harsh environment of a gas turbing, the
interest dropped. Therefore, most of the
research vn cutectics was performed before
1950 (for a review, see Kurz and Suhm,

1975; Elliot, 1983). One excepion s the
ongoing research coneerning culectic cast-
ing of alloys such as cast wron (Fe C or
Fe--Fe,C eutectic) and Al Si.

Casting-alloys are generally inoculated
and solidify in equiaxed form {free eutectic
growth) (see Vol. 135, Chap. 1}. This fuct,
however, does not make any substantial
difference for their growth behasvior be-
cause growth s solute dilfusion controiled
in nearly all cases due 1o the high concen-
tration of the second element. The models
described above therefore apply to both
directional and free solidincation.

The ditferent adloys can be clussified into
four groups of materials (Kurz und Fisher,
1984); lamellar or fibrous systems, and
non-fucetted non-fucetted (nf uf) or non-
facetted fucetted (nf ) systems.

The distinction between Fand nf growth
behavior can be made with the aid of the
melting entropy. Small entropy differences
AS, between liquid and salid ¢typical for

a |p

o B

Fimure 10-49. Solid Hiquid nterluce morpiwioges of
tab regular ml oy eutechies and of thy reeular (nl' 1y
cutectics ducing growth

- 3=

Mg -tg Al
Al-Algh
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| Figure TS Lanellar spacings ol
tn directnally sobditicd cutecues
and thy dizecuonalkby transtonmed
vatectonds s o fusction of growih
rate IR e amd Sahm, $97%)

Al-Cudl,

[HY]

e

cing

slectoie spa

(k) Yim/ig!l

metals and plastic crystals such as SCN,
PVA cte)iead 10 of growth with atomically
rough interfaces. Materials with large AS;
vafues are prone t form atomically smooth
interfaces, which lead to the formation of
macroscopically facetted appearence.

In the cuse of affnf eutectics, volume
fractions (of one eutectic phase) of less than
0.3 lead generally to fibers, while at vol-
unm fractions between 0.3 and 0.5, lamellar
structures prevail. The microstructures of
nf/nl cutectics {often simple metal/metal
systems) ure considered regular and those
of nff eutectics (mostly the above-men-
tioned casting alloys) are considered irreg-
ular. Fig. 10-49 shows schematically the
morphology of the growth front in both

03 !

cases, It can be eusly understood that
growth in nf;nf cutectics is much more of a
steady state type than itis in §al cutectics,

Rogtder structures

Applying a critetion such as growth at
the extremum o the solution of the capil-
lary-corrected diffusion equittions (Jack-
son and Hunt, 1966), Eq. (10-128), one ob-
tains tor nf/nl cutectics the well known
relationships (Ey. (10-129))

MV=C

ATV =4

where C and C are constunts, Fig, 10-5)
shows that this beh vvior has been ob-
served globally in miny eutectic systems,

~Fi~

=

e

e



624 10 Solidification

some of them having been studied over [ve
orders of magnitude in velocity. The situa-
tien is much less clear when it comes to
analyzing eutectoid systems. (Eutectoids
are “cutectics” with the liquid parent phuse
replaced by a solid.) Often a 2V relation-
ship is found in these systems (Fig. 10-30b)
over same range of the variables. {See Eqg.
{§0-1410)

Tn general, it may be suid that the field of
cutectic growth is underrepresented in ma-
terials research, and many more careful
studies are needed before a clearer insight
ito their growth can be gained. Recently,
Trivedi and coworkers started such re-
search, and some of their results are pre-
sented here. Fig. 10-31 indicates that in
cutectics the spacings are also not at all
uniquely defined. There 18 a rather wide
distribution around i mean value for cach
pate §Frivedi et al, 19903 The operatng
range of cutectics is determined by the per-

manent ereation and movement of faulis
(see below) This process is three dumen-
sional and cannot be realistically simulated
in two-dimensional caleulations.

fn Fig 10-32 the mean spacings are
plotted as points, and the limits of the dis-
tribution are given by the extension of the
bars. From the calculated range of stabil-
ity, which has been discussed by Jackson
and Hunt (1966), it can be seen that the
minimum of the experimental values coin-
cides with the theoretical prediction (see
also Section 106.1). This, however, does
not provide definitive proof for this predic-
tion, due to the fact that several physical
parameters of the system are not precisely
known. On the other hand, it is clear that
eutectic spacings do not explore the upper
range of stubility {catastrophic breakdown),
at least not in offal systems. Some other
mechanism limits the spacing at its upper
bound. The adjustment of spucings is a

dy o e A ——
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Figure 10-32, A compurison of the ¢x-
perimental results on the interlamellar
spacing variation with veloaity for
Chr, C,Cl, with the theoretical values
{sohd ines) for two marginally stable
spacings {Seetharaman and Triveds.
1988).

A ——

Fipgure 10-33, Tateciie Frult strue-
tures i divectiomally soluibed

Larmellar termination

Al CuAdd, alloy (Double, 1973,



626 10 Sohdification

rapid process, and its rte incredses when
the spucing increases (Seetharaman and
Urivedi, 198%). :

Trregular structures

The above relationships for eutectic
spacing und undercooling as a function of
vrowth rate are also useful in the case of
irregutar systems such as the nf [ casting
alloys Fe C or Al-Si (Fig. 10-49 b}, Jones
and Kurz (1981) have introduced a fuctor,
@, which is equal to the ratio of the meun
spacing, {43, of the irregular structure to
the spacing at the extremum. This leads to
the following relationships:

PV =piC
ATV =[p + (1) C

Frequency

o} L0 80 120 160 200
Fault spocing, A [um)
Figore 10-54. Lutectic faull spacing  distribution
curves for Al CuAl, directionally solidified with dif-
ferent growth rates and spacing values as indicated
iRiquet and Durand, 1975).

Fuufin

Delects in the ideal famellar or fibrous
structure are an essential ingredient for
eutectic growth. They allow the two phase
crystul to rotute into crystallographical-
ly {energencally) favorable oricntations
(Hogan et al. 1971) and to adapt its spac-
g 1o the locul growth conditions, In la-
mellar systems. there are ditferent types of

Figure 1055, Periodic ostillutions in hypocutectic
Al CuAl, vuteetic under rapid laser resohdification
conditions: fa) experidnental observation and (b) simu-
lation (Zimmeroninn et al, 1990; Karma, 1987),

.—‘_?q,»
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faults (Double, 1973): single or extended
faudts, with or without net mismatch (Fig.
13-33). ‘They mostly represent subbound-
aries of an eutectic grain and could'develop
through  polygonization of dislocations
which form because of the stresses created
at the mterphase boundaries of the com-
posite. Fig. 10-54 shows distributions of
fault spacings. A, for different growth rates
indiciled by diiferent lamellar spacings, /
{Riquet and Durand, 1973). In the case of
nonfacetted fibrous structures, the faules
arc formed by simple fiber brunches or ter-
mintions.

Osciflationy

Periodic oscillutions huve been observed
as u morphological instability in several
systems grown under various conditions
iHunt, 1987, Carpay. 1972, Zimmermann
ctal. 1990 These morphologicul insta-
bilitics form in off-cutectic ulloys even at
growth rates of several cmys as is shown in
Fig. 10-33. The correspondence of the ob-

served structures with the results of theo-
reticut modelling by Dutyve and Langer
98 1Hand by Karmu (19587) is striking,

As was the case with dendrites. eutectics
also form extremely line microstructures
when they are subject 1o rupid solidifica-
tion, A distance of 10 nm (each phase is
some 13 atoms wide) seems to be the min-
imum spacing whick can be achieved. In
Fig. 10-56, recent measurements of inter-
lansellar spacings in the Al ALCu system
are given. They full fairly well on the line of
atl of the other measurements for that sys-
tem (A% ¥ =88 um¥/s! which have been ob-
tained in DS experiments.

Above a certain linit corresponding Lo
the rate of ubsolute wtability of one of the
eutectic phases (in twe Al-AlLCu system
the a-phase), bands form just as they do in
dendritic alloys, The anly difference is that
the durk bands are nct formed by dendritic
structure but by eutectic structure (Fig. 10-
57 For more details about rapidiy solidi-
fied eutectics, the reader is referred to Zim-
mermann ¢t al. (1989, Kurz and Trivedi
(1991).
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10.7 Summary and Qutlook

During the past ten years, very substan-
tial improvements in vur understanding of
the pattern-forming processes in solidifica-
ton have been achicved. Although the ba-
sic model equations were already known
for several decades, it was only during
those recent years that the mathematical
and numerical tools were pushed to allow
[or a reliable analysis of the complicated
expressions. [n addition, carelul experi-
ments have been performed largely on
model substances, which have given an im-
pressive number of precise, guantitative
dita. This combined effort has basically
solved the problem of free dendritic growth
with respect to velocity selection and side
branch formation.

In the process of directional solidifica-
Lok, i@ consistent pictire is now emerging,
reluting the growth mode to free dendritic
growlh und. at the same time, to viscous
fingering and growth in a channel. At very
high prowth rates that approach the limit
of ubsolute stability, the situation is still
somewhat unclear, for nonequilibrium ef-
fects like kinetic cocelficients then become
of central importanee. These quantities ire

Figure 10-37. Details of band-
el structure in Al CoAl,
cutectic shuwing afso the
sputs where chemicul analy-
sis in the TEM has been
mide (Zimmermana et al,
(RIS

difficult to determine experimentaliy. Fur-
thermore, the selection of the primary
spacings of the growing array of cells and
dendrites is still subject to discussion. One
such point of contention, for example, s
the typically observed increase in spacing
when moving from celiular to dendritic
structures in model substances. It 1s also
uncliear what happens in the limit of van-
ishing crystalline anisotropy.

In eutectic growth, the situation is even
less understood, for sufficient reasons. The
three-phase junctions at the solid-liquid in-
terfuce enter as additional conditions and
further detnils of the phase diagram be-

come important. The dynamics of the

system seem to show a richer structure
than ordinary directivnal solidification.
The selection of spacings between the dif-
ferent solid phases in materials of practical
importance occurs through three-dimen-
sional defect formation. 1n addition, augle-
ation and facetting of the interfaces should
be considered.

A number of problems common to all
of these grawth modes have onty been
touched upon so far, These problums in-
clude, for example, the redistribution of
material far behind the tip regions, the

treatment of elastic effects, and the interac-
tion with hydrodynamic nstabilities due
te thermal and compositional gradients,
In swmmary, we expect the field to re-
main very active in the luture, as it is at-
tractive from a technological point of view,
It will certainly provide some surprises and
rew insights for the general concepts of
pattern formation in dissipative systems,
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