! INTERNATIONAL ATOMIC ENLRGY AGENCY
} > UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZ ATION
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LC.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, Cag1 £ CENTRATOM TRI STE

SMR.550 - 39

SPRING COLLEGE IN MATERIALS SCIENCE ON
"NUCLEATION, GROWTH AND SEGREGATION IN MATERIALS
SCIENCE AND ENGINEERING"

(6 May - 7 June 1991 )

SELECTED PAPERS ON
SURFACE DIFFUSION AND GRAIN BOUNDARY SIMULATIONS

AF. VOTER
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
US.A

‘hese are preliminary lecture notes, intended only for distribution to participants.

Swade Coomisrs, 11 Tel 22401

Tl Yaaan

Telefan D163 { 245Y Teles 460392 ADRIATIC

ST MOUSE  VaGogrena, @ Tel 224241 Telelas 224511

m

Teiew ite i

Dynamical corrections to transition state theory for multistate
systems: Surface self-diffusion In the rare-event regime
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[Received 10 August 1984; accepted 17 September 1984)

We derive an expression for the classical rate constant between any two states of n
mulristate system. The rate is given as the transition state theory rate of escape from
the originating stste, multiplied by a dynamical correction factor in the form of a
time-correlation function which is evaluated using molecular dynamics technigues.
This method is desiged to treat cases in which reactive state-change events are so
infrequent (¢ g, at low (emperature) that direct molecular dynamics calculations are
unfeasible. In this regime where dynamical recressings occur much more quickly
than the average time between reactive state changes, the concept of a rate between
two nonadjacent states becomes meaningful. We apply the method to the surface
diffusion of Rh on Rh{100] at the temperatures employed in field ion micrascope

expenments.

I. INTRODUCTION

The direct simulation of chemical processes via
classical molecular dynamics (MD} techniques is now a
widely used and powerful approach,' due largely to the
high speed of modern computers. There remains, however,
a class of systems for which direct molecular dynamics
simufation is unfeasible. These systems are characterized
by the “rare-cvent” nature of their dynamical evolution
from reaciant 10 product states. Because there is a “bot-
teneck™ in phase space (e.g., a high activation barrier)
through which the system must pass to change states,
direct integration of the equations of motion may require
many years of computer time before a single reactive
statechange cvent is observed. Examnples of these rare-
event processes include thermal desorption from solid
surfaces, surface diffusion at low wmperatures, and any
chemical reaction with an activation barrier which is high
relative to the temperature.

For such systems an elegant alternative approach
has been developed.™® which yields exact dynamical
quantities without the computational effort growing pro-
portional 1o the rareness of the event of inlerest (as in
direct MD). The key 1o this approach is the factoring of
the rate constant into two parts: () an equilibrium factor,
defined as the flux through a dividing surface separating
the two states, and {2} a dynamical correction [actor,
which accounts for the fact that this flux contains spurious
crossings which do not comrespond to true reactive state-
change events. The rareevent nature of the process is
included in the first factor, which is simply the transition
state theory (TST) rate constanl. Because this is an
equilibrium property of the systern, and does not require
knowledge of the dynamics, a variety of methods are
available for computing it eficiently.’®!" The second
factor requires explicit use of molecular dynamics, but is
casily evaluated because the trajectories need only be
followed for relatively short times.
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For many problems the dynamical correction lactor
is close 10 unity (especially if the TST dividing surface is
chosen well), and thus the TST approximation is ofien
very good. [ndeed, TST bas proven to be, and remains,
a mos1 valuable tool for computing reaction rates.'?
However, il is imponant to have the capability of com-
puting dynamically exact rates for two reasons: {1) the
quality of TST can be tested for a certain type of system
by comparing to the exacl result for a represenmative case,
and (2) for many systems, the TST approximation is too
poor 1o be useful.

Though the concept of a dynamical correction factor
has besn around for many years," the first use of MD
for its sxact evaluation was due 10 Keck.? More recentty,
this type of approach has been applied to describe diffusion
in solids® gas phase reactions**''* intramolecular
rearrangements’ ' and reactions in solution,” and thermal
desorption from solids.'™"* All work 1o date (with two
exceptions'®"® discussed below) has been on two-state
systemns. In this paper we present a generalization of the
dynamical<orrection formalism to the many-state case.
This should be useful for a varety of problems, such as
diffusion on ot in a solid, polymer chain dynamics, eic.
As an example, we apply the method to calculate the
surface self-diffusion rate for a Rh alom on a Rh{100)
surface at 300 K, a task which would require >10* years
of computer time® using direct MDD,

Qur denvation of the many-state result is identical
in spirit 10 the two-state formalism presented by Chandier,*
and Skinner and Wolynes.* From the properties of the
fluctuation-fluctuation autocorrelation function for a sys-
tem at equilibrium, they extracted an expression which
gives a precise prescription for evaluating the dynamical
correction factor using classical trajectories. Montgomery,
Holmgren, and Chandier'® have examined the appro-
priate time comrelation functions 10 estimate the impor-
tance of multiple-state ransitions in alkane chains, and
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Adams and Doll'* have derived a matrix formmulation for
the many-state case, but in neithe) work did the authors
actually extract elementary rate constants. We show here
that the elemeantary rate constants can be extracted and,
as in the two-state case, the formalism yields a simple
prescription for computing the necessary dynamical cor-
rection factors. Morcover, an interesting concept which
emerges naturally from this formalism is that of a rate
constant between two states which are not adjacent in
configuration space.

This paper is organized as follows: We review the
two-state derivation in Sec. 11, and extend it to the many-
state case in Sec. LI Section TV containg a description of
how molecular dynamics techatiques are applied 0 com-
pute the dynamical correction factors, and Sec. V contains
the application to RE on Rh(100) surface diffusion.

fl. THEORY: TWdSTATE SYSTEM

We first derive the method for making dynamical
commections to tansiton stawe theory (TST) for a two-
state classical systcm. This is a simplified version of
Chandler's oniginal derivation.® As shown in Fig. 1, we
are considering & one-dimensional system with two stable
configurations, A and B, separated by an energy barrier
at x = ¢. We assume that for a canonical ensemble of
such systems, a first-order rate law applies, so that

Nn = —kp aNx + kg uNp
Ny = ky_gNa = kn—aNg, 2.n

where N, and Ny are the populations of state A and state
B, respectively, ky_p and ks ., are the eclemeatary rate
constants, and the dot indicates a ume derivative. We
can define fluctuations of N, and Ny away from their
equilibrium values by

BN, = Ny — N

5Ny = Ny — Na, (2.2)
where conservation of particles requires

AN, + BNy = 0. (2.3)

Combining Egs. (2.1}, (2.2), and (2.3) leads to a rate law
for the fluctuations,

5’;’1\(‘) = kg AN — ko_pbN,
= —ky ANy — ka_nbN,
= — kBN A(1), (2.4)

where we have defined an cffective rate constant as
ket = ka—p + Km—a- (2.5

Equation (2.4) gives the response of the system to an
artificial displacement from equilibium. From the fluc-
tuation-dissipation theorem,?' we expect that when the
system is at equilibrium, it responds in this same way to
spontaneously occurring Suctuations. Thus, we deduce
the behavior of the fluctuation-fluctuation autacorrelation

function to be

(M'A(O)éﬁa(l)) = — kBN AMORNL()). (2.6)
The angular brackets indicate the usual canonical-ensem-
ble average

dpJ- dx Yoo

N Py P

where p is the conjugate momentum, } is the Hamiltonian
for the system, and § = 1/ks7 (kg = the Boltzmann
constant, T = temperature). Noting that

(BNADBNALY) = —{BNLCHNA),
we may rewtite Eq. (2.6) as
ey = (BNAORNAD) an
(BN ADBNLNY

Equation {2.7) gives an expression for the dynamicalll}
correct rate constant in terms of equilibium properties,
though it is Dot yet in a particularly useful form.

Noting that the denominator in Eq (2.7) 15 a slowly
varying function of time compared to the aumerator, we
make the following approximation, which we discuss

later:
CENAOBN DY == (BN0RNL0)). (2.8)

With this assumption, and making use of Eq. (2.3), Eq.
{2.7) becomes

_ —56:'\:',4(0)153\'5(1)2 (2.9)
ko) = SN OBNAO)

where we have eaplicitly indicated the time dependence
of key. Without loss of generality, we can make the
simplifyving requirement that

N+ MNp=1,
so that
Nl = 8[g — xt1)].
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xn = Ma)- The autocorrelation function in the denominator
of Eq. (2.9) becomes

(EVALD)ENA(0))
= {{8g - A0 - xa}(Blg - X0) ~ xa}}
= (8lq - H{0N8q — x{(0})) - x2

= xa — 1k (.11
From detailed balance, we know that

kha Xa
so that Eq. (2.3) becomes

kg = kH(l + ﬂ) .
Xa
and from Egs. (2.9) and (2.11) we have

kst = ——CONAOMND)

1+ OeaZxn)lea — x3)
- “CENAOBNG()
Xa

To simplify the numerator of Eq. (2.12), we need the
time derivative of &V, from Eq. (2.10) we have

NA0) = —X(0)[¢ — 2 D)),

where &+ - -) indicates the Dirac delta function. Thus,
we obtain

Knslt) = {R0)8[ (D) -x ¥l - q1) )
A

. 2.12)

(2.13)

The numerator in Eq. (2.13) can be interpreted as the
particle fux through the x = ¢ dividing surface, modified
by the st.p function #{xtr) — ¢l The partictes crossing
the dividing surface in the +x direction (ie. moving
from state A to state B) at time zero that reside in state
B at .ime ¢ contribute positively to the ensembile average,
while particles residing in state B at time ¢ that were
making a —x crossing at lime zero contribute negatively
to the average.

If every particle that crosses the dividing surface in
the +x direction remains in state B (at least until 2 time
greater than J), and every particle crossing in the -x
direction remmains in state A, then the ensembie average
in Eq, (2.13) is simply the one-directional flux through
the dividing surface. This is the transition state theory
(TST) assumption, that every dividing surface crossing
corresponds (o a reactive state change. We can modify
Eq. (2.13) to refect the TST approximation by setting ¢
10 some small value ¢, chosen such that no recrossings

the TST dividing surface). Equation (2.16) is a standard, ©
expression for kD37, %'*% interpretable as the flux of
particles through the TST dividing surface bordering state
A, divided by two since half the flux is going the wrong
direction. Note thal the expression is independent of the
nature of state B; k1%, is simply the rate of escape from -
state A across the boundary surface.

It is easy to show that Eq. (2.14} is equisalent to
more familiar expression for the TST rate. Noting Ar
that, in a canonical ensemble, the forward and revers
flux through x = g have equal magnitudes, we can writ/

'

KT, = 10N D) - q]> 2.1¢ :
Xa A :

We can express . as i
Xa = <3[q - -ﬂo)])

f % f dx g ~ x(O)}e "M+

fdpjdxc‘lﬂu.ﬂ

I dpf dx g 32
LY
[l arems’
arn

where the subscripts A and A + B indicate that u:u‘ :
configuration-space integrals are over state A and al °
space, respectively. Equation (2.15) thus becomes ’

P

’-1 f dp J:\.. X0 x(0) — gle*"

kl‘i’- = [2

Jao | _jacen
Jar [ axenn
oI

= 30N 0) — gD, (2.16

where the subscript A indicates that the configuration’

space part of the ensemble avarage is integrated only over! :
state A (plus the infinitesimal region necessary 1o include

b

The dynamical correction Factor we seck is obtained

by taking the ratio of k._a [Eq. (2.13)] to &% [Eq.
(2.14)], which yields

fu = Kaza  (HOB[A0) — glolx() - gl
k5T (HOM[X(0) — gIF{xe) — q1)

2.17)

-

Naln) = 8(x() — q),

where # is the standard step function. The fluctuations in
N, and N are thus given by

can occur between ¢ = 0 and ¢ = «. This gives lmplcrn_cnmion of Eq. (2.17) requires an understanding
of the time dependence of the coselation functioa in thet .

KIS, = {0810} ~ g]80cle) — )] fnumerator. As mentioned abave, the TST assumptions
Xa that every particle crossing the dividing surface will come *

tween the Two sales is at to rest without recrossing is ipvglid for many systems. ° [}

BN = Bfg — (D] — xa . _ )
e ; {2.10) = HORIMO0) - g4 . (2.14) After a crossing, there is a ¢hande that the particle will ¢
Na() = 8{xtn) — ql — xe. : ) X recross the surface one or more Times before ultimately
£ where x. and xs are the equilibrium mole fractions of . )
REACTION COORDINATE (x] components A and B, respectively {note that x. = Nu, 4 Chem. Phys., Vol. 82, No. 1, 1 Janyary 1385 &

a4 >

FIG. 1. Energy diagram for
one-dimensiona! (wo-slale
system. The boundary be-
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thermalizing in state A or state B. (We are assuming that
the system is coupled to other degrees of freedom, which
are constantly exchangiog energy with the coordinate
considered explicitly.) We define 7o 88 the Ume scale
on which these correlated dynamical recrossing events
occur, i.e., a particle crossing x = g a1 time tero will have
thermalized by time 7. We also define 2 time scale
associated with the reaction, Ts #= (ka)~', which corre-
sponds to the average ume between reactive crossings of
the dividing surface. At very short times (f S ¢), the
dynamical correction factor given by Eq. (2.17) is unity,
since the numerator and denominator are oquivalent. As
1 is increased 10 Fooer, 1) docays to some value less than
one, because trajectories which recross contribute pega-
tively, or fail to cootribute, to the numerstor. If 7, is
much greater than 7o, then f{f) will reach a plateau
value at f = 7o, a8 shown io Fig. 2. If f40 is examined
on a very long time scale (ie, units of 7p,), it will be
seen to decay exponentially, and it ultimately tends to
2er0, because the direction of travel of a particle making
a crossing at time zero is uncorrelated with its position
al { » r,.,. Thus, only if this platcau region exists, and if
Eq. (2.17} is evaluated duriog that time, can meaningful
results be obtained. The dynamically correct rate constant
will be given by

Ka—p = kT fdt), {2.18)
where ¢, satisfies
Toort < lp % Tha (2.19)

We can now examine the approximation tnade in
Eq. (2.8). Because the correlation function (ANORNALD)
decays on a time scale of 7na, and because we restrict
surselves to times much smaller than r,,. the zero time
assumption is perfectly reasonable. Note that Eq. (2.7),
which doss not include this assumption, gives an expres-
sion for the dynamically correct rate constant which is
valid for alf times grealer than 7w AS the numerator in
Eq. (2.7) decays 1owards 1ero for t P Taa. the denominator
also decays, leading to a copstant ratio Thus, if we used
Eq. (2.7) to compute k.x, we would not need to require
a separation of time scales between Torm A0d Tnei WE
could simply pick any ! > Ten 10 evaluate the right-
hand side of Eq. (2.7). However, evaluating the desomi-

™~

fa (1

o |

corr

t

FIG. 7 Tipical behavior of the two-suate dynamical correction factor
[Eq {2171} for *eun & Thn

nator of Eq. {2.7) requires more computational work than
the numenator, and can become prohibatively expensive
when the reaction is slow. For this reason Eq. (2.17)
becomes the method of choice when the requirements of
Eq. (2-19) can be met.

The concept of lime-scale separation merits further
discussion. We can view this approach to calculating
k._a in the following way: We imagine watching the
motion of a single particle which has resided in state A
for a time greater than 7o, When that particle finally
makes & crossing of the dividing surface, we close our
eyes for the next 7 time units, and then pote the state
of the particle upon reopening our eyes. If the particle is
io state B, we say that & reactive crossing has occurred,
but if the particle is in state A, we pretend that nothing
happened—the particle pever left state A. We now con-
tinue to monitor the metion of this particle, and follow
the same prescriplion each time a crossing occurs {in
either direction). After observing a large number of reactive
hops, we can compute k. _p as the average of the inverse
of the tiroe between a reactive hop into state A and the
subsequent reactive exit from state A. Because 7.
& ., we make only & negligible error using this ap-
proach—there is a negligit ¢ probability that an imporant
event (i.e., an extra reactive crossing) occurs during the
infinitesimal fraction of time that our eyes are closed.

Now consider how Eq. (2.17) actually performs thus
counting. Figure 3 shows an idealized plot of the time
evolution of a system executing the four possible types of
surface crossings: A — B, A — A, B— A, and B — B
each consisting of multiple recrossings, Oaly the A — B
event [Fig. 3{a)] should contribute to the calculation of
Ka_p. Il we examine a canonical ensemble of parucles at
a given instant of time, we find that each of the five
crossitgs in Fig. 3(a) are present. The timecorrelation
function {A(0{x10) — g8(x(r,) — ]} instructs us to allow
each of these five systems to evolve for a time 1o and
then examine the final state. Because each system in our
example will be in state B, 50 that f{xit;} — ¢} = 1, they
will contribute positively or negatively to the average.
depending on the sign of X{(0). Crossings 1. 3, and 5
contribute positively, while 2 and 4 contribute negatively.
Thus, the net contribution will be one crossing. as will
be the case for any mumber of recrossings. [Note that
only the phase of x(0) is important, not the magnitude;

;] ["
TN
r.."
A=A
- ‘
A Toor
a

JVAL ul AA Wunv" 1eg
Bl cl dl

FIG 3 ldealzed diagram of the four possible multiplecrossing exents
for the 1wo-state system The numbers 1 10 5 an (a) label the fire
erousings 1hat compnse the single A — B reactive crosuing event The
A — A B — A and B — B crossing cvenis shown an (b, (2], and 13
make zcro contribution to the aumerator in Eq {2 172, and hence do
not contabute 1o the dynamically cormect A, _p
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¢ magnitude appears in the enosemble average becauss

we are sampling from a velocity-weighted Boltzmann
distribution, corresponding to a snapshot in time of the
particles crossing the dividing surface. This will be dem-
onstrated in Sec. IV.j The A — A and B — A cvenis
shown in Figs. 3(b) and 3(c) contribute nothing to the
average because 8[x(1) — g} = 0. The B — B event shown
in Fig. 3d) makes no pet contribution to the average
because there are an equal number of X0} > 0 and x(0)
< 0 crossings.

Computation of the dynamically exact classical rate
constant is accomplished in two stages. First, the TST
rate constant is evaluated via Egs. (2.15) or (2.16). Then
the dynamical correction factor f; is computed from Eq.
{2.17), using the same dividing surface as in the TST
calculation. The ensemble averages in Eq (2.17) are
evaluated by foliowing the behavior of 2 swarm of classical
trajectories which stant from the TST dividing surface.
This procedure is described in detail in Sec. TV. It is
worth noting that the rate constant computed in this
manner is indepeadent of the location of the dividing
surface. While choosing the surface to be at the free-
energy maximum between the two states will yield the
most accurate k 157 (and 7 closest to unity), other positions
will also work. This is helpful in many-dimensional
systems, because the position which will maximize fy is
often not easily defined.

. THEOAY: MULTISTATE SYSTEM

In the last section we showed that the dyvmamical
correction factor for a two-state system can be expressed
as a ratio of equilibrium correlation functions, which may
be evaluated using classical trajectory techuniques. In thas
section we extend the analysis to a systern with an
arbitrary number of states, and with the same assumption
thal 7 € T, we show that an analogous expression
exists for the rate of reaction berween any two states of
the system.

We begin with the matrix formulation of the rate
law used by Adams and Doli.'” The system is assumed
1o be composed of n states, with no restriction on the
cannectivity of the states. An example is the poteatial for
an atom diffusing on a solid surface. In this case, there
are an infinite number of states, each corresponding to
one binding site, with each state bordering between two
and four other states {depending on the crysial face).
Because the total number of particles N is held fixed, 1t
is sufficient to specify the populations of m — 1 states. We
thus define the (7 — 1)>dimensional column vector of
time-dependent populations N(#} and fluctuations away
from equilibrium,

AN = N — N, (3.1

where N is the column vector of equilibrium populations.
We again assume that the populations, and hence the
fluctuations, obey a Arst-order rate law, which we may
write asg

BN() = —REN(D, 3.2

where kisaf{n — 1} X (-1} matrix of rate constants,
It is jmportant to note that the elements of k are not the
elementary rate constants {indeed, our task will be to And
the relation between the two). As in the two-state case,
we take the behavior of the fluctuation correlation func-
tions to be governed by the same rate law, leading 10

(EN(BNT(0)) = —k(AN(OSNT(O)),
which was obtained by right multiplying Eq (3.2) by the
row vector NT(0) [the transpose of §N(0)). and taking

an ensemble average. [Note that (AN(/)6N(0)) represents
a matrix of correlation functions.] Taking advantage of

(EN(ENT)) = [(SNORNTE)]T
and
(ANQORNT() = —{(N(OBNT()),

we obtain an expression for the elements of the transpose
of k,

K7 = [(BN(ORNTIT SNIOSNT()). (3.3)

We now deviate from Adams and Doll.

We wish to express the elemeniary raie copslants
ke, in terms of time correlation functions, as we did for
the two-slate case. We ¢can write the rate law as

SNAD = T (—6NAD, ¥ SNk,
}

=T NS, + DL (3.4)
4 r

where BN, is the ith element of §N(r). and we have
introduced the n X r matnx of elementary rate constants
t defined by

o, = f, = kL, (3.5

to avoid confusing k¢, with an clement of k. Now

consider the following expression, which gises k in terms
of elementary rates:

Ky, = —fp+fatd, 2L ij<n 36y
&
(here §,, is the Kronecker delta function) We will prove
Eq. (3.6) by inserting it into Eq. (3.2} and companng
with Eq. (3.4). Rewtiting Eq (3.2) and insering Eq. (3.6)
gives

n=1
ENAD = = T (KLANUD
X

_%l (*fh + St B E::ﬁ;)é,\',(r)

-1 a1 n
5 LANLD ~ fo T ENLD = Z LN,
B & &

Extending the .ange of the first two sums from 7 = 1 10
n (the extra terms cancel), and noting that

1 Chem Phys, Vol 82, No 1.7 January 1385
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SN =0 a7
[

we obtain
SN = T f8NLD — 0 — T LidN.D,
& k

which is the same as Eq. (3.4), proving Eq. (3.6). Now
consider another expression:
L)
KL= fo= T xdidu — ) Lj<n (3.8)
k
where x, is the equilibrium mole fraction in state k. We

will prove this by inserting Eq. (3.6} into the right-hand
side of Eq. (3.8), which gives

T A+, 84 21)
[} i

LT L PR Y
&

Because we are not ioterested in kY, we may discard
the last term (5, }::f,*)_. We may also extend the range of
the first sum from # — 1 10 #, because the extra terms
cancel, as long as j < & (We are currently restricting i
and j 1o be less than a, but our ultimate expression for
kL, will be valid for all { ¥ j.) This leads 10

n LR n
Tk, v S Txet oy f -
& * i
and using
Tx=1
k
and
xS, = x,fus
we obtain

k

i (—xufi, + x,0) +L,(Z XE) + =k
&

Rl U T s A
".fu-

which proves Eq. (3.8). Substituting Eq. (3.3) into Eq.
(3.8) gives the elementary rate constants in terms of
correlation functions, but first we wish to simplify the
“denominator’” matrix in Eq. (3.3).

As in the two-state case, we will approximate the
fluctuation~fluctuatios correlation function by its time-
zero value E

(ENOWNTL) == (BNORNT(O)). (39)

Taking N = | (with hp loss of generality), so that N,
= x,, it is easy to show (see the Appendix) that

[(ANQOBNTO], = 8.,%, & x.x,. (3.10)

and that the desired inverse matrix is given by

((ENOWNTIODI™ '}, = ;’— 4o

.14

Using Eqs. {3.3), (3.8), and (3.11), we can express the
elementary rate constanis in terms of the correlation-
function matrix elements

C., = (3N, (0BN,(D).
From Egs. (3.3) and (3.11) we have
i ST |
wn, =2 (= %),
Y \Xa X,
so that
w0, T L+ 2
i p Xa X, duy

and inserting into Eq. {3.8) gives

o BE (e ]-F b
— 'Xj “\x & j * &

x \Xa
~ N—IC a-1 I—IC C,
-(Zx)(T2)+ T2, - TN
i n r Xi k Xa X

k
X,
Il ;! c
G, t ZC’U__EC*J_J
x Xn X

i

I 3
L= ™!
(523
Xa &
=-C,/x,
and substituting for C,, yields

— (3N, ()6, (ny
ki, = )

X

Equation (3.12) is the central result of this paper. It
states that, when o, € 7, the elementary rate constant
between any two states, connected or not, is given by a
simple equilibium correlation function. Note that the
form of Eq. (3.12) is identical to Eq. (2.12) for the two-
state system. Note also that there is no dependence on
stale 1 in Eq. (3.12); we are free to choose any state other
than i or j as the mth state, and thus we may abandon
the i, j < n restriction. As in the two-state case, we wili
tinker with Eq. (3.12) t0 obtain a computaticnally con-
venient form.

Because systems of interest will rarely be one dimen-
sional, we extend our scope to a many-dimensional
system defined by the coordinate R. The time-dependent
population of state f is given by

8,() = 8{F.{R(D]}

where F,(R) is a continuous, differentiable function with
the property that

(3.1

‘r' >0, il Risinstate i,
F{R) ¢ =0, if Rison the boundar to state ,
:\ <0, o Ris outside state i.

The population fluctuation is thus

AN = 6,(1) - x, (3.13)
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Jhe time denivative becomes
8N, (1} = B{F.IR()}ITF,- ¥
= =§,(nu.),
where v, is the velocity normal to the dividing surface
{defined as positive when the system is exiting state /),
~VF-v
U, = '
7!
and we have defined
&) = 8{F.[R(N]}ITF, (RS
Equation (3.12) becomes
PR CACLN D)
1=y - L]
X
and writing the TST rate of escape from state i as
kDT = $¢lv 05,0
Xe
{sce Eq. (2.15)], we obtain

ke, = (018, (008, KI5T

Kvomo) “

As in the two-state case, we have expressed the true rate
constant as the transition state theory rate modified by a
ratio of ensemble averages. The expression is only valid
if the numerator can be evaluated at a time ¢ such that

(3.19}

(1 14)

(3.15)

(3.16)

.17

(3.18)

Toonr < & & Ty,

Befare describing how to evaluate Eq, (3.18) via molecular
dynamics, we conclude this section with a few important
points.

As indicated by Eq. (3.17), k=" depends only on
the nature of state J, and the shape of its boundary
surface. Thus, in computing k%, the same TST rate
constant is employed for any final state /. All dependence
on state j is contained in the time-correlation function
{,(0)5,(0,(1)}, which accounts for the ultimate fate of
particles which are at the boundary to state i at time zéro.

Note that state { and stafe j need not be connected.
k.’f-, may be computed from Eq. (3.18) for any two states
of the system. While this may seem contrary to the
conventional concept of a rate constant, we feel that
ki, is in fact well defined for nonadjacent / and /. As in
the two-state case, we appeal to the notion of “closing
our eyes” during the time 7., following an initial crossing
event. I a particle initially in state § exits and reappears
in some distant state j when we reopen our eyes, then it
is reasonable to say that it has made a direct flight from
state [ to state /. The possibility that we ar¢ missing some
impartant event is negligibly small, since our eyes are
closed anly toq/7n, of the time. This concept can also
be stated another way. Though states i and j are not
connected in configuration space, we can think of them
as being connected by a sort of “lunne!” in phase space,
which passes through the states connecting / and J. When
a particle exits state i with the rght set of phase-space
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cogrdinates for entering this tunnel, it is automatically
guided to state j. Even though it passes through the
canfiguration space of some state k, this tunnel region of
phase space is inaccessible to state k, and can oaly be
entered from state ¢ (or state j, by time-reversal symme-
try—assuming that all coordinates are explicitly included
in the system). A particle can pass from § to j through
this tunnel in a time less than r,,, while actually hopping
from i to k, and then k to j, would require ~2 r..

As in the two-state case, it is easy 10 visualize how
the ensemble aserage in Eq. (3.18) counts only the true
reactive events. Figure 4 shows a schematic trajectory
which, in time r,, passes from state i through states k,
i, and m, and into state j. Each of the crossing points,
labeled 1 10 7, will appear in the canonical ensemble, and
after evolving for time 7o, will reside in state j. Be-
caus¢ of the form of the time-correlation function
(v,{0)4,(0)8,(1)), this set of trajectories can oanly contribute
to kL, kg, k&', and k%_,. However, the net contri-
butions to ki, k2., and k2., will be zero because for
each of these three initial stawes, there are an equal
number of initially ¢ntering trajectonies [v,(0) < 0] and
initally exiting trajectories [v,(0) > 0]. (For example,
trajectories 4 and 6 contribute negatively to k%, while
5 and 7 contribute positively,) Thus, as we would hope,
the only noazero contribution is to k&,

Figure 3 shows the expected titne dependence of the
dynamical correction factor, defined as

Jdi = j) = ket k3T (3.20)

If states i and j are adjacent, the behavior is similar 10
the two-state case; f{i — j) decays from unity and reaches
a plateau value by 1 = r,.. If states i and j are not
adjacent, f{{ — j}is initially zero (betause a finite amount
of time is requirsd for any trajectory initially exiting state
i to reach state ), and then rises towards a plateau value
at 7o, For both cases, the approacirto the platzau value
i§ not necessarily a monoctonic function, since trajectories
passing through state j on their way to another final state
will cause a temporary increase (ot 'decrease) in f4i — j)

| - 'k R m
L
1 L]

FIG. 4. Schemauc swample of a trajectory that passes from state ¢ to
16 h time rog, . wia states &, [, and #1. Each bas represents a different
state of the system. Each of the seven surface crossings shown will be
represented in the cancnical ensemble, Using £q. (3. 18) to &valuate the
dynamically correct Aate constants shows that this trajectan contnbuley
only te k—,. whie a1 the TST tevel of approxemdtion this tryjestory
contnbutes 10 k5T &I AT R DT kIS RTET,, kST and 15T

. a
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FIG. $. Typical behavior of the many-state dynamical correction factar
[€Q. {3.20)} for 1,y 4 1., In case (a). sule j is adjacent to State /, and
the behavior is very similardo the two-state case, In case (b), sates ¢
I_Mj are not adj 20 thal the ion factor is initially zero, gnd
e 10 @ plaweau value.

(this is also true for the two-state casc). As in the pwo-
®ate case, if the time-zero approximation [Eq. (3.9)] had
ot been imposed, the computed value for f{i — §) would
remain coostani for all 1 > r,,, and the requirement
that r.,, < r,., would not be necessary (though this
approach would require as much work as a direct molec-
ular dynamics calculat:on). While in the two-state case
this time-zero approximation caused a slow exponential
decay in the plateau region, in the mapy-$late case the
plateau behavior is more complicated (though still slcw),
since a pumber of terms arising from the matrix multi-
plication shown in Eq. (3.3) are missing.

V. EVALUATION OF THE RATE CONSTANTS
VIA MOLECULAR DYNAMICS

The Brst stage io_calculating k2., consists of com-
putiog the TST rate k7. This can be accomplished via
EqQ. {3.17), or from an ensemble average over only the
phase space belonging to state i/,

1
kT - 3 Cled0)8,(03),. (4.1}
We have shown elsewhere? that this can usually be

further simplified 10 give an average over only the config-
uration space of state i,

1 {2, TV'7
kl'f'-s( '1) 8,000, (4.2)

xm

where §,(0} is given by Eq. (3.15), and m is the particle
mass, assuming that F,(R) (i.e.. the dividing surface)
involves the coordinates of one particle oaly. If F,(R) is
& function of the coordinates of more than one particle,
the separation implied by Eq. (4.2) is still possible pravided
that the effective mass™ of the coordinate perpendicular
to the dividing surface is constant over the whole dividing
surface. For this case, the mass in Eq. (4.2) is replaced

Equation (4.2) may be evaluated using Metropolis Monte
Carlo techniques,” " once 2 form for the potential energy
function has been chosen. The Monte Carlo approach
has the advantage that the exact TST rate is obuained,
with statistical error bars thai can be made arbitrunily
small. Alternatively, some form of harmonic approxima-
tion may be employed; this tends to work very well at
low temperature where the system resides predominately
in the harmonic region of the potential.

The second stage, which is the focus of this section,
is the evaluation of the dynamical correction factors.
(Either f; or k™7 may be evaluated first; the only require-
ment is that the same TST dividing surface be used for
each calculation.) If we define the weighting function for
a Maxwellian-flux distribution at the boundary to state §
by

wi(R, p) = [v(0)|3,(0)e~*H 2" (4.4)

(i.e., w, corresponds to a snapshot of the particles cTossing
the dividing surface}, Eq. (1.18) becomes

2‘[]'—:*%0,-(:) v.dlia‘r/ffe""dndp
kS, = -

T ] [oa

©,(0)
-2(-—-’—0(:)) kST,
"10)[ / ™ (4)5)

where the subscript w, indicates that the ensemble average
is over the distribution given by Eq. (4.4). Equation (4.5)
gives a simple prescription for evaluating the dybamical
correction factors. From a configuration-space Metropolis
walk restricied to remain on (or very near} the TST
dividing surface for state i, we select 3 pumber of config-
urations. For each of these configurations we assign a
velocity to the perpendicular coordinate S, chosen
randomly from a Masxwellian-Bux distribution [Pir)
@ |v/exp(~Bmm,r?/2)), and assign a velocity chosen from
a Maxwellian distribution [P(v) o exp{-fmc*/2)] 10 each
other coordinate. Each of these A configurations becornes
a starting point for a classical trajectory, and we assign a
phase to each one according to

v,(0)
o0 *

L4

phase (/) =

exiting state J, and uegative if it is initially entering st: te
f. (Note that these N initial conditions could instead pe
generated using Bennett’s method® of selecting snapshots

TABLE 1. Monte Cardo TST rate constants (1otal rate for escape in am
direction) and diffusion constants for Rth on Rh{ 100}, The zates have been
extrapolated 10 2o dab width and the error sstimales are two standard
deviations.

by the effective ma§s of this perpendicular coordinate T(K) k5T (571} o™ (cm’s")
[S(R}), and the gradient operator in Eq. (3.15) operates -
with respect 10 S rather than R, so that 00 112 % 10003 (5382 04B) % 107
300 1.39 x 107 (26820 %30 "
aF, 500 130 x 1083 242019 % 10"
50 = 4F) E . (4.3) 10 2.10 % J10* O3 «0¥x10t
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[

L the path of a trajectory that 15 artificially reflected
back and forth acress the TST dividing surfacc,_) Th.c N
trajectories are propagated unul { = 7., at Wh_:ch ume
surface-crossing events should have ceased, leaving each
trajectory thermalized in some final state. For every state
j (#i) in the system, the elementary rate constant k."_,,

can be computed from

N
ki, = kEf[z ¥ phase u)a,(n]. e

=i

where 8,(f) = | if trajectory [ resides in state j atl time
Teorrs and I8 ze10 Otherwise,

Two properties of Eq. (4.6} are evident. First, k2,
can only be nonzero for those states j in which trajectories
terminate--as we would expect. Second, it appears possible
to chtain a npegative value for k,“_,. which would be
meaningless. It is easy to prove, however, that for a
perfect sampling of trajectories {i.e., if &V is made large
enough), only noanegative rates will be computed. This
is because in the true canonical emsemble, for every
trajectory with negative phase, there is an associated
trajectory with positive phase that will terminate in the
same state. TLis can be verified by inspection of Fig 4;
£ g, trajectory 2 is igitially catering state { {and thus
contributes negatively to ki), but to terminate in state
J. it has to exit state [, thus generating the starting point
for ‘trajectory 3, which has positive phase and cancels
trajectory 2.

V. RHODIUM SURFACE DIiFFUSION

Surface diffusicn, the migration of an atom or mol-
ecule (or collection of molecules} on a solid surface, is an
important part of a variety of physical processes, including
crystal growth, defect formaticn, epitaxial layer growth,
and heterogeneous catalysis. Understanding the factors
that influence the rate and mechanism of this migration
is thus of central imponance, and has received considerable
afention in recent years.™

Use of the field ion microscope® (FIM), which is
capable of observing a single adatom on a clean crystal
face, has yielded high-quality surface diffusion constants
for a vadiety of metal-on-metal systems.}'-** These d:iffu-
sion constants generally extubit Arrhenius behaviar, with
activation energies and preexponentials that vary widely
with the choice of metal and crystal face. These results
thus allow a test of our qualitative understanding of the
micrescopic features of the adatom dynamics, and provide
quantitative results against which we can test our theo-
retical methods.

A number of theoretical studies of single-adatom
diffusion have appeared, applying cither direct MD, ¥4
or some form of TST™%V7%% 1o the problem. All the
calculations employed 2 finite cluster of atoms, bound
together by Lennard-Jones or Morse pairwise potentials,
to simulate the solid surface. These simulations have
proved quite helpful in understanding qualitative features
of the diffusion dynamics. For example, Halichioglu er
al*** were able to demonstrate that the cross-channel

diffusion of Ir on M(110) proceeds by a channel-wall
knockout mechanism. However, in making quantitative
comparisons to experimental diffusion censtants, none of
these studies has been able to reduce the possible types
of error to a single source.

Assuming classical mechanics is valid for describing
the dynamics of a particle as heavy as a tragsition metal
atomn, the accuracy of a MD simulation should ooly be
limited by the quality of the potential energy functicn
employed. However, at the temperature used in FIM
studies (i.e., 350 K and below), the diffusive hops between
surface binding sites represent a rare-event process. Thus,
MD simulations have only been feasible at much higher
lemperatures, so that no direct comparisons could be
made between theory and experiment. TST diffusion
constants have been calculated in the FIM temperature
range, but there was no way to tell whether the approxi-
mate dynamics or the approximate potential energy func-
tion was responsible for the observed disagreement.

The multistate dynamical corrections method derived
in Secs. II and IV allows us to directly address this
problem, by computing dynamically exact surface diffusion
constants at the same temperature as the FIM experiments,
Any discrepancy between theory and experiment can
thea be attributed to the approximate potential function.

The calculations presented here all employ the
Lennard-Jones 6-12 template model described previ-
ously.’**** Briefly, this model consists of ane or more
layers of movable atoms affixed to a rigid tcmplate of
atoms that has the geometry appropriate for the desired
crystal fage. The potential energy at each geomeuy is
computed from a Lennard-Jones 6-12 pairwise potential
with spherical cutoff

V=34, (5.1)
where
vlnd—v ) O<r, 25}
v, = .
=1y v 62

and

a, 12 e L3
e () - (2] o3

Here r,, is the distance between atoms / and St and o,
are the Lennard-fones well depth and distance parameters
for that pair of aloms, and r, is a cutoff distance. This
form for V eliminates the need to calculate interactions
between atoms separated by more than r,, while main-
taining a potential that is continuous (though the deriv-
atives are discontinyous at r,, = r,). For the Rh oa
Rh(100} case considered here, all the interaclicns are
identical (o, = o, ¢, = ¢), and the parameters were
chosen to match previous MD***} and TST™** studies
{e/kg = T8I0 K, o = 247 A, r. = 2.20). These values for
¢ and o were obtained from bulk thermodynamic data *?
There are 32 atoms per layer in the cluster, with one
fayer allowed to move and three layers frozen; the total
cluster including the adatom thus consists of 129 atoms.
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The lattice spacing at all temperatures was chosen to give
s nearest-neighbor distance of 2'%¢ (the minimum in
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6T T 7T
~ 5 _

* 5,), and periodic boundary conditions were employed.
The TST dividing surface for one binding site is
shown in Fig. 6. It is defined by connecting the four
atoms around a binding site with planes that extend
infinitely in the +7z and —z directions. Rather than
allowing these planes to move with these four atoms {as
in our previous TST studies®**®), we simply fixed them
10 the equilibrium positions of the atoms. This gives a
TST surface that depeads on the adatom coordinates
only, climinating the need for an effective-mass correction
aod simplifying the calculation of the trajectory initial
velocities. To compute the TST rate constant (Table I,
each plane was replaced by a slab with finite thickness b.
A Monie Carlo procedure was used to determine the
ensemble average in Eq. (4.2), using uniform weighting
over tbe thickness of the slab as a prelimit form for the
Dirac delta function. By making independent runs with
different values for b, the TST rate was extrapolated to
that for a zero-width slab, as shown in Fig. 7. We found
that using b 3 0.1 bohr was sufficient 1o produce agreement
with the b = 0 limit. A1 these Jow temperatures, accurate
evaluation of the Monte Carlo averages requires the use
of importance sampling technigues, due to the rare-event
nature of the process. We recently presented one such
method,” but ip the present work we had better success
with an alternative approach when the slab width was
made very small. " This new approach exploits the fact
that the desired ensemble average can be written as a
ratio of partition functions for two states (A and B),

A L .Y
(340}, = Limm (b QA) : (5.4)
where state A is the whole binding site bounded by the
TST dividing surface (the center of the slab), and state B
is the hypothetical state generated by restncting the
adatom to be inside the slab. The problem thus becomes
one of evaluating the free-energy difference between states
A and B, and the method is a variation on an existing

FIG & The L) templats modsl used for maodeling the RM 001 surface
Only the tap laver is shown For one binding site the TST boundan
surface 15 shown. represented by four finite.width slabs {see the tear).
which exiend intimiels i the +2 and - = directions

-
\.
\

D (10°%° bonr2ay
S
JE |

Oﬁ-J.!,lll.

o] 02 04 06 o8 1
TST SLAB WIDTH (bohr)

F1G. 7. Extrapolatian of the TST diffusion constant at 300 K 10 zee0
slab width (see Fig 6). The error bars are two standard desiations. The
shaded point was obtained using TST slabs that maved along with the
top-layer atoms (see Ref. 49) and is seen to be in good agreement wath
the fiaed-stab results. The TST rates are shown in Tabie |,

technique® for this type of problem. This method is
described in detail elsewhere.

The TST diffusion constant is obtained from

‘rl
DT = — 157, (5.5)
where o is the dimensionality of the space (d = 2 in this
case, d = 1 for channeled surfaces) and / is the distance
between adjacent binding sites; i.e., the hop length. in
addition to the TST assumption that adatomns cTossing
the dividing surface do not recross, Eq. (5.5) assumes that
successive hops are directionally uncorrelated. so that an
adatom has equal probability of exiting to cach of the {in
this case, four) adjacent sites, regardless of the direction
from which it entered. Of course, both of these assump-
tions are approximations, which can be eliminated using

dynamical corrections.

Using the procedure described in Sec. IV, classical
trajectories were started from the fxed TST surface,
allowing calculation of kfL, from Eq. (4.6) for all passible
binding sites (f) to which the adatom can “hop.” The
integration was performed using a fourth order Runge~
Kutta-Gill algorithm, with a time step of 100 atomic
units (1 a.u. = 2.418 X 10777 5} and an energy rescaling
every 11 steps. The highest temperature we report here is
1000 K; above this temperature the time scales (r.. and
Tna) begin to be inseparable, so that the elementany rate
constants cannot be cleanly extracted. Because of the
symmetry of the lattice and the TST surface. it is sufficient
to start all trajectories in the same direction from only
one of the four TST planes shown in Fig. 6: the fate of
the set of trajectories in the true canonical ensemble
(which enter and exit state  from all four planes) can be
determined from the unique set of trajectories using
symmetry considerations.

Figure 8 shows the behavior of 204 trajectories run
at 1000 K. At short times, all the trajectories reside in
the state that they were entering at r = 0 (stale B). Afer
~20 000 a.u, dynamical recrossing events begin 10 accur.
While the majority of trajectories are trapped I1n state B,

A F. Vowr
Rh ON RR(10Q) T=1000K
- 200 200 li 3
1
ted 1=i0 t+20
1 2 3
2 19 & 3|86 9 3 [184] 9 3 |83 3
1 1 S z
1230 1=40Q 150 1 +&0
3 3 3 3
3 [re3f 9 3|83 & 3 {183 8 3183 B
2 z | F 2|1
=70 180 1450 12100

FIG. 8. Time dependence of the state populations mull!n;_fmm 200
trajectorics initiated a1 the TST plane. All rrajeciories were initiated ﬁ'ofn
1he same TST plane, in the same direction, as indiaied by the_:mn in
the first subfigure. The Gme units are i0° au = 242 X 107" ¢ The
coordinate system far this representation of the fer(100) Tattice is rotated
by 45* compared to Fig 6.

17 of the trajectories exit io various directions befom
thermalizing in nearby states. These correlated dynamical
events have terminated by 80 000 a.u. (contiouing 100 of
these trajectories until 200000 a.u. caused only one
additional crossing), ro that feeyr = 80000 a.u. Taking
Trn = (kT5T)7" leads 10

Tra 2.1 %107

Tom 80000
indicating that the condition of Eq. (3.19) is ?atisﬁcd.
Applying symmetry to genérate all possible startung coon-
ditions (trajectories entering and exiting from all ff:ur
sides) and applying Eq. {4.6) leads 10 the dynamical
carrection factors shown in Fig. 9. The time dependence
is as discussed in Sec. IV, with the correction factors for
nonadjacent states initiaily- zero and then ri.sir'tg w0 a
plateay value. The sum of all the f; values is 0.90,

=26 % 10°,
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FIG. 9. Dynamical correction factars {Eq. (3.20)] resulting from the 200
Lrajeciones shown in Fig. 8. Symmetry operauons were used la conslr\_xct
the additgnal trajectories present i the total “ensembta.” in which
trajectones entzr and et from all four direcnions. {The disinbution was
also made isotropic by symmetsy aseraging ¥
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indicating that the rate at which adatoms escape froz
binding site is 10% slower than that predicted by TST
To compute the dynamically corrected dxﬁusl_x

constant, we replace Eq. (5.5) with a sum over all possi’ - :

binding sites to which the adatom can directly “hop.,”

§ o J2 {!
b=z P VN .
where [,; is the distance between suw_s iand j. No_le 1
in the limit where the TST assumptons are \-ra.hd,6 .
(5.6) reduces to Eq. (5.5). Ta!dng the ratio of Eq. (fs.
Eq. (5.5) leads to the dynamical correcton factor for
diffusion constant,

Figl

NiA F
2 smi—n). (
Pl .
i along with
These are shown for various temperatures,
fAi = j) values, in Table [l While the average hop ,

is decreased by the dynamical corrections, the diffue,

constant is increased, because the average squared ]el?_f B

of a hop is increased. Of counse, dynamical correct .

in general will not necessarily. increase D. For exam:

if the TST surface were poorly chosen, so that kDT,
hence D™, were anificially high, thes the dynam
corrections would act to lower- D to the classically cor
value. Another example is an effect we bave observct':
Rh on Rh{111} diffusion; at cerain temiperatures thes
an enhanced probability that the adatom that is en_tc.
a binding site will bounce qﬂ' the far wall' of _lh;s bing
site and re-exit in the direction from which it came.
the R(100) surface no such effect was observed.
Inspection of Table [ also shows_tha'. the dynarr
effects decrease as the temperature 15 IowFrcd, Thi
because at low temperatures the paniclcr rypma]lyvhas
enough energy to pass Over the barmer and is e2

»

i j i i temperat!
trapped in the adjaceat state, wrh_ﬂe at higher eratt
thep:e is an increased probability that the particle

have energy in excess of that rcquir.cd 10 cross the ba.r‘
and may thus make another crossing before this eo
is dissipated. This temperature dependence has t

H 30
observed previously at higher -.cmp_eratur:s. - )
An Arrhenius plot of the d:ffusion constanis is she

in Eig. 10, along with the experimental FIM result,
Ayrault and Ehrtich.” Fitting to the Arhenius form

D= Dnzrtﬂhf (
= 2382 * 0,05 kcal/mol and Dy =
:agl;oxﬁ:)" cm? s}, compared to the FIN!’valulc
E, = 20.2 + 1.7 keal/mol and Dy = .l X 1077 em
The theoretical value for D at 300 K is sqsallcr thas
experimental values by a factor of 60 As d:scussa.:d ab‘
this discrepancy can, for the-first time, be anribute

b

i
-

. - . U
the approximate potential’ function. This LI potet. -

which was fit 10 Rh bulk thermodynamic data, is -

[

necessarily suited to describing atoms on the surface

two reasons, we make no atlempt here. 10 rnodl_fy

potential to achieve betier agreement _wnh experin

First, the purpose of the present study is to d.emonls

the feasibility of cbtaining exact dynamical results il

rare-£vent regime, not to rhatch experiment. Second =
W
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TABLE IL. Dyramical correction factors for Rh on RM100). The state designations (i and J) uud n
Jdi— i) are defined in Fig 9. Nyy is the number of trajectories used 10 determine the dynam ical corrections;”
‘Mo it the aumber of these that come to rest in 3 staic other than B. Note that f4A — B) = 0.25 comresponds

o TST. .
TK) Moy New JAA—B) JAA—=O  JAA=D) [AA—F) Do
190 [ 023 00 0o 0.0 1.00
?; 100 0 028 no 00 [+ )] 1.00
300 150 1 0.2467 00017 00 0.0 1013
1000 00 17 0.2088 0.0100 0.0050 0.000 62 1.060

of 8 number of arbitrary modifications could be made to
the potential to increase the agreement with experiment,
but we feel this would bave timited meaning. It is possible,
bowever, that calculations like those presented here could
be used in copjunction with a variety of other datz to
generale more accurate potential functions.

Probably the most important result of this Rbh on
RA(100) study is that the dynamical corrections are
essentially negligitle in the temperature range of the FIM
experiments (~300 to 330 K}. (Even at 1000 K, DD
is onty 1.06.) While it would be premature to assume this
is true of all surface dynamics, it is consistent with other
results we have obtained for single metal atoms on metal
surfaces. Thus, it appears that future studies of this type
can benefit from the significant computational savings of
using TST, assuming that a good TST dividing surface
can be constructed. For those systems in which there is
doubt about the accuracy of TST, the method presented
bere may be used 1o obtaio the exact dynarnics many
orders of magnitude more quickly than using full MD
simulations.

VI. CONCLUSIONS

We have exiended the two-state dynamical correc-
tions formalism to treat the general many-state case. For
processes characterized by rare-event dyparmics, the
method allows the computation of {classical) dynamicaily
exact rate constants between any two states of a system,

o T T T T T T

C Rh on Rh{100) 7

“2or \ :

8 _sob \ -
T eor \‘*3\ ]
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G, 10. Surface setl-difflusion constanis for Rh on RA{100]. pletted in
Arrhenius form The unus are Dicmiss) and T(K) The error bars (iwo
standard deviauions) are not shown since they arc smaller than the
ploned points. The cxpenmental results are frem Rel 15,

a task which is unfeasible using direct molecular dynarnics.
The key to the method is embodied in Eq. {3.12). which
expresses the arbitrary elementary rate constant (kiL)
as an equilibium time-correlation function. Equation
(3.18) shows that ki, is simply the TST rate of escape
from state i multiplied by a dysamical correcticn factor,
and Eq. (4.6) indicates how this correcticn factor can be
evaluated using molecular dynamics techniques. Dynam-
icaj properties of the system may be obtained by following
the evolution of 2 pssudodynamical simulation, in which
the system execules a biased random walk from state to
state, with weighting governed by the precalculated ele-
mentary fate constants. By combining this approach at
low temperatures with direct molecular dynamics at high
temperatures, dypamical properties may be computed at
any temperature. (The middle range of temperatures,
where reactive transitions are slightly 100 frequeni 10 be
classified as rare events, theo becomes the most compu-
tationally intensive.)

AnD interesting result that emerges from this work is
the definition of a rate constant between states which are
not adjacent in coofiguration space. The concept of a
“diret”™ tansition between ponadjacent states is intuitively
meaningful, and in the rare-vent regime, Eq. (3.12) gves
a precise definition for this rate.

For the Rh on Rh(100) system, we have calculated
the first dynamically exact single-atom diffusion constants
in the temperature range of the FIM experiments. The
discrepancy between theory and expenrment (which is
surprisingly small, considering the simplicity of the LJ
potential} can now be anributed to the approximate
potential function. At {000 K and below. the dvnamical
corrections were found to be pegligible. indicating that
TST is a very good approximation for this type of system
Moreover, we have shown recently”” that simple harmonic
TST, which requires cnergies at only & few geometries, is
a good approximation 1o exact TST at these low temper-
atures.®' Thus, it should be feasible to calculate accurate
diffusion constants using ab iniric electronic structure
methods, once relative epergies can be obtained with
better than | kcal accuracy.

Finally, we pote that although the Rh diffusion
example presented here exhibited only minor dynamical

corrections, the method will work equally well if the
corrections are large. The method can be applied to any
multistate systemn, as long as molecular dynamics can be
run on the potential energy function which is employed

Examples of systems which would benefit from this .

treatment include the diffusion of atom clusters on a
metal surface, the diffusion of vacancies or 1mMpunLes
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through 2 solid, and the dynamical evolution of a polymer
chain.
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APPENDIX

We wish to show thai the inverse of the time-zero
fluctuation-fluctuation autocorrelation function is indesd
given by Eq. (3.11). We take ¥ = I, so that Eq. (3.13)
holds, and note that

BN = (800 = x, (A1)

and

{88,100y = 8,,x..
For an arbitrary element of the matrix we have
(6.\',(0)6,’\’1(0))

= ([0.00) - x.][8,00) = x,])

= {8.00M,000) — x,. {6,100 — x,{BA01) + x.x,

=d,% ~ X%

(A2}

(A3)

as asseried by Eq. (3.10). If the right-hand side of Eg.
311} is the inverse of the matrix defined by Eq. (A3), it
will satisfy the condition for the inverse of a matrix A:

Z AT NudAY, = 8, (A4)
k

Inserting Eqs. (A3) and (3.11) into the left-hand side of
Eq. {A4) yiclds

=
2 Gax, — x.x«)(i + 4, ;D
& Xn

=Xy XS XX
xn Xy & Xa X,

-1
‘%*k(l* Zn)—x.
Xn p

=8,

(AS)
proving Eq. (3.11). The last step in Eq. (AS) made use of
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Computing Classically Exact Diffusion Constants Using Short-Time Trajectories
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The classical diffusion constant of a point defect in an infinite lattice of binding sites is shown to be ex-
pressible as Aransition-state-theory rates multiplied by dynamical-correction factors compuled from
short-lime classical trajeclories initiated a1 the site boundarics. The expression, which results from time
differentiating the lattice-discretized mean square displacement, is valid at any temperature for which
the site lattice is well defined. [t thus avoids both the time-scale limitations of direct molecular dynam-

ics and the rare-event requirements of standard dyna

PACS numbers: 66.30.Lw, 66.30.0, 68.35.Fx

The utility of molecular-dynamics (MD) simulations
in computing surface and bulk diffusion constants is well
established. 2 When the time scale for diffusive jumps is
Yess than ~ 107" s, i.e, when the temperature is high
relative to the diffusion barrier, direct MD simulation
can be employed, in which the system is evolved classi-
cally and the diffusion constant (D} is computed from
the mean square displacement or the velocity autocorre-
lation function of the diffusing particle. As the tempera-
ture is lowered, the average time between diffusive jumps
gets longer, making direct MD impractical, and finally,
impossible.

For temperatures low enough that diffusion is truly &
rare-cvent process, an elegant alternative to direct MD
can be employed, in which the exact dynamical rate con-
stant between reactant and product (in this casec, the
binding sites occupied before and after a diffusive jump)
is expressed as the transition-state-theory® (TST) rate
multiplied by a dynamical-correction factor.>** The
TST rate constani, which is the outgoing Bux through
the boundary surface dividing the reactant and product,
is an equilibrium property of the system and is thus easi-
ly evaluated. The dynamical-correction factor acoounis
for TST-violating dynamical events (ie., correlated re-
crossings of the boundary) that occur during the relative-
ly short time that the system is activated. This dy-
namical-correction factor can be evaluated from classical
trajectories initiated at the TST boundary, as first
demonstrated by Keck* for gas-phase systems. The first
spplicalion of this approach to the condensed phase was
Bennett's? investigation of bulk diffusion. Alternatively,
the cofrection factor can be obtained from a detailed ex-
sminstion of the phase-space properties of the TST sad-
dle surface, ™?

Becsum: direct MD is practical only st high tempera-
furet  snd the dynamical-corrections formalism is
1140r0US unly at low temperatures,™* computing D at is-
tetinediste 1emperatures remains a problem. For exam-
ple, for wdatom self-diffusion on the Lennard-Jones foo
{111} surlnce, direct ML methods can be applied down
(u reduced temperatures of 7°m0.11,'"" while the
FRIE-EYER gysumotion breaks down sbove T*=0.04."

mical-corrections methods,

In this Letter, a new method is presenicd that bridges
this gap. By taking the time derivative of the mean
square displacement over a site-discretized coordinate
system, 8 new cxpression for D is derived that is valid at
any temperature for which the jattice binding sites is
well defined. As in standard dynamical-corrections
methods, the expression is cvaluated using TST and
short-time trajectories initiated at the TST boundaries;
however, no Tare-event assumptions are required. It is
shown elsewhere'? that this method can also be derived
starting from the many-state dynamical-corrections for-
malism,® by expressing the squared hop length as a
rate-constant-weighted average over all states to which
the diffusing defect can jump. Despite the fact that the
individual rate constants become meaningless at high
temperature, the diffusion constant is valid.

In the case of ihe foe-(111)-surface diffusion men-
tioned above, the dynamical-correction facter, D/D ST,
exhibits an interesting dip below unity at low tempera-
ture.' Use of the method presented here allowed a
determination of the position and depth of the minimury,
which occurs at 7* =004 (the edge of the rare-event re-
gime), and the causc has been identified.’? This previ-
ously unobscrved dip is due to trajectories in which the
adatom undergoes a well-aimed, direction-reversing col-
lision with the substrate stom on the far side of the tri-
angular binding site, causing a recrossing of the TST
boundary. At lower temperatures, the adatom is less
likely to recross because it has less kinetic energy, while
at higher temperatures the cffect is masked by forward
multiple jumps which increase D/D T,

In the following derivation, the system is assumed 10
consist of 8 particle diffusion in an infinite lattice of
binding sites {c.g., s crystal impurity atom in the lattice
of all possible interstitial sites). A discretized coordinate
for the diffusing particle is defined by

n‘(:)—}:ie.(rm, . (1}

where
o, (N =6lF, RN . )
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Here 81 -] is the standard step function, R{s) is the
configuration-space coerdinate of the particle at time ¢,
R, is the average position for the particle in state i, and
FiIR] is a continuous, differentiable function with the
property that

>0, if R isin state f,
F,[R}4{ =0, if R is on the boundary to state J, (3
«< 0, if R is outside of state .

Thus, R*(1) 1akes on the vatue of the average position of
the state in which the particle resides at time ¢. Note
tI]at this discretized coordinate is only meaningful if the
binding sites are defined such that they tile all of con-
figuration space. The time derivative of this discretized
coc-dinate is 2ero except when the particle is at the
boundary between two states. We obtain

¢ -
BRGD o Fa Ry, @
where ©,(¢) is the veloci y component normal te the

boundary at R(s),

. Lik
N TE ®

.(v, is positive if the particle is exiting state i}, and §,(r)
is nonzero only al the boundary to state §,

(N =5lFIRUIVFIR(N| . (6)

({1 is the Dirac delta function.) This convention
maiches that used previously.®

7 he diffusion constant is given by
p=-L im { (R -RO)| Y &)
ai—=|di '

which, for diffusion over the lattice binding sites, can be
wrillen as

| d
p-—;(tl‘(r)-k‘(u)l’*- (S)J

=8/ (0)5,(0)0, (IR, if j=i,

= §,(0)u, (0IR, =1+ 8, (0)&; (0D, (0IR,, if j borders 7,

0, otherwise,

where @ is the dimensionality of the space and 1 —1g is
assumed 1o be longer than the memory time of the
diffusion particle. The brackets { - - - ) indicate the usual
canonical ensemble average,

(py = LPE 2" IR dp
Je ™dRdp ' @
where P is some property, p is the particle momentum,
H=H(R,p) is the classical Hamiltonian, and g= 1 /ksT,
with T the temperature and ks the Boitzmann constant.
An average over a weighting factor {w) other than ¢ ~**
will be indicated by a right-hsnd subscript. An average

restricted to the configuration space of state { will be
written (P);, where K

w;=8,{0)e "4, (10)

C_nrryins out the time derivative in Eq. (8) over the
discretized coordinates (setting 1g=0) leads to

WAP L0
p=cL (z l_ﬂ ],_D-m'm—n‘mn)

-1 dR4(1}
}.‘.::.({———dl ’.-o' [R‘tr)—n‘(o)])

a’ i
--";;p(—)}__‘,a,-(o)n,-(o)n,-(R‘(:)—iﬂ,])" an
Here 1, is the mole fraction for stdte ,
™8}, : a2)
and i
RO =R, =} (R, +R) - a3

a5 8 result of the definition of the standard step function,
8(0) = { . Becausc the ensemble average is restricted to
state J, the sum over f will collapse to those states having
a tornmon border with state J. Defining

65 (0) =8,(0+)+9,(0-), | i4)

whicl} ?iclu out those trajectories that arc cither entering
or cxiting state j at =0, the terms in / become

(i5)

where we have made use of v, (0) = —v;(0) for a trajectory at the j-j border. Equation (11} thus becomes

o-%;,,;cef ©)5,(0)0, (O} R, - R, [R“()—R,, D, . 5

(16}

Equation {16} expresses the diffusion constant in terms of trajectories that are at the TST boundarics at ¢ =0, as

shown in Fig. 1. It can be put into & form that
cape from state / is given by '>'¢

kT (e (018,000, .
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fining the weighting function for a Maxwellian fux of particles through the TST border to state i,

wwmr, =6,(0)5,(0) |o,(0) | ~#¥
3T can be written as
TST o _err‘ dR dp
= JwidRdp
hat Eq. (16) becomes

(18)

(19)

=1 7 + v;(0) R IR B
R0 NTS ¥ j(e, O TR R RO-R,1),, 20)

Equation (20) is the central result of this paper. [t
€s 2 prescription for computing D using TST afong
h trajectories initiated at the TST boundaries. These
jectaries are integrated long enough that the memory
e of the diffusing particle is exceeded. The method is
id at any temperature for which the lattice of binding
s is well defined. [In spite of the appearance of the
T rate constant in Eq. (20), the expression is valid
R at temperatures so high that the diffusive jumps do
correspond 10 & first-order rate process. This can be
ified by inspection of Eq. (16), in which no rate con-
nts appear.) It thus provides & unifieq computationa)

state |
R{C)¢

sate k

Ay - L

R(1}

IG. 1. Schematic ittustration of the faciors in Eqs. (16)
(20). The curved line represents 5 trajectory Lhat is pass-
xtween states { and jat time 1 =0, and resides jn stale & al
L

approach, bridging the gap between the low-temper-
ature, rare~cvent regime, where existing  dynamical-
corrections methods are valid, and the high-temperature
regime where direct MD can be employed.

Evaluztion of Eq. (20 at time 1=0+ feads 1o the
TST approvimation to D, which assumes that cvery bor-
der crossing corresponds to a diffusive jump to the adja-
cent binding site and all crossings are uncorrelated. In-
tegrating the trajectories out to longer times corrects for
these assumptions, accounting for both multiple recross-
ings and correlated muitiple jumps. The quantity D@1}/
D(O+) thus represents the dynsmical-correction factor
for diffusion, D/D™T. That D(r=0+) corresponds to
D77 is most easily demonstrated by considering a sys-
tem with only one unique binding site (thus collapsing
the sum over /—sec below) and one nnique type of jump,
such as the square lattice in Fig. 1. For this case, evaly-
ation of Eq. (20) at # =0+ yields the well-known expres-
sion

o(:-o+)-om-%km:=. @

where = [R, —R,| (; and / adjacent) is the length of a
single jurip. The computationsal procedure is now dis-
cussed

By symmetry, the sum over ¢ needs 1o include only the
Tepresentative set of states that can be replicated to gen-
erate the complete infinite system. The integration over
all space, e.g., in the definition of y, in Eq. (12), should
be similarly restricted to this subspace of representative
states. Once the TST boundaries have been specified,
the evaluation of Eq. {20) involves computing &,"ST for
exch unique state, ey, using a configuration-space
Monte Carlo methed, 'S and then integrating MD trajec-
tories that are initisted at each unigue TST boundary,
The trajectory initial conditions can be obtained by sam-
pling from s configuration-space Metropolis walk'? re-
stricted to the TST boundary. For the diffusing particle,
the initial momentum along the direction normal to the
TST boundery is chosen randomly from 2 Maxwellian
fAux distribution, as dictated by the weighting function in
Eq. (18). The moments for the other coordinates in the
system, including the two perpendicular coordinates of
the diffusing particle, are chosen from a standard Max-
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wellian distribution. Alternatively, the “TST-fux™ tra-
Jectory intitial conditions can be generated using
Beanett's method of sampling from a trajectory that is
ertificially reflected back and forth across the TST
boundary,” or using the approach of Gillan, Harding,
and Tarento'® in which a trajectory is constrained to lic
exactly on the TST suriace. These trajectories are then
integrated long enough that the memory of the initial
conditions are lost, after which time Eg. (20) maintains
a plateau value with statistical fluctuations, as shown in
Refs. 1 and 13, The classically exact diffusion constant,
with associated error bars, is obtained by averaging over
these fuctuations in D(r).

The author thanks J. M. Cohen and B. L. Holian for
critically reviewing this manuscript.
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ABSTRACT

Simulation results are presented for some dynamical processes occlu’rrczlng :.Illl lhi
growth of (100) layers of silver. The overlayer dyrnamics 2:;?.‘.2".0 \ecm:?lﬁgn‘f
recently developed method that, in the regi.mc where sulrfacel di u:t:::-,c Ne.n.li:”
discrete hops, yields classically exact dynamics for an arbnrary lvmeri mie p'lre lhu;
The time-scale limitations of direct molecular dyn‘amlcs simu :!1|’un,d ‘fm.m O‘r
overcome. The Ag/Ag(100} system is modeled using a S.Ophl.‘tIlC.llle ol
interaction potential, similar to the embedded atom method, in “]]:nl:k:k( 1cened|1cn:_])[h_e
given i::y a sum of pairwise interactions plus a term for each atc'>rt|)1 id'n ;:q nc,cew”y
local atomic density. This type of potential includes the many-body 1;=rn S < s .f.me
to describe a variety of atomic environments, suc.h as ;he perfectl c; mew-ui.l ree
surfaces, vacancies, interstitials, and even.lhe diatomic mn]e:j:u fB. ctlel5 wh the
computational scaling of a simple pair potennal.. Tbte present. stu 'ylz;u(;f du“ém e
of the dynamics in a single layer of silver: the diffusion and dissociati sters

. . . inp a
adatoms and vacancies. Some interesting features are observed, inctuding

. N . . nd a
nonmonoionic decrease in diffusion constant with increasing cluster size, a .
. o i
roughly constant mean square distance a cluster migrates before dissociation (ejectio

of a monomer).

1. INTRODUCTION

The growth of cry‘stals and lhif1 films, becalluzschof
their widespread technological 1rrpor‘lanc3c. . z_is
received considerable theoretical a'ttenuop. ogt_ean ;n
the form of atomistic computer s:mu!anc?ns. ' To
make predictions about film growth, mlese mmulau(?;‘ls
must model large systems over Jong time scales. To
facilitate this, simplifying assumptions are made about
the microscopic details of the growth process. Bcc'aulse
some macroscopic properties of a syste.m an:‘relauve ly
insensitive to the details of the underlying mlCl’OSCDpl.C
force laws and dynamics, a moc‘lel system 1hat.:s
properly chosen and pipperly app'hcd can )_neld qu;_:
useful results. For example, the simple ‘sol:d on so i

mode]? correctly predicts the roughening lransmo;
and other features of a'growing crystal, even Lh‘oug.
the crystal packing is nonphysical, surface diffusion is
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omitted, and the interatomic for.ce.s are re.duccd‘lo a
single parameter. In more sop}.nsnc.altd .r-lmulat.w.ns,
commonly employed simplifications include restricting
the film to two dimensions and the use of hard spheres
or hard spheres with additive interactions,

As an aliernative to the model system approach, qne
can altempt to simulate thin ﬁlm.growth_ while
maintaining a connection to the irue .n'IlCI'DS.COPIC forr:e
Jaws. In other words, for an.arbnrary interatomic
potential {which can, in princ:p.lc. be chosen to be
fairly realistic for the syslcm.of mlercsl.) one follows
the growth process using classical dynamics.

The most direct way to accnn-_up]ish .this is by
integrating a classical trajectory u-wolvmg a few
hundred or thousand atoms representing the §ubstratc
plus thin film, while periodically introducing new

aloms 1o the system fre 1 the gas phase 9 Sir- e the
system's evolution is governed by the propes force
laws, the resulting features (columnar growth,
formation of voids, erc.} are physically correct for the
chosen interatomic potemtial. However, this direct
molecular dynamics (MD) approach is currently
limited to simulation of a few thousand atoms for
appreximately a nanosecond or less, due to the present
speed of computers. With these restrictions, the most
mezningful resulls are cblained by simulating
close-packed surfaces (e.g., fee(111), which have
lower activation barriers for diffusion, at relatively
high temperatures.

We have recently developed a different approach to
this type of problem.1® Wish certain resirictions, the
methed provides classically exact surface dynamics
over Jong time scates. The method is designed to treat
the overlayer dynamics for a submenolayer coverage
of adsorbates on a perfect crysial face. As such, it is
well suited for modeling Frank-van der Merwe
Oayer-by-layer) film growth, Ideally, one would like
to treat film growrh in the general case, with
adsorption, desorption, three-dimensional clusters,
voids, etc. In principle, this method can be extended to
handle such processes (as discussed below), but it is
currently in its infant stages. At the present time, this
approach offers access 1o dynamical properties that
cannot be calculated by direct MD, and, as such, the
two methods are camplimentary, Even though neither
approach is capable of a full-scale simularion of general
film growth, the results can be used 1o impro-2 the
paramelerization of more macroscopic models, or to
test assumptions in these models

The study presented here is meant 1o be a
demonstration of the feasibility of this new method for
calculating dynamical Properties importani to film
growth using a realistic interatomic potential.  In
particular, we examine the diffusion and dissociation of
two-dimensional clusters of silver atoms on the
Ag(100) surface. The silver interactions are provided
by a state-of-the-ant embedded-atom type of poten-ial,
described in Section 2. To the extent that this potential
is realistic, the calculated dynamical properties should
be appropriate for a (100) layer of a silver film that is
thick enough to be unperturbed by the underlying
substrate.

2. INTERATOMIC POTENTIAL FOR SII VER

Because the results of a molecular dynamics ¢
Monte Carlo simulations are only as accurate as 1h,
underlying interatomic potential, there is a motivatio,
to develop high-quality potentials. Daw and Baskes!.: :
have recently presented a new form of interatomi ‘-
potential, known as the embedded atom method, i’ hﬁ
which the total energy of a homonuclear systemoft 7
atoms is writlen as

E=1Y or )+ Y Fip) . @17
2 Cor T i
where :
po= Y per 2.2)
1 J(*l} B,

Here, Tij is the scalar distance between atoms § and N
o(r) is the pairwise interaction term, p(r) is a function: .
that is roughly the electron density at a distance r from .
an alam, and Flp] is the “embedding function.” This * b
type of potential is discussed in detail elsewherg!!-13
and has been quite successful in providing a reasonably
quantilative descripiion of metallic syStems in a variety
of simulations.!4 we briefly discuss here some of the
key features of this form of potential, and how we have
chosen to parameterize o(r), p(r) and F(p} for Ag.

-

If Eq. (2.1} is truncated afier the first sum, a simple
pair potential results. Such a potential has the virtue of
computational simplicity and ease of paramelerization,
but suffers from some defects. For example, the
vacancy formation enerpgy (AE,,.) is equal to the
cohesive energy (Econ). and the elastic constanis €12
and ¢,y are also equal, while neither of these equalities
holds for real metat crystals. In a Lennard-Jones
pairwise description of silver, the melting point is ~2.8
times to high,!S The simple pair potential can be
improved by intreducing a volume dependence, ie., a
pair potential is derived that is appropriate for a
particular density, or volume, of the system.!6 The
motivation for this arises from viewing the meta)
crystal as jons immersed in a background electron
£835.17°19 The energy will depend strongly on the
density of the electron gas and, hence, the volume of
the system. While this modification to the pair
Potential corrects the three problc'ms"incmioncd above,
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it introduces the restriction that major defects such as a
free surface cannot be treated, since the systern cannot
be characterized by a conslant volume.

The embedded atom method allows'a solutian 1o
this problem. In Eq. (2.1), the pair potential is
augmented by a sum of embedding functions which, in
effect, provide a local volume contribution to the
energy for each atom. This is because Pj acts as a
sensor for the crowding of atoms about atom i, Hence,
with this form of potential, systems with a wide
variation in density can be treated, The embedding
function, F, provides a many-body contribution to the
energy {assuming F is not purely linear), but the
computational work involved in evaluating the energy
and derivatives from Eq. (2.1) scales the same as a
simple pair potential. However, there is no angular
dependence in Eq. (2.1), so it is inapproptiate for
systems with strongly directional bonding.

We now briefly describe the parameterization used
in the present study for fcc silver, The details of both
the fitting procedure and the parameterization
rhilosophy can be found elsewhere.21.22 The pair
potential is taken 1o be a Morse potential,

0{1} = Dy - expl-apg(r-Rp 132, (2.3)

with three adjustable parameters, Ry Dyg and ayy.
The density function is defined as '

pr}=rb(e-Pr 4 §12¢-2r | (24)

which is designed to roughly mimic the electron
density of a transition metal atom,?3 with adjustable
parameter B. Both §(r} and p(r} are modified to g0
smoothly to zero at a cutoff distance, feurs Which is also
n adjustable parameter. Following Foiles et al,j424
for each choice of these five paramcters, F(p) is
defined by specifying that the total energy [from Eq.
(2.1)] of an fcc crysial follow the form

E(a*) = -E_,), (1 + 2%) e-2* (2.5)
where a* is a reduced distance variable given by

a* = (wa, - 1}/ (E_,, /B2 (2.6)
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Here a is the lattice constan, a, is the equilibrium
lattice constant, B is the bulk modulus, E, ;. is the
cohesive energy of the fcc crystal, and £ is tch: atomic
vo!tfme. The use of Eq. (2.5) 10 define F(p} is
motivated by the finding of Rose e1 al 25 that results of
density functional caleulations on solids show a
behavior similar 10 Eq. (2.5). This approach ensures
reasonable behavior over a wide range of atomic
densities, and leads to a potential that gives exact
agreement with the experimental Jatice constant
cohesive energy and bulk modulus, ‘

The five parameters (R, Dy, otpg, Band 1) are
optimized using a simplex search procedure 26 by
minimizing the root-mean-square deviation (X rms)
between the calculated and experimental values for 1}:e
three cubic elastic constants (¢11.€19, and c4yq), the
vacancy formation energy (AE, ;). and the bond length
(Re) and bond strength (D) of the diatomic molec ]z
Ags. The bee and hep erystal structures are also
required 10 be higher in energy than fee. The resulting
fit, shown in Table I, has Xems = 0.15%, and the
parameter values are Dyy = 0.672 eV, Ry =2.570 A,
o = 1.826 A1 B =3.906 A1 and Tew = 5.542 A,

TABL_E - Expefimental Properties used in fit for Ap
?crne_r;.::al. a]long with the calculated values from the bes
It The values for 2, E
+ Ecoh» 35 1 B are fit e
the way F(p) is oblaincd.m ey o

experiment  calepfated

ag (A) 4,092

Ecan (eV) 2.85b

B (1012 erg em-3) 1.04¢

€13 (1072%erg cm-3) 1.24¢ 1.24
€12 (101 2erg o3y 0.934¢ 0'935
a4 (1012erg em-3) 0.461¢ 0'461
AE, ;. (V) 1.1d 1.10
D, (e V) 1.66¢ 1.66
Re (A) @5)f 2.504

3Reference 27
Reference 28
CReference 29
Reference 30
®Reference 3]
fReﬁ:naﬂcc 32

A OVERLAYLER DYNAMICS METHODR

We describe here the method vsed 1o follow the
dynamics of an evolving pattern of adsorbed atoms.
This recently developed methed has been presented in
detail etsewhere. 1% The key feature of this approach is
that, for a certain class of systems, it can provide
classically exact, course-grained dynamics for the
evolution of an overlayer patlern, starting from an
arbitrary interatomic petential. The method is
restricted 1o systems in which the adserbed species bind
in registry with the surface, and to temperatures below
the melting peint of the surface {since a melied surface
would not have well-defined binding sites). In the
present work, we further impose the condition that the
ten perature be low enough that transition state theory
is valid, as discussed below. Since the focus here is on
Ag adaloms on the Ag(100) surface, the method will be
described as t applies 1o that type of system.

3.1. Single-atom diffusion

Consider a single adatom on an fec(100}) face. For
silver the stable binding site is in ihe fourfold hellow,
and diffusive jumps to adjacent binding sites 1ake place
via the twefold saddle poimt which separate these
fourfold sites, as shown in Fig. 1. Given a particular
interatomic polential, which defines the adatem-
substrate and substrate-substrate interactions, the
classical thermal rate constant for escape from this
binding site can be rigorously computed uwsing
transition state lht:c:ar).r33~34 (TST} combined with
dynamical corrections. In the TST approximation, the
rate constant for transfer of a sysiem between two
states is given by the thermal fiux through a dividing
surface that separates the states. (For the fce(100)
surface, a good choice for the TST dividing surface is a
square whose comers are defined by the four atoms
holding the adatom. When the adatom coordinates,
projected onte the plane paratlel to the surface,
coincide with this square, the system is at the TST
surface.) The TST rate constant is thus an equilibrium
property of the system and can be rigorously computed
using Metropolis Monte Carlo methods, as described
elsewhere.35.36

Even if the TST surface is positioned such that the
transition flux is minimized, TST does not give the true

dynamical rate constant, because each crossing of the
TST dividing surface does not necessarily correspond
to a reactive slate-change event. For example, a system
passing from state A to state B may jiggle around in the
region of the dividing surface, recrossing it many times
before thermalizing in state B. Moreover, for a system
consisting of surface binding sites, an energized adatom
may make multiple hops, thermalizing in a binding site
many sites away from where it started to hop. The
effects of these "correlated dynamical events™ can be
accounted for in a rigorous fashion {regardless of the
position ef the TST surface} using a many-siate
dynamical corrections method,37 which is an extension
of a two-state formalism presenied by Chandler.38
This formalism is strictly applicable when the time
duration of the correlated dynamical events (T, ) is
much shorter than the average lime between reactive

transitions (T, 0,

a0

The methed is implemented computatienally by
initiating a statistical sampling of classical trajectories
at the TST dividing surface and integrating them entil
the correlated events cease. The result is that the true
rate constant between state i and any other state (j) of

Fig. 1. Top layer of ihe substrate pad used to compute
the rate constants for Ag/Ag(100). The ten binding
sites making up the local environment are shown. Al
the 43 atoms shown {plus between zero and ten
environment adatoms) are allowed to relax in each of
the 270 harmenic TST computations.
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the system can be written as

Koo KET 1600 3.2
where k{LST is the TST rate of escape through the
dividing surface enclosing stale i, and f4(i—=j) is the
dynamical correction factor obtained from an analysis
of the half-trajectories that orginated at the boundary
10 state i. The total (diffusive) escape rate from state i
is given by

k=2 KT gm0 ER)

D

The surface diffusion process provides a good
example of the motivation for expressing the rate
constant using TST with dynamical corrections. Using
Eq. (3.2), the diffusion constant for a single adatom on
a two-dimensional periodic surface becomes

D=1 """ Y r - 2. (3.43
e 1
j=1)

where L’]j is the distance between binding sites i and .
In the temperature regime where EQ. (3.1) holds, it is
relatively straightforward to compule D from Eq.
(3.4). Aliernatively, D can be computed from one long
classical trajectory, from the lime derivative of the
mean squared displacement of the adatom position.
However, this is completely unfeasible at low
temperatures, due 1o the long time between diffusive
hops of the adatom. In contrast, the trajectories in the
dynamical corrections method are only integrated for a
short time, since they siart at the TST dividing surface,
i.e., in the middle of a hop, and are only Tun until the
hop is completed.

In previous studies on Lennard-Jones systems, 37 we
have found that at low to moderate temperatures the
dynamical corrections are usually negligible, affecting
the diffusion constant by only a few percent (compared
to the TST approximation). Moreover, we have
shown!0 that reasonably accurate TST rates can be
caleulated using a harmonic approximation, given by

KHTST = v, expl-(Egagdte-EminVkBT) (-5
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where v, is a harmenic frequency, kg is the Bolizmann
constant, T is the temperature, and Epip and Egyaq, ate
the energies at the adatom minimum and the saddle
point between two binding sites, respectively. These
energies are found by performing a Newton-Raphson
search for stationary points in the hyperspace defined
by the Cartesian coordinates of all moving atoms. The
frequency factor v is computed from the second
derivatives of the energy at the minimum and the
saddle point.1®

For computational convenience, we make use of
this harmenic TST approximation in the present work.

3,2, Multiple. interacting adatoms

Now consider a distribution of interacting,
adsorbed adatoms. The escape rate constant for any
adatom in this overlayer will depend on its
environment of nearly adatoms. Using the methods
described above, this rate can be calculated for a hop in
a particular direction. 1f these hopping rate constants
are known for all atoms in the system at all times, then
by using the appropriate thermodynamic statistics, the
overlayer pattern can be dynamically evolved. If the
rate constants are classically exact, then the overlayer
dynamics will also be classically exact, in a
course-grained sense; one ¢an only ask about dynamical
behavior for time scales much longer than the time
between adatom hops. The spirit of the overlayer
dynamics method employed here is to precalculate all
possible rate constants that might be needed and store
them in a catalog that is referenced during the
dynamical simulation. More specifically, we define a
ten-atom environment surrounding an adatom and the
empty binding site in which it will land upon hopping
10 the right, as shown in Fig. 1. Since each of the ten
sites can be empty of occupied, there are 210=1024 rate
constants to be calculated (some of which will be
equivalent by symmetry}. Computation of this rate
catalog is carvied out in an automated fashion using the
harmonic TST approximation described above. Once
the catalog has been generated, the dynamics of an
arbitrary overlayer pattemn of N atoms i$ evolved as
follows:

(i) Use the catalog 1o look up the appropriate value
of the directional escape Tate, k. for each of the

4N, o possible hops (each atom has four possibic hop
directions). For hops that are blocked by an adatom in

the adjacent binding site, kgge=0.
(i) Increment the clock by

4N -1

siom . 16)
a kcsc(’) (

1 =
hop

which is the time, on average, before some atom in the
overlayer makes a hop.

(iii) Randomly select one of the 4N, ., possible
hops, weighting the probability of selection f each hop
by Aeqp

{vy Goto (i),

As stated abowve, for the chosen interatomic
polential, this procedure leads 1o classically exact,
course-prained dynamics for the overlayer, including
the motion and response of the substrate, wilhin the
assumption that the rate catalog is exact. The two
approximations in the cataloged rates are of a
conirolled nature: they can be tested, improved and. in
principle, eliminated. The first of these approximations
lies in the method used to compute the rate constants;
harmonic TST is employed, and the dynamical
corrections are omitted. This approximation is good at
low temperatures. The second approximation arises
from truncating the environment a1 ten aioms, since the
true rates will clearly depend on more distant adatoms.
The motivation for this lies in the fact that 27 rates
must be calculated for an m-:ite environment. The
effect of more distant adatoms can be tested, as
discussed in the next section. In the present siudy, the
approximation having the greatest effect on
comparison to experiment is probably the silver
interatomic potential described in Section II, even
though it is a1 the present state of the art.

All dynamical properties that can be calculated with
standard lattice-pas methods, such as tracer and
chemical diffusion constants, autocorrelation functions
of adsorlbate density fluctuations and island nucleation
rates, can also be computed using the present method.
The method can be used with any interatomic potential,
as long as the adsorbate binds in registry and Eq. (3.1)
is satisfied. This approach, for the first time, provides

a connection between stochastic lattice-gas technigu
and the interatomic potential.

To conclude this section, we briefly discu
exiensions of the method necessary to treal the mo
general case of thin film growth. None of the
extensions are employed in the present work.

Treating desorption with this method is straigh,
forward. The rate constant catalog is augmented o
include rate constants for descrption of an adatom, i
hat during the simulation, each adatom has
possibility of desorhing or diffusing that depends on P h
environment. The TST deserption rate constant for ¥
given enviror.ment is computed from the flux throug
a plane, paralle] o thé surface, that caps the top of i,
binding site. Dynamical carrections, if desired, can !
computed by initiating tajectories from this planc ar
following them for a time T

Treating adsorplion, as is necessary (0 medel fil
prowth, is alse slraighlforward. Dynamic:
corrections are compuled-in the same way as [
desorplion, and the same set of trajectaries can even t
used if the impinging atoms are assumed 10 be 1
thermal equilibrium with the growing film G, i
dynamical correction factor for desorption is the san
as the thermal sticking coeffieient if the TST surface * ¥
far enough from the surface). During the simulatio:
new atomis are introduced to the system at a ral
dictaled by the temperature and pressure of the vap¢
phase and the dynamical correction factors give th
relative probabilities of sticking, sticking in a near!
binding sile, or completely bouncing off the surfacd
Note that if 2 nonthermal distribution of incomin
atoms is assumed (e.g., for molecular beam epitaxy
then the dynamical correction factors must b
computed for that distribution, and will be differen
than the desorption correction factors.

The simulation of geaeral film growth requires thi ]
the surface be aflowed to have 1erraces, vacancies, €1¢ »
rather than being defect free as assumed above. I
principle, the rate catalog can be extended to includ
jumps up or down steps, jumps in the presence of
surface or bulk vacancy, and so forth. In practice, thi
increases the number of, #nvironment sites (m
substantially, so that calcylaling 2™ rate constant

b
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becomes unfeasible. However, by Judiciously choosing
the environment patterns that are important to include
for a particular case or ype of process, it may be
possible to perform this type of simulation.

4. 1 R DYNAM

In this section we discuss (he simulation of the
diffusion of two-dimensional clusters of adatoms and
vacancies on Ag(100). There have been very few
previous investigations of cluster motion (for a review,
see Ref. 39), and uniil recently,’O0 fitle was known
about the motion of clusters targer than a few atoms.

?nderstanding their dynamical behavior is useful, ag
the coalescence, diffusion angd dissociation of clusters
certainly play a role in layer-by-layer film or crystal
growth. and in mass Transport diffusion.

The Ag substrate used in the TST rate caleulations
was a four-layer block of atoms with 42 atoms per
layer as shown in Fig. 1. Periodic boundary conditions
were employed in the two directions paralle! to the
surface.  For each harmonic TST calculation, the
primary adatom, along with between zero and ten
environment adatoms, were Placed on top of this block,
and these adatoms plus ali of the first layer adatoms
were allowed to move in the Newton-Raphson search.
The layer size and block depth were made large enough
io climinate any boundary effects on the moving atoms.
Seneration of the rate catalog was avtomated as
described previously.’® For each of the 1024
snvironment pattemns, a preexponential factor (v) and
N activation barrjer (Ep = Eslddlc - Eqin) were
itored, so that, using Eq. (3.5), the catalog could be
‘mployed to drive dynamics at any temperature
thaugh the rates become more approximate at higher
tmperatures). Unless otherwise noted, calculations
tported here were performed af Te 500K,

The effect of allowing relaxation of more than one
ubstrate layer was tested by computing TST activation
arriers for a single adatom. The barrier heights,
xpressed in kcal/mol, were found 1o be 11.68, 11.27,
1.18,11.16 and 1] .16, respectively, for relaxation of
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zero through six layers. Thus, as found previousty 35
accurate TST barrier heights for the fce(100) surface
<an be obtained with only one layer relaxed.

The effect of the truncation of the catzlog at ten
binding sites was examined by penerating a rate catalog
for the 13-site environment shown in Fig. 2. This
catalog includes six representative sites from the
secand shell (A-F), along with the seven sites from the
first shell (1,2,3,5,7.8,9) thought 10 most strongly
interact with the outer six. For each of the 4096
environment patterns, Emin and E 441, were
computed, along with E_,, the energy with the primary
adatom remaved from the system. The energy
requircd to desorb the: primary adatom from the
minimum js

Ej=Fu -Epp . “1)

the energy to desorb the adatom from the saddle point
is

Ey=E.- Ecsadie - .2)
and the activation energy can be written as
EA=E]-E2 . (43)

The analysis of these energies is shown in Table 2. For
each of the 13 sites, the effect (AE) of removing the
adatom from that site was determined, For example,
removing the adatom from site A can raise E, by as
much as 0.76 kcal/mol, or lower it by 0.07 kcal/mol.
These values are determined by scanning the 2048 pairs
of patterns (patterns in a [iir are the same except for
the occupation of site A), and finding the largest
deviations in Es. The magnitude of AE gives an
indication of the effect a particular site has on the
catalog energies, while the difference between AE_ .
and AEq i is a measure of the nonadditivity of the
interactions. Note that the nonaddivity effects on E,
can be greater than § keal/mol (see site 3). Of the sites
omitted from the present work (A-F), site F appears 1o
be most important, with LE 5 ranging from -0.98
keal/mol to 0.18 keal/mal.

From an examination of AE; and AE,, it is clear
that different sites are impon nt for the accuracy of E;
than for E;. For example, the sites having more than

F
®
(6
O

©@®)m

L O@I]e

Fig. 2. The 13 sites used in computing a rate caalog to
test the effect of environment size (see Table 2). To
simplify the comparison with the 10-site environment
used in the present work, the numbering of the first ten
sites is maintained, even though only the circled sites
were included in the catalog (4,6, and 10 were
omitted). Sites A-F are ourside the environment of the
10-site catalog used in the present dynamical
cileulations.

Table 2. Analysis of the 13 sites in Fig. 2, according
to how much (he desorption energy and activation
energy of the primary adatom changes when the site
atom is removed. AE is the change in desorption
energy (kcal) upon site removal; AE | refers to
desorption of the primary adatom from the minimum:
AE; refers 10 the desorption of the primary adatom
from the saddle poirt; AE 4 refers to the activation
energy of the primary adatomn; min = Jowess AE found
in list of all configurations; max = highest AE found
in tist of all configurations.

AR, AE, 4B,
min  max min  max min  max

0.85 002 .032 087 -1.56 -0.07
1.24 -517 .7.39 205 399 0.55
-0.88 -0.31 -198  -2.49 1.74 738
-7.25 -540 179 018 682 .4.37
091 -007 032 072 .1.44 01 6
131 576 -T45 240 -395 0.63
-095 -042 785 286 206 730
-0.08 0.76 014 027 007 076
-0.05 032 014 009 007 030
-0.06  0.09 -0.11 003 .005 012
-0.05 038 0.16 039 026 019
-0.69 076 015 122 .05 050
-0.03 033 -0.00 117 098 018

TH QO P O 00 g — 5

0.5 kcal/mol effect on E|are 12357894, and E,
whereas the sites having more than 0.5 keal/mol effecr
on E; are 1.2,3,5,7,89.F, and F. Thus, using the
1T-atom environment shown in Fig. 3a to compute a
catalog of E . values and (he 14-atom environment in
Fig. 3b 10 compute a catalog of Esadgle values would
lezd 10 a combined catalog converged such that any site
added 1o the environment would affect E, by less than
0.5 keal/mol. (The union of these two environments
has 15 sites, which would require 2 x 215 calculations,
rather than 2!T + 214 caleulations.)

Fig. 3. Environments deduced from Table 2 for
tomputation of a catalog good 10 beiter than 0.5
keal/mol (see text).  a) 1l-site environment for
computing E_. - by 14site environment for computing

Esaddl:'

To improve the accuracy of the vacancy cluster
simulations presented here, a second 10-site catalog
was computed, in which al] the binding sites outside of
the 10-atom environment were cccupied with Ag
adatoms. Comparing this caialog to the first 10-site
catalog shows a maximum deviation in E, of 2,96
kcal/mol, a value that is in line with the findings above
{989/1024 cases differed by less than 2 kcal/mol, and
BO7/1024 cases differed by less than | kcal/mol). The
inctices in this catalog were then transformed using 4
left-right reflection with occupation inversion,

‘JD!LH&L.JN‘-‘
bidipLd
S enl ol v ok 51
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to make the rates appropriate for a vacancy hop to the
right (i.e., an adatom hop 10 the left). Using this special
catalog, vacancy dynamics were evolved in exactly the
same way as adatom dynamics.

The cluster diffusion constants were computed
using an independent dynamical simulation for each
cluster size. Simulations were performed on a square
grid using periodic boundary conditions, with the grid
size chosen to prevent interaction between the cluster
and its periodic image. The following describes the
procedure for ene simulation.

The initial cluster configuration of n atoms was
generated by placing atoms at random on the grid,
reiecting any placernent that broke the connectivity of
the cluster. Two atoms are considered "connected” if
they are first or second nearest neighbors {ie., an
adatom can be directly connected to up to 8 other
atoms). This cluster configuration was then evolved in
time, using the procedure described in Section 3, with
the restriction that if a chosen hop broke the cluster
connectivity, that hop was rejected (and the clock was
not incremented). This nonphysical restriction was
imposed so that a diffusion constant could be computed
for a well-defined cluster. An alternative approach
would be to compute a diffusion constant from the
motion of clusters that have not yet dissociated. These
wwo approaches become equivalent at very low
temperature33:40 (probably lower than S00K). Afiera
suitable warmup period, the diffusion constant was
compuied from the time derivative of the
mean-squared displacement of the cluster center of
mass,

4

2
ar <AR_ 0> 4.4)

. 1
D=
by examining equal-time snapshots taken from a Jong
rajectory. Typical trajeftories were run for millions
of steps, corresponding to tens of milliseconds. The
mean squared displacemient of a ten-atom cluster is
shown in Fig. 4.
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4.2 Results and discussion

To gain a qualitative understanding of the overlayer
dynamies, it is instructive to examine the rate constants
as a function of environment pattern. Figure 5 shows
some representative activation barriers from the
adatom rate catalog and from the vacancy rate catalog.
The barrier to diffusion for a single adatom is 11.3
keal/mol. In principle, this activation energy can be
measured experimentally using field ion microscopy.t!
but 1o our knowledge, no Ag/Ap(100) measurements
have been performed. The diffusion bamier for a
vacancy is 10.7 kcal, so single vacancies are somewhat
more mobile than single adatoms. When the energy of
formation from a kink site is taken into account, the
predicted mass transpon diffusion barrier is 26.1 keal
for an adatom and 22.6 kcal for 2 vacancy. Thus, this
potential predicts that vacancy monomer diffusion
dominates adatom monomer diffusion in mass
transport.

The barrier for an adatom 10 jump away from a
nearest-neighbor atom is 17.8 kcal/mol, 6.5 keal
greater than free migration, indicating a strong
tendency for the silver adatoms to cluster, as expected.
In contrast, the barrier for separating two nearest-
neighbor vacancies is only 1 kcal/mol higher than free
migration of a vacancy. In fact, the vacancy dimer is
more likely to dissociate (Fig. 5b} than to make a

g
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Fig. 4. Mean squared displacement of a 10-atom Ag
cluster at T=500K.

diffusive step (Fig. 5¢). For both the adatoms and the
vacancies, the barrier for breaking out of the comer
(Fig. 5d) or side (Fig. 5¢) of a block is subsiantially
larger than free monomer migration.

Figure 5f shows that an adatom can move easily
along the edge of a perfect block, with a barnier of only
5.9 kcal/mol. The barrier for liberating an edge
runner from a kink site on a cluster edge is 11.6
keal/mol (Fig. 5g). At low temperature, where clusters
tend to form tightly packed blocks, edge running can
dominate the dynamics. This makes cluster diffusion
simulation difficult, since edge running alone will not
allow a cluster to diffuse. For vacancy clusters, this
edge running has a barrier of 11.0 keal, which wir. not
dominate the dynamics. The vacancy edge-running
that dves occur is that of an edge-vacancy in the
vacancy cluster {i.e., an adatom), but this adatom gels
trapped at the comers, and thus does not so greatly
dominate the dynamics.

E, (adatom) Eg{vacancy)
5 @ 1.3 107
b ..—- N 178 11.7
¢ . @ 16 143
) 18.7 15.6
&) 223 220
n e 59 1.0
) 1186 11.8
n @0 18.9 114
L
Fig. 5. Some representative activation barriers

(kcal/mol) fl:()m the Ag/Ap(100) rate catalogs. Note
that by particle-hole symmetry, the barriers for the
adatom and the vacancy should be the same for (e) and

also for (f). They differ due to the way the catalogs
were penerated.

*

Vacancy clusters also differ from adatom clusters.

in their greater propensity toward dissociation, as”

shown in Fig. 5h.
T=500K, estimated from the number of dissociating
steps that were rejected during the run {this is not a
rigorous dissociation rate), were ~103 1imes faster for

the vacancy clusters when compared to adatom clusters,

of the same size.

Figure 6 shows the diffusion constants for clusters

up to n=100 at T=500K . As expected, monomers (n=1) '

diffuse the fastest, but Dy, does not decrease
monotonically with increasing cluster size. This is
because clusters that can form stable blocks {e.g..
n=4,6,8) diffuse more slowly due to the long Iime:

Cluster dissociation rates at -

-
.

required to break out of a perfect block structure (see E

Figs, 5d and Se). Thus, for example, an n=4 cluster

should have an activation barrier of 18.7 keal/mob. In' j

contrast, an n=5 cluster can diffuse with a maximum
barrier of 12.8 kcal/mol. by following the sequence
shown in Fig. 7. These values;are in agreement with

diffusional activation energies for n=4 and n=5 clusiers *

obtained from Arrhenius plots. Both the aduiom
clusters and the vacancy clusters show this stable-block
effect. '

[Te]
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q

1 Ag/Agl100)
of
r . T=500K

[ O e -

L =] »

TV Eg”cﬂp

] -

5 o

5 o
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[ = adatom cluster diffusion

| © = yacancy cluster diffusion
23 WO T B I
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Indn)
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Fig. 6. Cluster diffusion consmﬁis (em?ssec) for Ag or
Ag vacancies on Ag(100).
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As in the previous study of Lennard-Jones
usters,!0 the dominant diffusion mechanism for large
g clusters is found to be edge motien. To acrually
ove the cluster, an adatom must climb onto a fresh
'ge from a kink site, surmounting a barrier of 19.2
al/mol, as shown in Fig. 8. This s in excellent
reement with the activation energy (1942 keal/mol)
dained from an Arrhenius plot of the diffusion of a
10-atcm Ag cluster between T=600K and T=800K.
gure 9 shows successive snapshots of an n=100
atem cluster and an n=100 vacancy cluster. The

erall diffusion rates are seen to be roughly
mparable. The 25-configuration sequence (5 msec)
resents 1/30 of the total trajectory used to compute

10 Tor the vacancy cluster. In the adarom cluster,

nproductive edge running resulls in three times as

my si0e per unit time than for the vacancy cluster,

‘king computation ef a diffusion constant more

Le8e

freult

“e9
900

b
w
.é

T11.5

-

-— -—
o N
— o

12.8
e

ad-
B

.. 7. Diffusion pathway for n=5 adatom cluster, in
ich the cluster is replicated one binding site to the
ht afier 7 moves. The numbers are activation
riers in kcalfmol. The maximum barrier is 12.8

WWmol.
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As mentioned above, the cluster lifetime (before
dissociation) can be estimated by dividing the to1al
trajectory lime by the number of cluster-dissociating
steps thal were rejected during the run, This is not a
rigorous calculation, but is a good approximation if
many more sleps are accepted than rejected (not always
the case in the presemt work). Knowing this
dissociation lifetime (T p) and the diffusion constant, the
root mean square distance that a cluster will diffuse
before dissociation can be estimated by

d,=[4D, 1,117 . (4.5)

It is interesting to note that for adatom clusters d, lies
between 1A and 10 A for 2 large range of cluster sizas
(up 1o n=40) and temperature ( d,, decreases slowly asn
increases and as T increases). For vacancy clusters the
same effect is ¢bserved, but with d, 2bout ten times
smaller. (Actual values for d,, are not given here due to

11.

°-
0
eo
0
oo
o0

57 <@+ 50
000
000008000

Fig. 8 Mechanism for an adatom to climb onto & fresh
edge {from a kink site. The maximum barrier in this
process is 19.2 kcal/mol, in agreement with the
Arrhenius activation enerpy for diffusion of a
100-atom Ag cluster.

the uncerainty in T .) Under the right thermedynamic
conditions, cluster diffusion may coniribute
significanily 10 mass transport, bur these small values
for d,, imply that the transport will not be via clusters
moving long distances intact. Rather, a picture
emerges in which slowly moving clusters are in
equilibrium with rapidly moving monomers. A cluster

i | i
L

i
L
i

Fig. 9. Equal time shapshots of an n=100 adatom
cluster (1op) and an n=100 vacancy cluster (bottom) on
Ag(100) at T=500K, The time between snapshots is 0.2
msec for both cases. Between successive snapshots the
adatom cluster made ~300,000 steps and the vacancy
cluster made ~95,000 steps.

captures zny adatom that comes (oo close, but then
ejects a monomer after it has diffused just a few
angstroms (or a few tenths of an angstrom in the case of
vacancy clusters). Thus, a cluster that has migrated a
long distance (e.g. hundreds of angstroms), probably
censists mostly of different atoms than when it started.

Another interesting feature is that a passing
monemer can act as a sort of catalys! to enhanice the
diffusion of a small block cluster. For example, below
room {emperature, an n=4 cluster is virtually immobile
compared to an n=5 cluster. Thus, when the n=4
cluster absorbs a monamer, it suddenly starts to
actively diffuse. When it Jater ejects a monomer, il
becemes immobile again.

5. CONCLUSION

The overlayer dynamics method, in conjunction
with an embedded atern-style potential, has been
applied 10 the classical dynamics of clusters of Ag
adatems and vacancies on the Ag(100) surface. The
adatom cluster diff ssion is qualitatively similar 1o the
diffusion observed for Lennard-Jones clusters on
fee(100).70 Monomers diffuse the fastest, with
Es=11.3 keal/mol. Larger ciusters diffuse more
slowly, though the decrease is not manotonic, because
some small clusters can form stable blocks with high
activation barriers to diffusion. The rate determining
step for diffusion of farge clusters is the 19.2 keal/mole
barrier for an adatom 10 climb onto a fresh edge from a
kink site,

Vacancy clusters were also examined, and show the
same features as adatom clusiers, though they dissociate
more rapidly (by ejection of a monomer), and
ronproductive edge-running is less prevalent. A
vacancy monomer diffuses faster (E, = 10.7 keal/mol)
than an adatom on the Ag(100) surface, and is expected
to contribute to mass fransport with an activation
energy of 22.6 keal/mol, whereas the mass iransport
barrier for adarom diffusion is 26.1 kecal/mol,

From an estimate of the cluster dissociation
lifetime, it appears that clusters at T=500K migraie
between 1A and 10 A before dissociation (clusters

SPIE Vol 821 Modeling of Optical Thin Fitms (1587, 7 225




nwuch larger than 100 atoms survive for a shorter
distance}, and vacancics survive for about 0.1 Ato 1 A.

The treatment ef some types of thin film growth
with this method should be pessible, by incorporating
adserption, desorption and muli-layer adatom jumps
into the catalog.
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Computer simulation on surfaces and [001] symmetric tilt grain

boundaries in Ni, Al, and Ni,Al
S.P. Chen, D.J. Srofovitz,” and A.F. Voter

Los Alamos National Labo-atory, Los Alamos, New Mexico 87545

(Received 21 April 1988, accepled 29 Seplember 1988)

We have used “local velume™ (embedded atom) type potentials to study the surfaces and grain
boundaries of Ni, Al, and Ni,Al. The simulations show that with appropriately fit potentials,
the surface and grain boundary structure can be realistically calculated. The surface rippling
and relaxation show good agreement with experiments. The energies of most surfaces and
grain boundaries also agree with existing data. The structural unit model for grain boundaries
in Ni,Al shows the same genenic units as in pure metals, but with large vanations due to
distortions and multiplicity. The utility of the structural unit mode] is thus more limited for
alloys. The grain boundary energies were found to be the highest for Al-rich Ni Al grain
boundaries, and depend significantly on the local composition of the grain boundary. The
cusps in the grain boundary energy as & function of misorientation angle are differem for
different grain boundary stoichiometries. The N1, Al grain boundaries have approximately the
same grain boundary energy and cohesive energy as that of Ni.

. INTRODUCTION

The important role that grain boundaries play in the
physical properties of polycrystalline materials (diffusion
and clectnical gransport, creep resistance, fracture stress, etc.)
is well established. Consequently, grain boundaries in pure
metals have received substantial experimental and theoret:-
cal antention'* over the last few decades. The main 3im of
these studies has been to develop an understanding of the
structure, encrgetics, and phenomena of grain boundaries.
Such knowledge is paramount if the physical properties of
polycrystalline materials are 10 be understood and controlled.

Several models of the structure and/or encrgetics of
grain boundaries have been propo :d. Perhaps the earliest
and most successful are dislocation models,” which have
been shown to correctly predict grain boundary structures
and encrgies. These models, however, are valid only in the
Jow (til1 or twist) angle limit where the spacing between
dislocations is large compared 1o the dislocation core size.
The coincident site lattice (CSL)*™ and O-lattice’ models
have attracted a great deal of auention because of their
simplicity and the possibility of relating grain boundary
structure 10 physical properties through geometric parame-
ters such as the reciprocal coincident site density, L. While
thess models can be applied 1o arbitrarily large angle grain
boundaries, recent computer simulations’” have pointed
out that they are of timited utility since they do not take into
account atomistic relaxation at the grain boundary itself.

These same simulations have led 10 new grain boundary
models which are known as structural unit' or polyhedral
models." The structural unit model” maintains that for a

* Permanent address Depantment of Maenialy Science and Engineering.
Universiny of Michigan, Ann Arbor. Michigan 48109

given misorientation, the grain boundary structure consists
of a combination of two basic structura! units. Withan a well-
defined range of misorientations, the grain boundanes are
composed of the same two structural units This modei has
been justified” on the basis of geometrital necessiy and
continuity conditions. In addition to predicting grain bound-
ary structure, the structurzl unit model has been success-
fully employed” 1o calculate grain boundary energies as a
function of misorientation. Comparison. of the atomistic
structures determined by computer simulation with experni-
mental (electron microscopy and x-ray scanering) determi-
nations has shown good agreement in some cases™ and
poor agreement in others.” In cases where the agreemen
has been poor, further analysis of the simulation results has
shown" that & number of possible structures exist which
are very close in energy. In those cases, averaging over the
multiplicity of the nearly degenerate structures results in
good agreemem between simulation” and eaperiment.

In this paper. we employ recently developed “local vol-
ume™ potentials” in a series of compuler simulations"’
designed 10 e¢lucidate the structure and energies of grain
boundaries in metals. In particular, we concentrate on pure
Ni, pure Al, and on the ordered alloy NiyAl. These metals
were chosen for a vanery of reasons. Firgi, there has been
a great deal of interest in grain boundaries in Ni,Al due 10
its brittleness in the polycrystalline form.™ Second. Ni,
Al, and Ni Al share the same underlying crystal strue-
ture (NiyAl has the L1; structure, which is 1opologically
equivalent 1o the foo structure of Ni and Al, as indicated
in Fig. 1). Finally, the surfaces of Ni, Al, and their ordered
elloys have been the subject of numerbus eaperimental
studies (see references cited in Ref. 18} and hence provide
a quantitative indication of the vatidity-of the description
of the atomic interactions emploved.

vy
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¥ (fee)

NiZAl (L1,)

O=Ni O=Al
Face-ceniered cubic (fec) eryatal strecture of Ni {a) and Lt,
of Ni,Al (b) The Ni and Al sioms are Tepresented by circles
wes, respectvely. in this figure and duoughour s paper. Note
Al has rwo sets of (100) planes: ooe is 100% Ni atoms and the
50% Niand 50% Al stoms

¢ begin by describing the simulation technique and
cal volume” (embedded atom.like™) potentials em-
Quantitative comparison™® of the simulated atomic
res of surfaces in Ni, A, and Ni,A! with experi-
data indicates the reliability of the potentials and
wdity of the relaxation technique. In Ni, Al and
the displacements of the atomic planes away from
in boundary show a decaying oscillatory relaxa-
xrimposed on a net expansion which s very similar
seen 1n the vicinity of free surfaces. The net lat-
pansion or excess volume associated with the grain
ry is found to vary relatively smoothly with misori-
n and 10 be very similar in Ni and Al. In Ni,Al,
', the variation is less regular and there is 2 depen-
on the local grain boundary stoichiometry. While
ng a reasonable description of the grain boundary
€S it pure metals, the structural unit model appears
f limited utility in describing the ordered alloy. This
1o the complexity arising from the different chemi-
stituents and the large distortions of the structura]
lhe grain boundary energies are found to scale lin-
ith the excess grain boundary volume in both the
ttals and the ordered alloy. The positions and depths
ninima (cusps) in the grain boundary energy vs mis-
jon plots for Ni;Al are shown to depend on the lo-
n boundary stoichiometry. The Al-rich boundaries
have the highest enérpies and generally exhibit the
hesion.

MIC INTERACTION POTENTIALS FOR NI,
D N1AI

: grain boundary simulations presented here em-
ocal-volume form of potential closely related to the
cd atorn method of Daw and Baskes.?" We 5e
L “local volume™ to indicate that there is a ferm in

the energy expression for each atom that depends on the
local atomic density (or “volume™) about that alom. While
the details of the form and fit of the potential are presented
elsewhere, ™ we present a summary here.

For a pure metal the energy of an n-atom system is

E=3E, (n
i
where the energy of atom | is given by
1
E =2 Z00)+Fp). 2)
2%

Here #, is the scalar distance between atoms i andj, P isa
pairwise interaction potential, and P, is the density at
atomic site § due to all its neighbors,

p.= 3 ptr) 3
e

The emoedding energy, F( o), can be interpreted as the en-
ergy arising from embedding atom i in an electron gas of
density p,. To first order, this embedding energy contains
all, and only, the quantum mechanical interaction between
the embedded atom and the host, leaving the pairwise poten-
tial 10 account for the classical electrostatic interaction.*
To mimic roughly the shape of the elassical efectrostatic
interaction between two frozen, neutral atoms. while allow-
ing fitting Rexibility, $(r} is taken 10 be a Morse potential,

Qir) = Bl ~ exp[—a,ir - RO - D, 4)
The three parameters, D, R,,, and @,,. respectively define
the depth, distance to the minimum, and a measure of the

curvature at the minimum of the Morse potential. The den-
sity function, p(r) is taken as

plrt = re™ + $12,7%), (5)

where 8 is an adjustable parameter. This is the density (ig-
noring normalization) of a hydrogenic 45 orbital, with the
second term added 1o ensure that p(r} decreases monotoni-
celly with r over the whole range of possible interaction
distances. The 45 shape is chosen to be appropriate for 2
first row transition metal, and is found 1o work well for
aluminum, too.*

Fallowing Foiles et al,® F(p) is specified by fequir-
ing that the energy of the fce crystal behaves properly as
the lattice constant is varied. Rose er al.” have shown that
the cohesive encrgy of most metals can be scaled 1o 2 sim-
ple universal function, which is approximately

Efa*) = —E(1 + a*) expl~a*} (6}
where 0 is a reduced distance varigble and E; is the depth
of the function at the minimum (a* = 0}, The appropriate
scaling is obtained by taking E, as the equilibrium cohe-
sive energy of the solid (E_,), and defining a* by

a* = (a/a, — D/E_. /98007, %

where a it the laniice constant, a, is the equilibrium lattice
constant, & is C.- bulk modulus, and £} is the equilibrium
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atomic volume. Thus, knowing E,, g, and B, the embed-
ding function is defined by requiring that the encrgy of the
perfect crystal [Eq. (6)] matches the energy from Eq. (2)
for all values of ¢*. By fitting F{ p) in this way, the poten-
tial should behave properly over a large range of densities.

To be suitable for use in alomistic simulations, the
interatomic potentia) and its first derivatives with respect
1o nuclear coordinates should be a continuous function of
r. This is accomplished by forcing ®(r), @°(r), pir). and
p'(r) to go smoothly to zero at r = r,, (see Rel. 24},
where 7, is optimized in the fitting procedure and the
primes indicate differentiation with respect to the argu-
ment. F{p) is also modified to go smoothly to zero when
the expanded crystal has a nearest neighbor distance equal
wr,.

Given the above functional forms for ®(p) and plr).
the five parameters, R, D,,, ay, B8. and 7,,,, are deter-
mined by minimizing the deviation between the cn!tu]ﬂed
and experimental values for the three cubic :]astnr con-
stamts (C,, C,;, and C,,), the vacancy foymation energy
(AEY.), and the bond length (R,) and bond encrgy (D, of
the diatomic molecule, and by requiring that the hop and
bec erystal structures be less stable than the foc. Note }hgl
because of the way F(p) is deterrnined, and because it is
recomputed for each new choice of the five parameiers
defining Fp) and p(r}, the potential always pives a per-
fect fit to the experimental values of E,,,. 0. and B.
Table I shows the experimental data employed in the fits
for Ni and Al along with the calevlated values and the rms
deviation. )

For alloy systems, the energy expression for atom i
becomes '

E = 1 >0+ Fip). - (#)
25" '
The density at atom i is now

o= E p.,(ru) 9
Lo

where the subscripts 1, and 1, indicate the elemental types
of atoms i and j. respectively. To generate potentials for
the Ni-Al binary alloy system, the first step is to fit the
pure-element functions @y (r), aalr). prird, pm(.ri,
Fufp), and F, (), as described above. T}_w Cross potcp()al.
@y,u(r), is then fif vsing thermodynamic dala on Ni-Al
alloys. To obtain a good fit, one can also take advantage of
two additional transformations (three parameters: S,‘l}’; B
£a) under which this form of potential is invariant.” As.
suming a Morse potential for @, ,(r) leads 1o 2 total of
seven parameters, which are optimized by fitting to the
Ni,Al fattice constant, cohesive energy, elastic constants,
ordering energy. vacancy formation energy, (111), and (100)
antiphase boundary (APB} energies, the superllamce intrin-
sic stacking fault (SISF) energy, and the lantice constant
and cohesive energy of the B2 phase NiAl (CsC) struc-
ture).* " The “best fit” is shown in Table II, and the opti-
mized parameters are given in Table I11. The :'nc_lus.mn
of the Ni,Al APB and SISF énergies in the fit is quite im-
portant since their omission leads 1o potentials which yield
negative APB or SISF energies, indicating that the Li-

TABLE II. Data used to fit the Ni Al cross potential  Superscripls are the
expenimenual references (a = Ref 36, b = Ref 37, ¢ = Ref 36, d =
Ref 39. ¢ = Ref 40, [ = Rel 28)

NiAl properues Expt Cale
o tA) 3567 15m
Eom (£V) 457 4 59
€\, (10" erg/cm?) 2.3 2.46
C: (0¥ erglem®) 1.5 : 3:
Co, (10" ergsem”) 1.31¢ 23
A:."; (eV)‘ 16202 164 (Nin 187 (4D
SISF (111} (ml/m’) 10z 8 13
APB (100 (m]/m") 140 = 14 sz
APB (i111) (m3/m’) 180 = 3" 142
B2 NIA! properues

o, 1A) 2 88 287

Epu (eY) a8t 438

* o : h expernment exacly due lo the way Fip) is deter-
i 1al potentinls Calewlated values of o, £ . and B marc| e >
m:lu:xﬁyiiﬂfm:m":fmﬂ, (aw Rel 2B, b=TRef 29, ¢ = Ref 30, d = Ref 31, e = Ref 32. = Ref 33, g = Rel 34,

h = Ref 3%5)
N Al
1
Calculased
i Calculared Expenmental
Properry Experimenual

4.05°
o5 (A} 352 Los
Eue 2V) 4 a5t - o -
B (10" erg/om?y 1.81* 01 .
Cy, (107 erg /om) 247 f:-; e ISR
£t oy 1o 126 0 3160 0.322
:E'(ID" erg/em’) ::(5; | et ?;:
Rtk 2.2 : ias
Tms deviation (%) 07
&4 J. Mater Res. Vol 4 No 1, JanFab 1985
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TABLE 151 Potentia! parameters oplimized from fits 1o experimental
data. The paramesens So. Sn. 800 g &7 defined and _cussed in Ref. 17.

Ni Al Ni- Al
Dy, (eV) 15335 37600 30322 Sy = 061723
Ry (A) 2.2053 21178 2.08% g = 65145 eV A
a thy 1726 LaBs9 16277 gu = -0.2205 eV A}
ew (A} 47895 3.5550  5.4639
gAY 36408 31232

sucture is unstable. The data on B2 NiAl properties are
included to broaden the range of stoichiomelries over
which the potential is valid.

fil. SIMULATION PROCEDURE

The unrelaxed, starting configurations of the grain
boundaries were constructed by overlapping two infinite
perfect crvstals and performing the appropriate retation (8)
about the [001] axis to achicve the desired misorientation.
The grain boundary plane was chosen such that the grain
boundary was symmetric. Injother words, crystal 1 was ro-
tated by @/2 and crystal 2 by —6/2, where 8 is measured
from the (O11) plane in the unrotated frame. Each of the
two original infinite crystals was then truncated such that
only atoms from crystal 1 were on one side of the grain
boundary and only atoms from crysial 2 were on the other.

In pure metals, there is only one unique way of per-
forming the initial overlap of the two infinite crystals.
However, in an ordered binary alloy, one must choose the
elemental decoration of each laftice site. Since the L1,
structure (Fig. 1) consists of four interpenetrating sim-
ple cubic lattice (three occupied by Ni and one by Al in
Ni,Al), a choice must be made as to which type of atom
occupies each sublattice. For an L1, structure, this ambi-
guity permits four distinct atomic arrangements in cach of
the two crystals meeting a1 the grain boundary and sixtecn
possible different grain boundaries with the same indices
(rotation axis and rotation angle). For the case of (001]
symmetric tilt boundaries. many of these possible grain
boundaries are equivalent, resulting in three unique ¢Om-
positions for each set of indices. This is because every
plane containing the 1001] axis ¢ontains cither 100% Ni or
50% Ni and 50% Al The three unique compositions can
thus be classified by specifying the percentage of Ni (50
or 100) in the first layer of each of the 1wo grains, i.e.,
(100/100), (100/50), and (50/50). Note that the {100/50)
boundaries have the same stoichiometry as bulk NiyAl,
while the (100/100) boundaries are Ni-rich and the {50/50)
boundaries are Al-rich. The starting unrelaxed structures of
the I5 (210) grain boundary in Ni. Al, Ni,Al (100/100),
Ni,Al (100/50). and Ni;Al (50/50), constructed by the
method described above, are shown in Fig. 2.

The calculational ceil used in the present study is in-
dicated in Fig. 3. The cell extended at least 18 lattice

parameters {dg) on sither side of the grain boundary (i.e.,
in the *z directions). In the direction perpendicular to the
grain boundary, the cells were terminated by free surfaces
that were chosen to have the same composition as the grain
boundary. In this way. the structure and energy of the
grain boungary and surface were determined simultane-
ously. Since there is periodicity in the atomic structurs of
the grain boundary, periodic boundary conditions were em-
ployed in the x and ¥ directions.

The structure of the grain boundary was retaxed to the
minimum energy configuration using an eneIgy gradient
method. The relaxation was considered complete when the
force on each atom {computed using the potentials de-
scribed in Sec. 11} was less than 107° eV/A. Since the
calculational cell includ€s a large pumber of atoms, a
net shift of the 1op grain with respect to the bottom grain
tequires the collective motion of many atoms and hence is
extremely inefficient if atoms are moved individually. To
surmount this difficulty, the total force on the top grain
due 10 the botiom grain was calculated and the relative
position of the two prains was shifted accordingly."’ By
alternating individual atom relaxations with rigid shifi re-
laxations, these two modes were allowed 1o occur in tandem.

Although the top and boftom grains are free 1o trans.
late with respect to each other, the wanslational state of the
relaxed structure may not corespond to the lowest energy
configuration, because multiple energy minima may exist.
in fact, Wang, Sutton, and Vitek* have demonstraied that
for many boundaries, multiple energy minima exist with
very similar energies and very different atomic structures.
To find the global minimum Among the many local min-
ima, simulations for cach set of grain boundary parame-
ters were performed starting with different shifts of the 1op
grain with respect to the bottom grain. To accomplish this
in an efficient way, grain translation encrgy maps were
constructed. This was done by freezing the atom positions
in the top and bottom grain, fixing an x-y translational
state of the top grain with respect [0 the bortom grain, and
performing a relaxation of the 2-shift (i.c., scparation be-
tween grains in the 2 direction) of the top grain with the
botom grain heid fixed. Performing a grid of these calcu-
Jations in the x and y directions yields a crude energy map,
as shown in Fig. 4 for (210) and (310) grain boundaries in
Al While each of these contour maps shows multiple min-
ima and maxima, certain of these are equivalent by sym-
metry. For example, the points labeled 1 and 2 in Fig. 4(b}
are equivalent [the slight differences in appearance are due
to the finite grid size (0.1 ag) employed in pencrating the
contours]. In searching for the absolute minimum energy
configuration in the full relaxation, at least 10 simulations
wete performed starting with different x-y shifis. The full
relaxation generally yields x-y shifts very close to the min-
ima predicted by the energy map. The final x-y shift ob-
tained following full relaxation depends on the choice of
the initial x-y shift, indicating a finite basin of attraction
associated with each possible minimum.
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V. FREE SURFACE RESULTS: A TEST OF
INTERATOMIC POTENTIALS

While the experimental analysis of grain boundaries is
complicated by the fact that these interfaces are buried,
free surfaces may be analyzed by more direct means.
Therefore, it is not surprising that significantly more prog-
ress has been made in understanding the structure of free
surfaces in metals.” As a consequence of the recent flurry
of activity in this arca, a large body of experimental data
caists for surfaces, ™ some of which has been confirmed
i.|:n multiple studies using different techniques. As such, theo-
ries, computer simulations, and experiments on the atomic
structure of surfaces may be more easily compated than for
grzin boundaries. To gauge the accuracy of the interatomic
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AG 2. The unrelaxed I3 (210)/]001] sym-
metn¢ Ll boundan souctures of Al ta), Ni
{b), Ni,Al 100/100 {c), NiyAl 100750 ().
and NijyAl $0/50.(e1 The NuyAl case has
three unique GB sioictuometnes due 10 the
oo bypes Of plases exising in NiAl as
shown in Fag 1.¢

mental data on the structure of metallic surfaces. Detailed
comparison can be found in Refs. 18 and 20.

Our results on the surface structures are reported in
terms of the percentage changes it interlayer spacing per-
pendicular 10 the free surface. This change is simply the
strain. indicated by the symbol Ad, ... where the n,n + 1
indicates the change in the scparalion between the n'"
and {n + 1)* atomic planes. The nature of the apreement
between the simulations and experigments is indicated in
Table 1V. While our results are in good. agreement with the
LEED resulis*** on Al(110), The. agreement with the
LEED™ and medium energy jon scatering” data on Ni110)
is off by approximately a factor of twg (commesponding to 2
discrepancy of ~0.002 nm). Nonell}%less._lhc main fea-

e

e T

Fr

Feb 101 : . . . -
J. Mater. Ras., Vol 4, Na. 3. Jan'Feb 1888 &5 potentials, we compare ous simulation results with experi-

tutes of the experimental data are reasonably well repro- -
) '
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All the stoms are aliowed to relax and the 10p and bottom grains

o shuft with respect to each other.

The presence of an oscillation in the sign of the
ion and the rapid decay of the oscillation amplitude
her general in that they occur in bath Al and Ni for
he surfaces studied, as shown in Fig. 8.
it ordered alloys, surfaces with the same index are
tessarily identica). For example, layers parallel 1o
i0) and (100} surfaces of Ni,Al alternate between
nd 50% Ni. For the {100) surface of Ni,Al, we find
¢ 50% Ni surface is more stable, in agreement with
electron spectroscopy.”! Recent LEED data show
Ni) = —2.8% compared with —2.73% from our
tion. The first layer wiisYound to ripple (Al out, Ni

0.002 = 0.003 nm in the LEED study® and by

nm in the simulation. Ni,Al(1}1) has only one ter-
m (75% Ni). LEED resuits® on this surface show
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FIG 4. The consam #nin boundery energy contour plot of x and y-shift
for (210} {a} and (310, (b} GB in the NiAl. Some distortions are wntro-
duced by the finite suze of the grid. In (a) the points 1, 2. 3 and 8 con-
Verge (o the same minizmym while 4 converges o another munimum afwr
full relasation. In (b) | and 2 converge to one murumum whule 3 and 4
ronverge to another minimum
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A4, ,(Ni) = ~0.48%. Ad, (A} = +2.4%, and a Ni-Al
surface rippling of 0.006 nm (Al out, Nj in}. For compari-
sob, the present simulation study yields 44, (Ni) =
=0.33%, &d, j(Al) = +3.18%, and 2 Ni-Al surface rip-
pling of 0.007 nm. Based on these comparisons and simi-
lar comparisons on other surfaces (in Ni, Al, Ni,Al, and
NiA1},"® we conclude that the potentials employed pro-
vide 1 good qualitative description of surface relaxation
and quantitative accuracy better than 0.0] nm.

While the above results show that the potentials em-
ployed in the present study provide reasonable predictions
of atomic positions, another requirement of s svitable po-
tential is its ability to accurately predict defect energies

V. Comparison of the percentge changes in the imerluyer spacings (32) near the relazed Al and Ni {110 surfaces.

Al (110) Ni (110}

Present work LEED* LEED" Present work LEED* MELS"
-10.3% -86=201 -85+ 10 -4.87 -NTx0s -80=10
+ 314 +50 =1 +55 = 1 +087 +10*06 +35=15
~ 278 -16=)2 +22=13 -0.86 -05=207
+ 1.4l +1 * )3 +16=>16 +0 34
- 0.61 -0

J. Mater. Res, Vol. 4, Np. 1. JanFab 1889 &r

by

& P. Chen, D.J. Srolovitz, and A F. Vioter: Computer simulation and g-ain boundanes.

T T T 7T ‘ T i 1T TT 1T i T T I T 1T
Al(110) Ni (110)
‘7"\"""'—‘_'_'" ./’ Liaaat o}
B Al {210) . Ni {210} 7]
i'v-ﬂﬁ.--—--o-a-n-—-- 7”“7"’"""“""""
- - o Ni (310) 1
- Al 310y y .
:E. 7’?““"' Y #} G S A FNT L RN
= k Al(410) 0 Ni (410) T
+ aﬂ_.,ﬂ';.n-.uu-oa— = TP arinrsee FIG. 5. The surface relasation. Ad, ..,
C . . Lre . (%), ve depth for six Al and Ni surfaces
N ‘! ¢ . Each ik on the vertical axis corresponds 1o
= Al(320) ] 5 Ni(320) 1 108 for the Al surfaces and 5% for the Mo
3 L PeCensetennntes LT e et reteny surfaces
L ad
- = Ni (520}
Al (520) q L) q
2 e 0 0,00, 4100 A‘M—.ﬁ." ha®s " ea%TsteeY,
- OJ'U"‘ LI L3 ve
¥ ! i
4 (a) :, - (b} 1
L ] ! g L
o 1 2 3 0 1 2 3
DEPTH {ag) DEPTH (a,)

and differences in defect energies. Again, the surface
structure literature provides an excellent comparison. In
some cases, the (110) surfaces of foc metals are known to
undergo & missing-row 1 X 2 reconstruction. Using local
voleme potentials of the type described in Sec. 11, the dif-
ference in energy between the reconstructed and unrecon-
structed (110) surfaces in Al, Ni, Cu, Pd, Ag, and Au
were calculated. ™ The simulations show surface energies
ranging between approximately 1000 and 2000 mJ/m’,
with differences in energy between unreconstructed and re-
constructed surface typically of order 20 mJ/m’. Although
these differences are only about one percent of the surface
energy. only the Au surface is found to reconstruct. in
agreement with experiment.* Taken together with the data
presented in Tables T and 1], this result shows the accuracy
of these potentials in describing defect energies.
o

V. EXCESS GRAIN BOUNDARY VOLUME

Associated with the atomic rearrangement that occurs
upon minimization of the grain boundary energy is a rela-
Uve displacement of one grain with respect to the other.
The relative displacement of the two grains in the direction
perpendicular 1o the grain boundary (i.c., the z-direction)
is one measure of the grain boundary expansion or excess
volume per unit grain boundary area. This measurement. if
made far away from the grain boundary, is not sensitive
to the grain boundary strain field, which decays away from
the boundary as r¢ 7."* We denoted this displacement
or shift as Az (see Fig. 6). Another measure of the grain
boundary expansion is the relative z displacement of the
W atomic planes closest 1o the grain boundary (i.e., the
pair of planes with the largest spacing after the relaxation).

This is a local measure and is denoled as Az*. For low
angle grain boundaries, the dependence of Az on relative
grain misotientation, . may be determined in the frame.
work of the dislocation mode]. Assuming that there is a net
expansion, S, at the dislocation core due 10 the anhar-
monicity in the atomic interactions. the distocation model
predicts

= fBp = 2(A/b sin(6/2) (10)
where p is the inverse of the spacing between dislocations
in the boundary and & is the magnitude of the dislocation
Burgers vector. Unfortunately, we do not have sufficient
data a1 small 8 to determine 8 from the simulations.

These two measures of the grain boundary expansion
are plotted vs the misorientation angle, &, in Figs. 7 and 8
for Ni and Al respectively. While Az is seen to vary rela-
tively smoothly with tlt angte, the local expansion, A:®,
sppears erratic. For high angle grain boundaries, A: is of
order one-tenth of & lattice parameter (a,), while the local
expansion is typically around twice that larpe.

The translation of the upper grain with respect 1o the
lower grain has been measured for grain boundaries in Al
by transmission electron microscopy®' and has been caleu-
Jared via atomistic (pair potential) simulation techniques by
Pond and Vitek.” While agreement between simulation
and experiment was found for the absolute value of the in-
plane translation vector, the magnitude of the translation in
the direction perpendicular 10 the grain boundany differed
by a factor of between two and three. This apparemt dis.
crepancy is probably a=ributable 10 the fact that the simu-
fations measured the local expansion {i.e., 42*) while the
experiment measured the net expansion of the two grains
(41). Though experitaents were not performed on 2ny

] J Maier. Res . Vol 4, No. 1, JanFeb 1088
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TABLE V. &; and Az* in units of the lantice parameter (g,) for Ni and Al in the present study and A:° from previous ealculations on AY by Smn:»_ .

e al. ¥ 8 is measured from the (1103 plane of the 1op gran to the (310) plane of the boriom grain The boundary planc indices arc also given

Previous

Present study simulation’
N A Al
e Index d, d Are a: d are Az At
000 {116) 0.3%4 0.3%4 00X 0000 .35 ¢.000 0.000
12.68 (540) 0.087 0,322 0.235 0.063 0.321 021 0.08t 0.2}
262 (320) 0.139 0321 0.182 0.094 0.318 0179 0.094 0.20
28.07 (530) 0.086 0308 0.222 0.100 0.311 0.225 0.096 023
X.51 740; 0.062 0.308 0244 0.106 0314 0.252 007 [N
3.87 @ 0224 0322 0.098 0.125 0.288 0.134 To119 0t
41.60 730} 0.066 0.308 0242 0.212 0.308 0242 0.109 024
46.40 (320 0.093 6.31% 0.222 0.117 0312 0.219 0111 021
53.13 (310) 0.158 0323 0.165 0.115 0.310 0152 0107 016
61.93 “10) 0.121 0.327 0.206 0.108 0.311 0.198- 0104 020
90 00 (100) 0.500 0.500 0.000 0 000 0.500 0.000 0 000

It is also of interest 10 examine the interplanar spacing
a1 the grain boundary. This interplanar spacing, denoted as
d, is plotied in Figs. 7 and 8 and tabulaied in Table V.
While the spacing between unperturbed atomic planes
paralle] to the grain boundary (4.} shows a relatively larpe
variation with @, o is relatively constant ¢xcept for the
(100) case a1 90°.

Vi. THE STRAIN FIELD NORMAL TO THE
BOUNDARY PLANE

As shown in Fig. 5, the interlayer spacings near a re-
laxed free surface show oscillations that decay into the bulk.
This kind of oscillatory behavior can be shown (Fig. 9) 10
arise from smoothing of the surface steps and steric inter-
actions between layes." ™ Similar atomic relaxation occurs

faro}
LA.[“D]

T ] Py [
Q |'_":' - Qs L ‘:" Qﬁ
Y © I ~ O’ .8
© - - o / o
© ., 7o . Yo
) O ht 0 o

FIG & Schematic indication of the surface smoothing and the sieric re-

pulsion mode! which explains why the surface relaxation occun in an os-
cilistory fashuon "

in the vicinity of grain boundaries, Figure 10(a} shows the
normal strein component {€.) as # function of distance (2)
from the grain boundary plane for Al £5(210)/36.87°. This
plot shows 8 symmetric oscillatory strain profile that has a
maximum at the boundary plane and decays into the bulk.
Careful comparisons of strain profiles near the symmewic
tilt boundaries and the cormesponding surfaces [AJ(210} in

this case, Fig. 10(b}] show thst they share the same oscil-

lation period.™* The decay length of the oscilfations also
shows excellent cormespondence (Figs. 10 and 11). However,
the amplitudes of the oscillations are approximately twice
as large in the grain boundary case. While in the (210)
case, the grain boundary and surface oscillations are nearly
180 out of phase, examination of many grain boundaries
shows that this is not a general feature of the relaxation. In
fact, the phase of the osciliations in the grain boundary
strain profile depends on which focal minimum the grain
boundary relaxes into (these different minima correspond
to different relative shifts of the rwo grains).

The oscillatory nature of the strain profile may be seen
enalytically for low-angle grain boundaries. Symmetric
low-angle tilt boundaries may be described as an ensemble
of paratlel coplanar edpe dislocations with Burgers veciors
along the boundary normal.* The strair field associated
with such an armay of dislocations™ is simply

. = —b sin(X)

= " aD[cosh(Z) ~ cos(X))
. Jeosh(Z) — cos(X) +
1+

where D is the spacing between dislocations, 2 = 2%:/D.
X = 2mx/D. v is the Poisson’s ratio, and b is the Burgers
vecior. For low angle boundaries D = b/8. When the
z-coordinates of the atoms are tabulated and ordered to
measure ¢, we find that as o increases so does the dis-

F4 s:nh(Z}} a

I
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«cement parallel to the boundary, x. This is simply a
asequence of the fact that the atoms are arranged in
nes that are not strictly paralie} to the grain boundary.
nsequently, z is measured along a crystal plane and Ax
proportional to Az. For low angie boundaries, Ax =
Aan(8/2). Inserting this relation into Eq. (11}, we find
i ¢_ is an oscillatory function of 7 since €, is an oscil-
ory function of y. The rapid decay of the amplitude of
 strain oscillations is seen by taking the large Z limit in

- (1)

_ o sin[Z ca(6/2)], 2
T Ze (12

His expression clearly shows the nature of the observed
cillatory behavior and the decay of the amplitde.
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FIG. 11. The composite picrare of Fig. 10(a) and {b). Mot that the oscil-
Jation has &n imitial opposite sign and the osculation s the GB is about
twice as iarge as thal of the free surface

While this analysis of the strain osciilations was based
on a dislocation picture of low angle boundaries, we ex-
pect it also 1o be valid for high angle boundaries. The dif-
ference between the low and high angle cases is in the
identity of the dislocations (e.g.. Burgers vector) and the
dislocation spacing. Furthermore, since the oscillatory
strain profile for grain boundaries is very similar to that for
surfaces, where dislocations do not necessanly exist, we
conclude that the oscillations are simply due 0 the atomic

nature of these crystalline defects.

vil. GRAIN BOUNDARY STRUCTURE ARD THE
STRUCTURAL UNIT MODEL
A, Graln boundaries in pure NI and purs Al

Historically, models of grain boundary structure have
included the amorphous model” dislocation modet, CSL
model, ™ polyhedral model,” O-lattice model.” and the
structural unit model. ™ The most recent of these, the struc-
tura) unit modet.” " has been very successful in describing
the atomistic structures and energies of grain boundaries.
We summarize the main featurcs of this model here, re-
stricting discussion to |001] symmetric tilt grain boundaries
in fee materials for simplicity. For the [001] tilt boundary,
the period in the y-direction is only two layers, while
in the x-direction it is longer. The structural unit model
states” that this x-period can be completely charucterized
by a sequence of structural units. While, in general, more
than one type of structural unit appears in this sequence,
there are four special angles for which only one unit ap-
pears. The angles are 0° (perfect crysual), 36.87°, 53.13°,
and 90° (perfect crystal also) and the associated structural
units are called A, B, C, and D, respectively, as shown for
the relaxed grain boundaries in Fig. 12. These are known
as delimiting angles, because any [001] tilt boundary can
be completely described using only the structural units cor-
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responding to the two special angles that bound the grain
boundary angle in question For example, the {320) grain
boundary at 22.62° is composed of alternating A and B
units and the (530) grain boundary at 28.07° is composed
of one A and rwo B units. The A unit (8 = 0°) is in the
majonity (e.g., - AAAAAAB - - at low angles), while
close 1o 36 87° the B unit is dominamt. Between 36.87°
anf.t 53.13°, the grain boundaries consist of onty B and C
units, and s0 on. For a particular angle, the ratio of the den-
sity of the tao rypes of unit can be determined @ priori
and is found to be in agreement with simulation results.™

In some cases, variations on the perfect A, B, C, and
D units can occur; these are indicated by B', C', etc. For
example, B can be transformed into B’ by inserting an
cxt'ra atom into the structural wait cell {see Fig. 13(a)].
This B’ unit can be found in metastable grain boundary
structures ai the B delimiting angle (36.87°%), and it some-
times occurs in the lowesi-energy grain boundary at other
angles. For [OD1] tilt boundaries, B' and C' units have
been identsfied. In principle. even more units of this rype
can c'xis( (e.g.. B", B",...). Noic that because the B
(or B") units begin and end on different atomic layers, they
a.lvf'ays appear in pairs (though not necessanly adjacent).
This step (% @, ip magritude) is indicated by a dot (¢ g.,
B.B). This is alse true for D units. Table VI shows the
structural unit sequences for all the tilt boundaries we have
studied, slong with the sequences obtained by Wang and
Vitek” using a pair potential description of Cu. The se-
quences for Ni and Al are the same in every casc, and dif-
fer from Cu only in the interchanpe of B and B* in cenain
cases, including the delimiting anple 36 87°.
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TA:IT-E:? The low;s: energy generic \.:I‘Lil in the [001] symmetric il GB in Ni, Al and Ni,Al using “local volume™ polentials 1n this study and the
traditional pair potentia) approach for Cu ' Here ® indicaies the Benenc unit is the same as immediately 10 the lef in the wbie and - - means the daty ant

0ot avulable

. NiyAl
emMm Indea Cu* Ni A
y I 50/50 100/50 100/100

30.51 (740) ABBB' . ABBB’ AB'B'E AB'B'B Al BB'CBB'C BC.BC B'B'CB'R'C

0 {L30) A 4 . AA . .
12.68 1540) AAAR" AAAB’ . . . . .
262 3200 AB.AB AR’ AB' - . . *
28.07 1530) ABB' AB'B . AB'B . d

AB'B
3 .51 {740) ABEB' ABBB’ AB'B'B AB'D'B . . > .
16,87 210 B.B BB . . . .
4360 30 BB'C . BRCBBC™ " . ‘B'CB'B’
B

46 40 (520) BCBC . » . BC.BC ’ C'B o
5313 310 C . . cc . .
6193 (410) CD €D . . . - . .
%0.00 1100) DD . . M . "

B. Structure of NI Al grain boundary

Application of the structural unit model to the Ni,Al
grain boundaries is more complicated than for the pure ele-
ments. For each type of structural unit that can exist for
the pure material, there is now an additional classification
according 10 the chemical type of each atom in the unit;
this is indicated by & numerical subscript. For example. the
structural vnit sequence at & = Q° (110) is A A, for the
100/100 grain boundary stoichiometry, AA; for 100/50,
and A,A; for 50/50, as shown in Fig. 12. Units A,, A,,
A,, and A, differ from pure unit A only by the chemi-
cal identity of the atoms and minor geemetric distornions
(achually A, is the same as pure unit A); there are no topo-
logical differences. The 36.87° and 53.13" deumiting angles
each show six chemical variations of the structural unit,
and 90" shows three variations.

Note also that for the 0% and 53.13° (310) delimiting
angles, the Ni;Al grain boundary period is twice that of the
pure elements. The level of Yariation is even more pro-
neunced for the nondelimiting tilt angles. This is exempli-
fied in Fig. 13, where the sequences for the 43.60° (730)
boundaries are shown. In going from pure Ni to Ni,Al, the
“B-B-C sequence is preserved with a doubled pericd, but
the structure is otherwise much more complex. For the
three stoichiometries, nine different “B™ units (B,, B.. B,,
B,,B|,B:,B;, By, B}) and four “C™ units (C,,C,,C,, C.p)
appear. Moreover, the BB'C sequence that occurs for pure
Ni and the 50/100 and 50/50 grain boundaries changes to
B'B’C for the 100/100 grain boundary.

In general, the strucrusdll sequences of grain bounda-
nes in ordered alloys can show a large number of possi-
ble variations. For example, the simple 25(210}/36.87°
boundary which consists of ten atoms in the B'B’ sequence
can have up to 2" possible siructures cormesponding to
occupying ¢ach of the ten atoms sites with either Ni or

Al (Note that this number was substantially smaller in
the present study since we considered only perfect crystals
on either side of the grain boundary.) This muliplicity
becomes even more important as the period of the grain
boundary increases. This result suggests that the impor-
tance of the degeneracy of grain boundary structures re-
PDHEC! previously™ for pure metals is potentially even
more important in the case of alloys.

VIil, GRAIN BOUNDARY ENERGIES
We define the grain boundary energy as

1
Y = :2 AE, a3

where A is the cross-sectional area of the simulaticn cell
paralle] to the grain boundary, and AF, is the change in en-
ergy of atom i due 10 the presence of the grain boundary:

AE =E - EM™ (14)
(r, = Ni or AD). The sum in Eq. (13) is over all atoms
whose energy is affected by the proximity of the grain
boundary (within the accuracy of the calculation). This in-
cludes atoms up to between $ and 9 lattice parameters on
cach side of the grain boundary to obiain ¥,, to within
0.5 m}/m’. For pure Ni or Al, E** is simply minus the
fec cohesive energy (—4.450 ¢V for Ni and =3.360 eV for
Al), while for Ni,Al the atom self-energies for the LI,
crystal must be used (—4.509 eV for Ni and —4.82] eV
for Al). The grain boundary energies for the tilt angles
considered in the present study are shown in Table VII and
Fig. 14. These values correspond to the lowest energy
grain boundaries (i.e., the decpest energy minimum) found
for each particular misorientation.

For the pure elements, Fig. 14 shows indications of
cusps at 36.87° (210), 53.13° (310}, and possibly at 28.07°
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TABLE VIl Symmetric &l [001] grain boundary eoergiet in Ni, Al, and Nz,Al in (ml/m’). The (110) and (100) grazn boundaries are ot inc!aded 10

the aversge
NiAl
8Mm Index 3 Al Ni 50/50 100/%0 100,100
o 010} 1 0 [1} 41 0 17
12.68 (540) 41 278 866 1084 933 904
uel (320 13 330 1o 138 155 no
2807 (530} 17 338 1198 1388 1303 1208
w3 (740} 65 365 1253 1393 P 1305
3687 (WL 5 k311 1278 1396 1203 1329
43.60 (730) 29 3 1353 1467 1434 1417
45.40 (560) 29 30 1347 1484 1397 1406
5303 (316) ] 3ns 1221 1468 1247 1166
61.93 410 " My 1261 1407 1334 1294
90.00 (100) 1 0 [} 617 ) [} 17
Fwn boundan energy 341 1210 1379 1260° 1237
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FIG. 14, [001) symmetric tilt boundary energies of Ni. Al. and NiyAl as
# funcuon of misoriemation angle The dashed lines aze onhy guides for
the eye

{530). These first two cusp positions correspond to single
structura! unit, 25 boundaries {discussed above) and are in
agreement with experimenta! tesults on grain boundaries
in elemental A)* and Cu.™ Previous pair potential simu-
lations™ on Al grain boundaries have indicated the pres-
ence of cusps at the three positions quoted above as well
as 43.60° (730). There is no evidence for a cusp a1 this po-
sition in the present study. The average grain boundary
energy (averaged over the data in Table VII, excluding
6 = 0° and 90°) is determined to be 1210 mJ/m’ for Ni
and 341 mJ/m® for Al. The comesponding exptrimental
values (with at least 10 ~ 15% errors) are 866 for Ni*’ and

335 for ALY While the simulation values for Al are in €x-
cellent agreement with experiment, the discrepancy be-
fween the Ni values has not been acgounted for. For the
grain boundaries consisting of & singhe structural umit,
the lowest encrgy boundary (there are multiple energy
minima) was always found (o have a mirror plane normal
to the z-direction. However, for multiple structural unit
boundaries, this was not always the case.

The most striking feature of the Ni,Al grain boundary
energics is thal y,, varies substantially with the Jocal grain
boundary composition. The energy difference correspond-
ing to different choices of the Al sublatice 1sec Fig. 14)
varies from between 50 and 300 m)/m" for the high angle
boundaries with an average of 150 mJ/m’. This variation
is approximately 12% of the total grain boundary energy. It
is interesting to nole that the nonstoichiometric boundaries
[i.c., (50/50) Al-rich and (100/100} Ni-rich] have nonzero
energies at § = 0° and 90°. The 0° (50/50) boundary cor-
responds 10 a complex stacking fault which is oblained by
removing a 100% Ni (100} plane from the perfect crystal.
This introduces Al-~Al nearest neighbors which do not
exist in the perfect L1, crystal. As the tilt angle increases
frotn 0°, the atomic relaxations that occur act 10 lessen the
severity of the Al-Al interactions. This can accur by local
distortions or by relative shifts of the two grains. Indeed.
the shift perpendicular 10 the grain boundary is found 10 be
the largesi for the (50/50) composition, and the excess en-
ergy (measured with respect to the (100/50) grain boundary
energy) associzted with these Al-AY interactions is re-
duced from 617 m)/m’ &t 0° 10 an averspe of 119 mi/m’
for the other orientations. In gencral, Ve find that the Al-
rich grain boundaries (50/50) have the highest encrgies
and the Ni-rich and stoichiometric grain beundaries have
very similar, lowes energies {on average the. Ni-nich houndy-
nies have the lowest energies). The Ni,ﬁ{] grain boundary
energies greally exceed those for pure Al'or a composition



weighted Ni-Al average, but are very close to those for
pure Ni.

The cusps in the grain boundary energy vs misorien-
tation plot show variations with grain boundary composi-
tion. A1 36.87° [£5(210)), » cusp occurs for Ni, Al, and
all three compositions of the Ni,Al grain boundary, with
the deepest cusp occumring for the stoichiometric bound.
ary (100/50). On the other hand, ar 53.13° [25¢(3109)
the Ni-rich boundary (100/100) has the deepest cusp,
and the pure Al boundary shows no cusp at all. At each
of these two angles, the largest cusp is on the order of
200 mJ/m’ deep, which is approximately 13% of the to-
tal bourdary energy. Based on the observations, we con-
clude that the cusps are extremely sensitive to local Erain
boundary composition.

As mentioned above, the Al-rich grain boundaries
have both a larger energy and expansion than do the stoj.
chiometric and Ni-rich boundaries, This relationship
between grain boundary energy and grain boundary ex-
pansion (Az) appears to be rather general in the present
calculations. This is indicated in Fig. 15 where the Erain
boundary energies for Ni, Al [Fig. 15¢a)} and the three
Ni)Al [Fig. 15(b)] grain boundary compositions are shown,
To lowest onder, there appears 1o be a linear refationship
between y,, and Az, with the proportionality factor de-
pending on the material. The grain boundary energy rises
faster with grain boundary expansion in Ni and in Ni,Al
than in Al. Since the expansions have been normalized by
the appropriate latice constants, this result is more indica-
tive of the relatively weaker binding in pure Al than its
larger atomic size.

IX. GRAIN BOUNDARY COMESION

The Gniffith cohesive energy™ is defined as the energy
required to cleave a brittle material withour plastic de-
formation. When the material is cleaved along the grain
boundary, two free surfaces are created and the grain
boundary is destroyed. Therefore, the grain boundary co-
hesive energy is defined as

L R A as)
Note that, even for the symmetric boundaries studied here,
the two surface energies, y,, and Y:,- May differ due to the
different possible surface compositions. The cohesive en-
ergies of the grain boundaries discyssed above are tabu-
lated tn Table VII and Fig. 16.

In order 10 gauge the magnitude of the grain boundary
cohesive energies, it is useful to know the cohesive energy
of the (100), (110), and {111) planes. For Al, these valyes
are 1710, 1918, and 1648 ml/m?, respectively. For Ni, the
corresponding values are 3510, 3954, and 3248 mJ/m’. re.
spectively. Finally, for Ni,Al these valves are 821, 4119,
and 3510 mJ/m’, respectively. As with the grain boundary
energies, the cohesive energies of these perfect crystal
planecs are Jowest for Al while the Ni and the Ni,Al ener-
gfes are comparabie, with the NiAl values slightty higher.

b(mJ/m‘?
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FIG. 15 The [00]] rile boundary enctgy as a function of 1otal Fran
boundary expansion (As} for Ni. Al (), and NiAl (b).

At first glance, this suggests that Al would be more easily
fractured than cither Nj or Ni,Al. However, the domi-
nant term in the fracture energies of these materials comes
from the plastic work associated with an sdvancing crack
and hence the Griffith energies is not the same as fracture
toughness. Nonetheless, there is a strong correlation be.
tween the Griffith cohesive energies and the fracture tough-
ness, as shown by McMahon and Vitek *

Consideration of Figs. 14 and 16 shows that the grain
boundary energies and the cohesive energies are, crudely,
inversely related. This may be most simply seen by the
sign of the curvarure in these two figures. Furthermore, the
cusps in the grain boundary €nergy vs misorientation plots
ofien correspond to inverted €usps (i.e., focal maxima) in
the cohesive energy plot. This is especially pronounced for
the single structural unjt boundarics: 53.13° and 36 87°. As
for the cohesive energies of the perfect crystal planes, the
Niand Ni Al grain boundaries show higher cohesive ener-
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TABLE VI Grain boundary Griffith cohesive energies for symmerric oli (001} boundary in Ni. A, and N1, Al in (mJ/m’). The (110, and (100, grain

boundanes ar pot included in the everige

NiAl

o Index I Al N $0/50 100,50 100, 100
L] ) ! 1918 3054 303 4119 4077
1268 (340) “) 1690 3206 3186 332 3336
22 62 (320} i3 1660 3023 2549 kI 3201
2807 (5303 17 1658 2954 p1) 014 Er
kR (740} 65 1633 2905 2919 3002 01y
36 87 (210) 3 1647 2886 2568 34 2961
43.60 (730) 9 1611 217 2855 28%) 2891
45 40 (520) 19 1604 1765 2818 2009 2004
3313 [EX V] 5 1638 2835 2827 o0y 3092
6191 410 17 1557 2699 1815 2867 2886
) 00 401U 1 1710 3510 E1E]] o 3814
averspe cohrsive energy 1663 2894 920 3029 044

4500
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= Al

¢ = NigAl 100/100
- Ni3Al 50/100
= Nizal 50/60
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FIG 16, Gnffith eohesive energies as 8 function of misoricatation angle
for the [001} 1l GB an K1, Al and Nighl The dashed lises are only
guides for the eye.

gies (Ni Al slightly higher) than for pure Al. Not surpris-
ingly then, the Al-rich boundaries generally show lower
Griffith cohesive encrgies than the stoichiometric grain
boundary and the Ni-rich boundary.

If the cohesive energies of grain boundaries in Ni,Al
exceed those for pure Ni and pure Al, why are the pure
metals so ductile and Ni,Al intergranularly brittle? Unlike
for perfectly brite matenals, the cobesive energy of (micro-
scopically) ductile marerials represents only a small frac-
ton of the fracture energy The majority of the fracture
energy in such materials comes from the plastic work asso-
ciated with the advancing crack. Recent caleulations by

Hack, Chen, and Sroloviz* have demonstrated that the
amount of plastic work associated with fracture is strongly
conwrolled by the constitutive behavior of the material (es-
pecially the yield stress). This is a consequence of the fact
that sigrificantly higher szesses must be applied to N1,A]
than 10 the pure materials to achieve a similar amount of
deformation. Therefore, we believe that the relative inter-
grarular fracture behavior of Ni and Ni,Al is dictated more
by the plastic properties of the mamix than by the nearly
identical cohesive energies.

X. CONCLUSIONS

We have performed atomistic simulations of 1601}
symmetric tili boundaries in Ni, Al and Ni,Al. The inter-
actions among the atoms were described in terms of “local
volume” polentials. For free surface and bulk properties.
excellent comespondence with experimental data was ob-
tained. The excess volume associated with grain bound-
aries was observed 1o scale with grain boundary energy
and was in good agreement with experimental data on the
pure metals. The strain in the direction perpendicular 1o
the grain boundary was shown 1o oscillate and rapidly de-
cay with increasing distance from the grain boundary. This
result was exptained in terms of an analytical dislocation
model of grain boundaries. The structural unit model.
which has been very successful in describing the struc.
ture of grain boundaries in pure metals, was shown to be
of more limited utility in alloys. The energies of grain
boundaries in Ni,Al were shown to be of the same order as
in Ni and much greater than in Al. The positicns of the
cusps in grain boundary energy vs misorientation plots
were obsersed io depend sensitively on the Jocal grain
boundary composition. The A)-rich boundaries m Ni, Al
generally exhibited higher energies than the stoichiometric
or Ni-nich boundaries. The misorientation dependence of
the grain boundary cohesive energy was seen 10 be roughly
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inversely proportional to the grain boundary energies (Al-
rich Ni,Al boundaries lowest). The intergranular brittle-
ness of Ni,Al was artributed 10 its plastic properties.
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Investigation of the effects of boron on Ni Al grain
boundaries by atomistic simulations
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A series of simulations has been performed on grain boundaries in Ni and NiAl with
and without boron doping using embedded atom-style potentials. A new procedure of
obtaining “reference” data for boron related properties from electronic band structure
calculations has been employed. Good agreement with existing experimental structural
and enesgelic determinations was obtained. Boron is found to segregate more strongly
to grain boundaries than to free surfaces. Adding boron to grain boundaries in Ni and
Ni;Al increases their cohesive strength and the work required to pull apart the
boundary. This effect is much more dramatic for Ni-rich boundaries than for
stoichiometric or Al-rich boundaries. In some Ni-rich cases, adding boron increases
the cohesive strength of the boundary to such an extent that the boundaries become
stronger than the bulk. Bulk NiyAl samples that are Ni-rich produce Ni-rich grain
boundaries. The best cohesive properties of NiyAl grain bovndaries are obtained when
the boundary is Ni saturated and also with boron present. Boron and nicket are found

to cosegregate 1o the grain boundaries.

. INTRODUCTION

The pronounced effect of grain boundaries on the
physical properties of materials has motivated many
studies with the aim of understanding the structure,
energetics, and properties of grain boundaries. While
significant experimental and theoretical progress'? has
been made in understanding boundaries in pure sys.
1ems, the unde.standing in alloy systems is much less
developed.™

In this paper we present our recent results on atom-
istic simulations of grain boundaries in the ordered in-
termetallic compound NisAl The brittle nature of this
material and many other L1; compounds arises from
the marked propensity toward intergranular fracture,
which contrasts with the ductile nature of single crys-
tals of NizAl. While NiyAl precipitate has been widely
used as the y'-strengthener in Ni-based superal!oys.’
these brittle characteristics have precluded the use of
Ni;Al itself as a structural material, despite the many
attractive properties of the single crystal, such as low
diffusivity and enhanced yield strength at high tem-
peratures.® The discovery that microalloying Ni Al with
small amounts of boron (B} significantly reduces the
tendency for intergranular fracture” has stimulated a re-
newed interest in intermetailic compounds.'® Extensive
recent studies by Liu and coworkers'™ have examined
the role of boron in Ni;Al in detail and have estab-
lished that boron scgregates preferentially to the grain
boundaries where it has been detected by Auger analy-
sis.” The influence of boron was also found to depend
sensilively on the Ni-Al ratio. With stoichiometric or
Al-rich Ni;Al the boron is incffective in improving

ductility, while in Al-poor samples (between 23 and
25% Al) the boron dramatically improves the ductility
of polycrystalline Ni,Al.

In this study we examine the role of boron at grain
boundaries in Ni;Al and compare the results of the
present caleulations with our earlier studies of bound.-
aries in Ni, Al, and Ni,Al. Preliminary accounts have
been given elsewhere.'”™ The atomistic simulations
cmploy potentials we have developed'™® using an ap-
proach based on the embedded atom method.” The po-
tentials for Ni, Al, and Ni,Al were determined by
fitting to known thermodynamic and other physical
properties of the bulk materials.’™* For B-containing
systems. where there is considerably less experimental
data, we have used the results of Linear Muffin Tin
Orbital (LMTO) density functional calculations'®?® 1o
derive the polentials. The electronic structure calcula-
tions have been compared to available experimental
results on Ni and Al-containing systems to assess the
reliability of the LMTO approach.

The paper is organized as follows. The methodol-
ogy and results of the LMTO calculations are discussed
in Sec. I, and the procedure for deriving the inter-
atomic potentials is described in Sec. IIi. The remain-
der of the paper is devoted to the atomistic simulations
of grain boundaries with and without B atoms present.

0. ELECTRONIC STRUCTURE CALCULATIONS

All of the electronic ealculations were done using
the Linearized Muffin Tin Orbital (LM TO) method ™%
with the combined correction terms added. The self-
consistent calculations employed the local density ap-
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proximation with & Barth-Hedin exchange-comelation
potential and included all relativistic effects except spin
orbit coupling. The final set of compounds included
Ni;Al, fee Ni, fee Al foe and bee B, NiAl, NiB, AIB,
Ni;B, ALB, and NiyAl with B interstitials. All of the
XY-type compounds were for the CsCl (B2) crystal
structure and all of the X, Y-type were for the Cu,Au
(L1;) crystal structure,

In Table T some of the results of these calculations
are given and compared with experiment (when avail-
able). As can be seen, the calculated lattice constant ao,
bulk modulus B, and cohesive energy E.. are in very
good agreement with the experimental data.” %18 For all
of the Ni systems, the basis set for the calculations in-
cluded angular momentum components up to f{f = 3)
and for all the other systems up to d(f = 2). The lattice
constant was obtained by performing the caleulations at
several lattice spacings and finding the one with the
lowest total encrgy (zero pressure). The cohesive energy
was obtained from the total energy differcnces between
the solid and the atom: E.e4 = Extar — Exrom. In this
calculation the core wave functions in the crystal are
frozen at their atomic values so that the total energy
differences involve only the energy differences of the

TABLE 1. LMTO results.

Al (fec) LMTO Expt. Dev.
as (A) 4.0345 4.0498 0.4%
B (Mbar) 0.82 0.79 30%
Econ (V) 174 136 9.0%

Ni (fcc) LMTO Expt. Dev.
ag (A} 15141 15198 0.2%
B (Mbar) 199 1.80 95%
Eea (8V) 4.45 4.45 0.0%
Ni; Al (CusAu) LMTO | Expt. Dev.
aq (A) 1571 3.5667 0.1%
B (Mbar) i8 £64 19%
E.ou (¢V) 479 457 4.6%

B (fce) B {bce)
ag (A) 2.9087 23423
Ecu (V) 533 495
AlB (CuyAu) NiyB (Cu,yAu)

valence electrons, The calculated energy differences
are average-of-configuration energies and we have cor-
rected the atomic values to give the lowest term value
since that is the true atomic ground state. It is these
corrected values that are presented in Table 1. Finally,
the bulk modulus was a numerical approximation to the
expression:
B=-n2f
a0

where t and P are atomic volume and pressure, respec-
lively. These differences were calculated from points
bracketing the calculated equilibrium lattice constant.

. INTERATOMIC POTENTIALS

The interatomic potentials employed in the study of
boron in NisAl are based on the “local volume™ poten-
tials as described by Voter and Chen " This type of
potential consists of a pairwise interaction augmented
by a term, for each 2tom, that depends on the local
atomic density. ThL= limitations of a constant-volame
pair potential are thus circumvented, as each atom
senses its own local “volume” Major defects, such as
free surfaces, grain boundaries, and crack tips, can thus
be modeled. This approach {also called the embedded
atom method"” or EAM) has been shown to provide a
goad description for a variety of systems™ " 404 is
especially suited to the description of foe metals, Potgn-
tials for the Ni Al syst>m have also been presented by
Foiles and Daw”** using such a prescription.

We present here the potentials used for the Ni-Al-B
system derived according to our own EAM approach.
For the pure metals Ni and Al this approach is quite
similar to the original method of Daw and Baskes,"”
while for Ni,Al there are significant differences in the
methads used to derive the potentiai compared to those
of other investigators.”* The potential for the Ni-Al
subset is exactly as described previously,”™ and has
been employed in studies of Ni, Al, and NiAl grain
boundaries®'* and surfaces.*2*!* We have augmented
this Ni Al potential to include B-B, Ni-B, and Al-B
interactions. It is important 10 pote that the present
potential does not explicitly take into account angular
terms. However, we know of ng other potential for the
Ni-Al-B system, and we expect this potential to be
significantly better than a pair potential. Moreover, the

ik I 33900 Ez‘AM description of boron at the grain boundaries in
# (Mbar) 0.93 256 Ni;Al may be a reasonable one because cxperimentally
Eeun (V) 50 48 the boron is present at suficiently Jow concentrations
fce Al or Ni + Octahedral B Interstitial (Bl (~1q% at GBs and .~1% in. the bulk) that there will be
P— fec Ni + BI relatively few B—B interactions.

Due to the complex structure of rhombohedral
s (A) P 179 boron.* we simplify the fitting procedurc by treating
Eron {6V} 25 17 boron as an fec material. Electronic band structure re-
sults using the linearized muffin tin orbital (LMTOQ)
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approximation as described in the previous section are
used instead of experimental data in fitting both pure B
and the Ni-B and Al-B cross potentials. In this way,
the fitting procedure for B closely parallels that of Ni
and Al. We begin by describing the EAM potentials for
pure Ni, Al, and B.

A. Potentials for pure NI, Al, and B

The EAM energy of an n-particle homonuclear sys-
tem is given by

1 ¢ © o=
E=2 T o)+ ZFp), )
) )
where r, is the distance between atoms [ and j, ¢ is
a pairwise interaction potential, F is the embedding
function, and p, is the density at atom i due to all its
neighbors,

"
p = Zplr). )
=)
A thus acts as a sensor for the local atomic density
about atom i, and F(g,) provides the volume-dependent,
many-body contribution to the energy. The pairwise
interaction is taken to be a. Morse potential,

¢(r) = DM‘{I - U‘P["“M(f - RM)]}z - Dy, (3)

where the three parameters, Dy, Ry, and ay, define the
depth, distance to the minimum, and a measure of the
curvature near the minimum, respectively. The density
function, p(r), is taken as

plry = r¥le® + 27, 4)

where B8 is an adjustable, parameter. Physical justifi-
cation for the forms in Egs. (3) and (4} is given else-
where.” Motivated by Rose er al® and following
Foiles ef al, " we define F(7) by requiring that the
energy of the fce crystal is given by

Ere(a*) = —Ecanlt + a*)e™ (5

as the lattice consiant is varied. Here E. is the fec
cohesive energy (per atom) and a* is a reduced lattice
constant defined by

a* = (afag = 1)/(Eon/IBLLY7, ©)

where @ is the lattice constant, @ is the equilibrium
lattice constant, B is the bulk modulus, and {) is the
equilibrium atomic volume. Thus, knowing E..., do,
and B, the embedding function is defined by requiring
that the crystal energy from Eq. (5) match the energy
from Eq. (1) for all values of a* By fitting F{5) in this
way, the potential is appropriate for a large range of
densities. ,

To ensure that the interatomic potential and its first
derivatives are continuous, ¢(r) and p(r) are smoothly

cut off at r = ey, by using
Simoonlr) = flr) — flre)

G- G @

where f(r) = ¢{r) or p(r) and m = 20. r, is used as a
parameter in the fitting procedure, and F{p) is also cut
off smoothly.

We now describe the fitting procedure for fec Ni,
Al, and B. Because of the way F(p) is determined, the
potential always gives a perfect fit to the experimental
values for ag, £, and B for any choice of ¢(r) and p(r)
(for boron, the reference values are from LMTO calcu-
lations). The five parameters, R.,, D.,, ey, 8, and r.u,
are optimized by minimizing the root-mean-square
deviation (ym) between the calculated and reference
properties of the material. For Ni and Al, these proper-
ties are the three cubic elastic constants (Cyy, €z, and
C.), the vacancy formation energy (AE(), and the
bond length (R,) and bond energy (D,) of the diatomic
molecule. Also, the hcp and bee crystal structures are
required to be less stable than fcc. For boron, the prop-
erties are ag, E.o, and B for the fcc and bee crystal
{from LMTO calculations), ag and E.. for an fee crys-
ta] with every fourth atom missing (from LMTO calcu-
lations—in lieu of a vacancy formation energy), and R,
and D, for diatomic boron (from experiment). The best
fit for each element is shown in Table I, and the result-
ing parameter sets are shown in Table Iil.

B. The cross potentials
For a general alloy system, Eq. (1) is written as

E= % Z dlr) + ZFEG), ®)
with
7= X pin), ]
Al

where the subscripts «, and ¢; indicate atom types. The
functions ¢umi(r), danlrd, puilt), pals), palt), Fulp),
Fap), and Fy(5) are known from the fits to pure Ni,
pure Al, and pure B. To treat the Ni-Al-B alloy,
dnalr), ¢ns(r), and @aa(rt need to be determined.
These are each taken as Morse functions, with a vari-
able cutoff distance, just as for the pure elements. In
addition to these (4 x 3 = 12) parameters, five other
parameters are available to aid in fitting the experi-
mental alloy properties. These arise from the invari-
ance of Eq. (1} with respect to scaling of p(r), and the
invariance of Eq. (1} under addition of a linear term to
F(p). These two types of transformation affect the alloy
energy, but leave the pure-glement energy unchanged.
Using pure boron as an example, the scaling transfor-
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TABLE I1. Properties used in [it to fcc Ni, Al, and B. Calcutated values of ag, Eca, and 8 match experiment due to the way Fip)

is determined.

Ni Al B

Property Expt. Calc. Expt. Calc. LMTO Catc.
ag (A) 152 [3.52) 4.08 [4.05] 29 [2.91]
Eean (V) 4.45 [4.45} 3.36 [3.36] 533 [5.33)
8 {10" erg/cm’) 1.81 [1.8t] 0.79 [0.79] 20 [2.02]
Cy (107 ergfem’) 247 2.44 1.14 1.07
Cu (16 arg/em’) 1.47 1.44 0619 0.652
Cu (10" erg/fem?) 125 1.26 0316 0.322
AEL (eV) 1.60 1.60 0.75 0.73
D, (eV) 1.95% 1.94 1.60 1.54 1.59 162
R, (A) 22 223 2.47 245 3.08 327
bee ao (A) 134 233
bec Eco (£V) 4.95 5.3
bee 8 (10" ergjem?) FAT ' 2.12
foc (3/4) aq (A) 278 2.65
tce (3/4) Eea (V) 5.78 5.66
Xrs (%) 0.75 385 4.12
mation can be written as and the lattice constant and cohesive energy of B2

(1) = Sapul ) S o o o i o o

- _ 144t (s ] ata on ase M1 an:
Fu(d) = Fa(@Se), (11) Y NiB :F :

where the prime indicates the transformed function,
The other transformation is

Fa(p) = Falp) + gap {12)

den(r) = dus(r) — 2gnpalr). (13)
[The definition of ga depends on which transformation
is applied first. We apply transformations (12) and (13)
before the scaling of (10) and (I1).} Recognizing that
only two of the three p{r) functions can be indepen-
dently scaled, we obtain a total of five transformation
parameters: Sa, Sa, £x.. ga1, and gg.

The fits are performed in th. following way. First,
San gni, and ga, and the four parameters defining
$wiai(r) are optimized by fitting 10 a variety of expers-
mental data on L1, NiyAl and B2 NiAl** These quan-
tities are the Ni Al lattice constant, cohesive energy,

B2 phase NiB, and $.s(r) is optimized using LMTO
data on L1; phase ALB and B2 phase AIB. In each
case, variable fitting strengths are employed in an effort
to best overall fit. For the Al-B fit, r., was fixed at
3.0 Aand D, = 1.60 A was included to help contzol the
fit. Tables IV and V show the referente and calculated
properties for Ni-Al, Ni-B, and Al-B, and Table VI
gives the optimized parameters.

C. Other experimental comparisons

Some additional comparisons of the Ni, Al, and
B potentials derived according to the above proce-

TABLE V. Metal properties used to fit the Ni-Al cross potential,
Superscripts are the experimental references.

NijAl properties . .
clastic constants, ordering energy (AE,,q), vacancy for- o e Ext ke
mation energy, (111) and (100) antiphase boundary (APB) &, (A} 3.567 3513
and superlattice intrinsic stacking fault (SISF) energies,  Ea (V) 457 4.59

Cy (107 erg/em?) 2.30 2.46

Ciz (107 erg/em’) 1.50 ‘ 137
TABLE 11L. Potential parameters for fec Ni, Al, and B, optimized Cu (10" erg/cm®) 131 1.23
from data in Table II. AEL (V) 1.6 £0.2 1.64(Ni)

: 1.8Al)
Ni Al B SISF(1L1) (mJ/m’) ws s 13

APB(100) (m}/m") 140 = 14 83
Dy (£V) 1.5335 3.7760 s7is2  APB(IL) (mJ/m?) 180 =30 - 142
R (A?. 22083 2117 16517 B3 NiAl proporties
au (A 17728 1.485% ves - dperties
B(A™ 1.6408 33212 20108  ao(A) 2.88 d 287
Fou (A} 4.7895 5.5550 43716 Eqp(eV) 4.51 N 438

4
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TABLE V. Propertics used 10 fit the Ni-B and Al-B cross
solentials,

TABLE VII. Comparisen of unit cell structural parameters pre-
dicted from potentials derived in 1his work with experimental
values. These crysial properties were not included in the determi-

Property LMTO Calculated nation of the potentials.
YisB (L1y) a0 (A) 13 33 Property Expt*® Calculated
Ec (eV) : 480 480
B (10" ergom) 2.56 2.56 AlB; a (A) 3.006 2.85
B (B2) as (A) 235 258 < (A) 3282 452
Eou (£V) 530 530 Ecar 5.298 3.23
"B (Ll as (A) 1,808 1909 Ni.B, ¢ (A) 11954 12.382
Eea (V) n 192 b(A) 29815 2969
B (10" erg/em) 9.27 9.2z cth) 6.5684 7-:’;‘;
E 5.54 s.
B (B2) as (A) 296 2.95 -
Epun (V) 424 4.27

ure were made with two known experimental borides,
exagonal AlB; and orthorhombic NiB,. The pre-
icted lattice constants and cohesive energies for each
oride compound are compared with the observed
xperimental values in Table VIL It should be em-
hasized that the experimental information on these
ampounds was not used in the aciual determination
fany of the potentials.

In general, the agreement between the theoretically
redicted values with eiperiment is reasonably good
vpically about 5 to 7% error) with the exception of the
lattice constant corresponding to the interlayer separa-
on in AlB;, which is overestimated in the simulations
¢ 39%. The predicted cohesive enetgies are within 7%
" the experimentally measured values. Considering
-at no angular dependence has been incorporated into
¢ form of the potentiat for B, these resulis indicate
at the potentials are providing a reasonably realistic
scription of Ni-Al-B materials, provided that the
meentration of B remains relatively low.

. ATOMISTIC SIMULATIONS

Intermetatlic compounds generally suffer brittle
acfure under tensile stress at room temperature, 2
his phenomenon is generally thought to be related to
v insufficient number of slip systems {as in B2, DO,,,

\BLE VI. Optimized cross polential parameiers.

“Pearsont Handbook of C rystollographic Data for Intermerallic Phases,
P. Vitlars and L. D). Caivert (ASM, Metals Park, OH, 1985).
*Smithells Meial Reference Book, edited by E.A. Brandes (Buter-
worth’s, London, 1983)

DO,;, and other complicated structures),® or due o
the weak cohesion of the grain boundary (GB} as in L1,
Ni,X cases, where X = Al, Ga, $i, and Ge. The for-
met classes of materials tend (o fait by cleavage and the
latter fail intergranularly, but all of them have very lim-
ited clongation before fracture. This brittleness pre-
vents practical applications of these atloys, despite their
high strength, corrosion Tesistance, low diffusivity, and
other desirable high-temperature propertics.**® These
intermetallic compounds have attracted intensive atten-
tion recently, stimulated by the recent works of Aoki
and Izumi,” and Liu et al.,"® showing that Ni,Al can be
ductilized by adding small amount of borons in Ni-rich
samples. Addition of boron results in larger elongation
to fracture and transition from ‘nlergranular failure
to transgranular failure. This muroalloying effect of
boron works for Ni-rich samples for Ni; Al NiyGa, and
NisSi, but not for Ni;Ge.* It has also been found that
addition of carbon helps in Ni.Si but not in NisAlL™
Later studies showed beryllium in NiyAl may also help
to duetilize the GB.> Therefore, understanding the basic
mechanism underlying the beneficial boron and stoi-
chiometric effect may be useful in improving other sys-
tems which suffer brittle frarture problems.

The calculation cell used in the present study ex-
tended at least 18 lattice parameters on either side of
the grain boundary. In the z-direction perpendicular
to the grain boundary, the celis were terminated by

Bras drm dan free surfaces, and periodic boundary conditions were
employed in the grain boundary plane (x, y directions).
r((i")’) ;g;g: g-g?i;ﬁi 12).12349 Using an energy gradient method, the structure of the
"(A") P 24852 1:5303 grail:_n boundary was relaxed to the minimum energy
(A} 5.4639 2818] 3.0000 configuration until the maximum forces on any atom
. were less than 5 x 107" eV/A.
Ni Al B
i o osiE 9% = 70 A. Graln boundaries In pure Ni and Ni,Al

v AY 651451 -0.22050 - D.0TRTES In order to understand the boron effect in NijAl
== we have to study theoretically why pure polycrystalline
J Mater. Res., Vol 5 Ng 5, May 1990 959
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Ni,Al is intrinsically intergranularly brittle.” Two pos-
sible reasons have been suggested for the intrinsic
intergranular brittleness of the GB in Ni;Al The first
possibility" is that the GB is less cohesive in Ni,Al
than in Ni. The second possibility is that GB s a
stronger obstacle for the dislocations to pass through,
due to the long-range order of the L1; strycture

Intrinsic brittleness in these materials has been cor-
related by various investigators with such properties as
valence difference,” clectronegativity difference,” size
difference,” ordering temperature,** and difference in
yield strength.* We have performed atomistic simula.
tions to determine some of the basic mechanisms of the
brittleness of the Ni,Al GB. Here W¢ summarize the
tzjor findings of these studies™'® together with some
new results.

The first important result is that the cohesive ener-
gies of Ni,Al and Ni grain boundaries are basically the
same. The ratio of the cohesive energy of the GB with
tespect to the cohesive energy of the (111) surface is
about 0.9, as shown in Table VIIL. From this, we con-
clude that the difference between the mechanical be-
havior (ductile versus intergranu!ar brittleness) between
Ni and Ni,Al grain boundaries is related to the plastic
response of the materials. Initial steps to estimate the
difference in plastic work are presented elsewhere. -9

To study the mechanical properties of the grain
boundaries under applied stress, we have calculated the
maximum stress needed to cleave the crystal along per-
fect planes, e.g., (100), (110), and {210}, and then com-
pared it to the calculated maximum stress needed to
puil apart the grain boundaries. This maximum stress is
a quantity which has been shawn recently by Hack,
Chen, and Srolovitz*® to control the plastic work. The
frozen maximum stress is defined as the maximum
stress (Fig. 1) required to separate the two grains by
cleaving between the two layers closest to the grain
boundary mid-plane without letting atoms on each side
relax. The value calculated in this way is presumably
the upper bound for the true maximum stress. The

TABLE VIIL Bulk cohesive encrgies and average GB cohesive
ENergics (yo) in Ni. Al, and Ni, Al. The <ohesive energics are de-
fined in the Griffith $ERSE, 33 Yo = Ty, ~ yp where v, is zero for
bulk ¢ohesion, and are reported in mJ/m”. The ratio of the average
GB cohesive energy (o the bulk {111) cohesive encrgy is alse given.
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FIG. 1. Frozen stress versus separation curve for pure Ni (216}
[001] tilt GB. The value of au,, for the {210) bulk is shown as a
straight line.

maximum stress [Fig. 2(a)] of different cases for the
perfect (110} crystallographic plane, the {210) GB with-
out boron and the (210) GB with borons at various
locations (discussed below) are shown in Fig. 2(b). The
planes on each side of the GB can terminate in layers
containing either t00% Ni atoms or 50% Ni and 50%
Al atoms. The GBs are denoted as (100/109), or Ni-rich,
when both sides of the GB are comprised of 1% Nji
layers. The other two cases are denoted as {100/50), or
stoichiometric, and (50/50), or Al-rich. Clearly, the
maximum stress of the GB (22 GPaj is about 80¢% of
the perfect (210) plane (27 GPa). The GB in pure Ni
has the same ratio of maximum stress, with 24 GPa for
the GB and 28 GPa for the (210) bulk.

We can also study the response of the GB as the
system is pulled slowly apart. To do this we tlamped
the system 4 lattice parameters away from the GB, and
then applied successive 2% strain steps, allowing the
system to relax to the minimum energy {zero force)
state” at each step. The process was repeated until total
cleavage occurred. The stress strain curve for the (21()
and (310) cases in Ni,Al and Ni are shown in Figs. 3
and 4. A strong difference is seen between the bulk and
GB results. If we take the refaxed maximum stress and
work to pull apart the (210} Jor (310)] ptane as unity,
then we can define the percentage stress and work
needed to break the GB. We find that the Ni GB has
99% stress and 86% of the work, while for Ni;Al, the

Interface Ni Al Ni;Al

stresses are in the range from 87% to 95% and the
Bulk (100) 3510 1712 3821 required work ranges from 42% 1o 55%, as shown in
Bulk (120) 3954 1918 417 Table [X. The clear distinction lies in the relaxed work
Bk ) My e 350 ratio of the GB, since the Ni,Al GBs have only natt
Average GB 2894 1633 2998 of the value of the bulk. The value of the cohesive en-
Average GB/bulk (111) 0.89 0.99 0.85 ergy calculated in this way is about twice as large as

that calculated in the Griffith sense,”*' because in the
960 J. Mater Fles., Vol 5, No 5, May 1990
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FiG. 3. Relaxed stress versus strain curves for pure Ni (210) GBs.

slow relaxation calculations, part of the plastic response
is also calculated in the work. From McLeans data,*
pure metals (Cu, Al) have work ratios of 0.8, while ionic
crystals such as NaCl have ratios of 0.4 to 0.5. In terms
of ideal work for fracture, the range of the ductile-
brittle transition region is about 0.5 te 0.6. This correla-
tion seems to work for oxides and other ionic crystals.
Thus the work ratio results from the slow relaxation
calculations are consistent with Ni being more ductile
than Ni,Al, in agreement with experiment. In contrast,
Griffith energies incorrectly predict that both Ni and
Ni,Al should be in the ductile region.

B. Grain boundaries of Ni and NL;Al with boron

There are two major speculations about what the
boron does in the GB to help to ductilize the Ni;Al
grain boundary: (1) boron increases the cohesive
strength of the boundary,'" (2) boron improves plasticity
at the boundaries,” either direcily or by promoting
chemical or structural disorder.

The first step in studying the effect of boron is to
understand where boron resides in the bulk and
whether boron will segregale to the GB. This study
serves to identify a reference point for boron position
and energy and also tests the validity of the potentials
used for the boron. Boron has been inserted in the
three possible bulk interstitial sites: the tetrahedral site,
the 4Ni-2Al octahedral site, and the 6Ni octahedral
site leading 10 relaxed energies of —2.99, -3.65, and
—4.59 eV, respectively. That the boron prefers an octa-
hedral site is consistent with channeling/nuclear reac-
tion analysis,* though the experiment cannot distin-
guish between the 6Ni and 4Ni-2Al sites.

Stariing with relaxed Ni Al GBs,*"* boron was &i-
ther inserted into the lowest density regions in the grain
boundary or substituted for Ni atoms. Subsequently, the
grain boundaries were relaxed to the lowest energy.>'* "
For the [001] symmetric tilt (210) and (310) GBs we have
studied, the boron prefers low density “interstitial” sites
at the GB to the “substitutional” sites.

B boron is placed in the site of the (210) GB shown
by the square with X in Fig. 5(a), during relaxation the
boron moves 1o the site shown in Fig. 5(b) without
introducing large strains in the environment. {This is
labeled as site 2 in Table X} Placing B at an alternate
site [denoted site 1 in Table X and not shown in
Fig. 5(a)] lying midway between sites 2, results in a sep-
arate structure upon relaxation. The distortion caused
by the insertion of B at the boundary is a small jocal
dilation with a strain in the first shell of abou 5%,
whereas insertion in the bulk leads o larger strains of
about 10%. The boron causes a smaller dilation at the
boundaries because of the larger free volume'™™ at the
boundaries where the structure can more ¢asily adjust
1o an external disturbance.
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In the (310) boundary, if the bor m is inserted into a
capped trigonal prism environment similar to the
(210) case, as denoted by the square with X in Fig. 6(a)
the borm? induces a large lateral shift (25% of the lat-
tice spacing) of the top grain relative to the bottom
grain. The relaxed boron environment is that of a dis-
torted pentagonal bipyramid, with the atoms al the
apices moving sideways, as shown in Fig. &(b). If the
boron is first inserted at the alternate site, denoted by
tl_le square with cross in Fig. 6(a), having a pentagonal
bipyramidal local environment, the boundary relaxes to
the same structure shown in Fig. 6(a).

The topological environment and the size of the
local cluster are seen to have a pronounced effect on
the final structure of the grain boundary. These effects
are usually not considered in electronic structure cal-
culations** on small clusters with high symmetry as
models for the local environment in grain boundaries.
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The change in energy caused by the segregation of
boron to various free surface or grain boundary sites is
shown in Table X. The results show that the boron seg-
regates preferentially to the GB rather than to the free
surface, with a difference of about 1 &V, This preference
for segregation of boron to GBs is in agreement with
Auger studies of free surfaces and fractured grain
boundaries," which show B segregates to the GB but
not to the free surface. In recent studies* B and N were
observed to segregate to surfaces damaged by sputter
ion etching, but they did not scgregate strongly when
t‘he surfaces had been well annealed. As far as the rela-
tive preference for bulk to surface sites is concerned,
hs)wever, the results in Table X do not necessarily in-
dicate a tendency for surface scgregation of B from
the bulk. The current calculations cdrrespond only 10
the relative enthalpy of such processes, and entropy

cifects —which favor bulk over interfacial sites—would

'
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grain boundaries by atomistic simufations

TABLE IX. Calculated maximum stress and total work involved
in cleavage in Ni and Ni, At, expressed a5 a fraction of 1he value re-
quited to cleave the perfect crystal along the corresponding plane.

Stress ratio Work ratic
{210) pure Ni 0.9 0.86
(+2B) (1.00) (0.99)
210) Ni; Al
Al-rich 0.88 G42
Stoichiometric . 0.95% 0.55
Ni-rich 0.87 045
+2B 0.89 0.58
+extra 2Ni* 0.99 0.98
+extra 2Ni and 2B* 098 0.97
+extra I0N;* 099 097
+extra 1ONi and 2B* 0.99 0.9¢
(310) Ni Al
Ni-rich 087 0.59
+1B 0. 0.42
+3Ni 0.98 0.92
+ 6N 098 072
+3Ni and 2P’ 0.92 on
+9N; and 2B* 0.99 093

“Breaks away from GB.

also need 16 be included in the overall free energy cal-
culations needed for such predictions.

In addition to the segregation energy of boron,
Table X also shows the boron-induced change in GB
energy and surface energy. The energies of the inter-
face are calculated by taking the reference energy of
boron as the energy at the 6Ni octabedral site. Based
on this calculation, we find that the boron segregates
to the GB and lowers the GB cnergy. However, when
present on surfaces, boron also reduces the surface en-
ergy. The change in the GB energy, however, is at least
twice the change of 1he free surface energy. According
to the classical thermodynamics argument given by
Rice,” boron thus increases the Griffith cohesive
EOETEY (Yot = ¥a + ¥ — ¥p} and thercfore the cohe-
sive strength of the boundaries, as first suggested by
Liy er al.”®

We examine more closely what boron does 1o the
boundaries in equilibrium and under load conditions.
Substitution of boron for Ni is only slightly beneficial in
increasing the frozen maximum stress. The maximum
Sress, Oou, of the GB is about 80% of the bulk, which
is about the same for pure Ni. The substitution of boron
for Ni atoms at the boundary (in the 100/50 cases) in
Fig. 2 only slightly increases o, Insertion of a boron
atom into interstitial sites™* [Fig. 5(b)] has a much
more pronounced effect on on.,, and the beneficial
effect of boron doping {i.c., raising #.,.) increases with
increasing Ni concentration at the boundary (from

J. Mater. Res., Vol.

NizAil (210} GB

N,

(u)

\JO(%VO

(a)

0P X

FIG. 5. NiAl (210) symmetric 1ilt GB; the circles are Ni, the
squares are Al, and the size indicates the distance from the viewer.
In (s), the pure NiyAl has been relaxed, and s possible site for B is
shown (square with X) before further relavation. Relaxing this ge-
ometry leads to (b), in which the B has moved 1o the center of a
<apped trigonal prism. This is denoted as site 2 in Table X,

66% Ni, to 75% Ni, 10 82% Ni in the GB structured
unit). In the case of the Ni-rich boundary, adding boron
10 a certain site or certain combinations of sites raises
Tma: Of the GB above that for perfect crystal planes.
This implies that boron segregation can effectively
make the NijaAl grain boundaries stronger than the

8, No. & May 1630 963
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TABLE X, Energy at B in various bulk, GB, and surface sites. For
4ll interface sites, the plagar density of B corresponds to one B per
(210) GB unit celi (see Fig. 5). GB sites 2 are indicated in Fig, 5(b).
GB sites | {not shown) li¢ midway between sites 2 in the figure.

Energy
Boron  relative o Ay
energy 8Ni site interface
(Viatom)  {eV/atom) (mJ/m})
Bulk octahedral sites
—— 2T’ sites
6Ni - 459 o
AN, TA| - 365 +0.94
Ni-rich (210) GB
— s
boron site | ~ 634 -1.75 - 982
boron site 2 - 683 —1.94 ~1089
boron site 1 & 2 -1305 ~387 ~n72
Stoichiometric {210) GB
——ametnic {<14) GB
boron site | - 692 -233 ~1308
boron site 2 - 5% =11t - 623
boron site 1 & 2 -12.72 -354 -1987
Al-rich (210} Gb
boror site | - 5.87 -1.08 - 606
beron site 2 - 6% -227 -1274
boron site 1 & 2 -1163 ~3.45 -1936
Subsurface cctahedral sites
———_ =T oclahedral sites
6Ni - 496 ~037 ~ 208
4Ni, 2Al - 530 -0.71 - 398

(2i0) surface
Niterm. sites - 562 -1.03

“The changes of GB energy and surface energy are calculated by
taking isolated boron at 6N octrahedral site as the reference state,

bulk. Therefore other mechanisms, such as dislocation
generation in the second grain, are made possible by
this increase in o, effected by the boron and to a
greater extent by the combination of extra Ni and
beron together at the GB. Omas iNCreases from 22.8 GPa
to 34.8 GPa when doped with B and Ni, as shown in
Fig. 2. A similar beneficial effect of B segregation and
extra Niin raising e, is found for the case of the (310)
GB (Fig. 2). The smaller increase of the maximum
stress is due to the lower boron concentration at the
(310} GB, which has a longer period. Also, boron was
found to increase @, of the pure Ni GBs. From the
frozen result we know that o,,, increases above the
value of the bulk. We would expect that the bulk witl
fail before the GB. This indicates that the dislocation
feaction mechanism proposed by King and Yoo™ for
the case of boron-doped Ni alloys™ cannot fully ac-
count for the boron effect. The boron effect on the mo-
tion or emissicn of dislocations at the GB is currently
under study.

A pure Ni GB doped with boron s shown in
Figs. 7a} and 7(b). The sample fails at the GB when
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FIG. 6. NiyAl (310) symmetric tilt GB {symbols as in Fig. 5). In
(a). the pure Ni Al GB has been relaxed. and two possible sites for
B are shown {square with X and square with cross). Relaxing ei.
ther of these two geometries leads to the one structure shown in
(k). in whick B is at the center of a pentagonal pyramid

there is ro boron, as expected, but when doped with
boron, the sample fails away from the GB with almost
100% of the maximum stress and 100% of the work,
as shown in Table (X.

For the Ni,aAl [00/100 {Ni-rich) GB, the results in
Table IX and Fig. 3sho. that the T5 (210) GB with one
monolayer of boron increases the relaxed maximum

J. Mater. Res, Vol. 5, No 3, May 1990
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Ni {210) GB AFTER RUPTURE

FIG. 7. The structure after slow deformation for the Ni {210) GB
without B {a), and doped with ooe monolayer of B {b). The GB
with boron breaks away from the original GB plane.

stress slightly, from 87% to 90%. One monclayer of
baron cortesponds to twe B atoms per unit cell. How-
ever, the work ratio shows a much larger increase, from
46% to 56%. In stoichiometric sampies, the exchange of
Ni and Al at the GB is not aflowed because the energy
penalty for this exchange is 0.2 &V 10 0.8 ¢V, depending
on the initial GB chemistry. The substitution of Ni into
Al sites at the GB is possible when the samples are Ni-
rich; this fs favored by —~0.14 V. In this case, the sys-
tem shows an increase in stress to $9% {98% in work)
and undergoes cleavage away from the GB [Fig. B(@)]-
A similar increase in cohesive properties occurs When
the GB is Ni-rich and has segregated boron, as shown
in Table 1X. The fracture path is away from the GB

[Figs. 8(b} and B(c}]. Cosegregation of Ni and B 1o the
GB has an energy advantage of —0.46 eV per boron. The
GB with extra Ni and boron has a stress of 99% and 2
work value of 97%. This is a considerable improvement
in the cohesive properties from 87% in stress and 46%
in work.

The process of breaking can be visualized by the
snapshot at various Stages of the straining process,
as shown in Figs. 9(a) and 9(b), for the cases without
boron and with boron, respectively. (This particular
simulation is done with the external clamps 2 a, from
the boundary.} In the initial stages, for 0% to 14% ap-
plied strain, no major change occurs. Al 16% strain, the
GBs without and with boron start 10 develop cavities at
different positions. At 22% the GB without boron has
fractured [Fig 9(a)] while the GB with boron still holds
1ogether with some cavities between the boron posi-
tions [Fig. 9(b}]. As the strain Jevel increases, the GB
with baron undergoes further necking and a change in
direction of the cavities unti) it breaks at a strain level
of 34%. The cleavage path is differemt from that ob-
served in the case of the GB without boron. When the
GB with boron breaks, the baron takes the surrounding
atoms with it. These neighboring aloms have actually
gone through a large migration before the GB breaks
[see atom A in Figs. %b} and 9(c)}. This large migration
is part of the plastic response of the GB. One could
view this result in the context of the McMahon and
Vitek # who conclude that it is the change of the GB
cohesive energy which controls the plasticity. The (310)
GB with Ni saturation (4.5 monolayers of extra Ni at
the GB) breaks at larger strain than the pure GB but
still breaks at the boundaries. A large change occurs
when the GBs are filled with one monolayer of boron
and (at least) one layer of extra Ni. The fracture path
does not go through the GB where the boron is, but
runs close to the first interface of the saturated Ni and
the bulk NizAl layer, as shown in Figs. 8(c) and 10c).
The results clearly show that the GB in NisAl with the
best overall propertics is the one with boron and extra
Ni simultaneously at the grain boundaries. The GB be-
comes much stronger than the pulk. Therefore, the
samples fail in the bulk transgranularly instead of inter-
granularly, as shown in Fig. 10.

As shown in Figs. 2~-4, the local tensile cohesive
strength of the GB is 25-30 GPa, which is close 1o the
theoretical imit of ~E/10. This is not the same as the
applied stress when the sample finally breaks, because
we are studying only the response of the region local to
the GB (10-20 A). The stress close to the theoretical
strength is expected when dislocation pile-ups are im-
peded by the GB or other defect before the microcrack
¢an be initiated. We note also that the stress before
fracture in the slow straining approach is ~90% that of
the frozen method. This is expecied, because the sys-

$.P. Chen of a).- Etfects of boron on Ni,Al grain boundaries by atomistic simulations

NizAl (210) GB AFTER RUPTURE

1IG. 8. The structure after slow def i i . . .
and boron (c}, il efocmation for the Niy Al 1007100 (210) GB with extra Ni (a), with I monolayer boron (b}, with extra Ni

tem will fail at the weakest link instead of failing at an
idealized plane. The effect of extra Ni, B, and § on the
slip of a dislocation across the GB will be published
elsewhere.

~ The chemical disordering that occurs when extra
Ni is present at the Ni;Al GB causes the GB region to
b_e llkt? an fee (gamma) phase with ~2% structural
distortion—in effect, an fcc Ni GB with larger lattice
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spacing (Fig. 11). In the present study, we find that this
chemical disordering (or the existence of a second
phase at GB) strengthens the GB. This resull seems to
have a bearing on recent experiments®® on NijAl
doped with a few atomic percent of Fe or Mn, in which
they found that the sample is ductile %hly when the GB
has a second phase. If the GB is single phase, then the
polycrystals doped with Fe or Mn are still intergranu-

oy —— .
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NigAl (210) GB

3 15 C)
PFO0L05000302 508
CPOLTOLEOS 28

arly brittle.” The chemically disordered GB attains the
righest cohesive strength when boron scgregates to the
3B, as the GB then behaves very much like a pure Ni
3B doped with boron, as shown in Figs. 7, 10, and 11. It
135 been shown that boron helps to strengthen the GB
sven with sulfur at the GB.">* Therefore, the Ni;Al
ase is like that shown in Fig. 11(b); the second phase
‘zc) at the GB plus boron strengthens the GB as well as
mproves the plasticity in the GB region. Consequently,
he sample breaks at the fec-L1; interface in the bulk,

This mechanism for ductilizing the GB with a sec-
»nd phase and a dopant can be viewed in another way.
f the fcc second phase GB has stronger cohesive prop-
rties than the correspending L1; phase in the matrix,
hen it will be desirable to make the GB fcc phase, if
wssible. One can then look for elements as dopants for
he second phase at the GB which are known 10 help
he intrinsic cohesive strength of this second phase. In
wr case, it is the boron in pure fce Ni. Similar mecha-
isms may operate in other systems, such as FeAl (B2),
there an Fe bee second phase at the GB and doped
7/ith carbon or boron could make it ductile. Based on
his mechanism, we conc'ude it is important to under-

o
O FIG. 9. The slow strain breaking pro-

(b} tess of NijAl 100/100 (210) GB: (s} 22%

sirain without baron, (b} 22% strain with
half menolayer boron, xnd (¢} same us
(b) with 34% strain. Significant atomic
movemen! s ohserved near the boron.
The B appears 10 be halding the sample
together while cavities form between
the borons.

stand pure metals with other dopants to be able to un-
derstand intermetallic compounds.

These calculations on the effects of B on grain
boundarirs in NiyAl are generally in accord with many
recent c<perimental studies, although there are
conflicting reports conceming certain aspects. The cal-
culations indicated that B will tend to enhance cosegre-
gation of Ni to the boundaries. Atom probe field ion
microscopy by Sicloff e al.**" found GBs of boron-
doped Ni-rich Ni,Al were, in fact, Ni-enriched relative
to the bulk, while boron free samples did not show any
measurable Ni enrichment. In contrast, George ef al.™*
used Auger analysis of hydrogen charged GBs to look
for Ni enrichment and found only a slight effect (0.6
10 0.8% more Ni at the boundary compared to bulk).
This was regarded as negligible when compared (o their
experimental accuracy of 2%.

With regard to the issue of disordering at the
boundary, Mackenzic and Sass™ in lattice imaging
studies found a 50 A disordered region on two grain
boundaries in B-doped Ni-rich Ni,Al. Baker and
Schulson® also found a second phase present at some,
bul not all, B-free Ni-rich grain boundaries which coutd
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FIG. 10. The relaxed structure of the (310) GB in Ni, Al with extra Ni and B: (a) 22% strain’ (b) 24% strain (just before fracture), and

{c) 26% strain (just after fracture)

extend up to 200 A in width and possessed a disordered
fce structure, When B was present, this disordered fec
phase was observed at all boundaries. Krzanow;ki"‘
employed x-ray microanalysis to study GBs in Ni,Al
and found that superlattice images persisted all the
way up to the GBs.

V. SUMMARY

Embedded-atom style potentials have been gen-
erated for boron-boron, boron-nickel, and boron-
aluminum interactions based on data obtained from
electronic structure catculations. This procedure is use-
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()

FIG. 11. Schematic drawing of the fracture path in a NiyAl GB:
(4) before B addition, and (b) after addiog B and/or extra Ni. The
relavionship to a Ni GB is shown.

ful for simulating complicated ternary systems for
which experimental data are not available. The results
show that the interstitial site and segregation behavior
of boron to the GB are correctly predicted. We also
find that boron segregates preferentially to the GB
instead of the free surface. Furthermore, in Ni-rich
samples, Ni substitutes into Al sites at the GB and,
together with boron, makes the GB stronger than the
bulk. Therefore, the boron and stoichiometric effects in
ductilizing Ni;Al GBs are largely understood. Calcula-
tions of the actual fracture toughness,">* dislocation
generation,” the sulfur embrittling cffect,'” and other
intermetallic systems are currently underway. The best
criterion for the cohesi%e properties seems to be the
work under the stress stfain curve, but the maximum
GB cleavage stress obtained using either “frozen” or
“relaxed” conditions is also very indicative of the boron
effect. The maximum stress, however, does not delineate
the intrinsic differences between Ni; Al and Ni. Rather,

these differences are clearly demonstrated only by the
work ratio of GB to bulk under relaxed conditions.

The success of these simulations in explaining
many of the phenomena involved in the effects of B on
NisAl grain boundaries lends credence to the approach
taken here to obtain interatomic potentials from prop-
erties calculated by electronic structure band calcula-
tions on artificial structures. In cases of other types of
materials where there may be limited or no experimen-
tal information, this approach offers a promising route
for theoretical simulations to aid experiments in alter-
ing the properties of materials in desired ways.
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