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INTFODUCTION =

Under apgrcpriate cerditions, the light transmitted by an
absorptive cr dispersive medium placed inside an optical
cavity can vary discontinucusly and exhibit a hysteresis
cycle, This effect, which is called optical bistability, has
bzen predicted atout ten years agct—3, ard has been ctserved
first by Cibbs, McCall, and Venkatesans, and later by a
nurmber c¢f cther groupss-=", This has led to much renewed
interest in this protlem. o0 the fractical gide, 1t
presents hurercus pctential applications in cptical data
processing (cptical memories, transistors, ...), pulse
foraing devices, et¢,.. . Theoretically it alsc shows many
fascinating aspects, since it is a beautiful example of the
creation of an or dered sttucture far frcas tharmal
equilibriue,

These many facrts under which optical bistability can  be
studied have wrade {fot an wunusually wide spectrum of
physicis;s and engineers working on it, and fpapers on
optical bhistability cover a wvhole range of interests, fronm
elabotrate non-equilitrium non-linear statistical mechanics
to very down to earth dcvice consideraticns.

Althouah this ie scmawhat of an oversimplification, the
theoretical vork on optical Lbistability car be divided into
two Ssubgrcufgs. The first one is concerned mostly with the
steady state aspects of the problept *-13,13-17, Here, the
statistical prcperties of the system can be studied in great

detail, and infcrmation on the spectrum of the scattered

light, for instance, may ke cktained, Alsc, analcgles may be
drawn te cther systame, ( resonance fluorescence, chanical
reac*ions, phase transiticns, ...Y), leading to a batter
gereral unda2retanding of non-equilibrinr rcr-liinedar systems,
I+ is irpcrtant tc note that w2 are concarned hers with an
optical SYStem, for which rany extrerely accurate
experimenral metheds are realily at hand. Thus, a
quantitative verificetion cof the thecretical predicticns is
much eagier than, say, in the case cf cherical teacticns?0,
A seccnd grcur a theoratical contributions is concerned
mostly with time-dependant eftectsé, *—11 14 Heuaever, the
nen-linear nature of the systam makes the problem
practically inreseible to solvs analytically in closed form,
and one is torced to one of twe appfrcaches: aither a
linearized time-dependant aralysis, or a numerical study of
the oproblem. 3 +the time-derendant resgerse 15 chviously
crucial fcr pctential device applications, one does not
expect linearized analyses?*!! to be quite sufficiant.
However, they are very important in that they suggsest
scaling laws which  heopefully are still wvalid in the
corpletely time~derpentant problamn, Put on~ aventually has to
make ones hands dirty amd require the helr ct cnes favorite
cotputer.

This paper is concerncé precisely with this last aspgact of
the thecry cf cptical bistability. The primary gquestion
that we address here is to deterepine what are the crucial
parameters which determine the switching of an optical

bistable device form one tranch to the cther.



Theré are several ways to approach this problem, which have
.to do with how accurately one wishes to describe a given
systeo, TIf cne if interested in determining general scaling
laws, it is Letter to limit the analysis t¢ the simplest
possible sitvaticn vhich still presents all the key
characteristics of optical tListability., One cbtains then
mupmerical results uhich do not have too much gquantitative
teievance, but which should apply to a large class of
devices. It is always possible to later on imptov2 the model
to obtain the hard numters needed by the experimentalist
next docr. A

In Section 2, we discuss kriefly the model that we have uscd
ia our nurerical werk, and summarize the key results of the
steady-state analysis which we vill need.

We then froceed in Section 3 by analysing the response of
the system to a step function idncident field., This leads
natuyrally to the distinction between the sc-called good
cavity and hal cavity limits ot optical bistability.

The effects of critical slowing down, which can alsa be
chserved 1in the response to a step-functicr incident field,
are the subject cf a separate discussion in Section &, A
simple physical picture of this efifect is freszented.

In Secticn 5, we illustrate th2se results for a system of
practical interest, namely a bistable device operated as a
msemory. Here, we also analyse the effects ¢t externat ngi se
superirposed to the driving field. Although the analysis
becomes in principle very complex in this case, we shov that

the dyramics of the system can still be largely understood

in terns of intuitive argunents based cn the resgults cf the

deterrinistic aralysis.

Finaliy,

Sectiorn € is a suwmary and conclusicn.
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ZECTICN 2 :

We discuss optical bistability in terms of a simple npodel
vhich has ‘teen analyzed tirst by Benifacio and Lugiato®,
Here, the active medium is described as an ensemble of
two-leval atoms placed inside a Perct-Fabry cavity and
illurdinated by an incident lasar field. W2 assume that the
atoss and the incident tield are resonant, and also that a
mode of the cavity is at the same frequency. This is what is
called abscrptive bistahility, as opposed to dispersive
bistability, where no resonance condition ie assumed.

Thera are a few protlems associated with ccnsidering such a
model, The rcst bethersceme 13  that uap to now, most
experiments have teen ccncerned w1th disparsive
bistability%-f .The reason for that is quite straightforward,
namely that it is much €asi€r to cbtain cptical bistatility
in a4 dispoerilve medium, This has to de with the tact that
absorptive bistahility requires the bleaching of an
absorber, which takes a corsiderable ascunt ¢f ercrgy, while
dispersive bistability involves a change in index of
refraction, which does not require any abscrpticn of energy
and can ke achieved at quite lov powers,

Howavar, absorptiv. LEbistatility has several thecretical
advantages which, at leact for a first stady, largely

compensate its pitfalls, First, this 1= a relatively
straijhtfcrwird avueralizition of *ha probles of resonance
tluoirenoence, which hass leen extersively ctudied recantly.

Seconl, cre can take (in the semi-classical  avproximation)

the electroragnetic field to be real, which =saves a

‘gonsiderable amcunt cf computer time,

mbsorptive optical tistakility can be understoced quite
sirply in terms of the followirg argument: if the incident
field is very weak, the +two-level atcms abscrbe it, and
essentially fncthing is transmitted, The situatiom remains
unghanged until the incident f£field is made strong enoudh to
bleach the medium, at whichk gpcint the system beccomes
transtarent, with a c¢onsecutive abrupt increase of the
transmitted 1light., The key to understani bistability is to
realize that thers is then a consideratle amount of optical
enerqy =tored inside the cavity, and whcse scle purpese is
to keczp the apscrher bleached, The *rick is that whan one
decreases +he incident fifld, all this ernerqgy can Xkeap the
absorter blesached for wsaker incideat fields than on the way
up, {Clearly, however, +this tleached r1egire cac not be
sustained for arbitrarily small fia2lds, so that the
transmitted tield eventually Jjumps ©back dowd to the
ahserting characteristics. Howaver, the net result is a
hysteresis cycle of the transeitted light az a furcticn of
the incident field, as schematically illustrated on Fia. 1.

Sinca weo are dealing with an abccrber, we d¢ nct expact
guan*tur fluctuations to play a4 very depcrtant ctol=z, and
therefars, will descrihe  the el2ctric tield classically,
The proklenm can  then re formulated wathewmatically usging
standira techniques as Jdescribed for instance in ket 27, The
only difficulty nere is that sincr the field becunces back

and fcrth brtween the aitrors n* the cavity, w2 dc¢ not have



a sirple proragation problem. There are two components of
the electric field propagating in ofposite directions, as
shovn ¢n Piq 2, and expressing it as usual in terms of a
slowly varying amplitude,it reads:

-;(M’.t "’hnt‘ "l‘*’lt' hn"")
€(zt) = E.(zn)e + Eglat)e + CcC G1)

As we shéll see, tﬁis leads to considerable difficulties {in
the =cluticn c¢f the problem. Under certain circomstances,
however, one can argue that ¢the tields are hcrogeneous
inside the cavity, and in this case the grcragation effects
¢can Lte neqglected, 1This is the so=-called mean~field
approximation, and we will later discuss it 1n some more
detail. An alternative approach, vhich considerably
simplifies the structure of the e¢quations, is tc censider a
ring cavity., Iw that caro, there 135 only one direction of
ptopajgation , and thec steady-state problem can bhe solved
analytically in closed form, without having to neglect
propagation effects, fowever, since mcst c¢f the results that
vill kg discussed later have been obtained in the mean-field
limit, we will not consider the ring-cavity problem at all.
Also, all of the experimantal results.up to now have Dbeen
oktained with a Perot-Fabry cavity.

let us go or and sce hev the atcrs interact sith the

electreraqnetic field, The in%teraction Hamil*onian is
]

VvV = &.¢ , and the evoluticn of the atcmic density

matTix is5 qiven by

S:r..cL = - ;‘('— [’V:bfb&-k c.c.}
e = - Y, S +{i [Vm35&+ "“_\ (2.1)

éﬁ—b' = - (i« Yj_)fd}: 1'_&' /\Cb (gu.m'-e-bb) y

where Nf;L ic matrix element of V between the atomic
states, and Y, =!fT, and Y, =‘/11 are the usual two-leaval
systep decay rates. The electtonmagnetic field is governed

hy Maxwsll's wave equation

(3: R A [ 4 P (2.3)
P I TS ! c* ot
The relz=vant atecmic guantities are of course the
polarization
Dpo= + é ) (S’ub-frm) (2.4)
2 mws

and inversion

)

Pay)= = (fen + Sua) - (2.5)
2 atows

The alqebra which 1leads to the equatacrs cf wmctien is

straightfcrward, and nesd not be rep=ated here. The key

trick is to expand the polarizaticn and inpversicn as

gt vi,e) Sk -t )
Plzr) = F.(at)e + Blzph)e S
- “Ue 2 (2.4)
Dle) s D ep) + b lnte o)
parforming the stardare slewly varying anplitude

approximaticr, we thart cbtain
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The notaticn 1is that cof Bonifacio and Lugiato. T1 is the
envelope ot the part of the inversicn wheee rapid space
;arlation goeg as liiz’2 . It ©flays a very impcrtant
pkysical rcle, since it couples the forward and tackward

waves in the cavity, P| tS the mcdulus ot the atonmic

dipole mement, and

- (‘HTLO.)V’ (2.8)

| 'R

where W, 1s the frequency ot the driving tield and V¥ the
volums cf the cavity. {Note that the explicit dependance on
the volume disappears if one €xpresses the atcric quantities
in teres cf depsity rather than number of atoms H.)
It 1is important to realize that the set ct eguations {2.7)
ig the result of a trunction, where all terme cecillatinyg at
a fregquency higher than ZJQO have baen neglected.
carmichanl!'? has studicd in detail *he validity of this
truncation, and has showsn that it leads to ~eorrors on the

output ftields on tbhe order of ahout 104, typically. More

10

serious perhaps frem a cenceptual viewpoint, the truncation

"alss qives a gualitatively incerrect cyatial dependance of

the backward field.Althougk Carmichael has developed a
nathol of solution of the protblem which, at steady-state,
do=2s nct reqguire 11 truncation, No  si1ch  technigue is
availabl= in the timz=dependant case. We will theretore use
the set ot eauvations {2.7), kKeeving ir zind that it Jives
qualitative results c¢nly. XNote that for the case of a ring
cavity, the <coupled *axwall-Schrcdinger <eguations form a
closed set ,so that ne truncation 1is necessary and the
probler is considerably siuwmpler.
The last thing that we have tc do is tc determine the
boundary ccnditicns of the problem. This -does not present
any particular cdifficulty, and we find

Er(v) = VT Eclog)

Eg (o)) = IR Ex (o)) (1.5)

Eo(Lt) = VR Eg(Lb) « 8T € (x)

Eg(Lt) = VR Ee(ut) +IT Ep (&)

Here, we have followed what seems tc be a tradition in
optical bistapility by labeling z = [ the input mirror and
z=10 the output wmirror. &g (£;) it the 1incident
(transmitted} field, and F ,(T =1 -F), is the reflection
{transmission) coefficient cf the mirrcrse.

We are ncw cver with the mathematical modeling of absorptive
histability. WNote that, daspit: 23 series of rather crude
appgoximations, we are still ccnfronted with a set cf

equations with is very difficult to handle, even
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humetrically, However, as already advertised, wvwe have one
last card to flay ,that is, the use of the mean=field
approximation. It has the areat advantaq; ¢t gqetting rid of
the spatial dependance in fgu. (2.7), So that one is letft
with ordinary ditferential equaticns. The grice that one
pays for that is that all propagaticn ctfectz are then
neglected,
To pecform the mean-ficld approQimaticn, ¢ne fproce2ds by
first integrating Tqu, (2.7) over the length of the cavity.
One obtains then integrals of the fcra

—_ : L

Re - 4 JnAmB(z) (2.00)

=]
where & «could be for instance an 2lectric field and B a

polarization. The key point is then tc realize that {f the
tields are very hosogencous alona 2, onhe can to a good

approximaton factorize the integral as

L L
A~ AB = L[4 ARG a3 Q)

_ : G A
One is then lmft with a reries of 6 ordinary differential
equations which describe the dynamics ¢t the spatial
averages of the fields, polarizations, and inversions. Since
we have by now lost all hopes of doing a clean thecry, we
pay as well gqo a step further and assume that the forward

and backward fields are equal. The number ot eguations is

then reduced to 2, which ,after some ccswetic algebra, read

s = (x/Mw)(xd-s)
d . (-2y/x)[xs + (a_u] (2.12)
v [20s o)

12

where we use the digensiorless inversion 4, polarization p,

and fields x and y:

J-= %(60*61)

s = ?\j: JXL/XH \]-gT) (.\:;F'LEEE'T))

l
T3
.o (2.13)

= —_—

V\]Kﬂ’z

5 fﬂqu

YT
where ‘u:\[?‘u’ . We have taken Y” = ZKL;_QK K ois
given by
c U (2.1%)
L (lfdﬁr)

and is the inverse life-time of the field inside the cavity,

hlgebraically, it +was introduced in the equations by the
spatial integqration and the use of the bcurdary conditicns,

C is the sc-called bistability coefficient:

AL (247)
217
where of' is the atsorption coectficient
[ A——
. NATT (140
ATV Y.

As we shall see later on, C is the only coefficient which
determines the existence of btistabilaty in the @pean-field
approxipaticn, The dot expresses the derivative with

respect to the dimernsionnel tire

T = Kt. . (a9
Pefore going any further, let us make a fz2w comments on the

variables that we use in Equ, (2.12), and on the mean-field

e

A

T

-
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approximaticn.

One expects intuitively the mean-filed aprrcximaticn +to be
valid ter highly reflecting mirrors, and this turns out to
be true, However, this is not a sufficient ccndition, and
it has been ehown both for a Perot-Fabry!'® and for a ring
cavity® that cre also needs the absorption of the medium to
he weak, Matheratically, the condition cf validity of the

mean-field aprreximation is%:

{ozL — O (2.18)
T — 0
with
C = 4_\: - (_Qv\s*tl\ﬂb (2,'1)
ra s

The dorain of validity of the mwean-t1eld approximation 1its
shown on Fia, 3 , where we have plctted the value T: of T
for which the deviaticn betw2en the results of equ.(2.7) and
(2.12) reach 107, at steady statc.The pean-tield theory is
valld helow the curve,

The reascn behind all the ottortl invastad in writinag the
equations ot motion in dimrnsichnless fcecrm 18 chviously to
prepare a numerical study, Notz that x and y are the Rabi
frequencies of the transmitted and incident fields, divided
by Vh;ﬁ] T, hMlso, we have followed the convention of
Bonifacio and Luqiato for the definiticn ¢t the inversion,
ard its wilue is= 1 fand mot - 1 as usual} when the atoms are
in the arcurd stite (g=2 %q, 2.%).

To conclnde this scction, we traetly rtederive the
histability state equaticn  of ponifacio and Luqiato,

starting from Fqu. {z.1:}. At steady state, all the

14

derivatives are 2qual to ¢, and the resulting algebraic set
of equations can L& solved trivially tc give the incident

ficeld y as a fuhction of x:

2Cx (2.20)

= X +
3 b+ x 2

This equation of state has two extrema for € > 4.When
inverted, it gives then the celetrated S-curve cf optical
histaktility, whecse only stabla bhranches are those with
positive slope., This is surmarized cn Fig. B, where all th=
important rtarameters whick will be uszd in the remaining of

this parper are alsc indicated.
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SECTION 2 :

We are ncv in a gezitien to anmalyze the trarsient behaviour
of an cptical bistable device, ¥e limit our discuasion to
the mean~field limit, described Lty the eet <cf equations
{2.12}.° Also, =ince we are not particularly interested for
now in the transitionm region tetween moncstable ({C < 4) and
histable {C > #) ©behaviour, wve chése tc wcrk well into the
bistakle dcrhin, and thue, most of the results that ve will
present are for € = 2L, When C is deterrined, cne sees from
Equ. {Z.12) that we are left with two parametars only, naaely
¥ and Y.

There are nc patticular ditficulties asscciated with the
numerical soluticn of Pgu,(2.12), and Jjust atomt any
standard integration routine will de. We have chcsen to use
a fairly ~n~laborate owne, the so-called GEAR rcutine2®, It
presents the advantage of having an antomatically adjusted
{fntegration step, which rakes for an cptimua conput&ticn
time, This beccres impcrtant when one is faced with the
submission of  thundreds of jobs, as is the case when the
effccrs of exterral ncisfe are studied.

We proceed bty first analyzing the respcnse cf the systea to
a step-functicn incident field, at t = €, the initial
conditions are determined by the steady-state sclutien of

Equ. (2. 12},

e = X
2Cx,
\Io = Xo * r——:—;z—
dy = 1/(1vxd) - (3:1)

So = Xo/(" X: ) ]

16

and at t = 0 + £ , the incident field is switched to a new
value 4, which takes the device on the wurprer bistability
tranch. on fig, 5 and 6, w2 show the result of such a
computation for ¥ =log and K:O-l{. Clearly, the
transient behavicur of Fhe device is gualitatively different
for these two linits.

Let us first analyze the limit where X’<< . . For short
times, one otserve a smpall tump cf the trarspitted electric
field, This is a feature that we have obtaiced in all ¢f our
runs, and typically it is bigger if X 1is initially close
to zeroc than close to 1. It is due tc the ccmbiped action of
the filling of the cavity by the new electric field, which
occurs ofi a time~scale c¢n the order ¥<'t and a change in
polarization in the active redium {(d¢tted lire <n Fia. 5.)
After sorme time, the active medium is bleached, that is, the
inversion qoes to zero {dashed line cn Fig Sk At this roint,
the atermic mediup is transparent, and the transmitted field
becomes =ssentially that of an empty cavity. Thus, the
system junmps from the lower to the upper bistabilaty branch.
Fig 5 shcws that this switching is not monotonic. Rather,
there are oscillations ip the transmitted field x, and it is
casy to verify that they are precisely at the Rabi trequancy
qigy|/2{rK , whick are a characteristic ot single aton
dynamics.

Once thz systeam reaches the regime of Fabi oscillations, it
always hohaves exactly in the same way, irdependartly ct the
initial conditions at t = C, Thus, the switching is clearly

over by then. Tt is then possible to define a "switching

P

R i

B4 o it
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tine® ks as,say, the time necessary tc¢ reach the first
maxirmum cf the Rabi cscillations,

Before discussing this switching time ir detail, let us
compare these results to the dynamics when K’ >» K, Here,
the qualitative tesronse of the systen is changed
completely. The most otvious differemnce is that the
switching trcm the lower bistability branch to the upper
branch is m®onotonic, and there are ng cscillaticons at the
Rabi frequercy, Mcre importantly perhaps, if one forqets for
a moment the funny delay for stort tirmes, cne finds that the
grovth cf the trarsmitted field is exponential, with time

canstant X + This is evzentially independant cf X, and
€, for C nct tco close to 4, Thus, in this case, there |is
nbthing reminiscing of atomic dyrampics left. The cavity
drives the bistable system complately. ‘

For this reason, this last limit E’ » K has been called
the ygood quality cavity limit, as offposcd to the bad c$v1ty
ligit W > K . Thir ir somewhat of an unfortunate
nomenclarure, as it scems to irply that a Ferct=-Fahry with
highly reflecting mirrors (high-0 cavity) will 1lead to a
dynamic of the type shosn on Fig. 6. One should be avare
that this is not necessarily the case, as the "“gcod-cavity®
limit is in fact a combin=ad characteristic of the atoms and
the cavity, In particular, one can at least in rrinciple
think ﬁf using twa different types of atoms with a same
cavity , and reach the tvo different limits.

The fact that thern is no trace of atomic dynamics left in

the gaod cavity 1limit is not surprising. Father, it is a

18

general feature of systems where twc subsysteums eovelve on
very different time-scales, It can be shown in all
genorality that 1in this case, the slcwly varying systemr
drives the ragpidly varyiny of2. In theoretical physics
jarqon ,one Says that the rapidly varying variable €fcllows
adiakatically the cther one, and it can be "adiabatically
eliminated", One is then lett with equaticns c¢f wmotion
cohtaining ¢nly the slow variablas, that is, the dynmamics of
{xyhhﬂah

the systen isYincependant cof the raridly varyinqg svhsysten.
This adiabatic elieination technigue will be further used in
the next section to discuss the critical slcving deown.

We ncw return to the totior of switching time, and first
analyse it in s¢we more dotail in the bad cavity limit., We
procead by first studying the effect cf the initial state of
the bistaple device on the value of X, .The results of these
calculations are summarized on Fiq. 7, where we have plotted
ES fer varicue values of C, as x_, gqoes from 9 to 1, that
is, as the initial state ranges over all the lower
bistability Ekranch,

Thera is a dramatic change as C 1s varied from C = 10 {weak
bistahility) to C = 22 ({strong tistability). This can
qualitatively be understood if ore resembers cne cf the key
features <¢f optical bastability, nanely that in the lower
branch, the atoms are driven gggperatively by the reaction
field inside the cavity., it is this cooperativity which is
the origin cf bistability, and what differentiates weak f{or
no) -bistability from strong tistability is how strcngly the

atcems ccoperate, In a weaxXly bistable system, the atoms are
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not Mocked" together very strongly, and cne can understand
that it is easier thenm to switch to the upper tranch. Thus,

ts must ke smaller for C small, The seccnd feature

exhibited on Fig. 7 is that *s reaches a smaximum for
X =VIIC (see Tig. 4) .It then decreases monotonically

as x, is further increased, At the presert, we d¢ not have

a good exrlanaticn for this tehaviour. We ncte, howvever,

that for larqe ¢ the thortening of ES becones siqgnificant,
and it may te important fcr device agpglications.

Unfortunately, as will be discussed in section 3, it may be
difficult in practice to work close to the limit X, =1,
because we are then mauch more sensitive tc external noicse,
Therefore, scre trada-otf hetween fﬁst switching and

reliable operation will have to be considared.
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SECTICH 4 =

Up to now, we have varied only the 1initial state of the
bistable device, and have s+*udied its resgcnse tc a pulss
which takes it well into the upper branch. In practice, one
would like to operate a device with as weak a draiving field
as possitle, Therefors, ore is interosted in studying the
dynamics of the system for incident tields which bartely take

it abeve the critical point to the upper branch.

i

This gquestion dis further  wmctivated by the linearized
analysis which predicts the existence ¢f a critical slowing
dewn in the vicinity cf the critical'point. Ehysically, this
reans that if the system 1is taken slightly out of
équilibrium, it will take an infinitely long time to return
to it. This has of course Gpotentially very iorortant
implicaticns, since it wmay put limitations of thé kinds of
signals that can te processed in a bistable device. The
questicn that we address here is therefor2 to determine in a
complatly time-dependant analysis to which extent the
ptedictions of the linearized analysis will be realized in
practice.

It is easily sShown that the concept cf critical slewing down
applies equally tc the good and bad cavity limits. However,
the apparition of Faki oscillaticens in the last case makes
the inéerpretation of the results scmewhat gcre cemplicated.
For the sake cf clarity and conc¢iseness, we therefore limit
our-analysis to the good cavity .linit. This presents the

further advantage that in this case, we can adiabatically

L b T T
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elininate the gtonic variakles, as discussed earlier. This
. leads to a gparticularly siwmple description of optical
bistability, in which critical slowirg dcwn can be
undarstcod immediately in terms of a mechanical analoqy.

Wa proceed by first presenting the results c¢f cur numerical
anpalysis, Initially, the systes 1is taken tc be at

steady-state with no driving field present:

Yo= 0 , Y, = O, d,:'l' S, 2 O, (%.1)
and at t =0 ¢ ¢ the incident field Yy, is svitched eon .
on Fig.?, we have ghoun the transmitted field as a function
of time, for different wvalues of 4, . In thieg exanple a
bistatility coefticieont € = 20, aud tha mecan-tield 1limit
have been used, As Y\, becores clcser ard clecser to the
critical gcint 9. Foo+ (=21}, one observes the
apparition of a sigrificant delay  tige tD before the
deviern swidtches trom the lower to fhe uppet branch  of  the
bistability cutve. (This is prrcisaly the “funny delay™ that
we hat chosen to dqgnore  in Sccticn 2.) Hewevor, the
remarkatle frature is that once tho switching is initiated,
the transwitted field grows exponentially with time constant
K", independantly ot g, - (This strictly hclds anly for
strongly histabhle devicesn, that 1s C >>4 , For € on the
aorder of 4, the transient responsc is rere ccrplicat2d, and
one does not obttain a simple exncnential grcvth,)

The agpparitien cf a large delay as Y, =y, can be undarstood
simply in toras ot a mecharical analeqy. 1c shew it, we
proceed by first adiabdtically eliminataing ‘the atonmic

variahken,  Technically, *his 15 dene by necglecting the time
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derivatives cf & an d4d in Eq. (2.12) in comparison with

the relaxation terms:

s <« {¥/x)s
. ¥ (%.2)

d << (¥IK) 4
The atcemic equations reduce then tc algabraic fcrms, which

can be trivially substituted in tha field equation . It

reduces then to

x = - (x-y, + 2Cx ). (4.3)

I+%?

Ncte +that at =steady-state, we recover the bistability

equation (2Z.20).

Eq. {%.4) can be fcrmally re~ypressad as

v = - oY (4.4)
I X
where

W(x) = J(X—Y.'* 2C")dx= _;%L_ XY, + Ck(\-r)tz)

{+ x> _
v (4. 5)

plays the role of a potential.

Eq.(&.%i alse describes the motion of a marble in the
potantial kl(x) ., On Ffig. 9, we have T[lctted \l(x) for
varicus values of the vpararmetar yl . For 3‘4.3c P it
presents +wo minima, «corresponding tc the tuwc possihle
stable states  ({two bicgtability branches). As Ul-a‘jc ’
however, *he first minimu@d tecemes shallcwer and =hallower,

.

to firally disappear for Y, :jc' Fer 4 29 » there 1s c¢nly
one wirimum 1lsft, which ccrresponds to the fact that there

is only one state on the tistakility curve., Clearly, tor Y,

larger than, but close to, 4 _ , the syster is initially on
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a shoulder which 18 «e¢ssentially flat, In thiz case, the
analogy with the marble obviously shows that it takes an
extremely 1long time for the system to leave thisg satate and
fall to the einimum cf the potential Ul{x).

Thera is a little kit of a semantic froblew asscciated with
the use of the term critical slcwling dcwn in the situation
discussed here, sfince it uswvally refers to the a gEpetugn to
equilibriun; However, what we sre ceneidering here is
clearly an other facet of the sape effect, which al=sg¢ has to
do with the disappzarance of the first minimum of the
potential at \R(x) .

This picture obviously doss not axplain why, once started,
the transition from the lower to the upfer branch always
occurs on a time-scale et . We ncte, however, that a
similar siteation cccurs in many non-linear problems, as for
Instance in supertluorescence, where the fulse-sha pe
(nen=-Jinear tegiwe) i by and lavqge indepandant ot the delay
T » {lincar reqimen).

Clearly, the appacition of a large delay is urdesitable for
device applicaticne wvhere a fast rasponse time is desired.
¥e note, hovever, that it will not Ffresent any major
difficulties in gpractice, since it can be overcore by
increasing the incident tield by a tew fercent {(at least in
the applicaticn ccnsidered hare). Furthermore, the second
feature of the critical slcwing dcwn, namely the constant
rise-tire K, syggasts novel applicaticre ¢t optical
histatrility <cuch as compact optical delay lines, Also, Ssince

the delay Eo depends strongly an the final value Y, of the
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incident field, {(s2e Fig. 10}, a measure of fD is also a
very sensitive measure of the incident field. 1Thus, optical
bistahility may he useful in the design of 2lectric field to
time converters and of e€lectrcreters, In this case,
however, +the fprcblem of internal and extern#l fluctuations

will te of irportance,

e
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SECTICHN S :

Up to nov, we have considered the response of an optical
bistable =ystem to a ustep-function incidert field. In this
secticn, we weuld like to become more specific and discuss a
probles which is directly relevant fecr device afpplicaticns.
We will then sbhecw hew the concepts that we have introduced
up to now apply in this cacse.

The application that we have in rind is a bistable ortical
nemory. The «cferation of the System in this configquration
is illustrated on Fig 11, A CW incident laser field Yo ¢
chosen such that *he initial steaiy-state lies on the lcwer
hranch within the double-valusd region of the charactaristic
curve, deternines the operatino point cf the repcry. If an
appregriate light pulse vy, () i5 then superimposad on Yo Aat
some time h ¢ the mzpory will switch to the upper tranch,
anid will remain thetv after the pansage ct the pulre,

Such a behavicur i=s illustrated on Fig. 12, where we have
plotted the tranumitted tield tor varicus asplitudes and
vidth cf the ircident pulse. The tirst exarple on this
figure shcws that if the pulse is too short, the device does
not roact and remain on the lower Eranch., On the next two
examples, w2 have contsidered lcnger pulses, but varied their
amplitudes. 1In bcth cases, thn memory is switched, with a
rise-time &' .| However, in the seccnd case, where the
pulsa is just larae enoujh to take the system over the
critical point, there is a large delay tire, characteristic

of the critical slcwing dovwn discussed in the preceding
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section. Hote that alttough in the case ct a =tep-function,
an increase c¢f a few percent in Y was sufficient to get
rid of that effect, tere, we¢ have to increase the arplitude
of the gpulse Mo DY about a factor of two to =liminate the
delay, Thus the cffects of critical slcwirg dewr are wmuch
mere severe in this case.

In principle, onz could alsc decrease tD by 1ncreasging the
cw level Y, « lcwever, in fprac+ice, it is desirable to have
a working point as ftar as possitle frecm the critical point,
50 that the device 1is not averly sensitive to  internal
andsor exterral noise, {Tc quantify the expression "as far
as pnssible", we will in the seccnd rpart cf this section
analyse th2 influence of extarnal noise on th2 dynamics of
the devica, The internal gquanzum mechanical ncise, which is=s
expected to have little ipfluence since we are dealing with
an absorber ,will te ignored cempletely here.)

We procead then by first determining in a systepatic way
what incident pulszs characteristics are n=2eded to throw the
device, . 1In the absence o! noise, a necess=ary ccnditicn for
the msrory tc switch i= obviously that ¥, 0+ ys > A vhere
Y. is the critical point of the bistability curve. However,
this ccrdition is certainly not sufficisnt, as one expects
intuitively that the m2mcry will not react to very short
pulses, This dintuition «c¢an be ccnfirced rumerically, as
illustfated c¢n the ugper part of Fig, 12.

In order to determine the conditicrs under which the nmemory

- will be switched, we solve, numerically, the equaticns of

motien o¢f cptical bistability, with Yo of the form
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l-exp(-(t-tojlfezj. Por simplicity, we consider only tha
good-cavity limit, since the absence of Fabi oscillations in
this case makes it =simpler to interyrete the numerical
results,

The results of our analysis are suamarized in Ping, 13, Ne
plot the sinimum fulse width ?"‘ nzcessaty to switch the
memory as a function of the pulse amplitude A, for various
CH levels y . In this example, tte .tistability coefficient
c = 2¢, sC that y ¥ecr 1= 21, The other ctelevant
paraneters areK-! =1, T =10, T, =20,

-~
s + W€ find that the wipizumg fulse width &

For A »> Yo ~ Y,
is qiver hy the product n-?m = c¢st., which is indicative ot
a pulse area scaling lav (or , alterpatively, an energy per

unit tardwidth gcaling law). As A approaches 1A | s this

q
scaling ceases to hold, and it takes extrenmely long pulses
to activatoe the bystatle wemory, 7This 18 again an ettect aof
the critical slcwing-down ot the system in the vicinity of
the eritical point,

Ve next cenelder the case when external noise is
superimposed on the'incident signal, We add to the tctal

field a real, stationary, and gaussian noise siqgnal y“,

wvhich is characterized ty having <y _>= 0, apd
Pty (L4T)> = Teexpi-1TV/t. ). (K1)

I is, then, the noise power, and tc is it= ccrrelaticn time.
Not surprisingly, we find that the system invariably
switches provided the criteria of Fiqg., 13 are met. It is,

however, much more difficult to determsine the finite

probabhility cf switching the memory in th2 ahsence of signal
{i,», Wwe row consider yo = 0).

Tastead c¢f a gen2ral tunneling theory++ based on the
soluticn cf the time-d2pendant Fokker=-7lanck equation 18~-19,
wa have «chosen to 1limit ourselves t¢ the fcllowing,
intuitive, determination of the r=sponse of the memory to

noise, Consider a 'test?! siqnal Y, givern by
13

y, =E\_Jdt’y (t')exp(-(t-t')/t}) (5.2)
f o

where t § is the inverse bandwidth of the device. 0On the
basis of the deterministic aralysis, one expects intuitively

that the noise will switch the mezary if -yr(t) exceeds

t
. o F
the area © = Aet given Ly Fig. 2. For a Saussian grocess,
this gives a ‘'*mear tunneling time*' (mean tire taken by the

ncise to switch the memcry) scaling approximately as
O~ EEXE(E2/t E(T) . (r3)

The c¢nly unkncwn quantity in Equ. (5.3) is the filtering
time t&; It can te evaluated ty corputing the resgonse of
the optical wmemory to two pulses which are incapable of
switching the remcry when acting separately, but can
activate it wher they cccur simultanecusly. An estimate of
tj is then cbtained by varying ths delay between the pulses

and determining fer which maximum value the device can still

*+There are twc major difficulties associated with such an
approach: in general, one expects the ncise tc have a finite
bandwidth, sc that  the Pokkar=-Elanck equation is
non-markovian; even 1in the limit cf white ncise, cptical
bistatility is such a highly non-linzar problem that it 1is
doubt€ull if the ¢time-derendant Fckker-Planck equation is
amenatle tec anm analytical sclution.

R
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be activated,

Although this delay depends to some extent upon the pracise
pulse characteristics, it turns cut tec ke c¢cn the crder of
K=t for a vory wide range of pulsas, This is actually not
surprising, since ¥~! is precisely the dcminant time~scale
in the gccd quality cavity limit of cptical bistability , as
discussad ip fection 3, It is therefore reasonable to take
thé filtering time tJ =K-1 in our estimate c¢f the @mean
tunneling tiee <>,

We have numerically tested 32q. (5.3) tcr various noise
pacameters ¥ and t , The results are summarized on Table
1,where e have cteported the numerical valuaes of <t> and
their ratios in columns three and tout ard the ccrresgonding
values obtained froa Fq. (5.3 in columns five and six,. In
the last column, we have given the numsber ¢f ccagputer runs
used in each case. For larqe enough ncise levels, thera is
a remarkable agrecment boetw on the nmerical tesults and the
sgating relation “qu. (9. 3. This 1is exhibited in the
predicted and cemyuted ratios, which alwvays tall within 107
of each -other. The systematic discrepency cf a about a
factor of twc in <t> itself is due to the fact that the
noise can switch the memory only if it is in phase with the
CW Laser. Heonce, one should nct ccunt the ceccasicns when Yo
and v, are cf ofpcsite sian, so that the noise is effective
only half of the tinme, Intreducing this facter c¢f two
converts Ea. {5.3) to an ~guality which i3 in remarkaltle
agrecment with the numerical results .

var the case with spall noise power, Eg.{5.3) seems to
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underestimate the tunneling time <t>. This result is,
however, within the statistical accuracy of the computer
experiment, sSince the distrituticns cf the switching times
are broad, i.e. The variances are on the order of <t>

itself.

This is illustrated on Fig. 14, where an histogram of the
-2
y

suitching times for the conditicns Y,=20.3 tr 10
1=125.0 have heen drawn. ‘

In conclusion, we have shown that the dynamics of a bistable
memory in the presance of extsarnal nols= can be largely
understocd in terms of intuitive arquments based on the
results cf a deterministic analysis, Although our model 1is
oversimplified, toth in its descripticn ct the ncise, and of
the memery, we d¢ not expect significant qualitative changes
to occur in more realistic systems. We are presently
initiating an aralysis of dispersive optical bistability,
where the noise will effect not c¢nly the azglitude, Eut also

the phase of the incident field.
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CONSLISION ¢

In these notes, we have presgented a fow asrects of the
transient dynaerics of optical bi stable devices. We hava
shown that despite the fact that this Froblea is not
amenable to an ana}vtical solution in closeé form, nomerical
studies permit to achieve a good qenertal understanding of
its main features, Obviously, we have treated here a yary
idealized modsl, and we do not expect cur results to be of
nuch quantitative value, Hovaver, as wve said ip the
introduction, +*his was not our qoal. Rather, we were
1nteresteﬁ in amneral scaling lavs, and, %o this extent, the
numarical analysis cgresanted here has lead to .usafull
results in a surprisinqly easy way,

Claarly, wr have not exhanstod the profqloms which ons may
want to address , Tha most ohvious tollow-up is a similar
study of dispersive histahility, de are precisely pnrsuing
AUCh a atudy at the present, Hera, we are rostly  intatasted
in analysirg external noise which is both amplituda and
phase sodulatad,This study was not possible in the aedel
presented here, where all fialds wore takan to ba real.

An  other fascinating gproblem, that wn are studyinng in
collakoration with the Milan qroup, in that ot selt-pulsirg

in optical bistabhility, Under approntiate conditions,
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higher order meodes of the cavity may be excited and; instead
of relaxing to steady-state, reach a limit-cycle behaviour.
Such an effect may be very usefull for applications, and for
this reason, wve have initiated a systematic farameter study
in order to imprave on the results of 1linearizad analyses.
nl£hough preliminary results show discrepencies in some
regionsg, the apalytical results sesn to Sy and large predict
the dynamics of the systen.

Also very grrecmising is  the gpotential use of optical
histapility in pulse-forming devices,Preliminary results

have shown that pulse-shortening, discrimination, etc.,.. are

‘all possible in orinciple. %e are planring to study this

aspect of Dbistability in nore destails ,hoth theoretically
and experirentally.

To conclude, T would like to mention an cther problem of
great ivportance in statistical machanics, where the example
of optical bistability wmay bLring some light, namely the
question of "multirlicative noise sources". 1In situations
vhere the noise term (in the Lanaevin equaticn of motian) is
nultiplicative, the wpacroscopic characteristics of +the
systom may be changed, i.e. the phase-transiticn may either
disaprear, or have a different threshold,etc,., Although
such systens are in generil very comrlex, optical

bistability is a siqele example that one may be able to

i
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solve "axactly" on the computer, thus gatting some insight
into this problem, The difficul*y here is mostly to dreawm-up
a realistic model where the intarmal noisa iz large =anough
to be of interest,

¥e hope that these few rematrks have shown that there is some
future not only in optical bpistability, but also in ths
general nurerical study oﬁ phase transitions and related

phetomana,
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FIGUFE_CAFLICNS :

Typicial bistatility curve, shewing the hysteresis cycle in
the transmitted ficld as a tunction cf the ircident field,

= incident field, ¥ _ = transmitted field, E_ = forward
field, ¥, = rtackvard field, En. = reflected field.

Figcurs_2 : €clid 1line: c¢ritical transmission «coeffacient

16%, as a function of C. The dashed part cf this curve
ceorresgpends to the cnset of histability, which is a stronger
condition for small €. Dotted line: ccrrespcnding value of
oL , cbtained frecm Tq. ([2.15),

Figuga U :

Bistability curve x(y) for C. = 20. the position of the
initial and final states 4y, and Yy, arte shcwn, as well as

= =\
M. =C+1 and &h—ua.

Solid line : transient response of the transmitted field
x{t) to a switch c¢f +the driving field from Y, 6= 13.8 to
Y, = 25.0, for c = 20, K: low = 10, T = SZ. Dotted
line: polarizaticn s{t). Dashed line: inversion 4(t}.

Transient respense of the transpitted field x(t) to ; switch
of .the driving field from730'=13.8 tc 3‘= 25.0, for the
sare conditicns as Fig. 5, but YI¥ = 0.1. The time is in

-
units of K .,
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Pigyge 1 : Svitching time £, {in units of ') as a function
.of x,, for C =10, 20, 22, and F/W = 10,0 (bad cavity limit).
Eigqurs 8 :

Transient respcnee ¢f the tran=pitted fielgd x(t) for various
values c¢f the inclident fizld Y, a0d C = 27,0, Mean-field
theory, good cavity limit, time in upits cf K.

FPigure S : Pctential U(x} from Eq. (4.5 for various values
of.\jl aroutd the critical point y_ , Ncte the disappearance
of the first minirue as Y, =Y, -

Figure 10 :

helay tirme (in units of k") as a functicn cf vy, . C =20,.0,
good cavity limit ( f =lok}, mean-field theory.

Eigura_ 11 : )

Memory cperaticn of a tistatle device: 1The characteristic
bistakility curve of the upper right quadrant shows the
transnittrd ficld x as a feunction of the incident field ¥,
and exhibits the vcwal hysterasis, The lower right quadrant
gives the incident field as a tunction of time, and the
upper left quadrant the correspending transmitted field,
alsc as a functicn of time,

Piqurs 32 - : response of the bistable gemcry to the
superpositicn ¢f a gaussian pulse tc¢ a CW field. Dashed
Iine;incident fieldssolid lina: transmitted field,
Fean-filed theory, € = 20.0, ¥/W = 10.0, tive in units of
Wl

fA) Y, = 26.3, A = 1.0, t = 1.0

(B) My~ 20,3, A = 2.9, t = 2.0
~

(€) Y% 2Ca3, A = 1.0, t = 3,0
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Figure 13 :

~
Mipimup tulse width t. 35 a function ¢t the yulse anglitude

A for varicus values Yo of the CW laser field. Upper curve:

¥, = 20.8, middle curve: Y, = 20.3, lcwer curve: y, = 19,6,
The cther parameters are C = 20, y = 21, T, = 10, Tz = 20,
K-t = 1.

Figur=_14 : Histcgram of the tunreling tires for ko= 0.01,

I= 25, and Y, = 20,3, The other parameters are the sSame as

Surmary cf numerical results: I = ncise rewer, tc = noise

correlaticn time, <t>hu" = numerical tunnsling time,

<t>,, = theorstical tunneling tice, ~ R numerical

iy
tunneling tiwes ratioc, R, = theoretical tunneling tiaes
ratio, § = pumber of computer runs. The relevant parameters

are thke same as for Fig. 13, ard all the runs ate for

Yo = 20.3.
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tc I <t>num Rnum <t>l.h Rth N
1072 5.0 >100 | >43 1L7x10Y | g uxi® 20
1072 16.0 41.0 17.83 f1.5 9.58 12
1072 25.0 8.2 3.57 4.7 3.92 100
1072 | 100.0 3.2 1.39 1.5 1.25 10
107! 25.0 2.3 1 1.2 1 100

Table 1







