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En thas paper, we shiall discuss some applications of chaos theory (o the study of continuous-lime
ceonemic dynamic models, 1., models represented by systems of ordinary differential cquations,
Two such apphications will be considered. The first, discussed in Part 1 of the paper, is a
continuous-time generalization of a clss of non-tincar, one-dimensional maps which encom-
rasses the majorily of existing economic models of chaotic dynamics, The second, discussed in
Part 1 is & model of inventory cycles of Kcynesian inspiration, represented by a system of Lhree
differential cquations, including a single ‘onc-humped” non-lincarity. Two points will be given
rarticular emphasis, namely: in Part 1, the relationship hetween discrete- and continuous-time
representation of economic phenomeny; in both Parts | and Il, the combined role of lags and
non-linearity in generating chaotic oulput,

PART 1

I. Discrete and continuous representations of economic processes

The majority of applications of chaos theory to economics produced so
far,' consist of variations of the onc-dimensional difference equation

K

Xoor=f(x,), -

where xeR and fR—R is a smooth, unimodal (or ‘onc-humped’} function.

- The potential complexity of the dynamical system represented by eq. (1) has

*The author wishes 10 gratefully acknowledge financial support from the halian Ministry for
the University and Research (M.U.RS.T. fondi 405.). Many thanks are aiso due to Giampaolo
Gatllo and Roberto Perli Traverso for \heir help with the numerical simulations and diagrams,

The list includes, among others, macroeconomic models [e.g.. Stutzer (1980} and Day (1982)];
madels of rational consumption [c.g. Benhabib and Day (1981)]1; models of overlapping
generations [e.g., Benhabib and Day (1982); Grandmont {1985)): models of optimal growth [epg.,
Dencckere and Pelikun (1986)) Recent overviews of the matter, with further instances of one

hump functions derived from economic problems can be found, in Baumol and Benhabib (1988)
and Hans Waller Lorenz { 1949y,
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been brilliantly illustrated by the biologist R. May (1976) and its mathemati-
cal propertics have been investigated in innumerable papers and books.?
On the contrary, continuous-time models of chaos in cconomics are rela-
tively rare. This fact and the attempt to find a rational explanation for it,
have rencwed the old controversy on the superiority, in general, of con-
tinuous versus discretc representations of reality. This has often led the
participants in this debate to discuss the ‘truc’ nature of time, or the
continuity (or lack of it) of reality, whatever the latter concept may mean.

Undoubtedly, these are very profound and unsettled philosophical
questions. We belicve, however, that, as far as cconomics is concerned, the
argument over them has often been ill-posed and, in most cases of practical
interest, unnecessary, The essential question here is what are the mechanisms
responsible for dynamic complexity, whether these mechanisms are present in
certain specific economic circumstances, and how they can be more effec-
tively rcpresented. The answer to these questions, and especially to the last
one, cannot be given a priori, once and for all. As many examples from other
scientific disciplines show, the working of the same mechanism may offen be
investigated by both a continuous and a discrete dynamical system, and a
number of illuminating relations can often be established between the two
representations.

As this author has observed elsewhere,® the occurrence of chaotic
dynamics in economic models derived from the May equation is the
combincd result of the presence of non-linearities of the unimodal, ‘one-
hump’ type and of the lag structure implicit in those models. Such non-
lincaritics have in the works in question been given more or less solid
economic justifications, based on explicitly-stated hypotheses concerning, for
example, lechnology or utility functions. On the contrary, the réle of the lag
structure in producing complex behaviour of the system has been systemati-
cally neglected.

A more carcful investigation of this question indicates that aggregate,
discrete-time models like those quoted above suffer from a fundamental
wecakness as they imply a crude form of dynmamic aggregation with no
cconomic underpinning. In fact, such an aggregate representation of an
economic dynamic process could only be justified if some ‘natural period’
could be postulated, based on the technological or psychological characteri-
zations of the economy. A moment's consideration will indicate that this
extreme simplification would only hold under rather unrealistic or uninterest-
ing conditions, e.g., in a single-crop agricultural economy in which there is a
constant, uniform delay between input and output,

*Thorough treatments of this subject together with a rich bibliography can be found, for
example, in Collet and Eckmann (1980) and Devaney (1986).

ISee Invernizzi and Medio (1991) and Medio (1991), 10 which we make constant reference for
the rest of this section,
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'lf this unwirranted assumption is dropped. we have to rccognize that
different economic agents or units behave differently, and, in particular, they
react with different specds to cconomic stimuli. If so, we must wonder
whether the interesting results obtained in the analysis of the aggrepate
models in question and in particular the occurrence of chaotic dynamics for

certain values of the controlling paramcter, still hold under more general and
realistic assumptions,

L. Prabability distribution of lags and continwous-time lag operators

To answer the question raised in the previous scction, instead of a single

'rcprcs_cnlulivc‘ cconomic agent (or unit), we postulate an cconomy consisting
of. in |_1|(Icl'|nilcly large number of agents, who respond to a certain signal
with given discrete lags. The lengths of the lags are different for different
ag}:ntf;. and are distributed in a random manner over ail the population. In
this situation, the cconomy's aggregate time of reaction to the sighal can be
modelled as « real, non-negative random variable T '

On a purely a priori ground, the probability distribution of T can take
any of many different forms. However, when the only priori constraints
besides the esscntial positivity of the random variable, arc given by the rnean’
and a sccond indicator such as the geometric mean {or, equivalently, the
mican _of the togarithm of the random variable), there exist good rcason; for
choosing a two-parameter gamma distribution* As is well-known, if we
dcnogc by a the shape parameter and by f# the scale parameter, the density
function of & gamma distributed random variable can he written as

’ . 0. if t=0,
K i) {{ﬂ’l‘(a}}"t““e"”, if £>0, ¥

where (%) indicate the gamma function, i.c.,

i

May=[1"" e 'd,

]

and o, ff>0. The mean of the distribution is equal to aft, its geometric mean
to flexp {IM(2)/1(a}}, and its variance to flx. Notice that, for a two-
parameter pamma distribution, fixing the mean and the geometric mean is
equivalent to fixing the mean and the variance, .

N

*CI. Invernizzi and Mcdio {op. cit).



Veral i Y CRdy T Lertied iy

Keeping in mind these considerations, we shall now look at the question
of lags from a different angle and shall recall certain basic properties of lag
operators and their weighting functions. Broadly speaking, a lag is a
mechanism relating the value of a certain (possibly vector-valued) variable at
a given lime to the valucs of the same or another variable at different (past)
times. This rclationship is sometimes referred (o as the ‘memory’ of the
system. Under certain conditions, it is possible to represent the lag structure
in the form of a polynomial in D, D=d/dt being the derivative with respect
o time, or equivalently in the form of an ordinary difierential cquation
whose order depends on the degree of the polynomial. A multipie exponential
lag (MEL) of order n can be written as

G(D)={(D/tn+1)".

The time-constant © can be interpreted as the overall speed of adjustment
associated with the lag, its reciprocal 1/t being therefore the overall length of
the lag, whereas n denotes its order.

A MEL of order n results from n successive applications of a simpic
exponential lag. If a variable Y(s) lags behind another variable Z(r) (which

may well be the same variable at a different time) according to a MEL, we |

shall denote this dynamic relationship by the expression
GIDYY (1) =2(1), (3)

which, mathematically, is an nth order differential equation. Ingthe economic
literature the casc most often encountered is the MEL of order onc.® If we
put n equal to one, ey. (3) can be rewritien as

(d/d) Y()=[Z(1) - Y (1] (4)

In cconomics, the variable Z sometimes represents the desired, or equilibrium
value of Y, defined in another part of the model, so that eq. (4) depicts an
adaptive mechanism of an ‘Achilles and the Tortoise' kind, through which
the actual magnitude chases the desired one, approaching it at an exponen-
tially slowing speed, and catching up with it only in the limit for t— + co.
The ‘weighting function’ of the MEL (3) represents the different impact
that different values of Z in the more or less distant past have on the valuc
of Y now. It is known® that, for a lag represented by a polynomial in D=d/
dr such as G(D), the weighting function can be simply found by calculating

*MELs of orders two and three have been discussed by Allen (1967), but MELs of higher
orders are rarely encountered. .

*CI, lor cxample, Doetsch (1971, Ch. 3).

P

A Meiho, Continuous-time models of chaos in economics .1y

its inverse Laplace Transform. In particutar, if we denote the weighting
function of MEL by w(1), we shall have

1\ ‘u-"l
. _:L'I - = . *.lm‘
wir) G(D) (m) ("_m_c_ ()

where L indicates the inverse Laplace Transform.

il we now put a=n and f=1/tn and compare ¢qgs. (2) and (5). we can
verify that the weighting function of a continuous-tim, multiple exponential
lag is the samc as the density function of a two-parameter gamma
distribution. The overall length of the lag 1/t (ic, the reciprocal of the
overall speed of adjustment) corresponds to the mean of the distribution,
while the variance is proportional to the inverse of the order of the lagn (the
proportionality fuctor being equal to 1/¢2).

This result shows that a fundamental equivalence can be established -
between a system with an indefinitely farge number of agents reacting to

inputs with different discrete lags whose fengths are randomly distributed
among agents according to a gamma distribution, and a system with onc
single ‘rcpresentative’ agent reacting to inputs with a continuous, multiple
cxponential lag. In particular, the order of the lag n can be interpreted as the

‘degree of homogeneity’ of the system in question, insofar as agents’ speed of

response 1S concerned.

Fig. [ shows the weighting functions of different MELs as functions of . It
will be observed that, as the order of the lag ~ or, cquivalently, the degree of
homogeneity of the system - increases, the wcighting function becomes
progressively steeper. It can be shown that in the limit for n—o0, the

function tends to a Dirac-d function situated at ¢= I/t. This means that the °

current value of output only depends on the valuc of input 1/ time units

ago. This interesting limit case can also be dealt with more formally, by
considering that

lim (:ﬁ I)_nz"_m" l (6)

The expression on the RHS. of eq. (6) is called shift operator and, when
applied to a continuous function of time, it has the ¢ffect of translating the
entire function forward in time by an interval equal to 1/t.” Thus, the fixed
delay lag employed in models of the type (1) can be scen as a special, limit
case of 4 multiple exponential lag when the order of the lag tends to infinity.
Equivalently, the aggregate fixed delay of those models can ‘be viewed as a

’CI. Yosida (1984, Part 111, Ch, Vi)

\



Fig. 1. The density function of a gamma distribution [from Invernizzi and Medio (1991)].

limit case of a system characterized by gamma distributed individual rcaction
times, which is obtained when the dispersion around the mean {the variancc)
tends to zero,

3. A continuous-time generalization of fixed delays

Since the hypothesis of an economy which is absolutely homogeneous with
respect to agents’ speed of reaction is uvsually unacceptable, the question
arises of how general is the main result obtained in the economic appli-
cations of eq. (1), namely, the occurrence of chaotic dynamics for certain
values of the controlling parameter. In the present context, it is immaterial
which of the particular applications quoted above is selected, since the aspect
we wish to criticize and amend is common to them all,

In order to answer that question, we shall replace the fixed delay lag
implicit in (1) with a MEL. That is to say: We shall replace the discrete-time
dynamical system (1) with its continuous-time generalization

(Din+1yx = f(x), (N

where, for simplicity’s sake, we have put t=1, and shall investigate its

A Medio, Contimuous-time models of chaos in coonomics
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Fig. 20 (h). Final orbits of system (8-9) for increasing values of r,
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Fig. 2{c). Final orbits of system (8-9) for increasing values of r.

behaviour in the general case 1<n<o. To make things more specific, we
shall henceforth put

S(xy=rx(1—x).

Considcer, first of all, that the nth order differential equation (7) can be
cquivalently written in the form of a system of n first-order differential
equations, thus:

(D/rl+|).r1==.'<j.,,. Jj=2.....n, (8)
(D/m+1)x, = f(x,) )

Wec shall recall here certain resuits of this investigation already reported

elsewhere,” and shall add some new ones.

The equilibrium conditions of system (8)(9) are

-t] =X2="'=.x"=.€,
and

X=ri(l—x).

"CI. Sparrow (1980} Medio (1991).
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Fig. 3(a)-{b). Power spectral density of trajectories of system (8-9) for increasing values of r.

Fig. Jic) (di. Power spectrat density of trajectories of system (8-9) for increasing values of r.
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Fig. 4. Bilurcuions diagram of system {8-9).

whence we obtain the two equilibrium solutions: 3
. ) 5
E,=0;  gy=1—{1/n). (10) $
a-1.33
As concerns the stability of equilibria, consider that the auxiliary cquation of 2
the system can be written in the simple form:
(1+4/n)"= ['(), (+1) e
where 4 indicates an cigenvalue of the Jucobian matrix calculated al
equilibrium and f*(x)=df(x)/dx =r(1 —2x).
Hence we have: -3.33
Sx)=r f(&)=2-r ‘ (12)
-7.56 1 1 ] N
From (10)(12) we gather that, for r<1, the origin is the only non-negalive T a4 1 T e Ctiney
equilibrium point, and it is stable. At r=1, we have a transcritical bifurca-

Fig. 5. The first three LCEs of {8-9).
tion: the equilibrium point at the origin loses its stabilily and a second,

initially stabie, equilibrium point bifurcates from it in the positive orthant ol 3 i
the phase space. i i

For n<3, little happens when we increase the parameter r: the positive e §T
equilibrium point remains stable for all values of r>1 (for n=2, damped H
oscillations occur for r>2). For n=3, however, as r increases past a certain
value which depends on n, a Hopf bifurcation takes place and a periodic - ar
orbit bifurcates from the stable equilibrium point that becomes unstable.
Successive bifurcations can be detected for greater values of r, although their N ol

.
( 34y c e
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Fig. 8(c}. Orbits of system (16) for n=8 (enlargement).

Fig. R{a}. Orbits of system (16) for n=7.
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Fig. 10. Kaldorian saving and investment functions.

exact structure still escapes us. Whalever value the parameter r may take,
however, nothing more complicated than periodic orbits seem to occur for
low values of n. However, when the order of the exponential lag becomes
sufliciently large, there does appear to exist a value of r beyond which the
system gives chaoctic output.

4. Numerical investigation of chaotic behaviour

At present, a complete analytical understanding of non-lincar dynamical
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syslems is restricted to a very small number of special cases. To further
pursuc our investigation we shall thercfore have to make recourse to
numerical simutution.

In order to analyze this case in detail, we sclect n= 10,

In this case, the first Hopf bifurcation occurs for r= 3.6 and our numerical
study indicates that, when the control parameter r is increased further, the
system undergoes a period-doubling sequence of bifurcations, eventually
exhibiting chaotic behaviour. This can be appreciated by looking at fig. 2,
which shows plats of post-transient trajectorics of the system for different
values of r. The reader will observe the progression of complexity from a
limit cycle to period 2, 4, 8 cycles, and finaily, for rx 5, to a chaolic attractor.
This sequence can also be detected by means of spectral analysis of the same
trajectorics, as illustrated by fig. 3. Starting from fig. 3(a) we observe a basic
frequency, call it f,, (plus a number of harmonics). Then, increasing the
parameler, we  have the appearance in the spectrum  of frequencies
Jol2. fo/4, fo/8. For cven higher valucs of r, a ‘noise floor associuted with
chaotic behaviour appears and successively destroys the subharmonics f, /2"
in the opposite order of their appearance. In the Jast diagram of fig. 3{e),
corresponding to the chaotic attractor of fig. 2(c), no distinct ‘peak’ is left in
the spectrum, which looks like a broad band.

Another interesting representation of the period-doubling route to chaos
can be observed in the bifurcation diagram of fig. 4.° The familiar period-
doubling scenario is quitc cvident as is the presence of periodic windows
within the chaotic zone, which makes the diagram very similar to that
obtained for the one-dimensional map (1), and reproduced in innumerable
works.

Finally, numerical evidence of {and quantitative information about) chaotic
behaviour of the system under investigation has been provided by the
estimate of the LCEs and the fractal dimension, calculated for r=35, ie.,
within the chaotic zonc. As is known, the existence of an attractor with one
or more positive LCE indicates that the motion of the system on the
attractor has sensitive dependence on initial conditions, ic, it is chaotic.
Since in our cusc the attractor looks approximately two-dimensional, ‘we
would cxpect the sign pattern of the ten LCEs to be {(+.0,—,..., —).

And this is precisely what we get from our computations, The essential
results are shown by fig. 5, which shows the first three LCEs (the other seven
are all strongly negative). Notice that the convergence is pretty strong and
the exponcent is distinctly positive (x0.35). The interpretation is that the
motion of the system is strongly convergent toward the attractor from all
directions but two. The zero Lyapunov exponent is associated with the

*To construct this diagram (and the similar diagrams of Part I1) we have plotted, for each

value of the parameler # (from 4.3 to 5). the maxima of the relevant variable, after discarding
some transients,

o



direction of the motion along the flow. The presence of one positive
exponent indicates that, on the attractor, there exists a direction along which
nearby trajectories, on the average, diverge exponentiaily.

A non-integer fractal dimension is often (though not always) an indication
of the chaotic naturc of an attractor. The fractal dimension of the attractor
ol system (8){9) has been computed (always for r=35) by means of the
Grassberger and Procaccia method. The results are shown in fig. 6. The
cstimated dimension is =215, which is consistent with the geometrical
aspect of the attractor. Tt is also close to the so-called Lyapunov dimension,
whose simple computation is based on the knowledge of LCEs, Suppose we
have computed the n LCEs (x,,%;,...,x,) of a dynamical system and listed
them in a decreasing order, thus:

X1> X2 > > e

Suppose also that s is the largest number for which

then the Lyapunov dimension D is equal {o

s+z?=._’ A"'

Aol

In the present case, we have y, =0.35; x; =0.00; y,~ —4.2. Consequently, we
obtain:

D,=2+"1F 725008,
x|

5. Analytical evidence of chaos: A semi-linear case

It would be interesting at this point to investigate the dependence of the
behaviour of the system on the parameter n (the ‘degree of homogeneity').
However, it is one thing to {ix n and then study the effect of variations in r,
and quitc a different thing to fix r and then treal n as a varying paramcter.
In the latter case, we do not simply change the value of a parameter of a
system with a given structure, but we change the dimension of the problem
by adding one equation to system (8)+9).

In order to make this question more tractable, we shall therefore introduce
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& usclul simplification, taking a semi-lincar approximation of the function
Sy and putting

“\":{J for 0sx<1/2, (13)
2-2x, for 1/2£x<1,
Wihen used in one-dimensional, discrefe-time systems like (1), function (13) is
referred Lo as “symmetrical tent map’ and it is known that therc cxisls a
dysamical equivalence between such a map and the ‘logistic’ map rx(l - x)
for r=4, which is also known to have a chaotic behaviour. :

As we shall promptly see, once this simplification is adopted, it becomes
possible to evaluate the Lyapunov Characteristic Exponents of the system
amalytically. as functions of n taken as a paramecter. In particular it is
possiblc to cstahlish the conditions for the dominant LCE to be positive,
which we take here as an indication that the dynamics of the system is
chaotic.'”

In order to procced in our discussion, let us concisely!' recall the
definition of Lyapunov Characteristic Exponent. Let ¢(f,x): R x M »R"
denote the solution of a system of ordinary differential equations

X={(x). xeR" (14)
through a point xe M, where M e R” is the phase space of system (14).

Then. if we indicate by w a vector of T, M (the tangent space to M at x)
the LCE of the vector w (or first-order LCE) can be defined as

lim

P

e v

where D ¢(t, x) is the (time-varying) matrix of partial derivatives with respect

to x.!?2

Consider now that, when a ‘tent’ function is adopted, the phase spact of
our sysicm is divided into two zoncs, ic., Zone 1:(0<x<1/2) and Zone
2::(1/2=x = 1), within each of which the system is in fact linear. Notice aiso

""We have not been able to prove analytically the presence of a bounded attracting sci for the
syslem in question, but numerical simulations strongly suggest that this is indeed the case.

""Far a more rigorous and complete characterization of LCEs, cf. Benettin et al. (1950).

Notice these facts: (i) the existence of limit (15) is guaranieed under rather mild conditions
by a theorem ol Oscledee (1968) (see Benettin et al., op. cit.); (i) the LCEs depend on w, but if
we compute (15) for a vector w chosen at random (ie.. generally), we shali obtain the dominant
LCE; (i) in general. the LCEs depend on x. However, if they are computed for points belonging
to an attractor of a system which is ergodic, then the LCEs will be the same irrespective of the
choice of x.



that the unique non-trivial cquilibrium point of the system is located in
Zone 2.

For cach zone, therefore, it is possible to find the cxact solution of system
(8)-{9). For this PUrposc, we can re-write 1t 4s

X=Ax, i=102, (16)

where A, A, are constant (nx n) matrices governing the motion of the
system in Zone 1 and 2, respeclively.
The general solution of (16) through a peint x can now bec written as

D1, x)=c"x,
and consequently we have
D, @it x)=c",

Suppose now for a moment that the motion of the system in question is
entirely controlled by a single constant matrix A, i.c, the system is actually
linear. In this case, a simple relation could be prompitly established between
the LCEs and the eigenvalues of the matrix A. In particular, for a randomly-
chosen vector w, we shall have

xn=Rea,,

where x, is the largest LCE of order one and o, is the eigenvalue of 4 with
the largest real part.

From this fact we can conclude that, when both the dominant eigenvalucs
of the matrices A, and A, are positive, then, if the system has a bounded
indecomposable attractor, this must possess sensitive dependence to initial
conditions, ic., it must be chaotic. ‘ .

Prompted by these considerations, we now turn to the evaluation of the
cigenvalues of the matrices A, as functions of the parameter n. From cgs.
(11)«13), we obtain

n(2'_, for i=1,

n((—~2)""—1), for i=2, (17)

MAJ={

where by 1(A4) we of course denote an eigenvalue of 4. It can immediately be
seen that, since there exists a real solution of 2'* which is greater than 1 for
n < oo, the dominant cigenvalue of 4, is positive for all finite (positive) n. We
are then left when the case i=2. In this case, there will be one real {negative)

()
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cigenvadue for a odd and no real cigenvalues for n cven, By making use of de
Moivres theorem, and considering that, for any . cos{th=cos(—®, it can
be established that the real part of thc m complex cigenvalues will be
cqual to

}.(Az)=n[2”"cos(n+2J:-’-r):,. | (18)
H n

where k=0,1.....(m—=1), and m=n if n is cven and m=n—1 if n is odd.
Morcover, in cxpression (18), 2" denotes the (unique} real solution of the
nth root of 2,

Simple calcubitions show that the pair of complex cigenvalues with the
largest real part corresponds to k=0 and k=(m—1). Henccforth, thercfore,
we put k=0, and we study the function

doml(/lz)=/I(n)=nl:2”"cos(;:)—l]. " (19)

The values of A(n} for integer, positive values of n=1,2,... can ecasily be
caleulated, and it can be shown that A(n) increases monotonically with n,
The shape of the function is illustrated in fig. 7.

It can also be shown that, for values of n<8, A(n) <0 which means that
the non-trivial equilibrium value sitvated in Zone 2 is stable. For values of
nz38, A>0. This indicates that the numerically-detected attractor, for those
values of n has sensitive dependence on initial conditions and it is chaotic.
We have looked for numerical confirmation of our analytical findings and
the results arc shown in figs. 8, which show bidimensional plots of
trajectorics of system (16) for n=7 and n=8,

In the first casc [fig. 8(a)] the system spirals towards the non-trivial
cquilibrium point, as expected. In the second casc (#=8), the (presumably)
post-transicnt trajectorics of the system would at first sight [fig. 8(b)] seem
to indicate that the asymptotic motion is periodic, thus apparently contra-
dicting our analytical conclusions. However, by performing and enlargement
of a scction of the attractor [fig. 8(c)] the complex nature of its dynamics
and its fractal structure are revealed. The fact that the chaotic motion is
confined within 4 narrow *tube’ around a closed curve is not surprising since,
for n=8, the dominant LCE although positive is very small (of the order
107%). The fact that the ‘degree of chaoticity’ grows with n is clearly

supported by the simulation shown in fig. 9, where calculations have been
performed for n=15.

I
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A final valuable result can be obtained by evaluating the limit

lim A(n)= lim n[Z”"cos(:)w I]:In 2>0. (20)

This is very interesting since In2 is preciscly the well-known value of the
(single) LCE corresponding to the discrete-time, one-dimensional map (1) for
r=4, or cquivalently to the ‘symmctrical tent” map. And this further
corroborates our argument that system (1) can be viewed as a special, limit
case of a continuous, multidimensional system,

PART 1l

1. Introduction: A meodel of inventory cycles

In the previous seclion we have investigated a particularly important class
of models for which chaotic output appears to be the combined results of a
continuous-time MEL and a single non-lincarity of a ‘onc-hump’ type. We
have shown that chaotic dynamics may only occur in this case if the order of
the lag n is rather large.'* When the lag structure and/or the (non-lincar)
input to it are of a different kind, however, complicated dynamics may occur
at a much lower order of the lag.'*

To see this, we shall investigate a continuous-time model whose coonomic
motivation can be found in the early analysis of inventory business cycles
[Metzler (1941)]. and, more recently, in the works of Gandolfo (1983) and
Lorenz (1989). The latter author was the first to point out the relation
between the cconomic model in question and certain mathematical results of
Arncodo et al. [see, for example, (1981), (1982)], concerning the so-called
‘spiral chaos’.

Our own model closcly follows Lorenz's, but we shall manipulate it
somewhat with a view to establishing a relation with the previous discussion
of lags.

Let the notation be the following:

Y =actual net national income (output),
B =inventory stock,
§ =global (nct) saving,

"*We have seen that, with a non-linearity of the tent type, chaos may occur when n2 R, If the
non-lineanity is of an exponential type [ie, flx)=rxe =), a much greater order (n=50) is
required [cf. Sparrow (1980), Invernizzi and Medio (1991)],

Of course 3 is the minimum order of 4 system of o.d.e. for which complex behaviour may
oocur anyway.
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I = plohul {(net) investment,
b =desired stock/output ratio, constant.

Let also an index ‘¢’ denote the expected value of the relevant variable,
Suppose now that output adjusts in responsce o discrepancies between

desired and actual inventory stock, through a first order exponential tag,
thus: '

Y=ty —m), >0, (21
t being the speed of adjustment, and 1/t the ‘length’ of the Iag.

Supposc further that cxpected output is a lincar function of the level,
veloaity and acceleration of actual output,'* thus:

=G (MY, (22)

where Gi(D)=u,D* 4+ a, D+ 1, D=d/dt, and a, and a, arc positive constants.

The increase in inventory is equal to the excess of (nct) saving over (nct)
investment, i.e., :

B=5-1. {23)
Finally, we shall adopt Kaldorian saving and investment functions fef.
Kaldor (1940, pp. 78-92)] as depicted in fig. 10.

The original (verbal) formulation of Kaldor, scems to assume a simple
adaptive mechanism such as

Y=0(I(")=S§(Y})]. 0>0,

which, in turn. implies that ¥, and ¥, are stablc cquilibria and Y, is an
unstable one. In Lorenz’s modcl, owing to the different specification of the
adjustment mechanism, both the equilibria ¥, and ¥, may be simultaneously
unstable. His mode! may in fact be interpreted as an investigation of the
dynamics of the ecconomy when ouiput is ‘trapped’ al, or in the vicinity of
the low level interval (Y, ¥,). 1t can easily be scen that the function

FIY)=8(Yy—I(Y), Yel¥,F,1

belongs (o the unimodal class and can be formulated, for example, as:

"*Notice that, eq. {22) may be interpreted as a simplified version of the hypothesis that agents’
expectations on income are positively affected by the level, the rate of growth and the changes in
the rite of growth of income. If the rate of growth of income {and its rate of change) are smali,
the two hypotheses are ronghly equivatent.
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F{Y)=mY(l-Y), m>0 (24)
Combining cqs. (21)-(23) and putting Y, =0 and Y, =1, wc can write'®

G,{MY=F(Y), (25)
where

Gz(D):DJ+C2D2+C|D. C1=I/02>0.
c;=[ha, —(1/1)]ha; 20, F(Y)=rY(1-Y),

r=mfbu,>0.

Under the postulated assumptions, the Lie derivative (the divergence) of (25)
is constant and equal to —c,. Since we are interested here in the study of
dissipative systems, we shall henccforth only consider the case ¢, > 0. System
(25) has two cquilibrium points (i.e., points at which D*Y=D?Y=DY=0),
namely: FE,, located at ¥=0, and E,, located at Y=1. [t can easily be seen
that E, is always unstable'” whereas E, is stable iff r<c,c;. If ¢;>0, the
Jacobian matrix calculated at E, cannot have positive real roots and one of
the following situations occurs;

{1) There are three negative real roots.

"*Notice that in this case ¥ <0 does not necessarily mean that output is negative.

'"The reader can verify that, at E,, the third Hurwitzian determinant 4, is equal to — 4,7, 4,
being the second Hurwitzian determinant. Consequently, since r>0, either 4, or 4, must be
negative, which implies instability.
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(i) There ts one negative real root and a pair of complex conjugate roots!'?

whose real part is greater or smaller than zero according to whether c, ¢,
is greater or smaller than r.

It follows that, when ¢ ¢, becomes greater than r, the system loses its

*Notice that complex raots will occur whenever ¢, is sulliciently small vis-3-vis €
independently of r. Ta see this consider the auxiliary cquation of (25) al ke,
Altedyre,d4r=0. (%)
Any algebra texthook dealing with third degrece cquations, will show that a sufficient condition
for {*) to have two complex roots is that
1 1
30 cl>0,

which is clearly obtained if ¢y is small vis-a-vis ¢,.
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stability through a Hopf bifurcation. Conscquently, in this case, the loss of
stability feads to the appearance of periodic solutions.

2. Lag structure and complex behaviounr

Arncodo et al. (op. cit.) proved numecrically'? that, for certain values of the
parameters, system (25) satisfics the conditions of the Silnikov theorem?® and
therefore possesses a horseshoe-like (chaotic} invariant set. Those authors'
simulations also indicate that the chaotic set is attracting.

These results suggest the following intcresting obscrvation:

There exist low-order lag structures ie.g., the polynomial G,(D)], different from a
MEL, such that, when coupled with a non-lincarity of a ‘one hump’ type, their
interaction results in chaotic dynamics. In this case, chaos may occur at vajues of
the order of the lag and/or of the steepness of the *hump’ much lower than
would be necessary for a2 MEL. :

It would be a promising research project to classify different classes of lags
which, in combination with given classes of non-lincarities, may produce
complex behaviour. Such an ambitious goal could not be pursued here, so
we shall limit ourselves to addressing some specific questions concerning the
present model.

First of all lct us pose (he following qucstion: What makes the lag
mechanism G,(D) capable of producing a chaotic output, when it is coupled
to a non-lincarity of a logistic type such as (24)? We do not have a fully-
developed mathematical answer but we shall surmise a conjecture.

The model under discussion can be described in terms of a closed, single-
loop fecdback system, consisting of a lag mechanism (the polynomial G,(D)],
and a non-lincar function F(Y). '

In Part 1 we have scen that, under certain conditions, a correspondence
can be established between a lag opcrator of a dynamical system and a
‘weighting function” representing the impact on current output of inputs
delivered at different times in the past. We have also seen that, when the
operator takes the form of a MEL, this weighting function can be interpreted
as a probabilistic version of a onc-dimensional, difference equation,

Consider now the lag operator Gy(D). As we know from Part I, the
corresponding weighting function w(t) can be found by means of the Laplace
Transform (L.T.} machinery, by calculating

w(t)= L™ [ G,(D)],

""In fact, Arneodo et al. (1982), adopting a semilinear approximation of F(Y}, proved
analytically the presence of an homoclime orbil and of the other condilions of the Silnikov
thenrem,

*On the Silnikov theorem, see, for example, Guckenheimer and Holmes (1983, pp. 318-329).



where L™! is the inverse of the L.T. opcerator.

Now let 4 be a root of the polynomial G,(D), and let us consider that
Armeodo et al. found chaotic dynamics for the system (25) for values of the
parameters ¢, =1, r~0.35 and ¢,204. Since for those values of the
parameters ¢,>¢,>0 and ¢} <4c,, they correspond to one zero and two
complex conjugate roots with negative real parts.?!

The weighting function of the lag operator G,(D) in this case will have the
general form:

w(t)=1/c, + Ae™" cos{wt +0), (26)

where we have put 4= —otiw, 0>0, and 4 and @ are real numbers which
depend only on the parameters. The weighling function corresponding 1o the
lag G(D), therefore, is a damped sinusoid.??

H we compare (26) with the weighting function (5} associated with a MEL,
we observe that, whereas the latter is unimodal for any order n>2, the
weighting function of G,(D} is multimodal whencver its roots ar¢ complex. It
is this structure of the time profile of the lag, we believe, that, when coupled
(o a non-linear input function of a ‘onc-hump’ kind like F(Y), can preduce a

chaotic output, A hint for understanding this fact {although by no means a .

rigorous explanation) may be found in the following considerations.

Taking the same approach as discussed in Part I, the weighting function
(26) may be viewed as a probabilistic representation of an infinjte-
dimensional, discrete-time lag. However, if the damping factor ¢ is sufficiently
large, all but the first few dominant lags (corresponding to the dominant
modes) can be neglected. The following, simple example involving only two
lags will help clarify the issue.

Suppose we have a discrete-time dynamical system such that a linear
relation exists between the value of a variable 2 at time ¢ and the values of
another variable Y at times t+ T, t+ T, (T,, T,>0). In general, Z may bc a
(linear or non-linear) function of Y, We can then write :

byYyur, +b, Y, 1, =2, (27

where 5,>0 and constant for i=1,2. Recalling our discussion of Part I, a
continuous-time generalization of (27) can be written as

G,(D)Y=2, (28)

MIn the following discussion, the reader should keep in mind the distinction between the
roots of the lag polynomial and the roots of the auxiliary equation of the entire system.

¢TI G. Doetsch, loc. cit. The teader should notice that complex roots of a lag polynomial
always entail 2 multimodal weighling function '

L R LT R L R F T T TN L4/

G*(D):{hl(’r;p + I)"+h, (-T;D + I)n}.

A possible (bul by no means the only) interpretation of (28) is that it refers
to an cconomy charucterized by two classes of agents, cach comprising an
indcfinitely large number of mcmbers, and differing from one another as
coneerns their speeds of reaction to cconomic stimuli. Each class is character-
ized by a different expected value T; (i=1,2), of the averall reaction time and
by a variance which represents the ‘spread’ of individual reaction-times of the
members of cach cluss around the mean. (For simplicity’s sake, we have
assumed here that the two classes have the same variance.) We know that, as
n—+w, (28)—(27) and we arc back to the case of two fixed delays. This
corresponds to the situation in which the agents belonging to each class are
perfectly homogencous, whereas the two classes are different from each other,
By putting G _{D) =0 and solving for D, it is easy to sce that, the polynomial
G,(D) has at most one real root, all the others being complex conjugate
pairs. Therelore, for 122, the corresponding ‘weighting function' is multi-
modal and as n— + w0, it tends to two Dirac delta functions situated at T,
and T,.

Therefore, whercas a MEL can be seen a continuous-time generalization of
a discrete-time lug of order one, the lag opcrator G,(D) can be viewed as a
similar generalization of discrete-time lags of order two or higher. Now the
potential complexity of non-linear maps is known to exhibit a ‘leap’
whenever the dimension is increased by one unit. Then, if our reasoning so
far is correct, it is little wonder that the lag operator G,(D) can generate a
more complex dynamic behaviour than does a MEL of the same order,
coupled to the same non-linearity.

where

3. Parameter analysis and numerical simulations

In order to explorc this point and scek confirmation of our hypothesis, let
us go back to system (25) and perform some parametric analyses. There are
three parameters in the system: ¢,, ¢, and r. Recalling that the condition for
instability of (25) is ¢,c; <r and the condition for complex roots of the lag
polynomial is c; < 4c,, we can combine them as indicated in the diagrams of
fig. 11.

These diagrams can be used as a practical tool to locate zones of potential
complex behaviour in the three-dimensional parametcr space. Consider, for
cxample, fig. 11(a). If the valucs of the three parameters are chosen so as to
position the system in the lower part of the stable zZone, and, keeping ¢, and
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r ixed, ¢, is progressively decreased, we expect the system to undergo a Hopf
bifurcation and. possibly, a period-doubling (ransition to chaos. This conjcc-
Lurc is supported by the bifurcation diagram shown in fig. 12, which has been
calculated fixing ¢, =04, r=08 and decreasing ¢, from 1.2 to 0,99,

The period-doubling sequenice is quite evident. There is no sign of periodic
windows, however, but this could be the consequence of the coarseness of the
numerical simulation and its graphical representation. For low values of Cy
(1), there scems to be a sudden increase in the size of the chaotic attractor.
This suggests the presence of the so-called ‘interior erisis’, or ‘interior
catastrophe’, a phenomenon whose occurrence has also been detected for the
logistic map (). For even lower valucs of ¢y, the system ‘explodes’ and the
solutions become unbounded.

The period-doubling route to chaos can be further appreciated by
considering the diagrams of fig. 13 which show the final trajectories of eq.
(25) for differcnt values of the controlling parameter c,.

The changes in the behaviour of the system can also be detected by power
spectrum analysis (performed for the same values of the parameters), as
ilustrated in fig. 14, where evidence of an evolution from periodic to
aperiodic chaotic behaviour is quite strong and qualitatively similar to that
discussed in Part I. As we decrease the control parameter ¢,, we sce peaks
appear in the power spectrum in correspondence to sub-multiples of the
fundamental frequency. For cven lower values of ¢, a ‘noise floor’ associated
with chaotic bchaviour appears and successively destroys the sub-harmonics
in the opposite order of their appearance. Notice, however, that, insofar as
our numerical analysis is correct, the ‘noise floor' does not secm'to destroy
the fundamental frequency (and some of its harmonics). This type of chaos
characterized by the co-existence in the power spectrum of broad band
components and sharp peaks is sometimes called ‘non-mixing’. An example
of non-mixing chaos is given by the Réssler attractor.2?

A similar procedure can be followed with repard to the route to chaos
illustrated in fig. 11(h), fixing ¢,=0.99, ¢,=04 and increasing r from 0.6 {o
0.8. The resulting bifurcation diagram is shown in fig. 15.2* The results are
qualitatively the same as in the previous experiment: a period-doubling route
to chaos terminating in an ‘explosion’ of the system; no clear sign of periodic
windows in the chaotic zone; some indication of an ‘interior crisis’, immedia-
tely before the ‘explosion’.

Finally, we have estimated the LCEs and the (Grassberger and Procaccia)
fractal dimension for the chaotic attractor corresponding to ¢, =0.99, ¢, =04,
r=0.8. The results arc shown in figs. 16 and 17.

The dominant LCE is small but positive (=0.08) and the convergence is

I'See Réssler {1976}, Oono and Osikawa (1980).
**In arder not 10 overburden the presentation, we shalf omit the discussion of the diagram of
fig. 11(c), which pives entirely similar results.
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good. The fractal dimension is equal to =21, which is in harmony with the
other gualitative information we have on the attractor.

Altogether, our cxercises strongly suggest that, for wide zones of the
parameier space, a ‘multimodal” structure the lag operator G,(D) associated
to a ‘one-hump’ non-linearity in the excess saving function may generate
¢ycles and chaos in the dynamics of the system.

4. A few complications and conclusions

The constraints put on the lag structurc (the polynomiat Go(D)] in order
te obtain chaotic behaviour of the system could be substantially relaxed if
the function F(Y) depended on both the level and the rate of change of the
representative variable Y. To sce this, let us modify the investment function
of the Arncodo-Lorenz model by postulating that investment depends not
only on the level but also on the rate of increasc of income: in other words,
by introducing an ‘acccleration’ cfiect. The saving function will be left
unchanged. For simplicity's sake, we shall assumc that the investment
function (Y, ¥) is separable, convex in the first argument and lincar in the
second, namely:

I=HY, V)=1(YV)+1,(¥),
L(N>0, I(Y)>0, 1,(0)>0,
1,(V)=2Y,

where 0> 0 is the acceleration cocfMicient, assumed to be constant,
The role of the ‘accelerator’ in producing chaotic dynamics can be rcadily
scen. Including the acecleration effect, our system will now be writien as

GD)=F (Y,DY), (29)
where (Y. DY) = F(Y)~ DY, and i =(v/ha,), which. in turn, is equivalont to
Gy(D)=F(Y), (30)

where GL(DY=G (D) +iDY, :

Recalling our discussion of the diagram of fig. 11(a) above, It us now fix
r=¢ and choose ¢, <&, =(4F)13, =0 and c, large so that we are out (to the
right} of the chaotic zonc. Clearly, by increasing & sulficiently, we can move
into the chaotic zone. In fact, for cxample, by putting r=0.8, c;=04 and
¢, > 1 we can always choose = | —¢, so that the cxact numerical results of
section 3 above are reproduced, and chaotic output is generated. If ol



becomes too large, however, the system will ‘explode’ and its solutions will
become unbounded.

We conclude that the addition of a lincar acceleration component to the
investment function of a macromodel of inventory cycles can bring about
chaotic behaviour of the economy. More generally, when the input to a lag
mechanism is velocity dependent, the time profile of the input-output
interaction may be altered so as to lead to a more complex motion than
would otherwise be the case. And this even when the additional input in
question is linear,

Onc may also wonder what difference it would make il we used ‘complete’
Kalderian saving and investment functions (cf. fig. 9).%° The numerical
simulation performed indicate that the ‘complete’ system has the same broad
dynamic characteristics as the ‘reduced’ one, the main difference being that
chaotic altractors now retain their stability for values of parameters which,
with ‘reduced’ saving-investment functions, would have made the system
‘explode’.

From an cconomic point of vicw, the cxerciscs performed in the preceding
pages have a mainly pedagogic significance and should not be taken too
seriously. However, they give us an interesting clue as concerns the réle
played. by lags and non-linearities in producing irregular fluctuations and
chaos and confirm the possibility of complex behaviour in simple, low-"
dimensional continuous-lime systems. Stronger results will perhaps be
obtained when the broad analytical and numecrical findings arc combincd
with a deeper understanding of the mechanisms gencrating those lags and
non-lincaritics in rcal economy. For this purpose, economists should' perhaps
rcly more on empirical observation and classification and icss on a priori
deduction from very general first principles.

**Formally this could be achicved, for example, by putting ¥,=2 and replacing the function

F(Y) with
_[fn), for 0S¥ I, :
F(Y)_{r(Y-])(Z—Y). for 1<¥<2
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DISCRETE AND CONTINUOQUS-TIME
MODELS OF CHAOTIC DYNAMICS IN
ECONOMICS

ALFREDO MEDIO

The paper discusses applications 10 economics of non-tinear one-dimensional maps. The
hyputhesis implicit in a fixed dolay lag is crivicized and a continuous-time generalization of
if is suggested. The resulting system of diffcrential equations is investigated by means of
analytical and numerical wooks. A ‘symptomatolugy’ of chaos is developed and it is shown
that the combination of non-linearity and exponenfial lags may indeed produce chaos ina
continuous setting. It is also shown that the essential qualitative properties of the full flow
can be caplured by a ‘teconsiructed 1-D map®.

I. INTRODUCTION

In the present discussion the phrase ‘chaotic dynamics® broadly refers to a system
characterized by orbits more complex than periodic or quasi-pdhgdic ones. The
existence of complex behavior in low-dimension deterministic models has been
known 10 mathematicians and physicists since the end of the 19th century, thanks
to 1he pioncering work of Poincaré. The subject has experienced a tremendous
revival in the Jast two decades and there now exists a Jarge and rapidiy growing
literature. Economists soon realized that the new ideas and resuhts in the theory
of dynamical systems oficred great potentialities for their own research. The
study of economic dynamics can now be carried out with much more powerful
and sophisticated tools of unalysis. :

This progress is panticutarly relevant as far as the theory of business cycles is
concerned. In this area, mathemaltical economists have long been (and still are)
divided into two schools. Some of them maintain that economic laws per se would
lead to an equilibrium position, but their operation is continuously subjected 10
disturbances of more or less random nature, which keep the economy fluctuating.
Consequently, according 1o this view, deviations from equitibrium are betier
studied by means of probabilistic instruments. This position was held in the past
by such eminent economisis as Sluizky, Frisch, the Adelmans and, more recently,
by Lucas and the "equilibrium business cycle' school.

The ‘random shock” theory of the cycle was criticized, however, on the ground
that it relegates the cause of fuctuations 1o factors that, by definition, cannot be
the object of scientific explunation. As John Hicks put it a long time ago (31950,
pp. 90-91), to state that business cycles are essentially due to erratic shocks is
tantamount fo saying that we do not know how they come about. This position

Address: Depanment of Economics, University of Venice, Italy.
© Oxford University Press 1991 "
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was held, for example, by cconomists belonging to the Keynesian tradition, like
Kaulecki, Kaldor, Goodwin, Samuelson and Hicks himself.' The results of their
efforts were various models of the multiplier-accelerator type that, under certain
conditions on the parameters, can generate limit cycles and thus effectively
describe pessistent regular oscillations of the relevant variables, typically income,
investment and employment.

The multiplici—accelecator (and, more generally, the disequilibrium) theories
of the cycle feil out of favour with the economic profession during the 1960s for a
number of reasons that need aot detain us here. We would like to stress,
however, a fundamental faw of those theories, which equally concerns any
economic representation of business cycles as regular, easily recognizable periodic
orbits. Indeed if real economies behaved as those theories imply, economic
agents would not fail to notice it, and even the most prudent among them would
not miss the opportunity to speculate with total safety. However, in so doing,
they would destroy those very mechanisms that produced the cycle. The latter
would consequently disappear and its theory with it.

This particular criticism, however, would not apply to deterministic models
describing  Huctuations of the relevant variables which are persisient and
tounded, but highly irregular, so as to make accurate e¢conomic forecasis
impossible, except in the very short run. It is not surprising, therefore, that the
recent developments in the field of dynamical system theory were greeted with
enthusiasm by the supporters of endogenous theories of business cycles, who
promptly realized that the new ideas and resulis pow available offered great
potentialities for their line of investigation.

2. AGGREGATE, DISCRETE-TIME DYNAMICAL MOBELS IN ECONOMIICS

If one loaks at the applications of those analyses to economics, one witl notice
that they alinost c:)(t:ll.l:;iwlg.*2 consist of adaptations (with various amounts of
value added) of the celebrated first-order, non-linear difference equation, so
britliantly studicd by Robert May (1976), and subsequently investigated in a lurge
naumber of papers and books.

As is well known, the May equation has the general form

Xy =Glx) (1)

where x e R, G : R— R is a smooth "ene-hump’ function, and T is the length of a
fixed delay, which of course can always be made equal (0 one by appropriately
choosing the unit of measure of time. As is well-known, the dynamics of
discrete-time dynamical systems of type (1) essentially depend on a single
parameter quite independently of the specific form of () and, over a certain
interval of vatues of this parameter, may be very complex or chaotic. The
question which immediately leaps 10 mind is the following: how general are the

' However, some of Kalecks's mudels of business cycles include both dedseministic and stochastic

clements.
 Sume of Ihe relatively few exceptions are discussed in Haas Walter Lorenz (1989),
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Fic. 1. A closed-loop, non-lincar fecdback system.

{essentially mathematical) results derived from the investigation of the discrete
dynamical system (1) and how relevant are they to economic theory?

Natice, first of all, that a system described by equation {1) may be conceived as
a highly aggregate mechanism, consisting of two parts, namely a non-lincar
funciional relationship and a lag, the latter being, in this particular case, a hxed
delay (see Fig. 1}. Let us then consider these two elements in turn.

The non-linearities implied by single-hump functions are of a rather common
kind, and their presence has been detected in situations pertaining (o practically
all branches of the natural and social sciences. Economists may (and indeed do)
disagree on the likelihood of such non-linearitics actually affecting the operation
of real economic systems, and some of them are busy proving (or disproving)
their existence in specific cases (see, e.g. Brock and Sayer, 198R). There should
be consensus, we belicve, that the general laws governing sgtional economic
behaviour, as postulated by the prevailing theory, do not exclude a priori, and
indeed in some cases togically imply, the presence of nonmonotonic functional
relationships of the one-hump type.

This point can be appreciated by considering some of the applications 10
economics of equations of type (1), including, amongst others, macroeconomic
models {e.g. Stutzer 1980; Day, 1982} models of rational consumption (c.g.
Benhabib and Day, 1981); models of overlapping generations (e.g. Benhabib and
Day, 1982; Grandmoni, 1985); models of optimal growth (c.g. Deneckere and
Pelikan, 1986). Recemt overviews of the matter, with further instances of
one-hump functions derived from economic problems, can be found in Baumol
and Benhabib (1989) and Huns Walter Lorenz (1989).

On the contrary, the role of the second element of the May mode! (i.e. the lag)
has heen rather neglected in economists’ discussions of chaolic dynamics.
Comments on this point are often limited to some passim obscrvations that most
mathematical theorems utilized in this case only apply to discrete, one-
dimensional systems and that the most interesting result—the occurrence of
chaotic dynamics—disappears when (supposedly} equivalent continuous-time
formulations of the same problems are considered.

This neglect is particularly surprising since there exists in the economic
literature a lively and intellectually stimulating debate on the relative virtues and
shoricomings of discrete and continuous models, which is very relevant to the
point in question. Within the limits of this paper, we cannot explore the issue
exhaustively. B will be sufficient here 1o briefly recall the main difficelties that
arise in the study of an apgregate model (cconomic or otherwise) by means of

Ny

102 A. MEDIO

so-called ‘period analysis’, i.e. in discrete time.? First of all, even though
economic transactions of a given type do not take place continuously and are
therefore discrete, in general they will not be perfectty synchronized as period
analysis implicitly assumes, but overlap in time in a random manner. Only in very
rare circumstances (e.g. in an agricultural, single-crop economy}, could onc
define a ‘natural period’ for the economic activity under investigation. Whenever
this is not possible, there is a dunger that the implicit assumption underlying the
fixed delay hypothesis may yield misleading conclusions.

The possibility that some of the conclusivns obtained by means of period
analysis may be mere artifacls owing to the nuspecification of the model is clearly
present in virtually all the existing applications of equation (1} to cconomic
problems, for which no aggregate "natural period’ could be defined. Those wha
think that chaotic dynamics do exist in real economies (this author is among
them) are therefore under obligation to show how this particular mispecification
can be avoided.

Ta satisfy this requircment, in the following sections we shall develop a
procedure that, in our opinion, will contribute to clarify some not fully
understood aspects of the conpection between discrete and continuous-lime
representations of a process.

3. PROBABILITY DISTRIBUTION OF LAGS®

Let us consider any of the economic models discussed in the works quoted in the
preceding section (perhaps Benhabib and Day’s model of rational consumer, or
Grandmont’s overlapping generations model*) and suppose that, although we
accept the authors’ arguments in any other respects, for the reason discussed
above we reject the hypothesis of a single fixed delay as an unduly crude way of
aggregating the economy. Insicad of a single ‘representative’ economic agent {or
unit), as implicitly postulated by those models, we consider a hypothelic cconomy
consisting of an indefinitely large number of agents, who respond 0 a certain
signal with given discrete lags. The lengths of the lags are different for differcny
agents and are distributed in a random manner over all the population. In this
situation, the economy’s aggregate time of reaction 10 the signal can be modelled
by a real, nonnegative random variable 7', the overall length of the delay.

In principle, T can he distributed in a number of different ways, depending an
the specific problem a1 hand. There exist, however, certain general criteria fur
choosing an ‘optimal’ probability distribution, given certain constraints. In the
attempt to estimate the true distribution of a random variable, a statistician, in
order 10 avoid unjustified biases, should formulate his assumptions so as to

* This paragraph is closcly related 1o the discussion developed in 1. May (1970) (a dificcent May1),
Foley (1975) and Turnovsky (1977). In order 1o facilitale reference 1o coanomic lilerakure, in what
fulfows we use the concepts of ‘period” and “fixed delay lag' as synonyms

* In this secon we 1olliw Tnsernizzi and Medio (1991) (hencefonh IM), 10 which we tefer the
reader for 4 more detwled discussion and bibleographical relerence

As concerns by particnfar model, however, we only 1ofer here 1o so called “backward dynamicy’,
leaving aside any questons concerning 1 relation walh ‘truc’, forward dynamies.
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maximize the uncertainty about the system, subject to the constraints deriving
from his prior knowledge uf the problem. A rigorously defined mweasure of
uncertainty is provided by ‘entropy’.

The concept of entropy was intreduced after World War 11 in the context of
Information Theory by Shannon [1948}, but the idea can be traced back to
Boltzmann and carlicr. Broadly speaking, if we consides a random variable X
taking a finite number of values with probability p,, ..., py, we define the
eniropy of X as:

H= 'E. pilog(p.)-

The quantity H measures the uncertainty concerning X, or equivalently the
amount of information we get on the average by making an obscrvation. An
equivalent, more complicated definition can be derived for continuous random
variables.®

The ‘principle of maximum entropy® for selecting probability distribution was
put forward in the economic Jiterature by Theil and Fiebig (1981) and can be
looked at as a generalization of the famous Laplace’s ‘principie of insufficient
reason’.

As this author bas discussed elsewhere (see IM quoted), when the random
variable in question is essentially positive, and the only a prieri ®formation on its
distribution is that ther¢ exists a certain expected value (mean) and a certain
geometric mean {or, equivalently, the mesn of the logarithm of the random
variabie in question), then the principle of maximum entropy requires that a
two-parameter gamma distribution be chosen.

I we indicate by o the shape parameter and § the scale parameier, the density
function of a two-parameter gamma sandom variable can in general be writien
thus:

ifr=40,

. - 0.
gle: Bio) {(ﬂ‘r(a)}"l"'e""‘. if1>0, @

where I is the gamma funclion, i.e,
l‘(tr)=j > et e,
(U

and o ff > 0.

From the knowledge of the parameters a and fi, we can derive the mean (af),
the variance (B%¢} and the geometric mean (8 exp(I"{a)/T{a)})) of the
distribution.

Conversely, it can be shown that, for the gamma distribution, fixing mean and
geomelric mean is equivalent Lo fixing mean and variance. Since the latter two
statistical indicators are the most commonly used in economics, we shall
henceforth use them as the parameters of the distribution.

* Cf. e.g. Eckmann and Ruclie (1985, p. 63K).

-
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4. A FLED-BACK REPRESENTATION OF LAGS

We shall now tcmporarily abandon the probabilistic aspect of lags and shall
consider the problem from the point of view of feedback theory.

Suppose 8 variable Y(¢) is related with 2 continuously distributed lag Lo another
vanable Z{¢), where of course Z(7) may well indicate the same variable ¥ at some
time different from r. The equation of the lag can be written in its time-furm thus:

va=[ rmza-nax, o)
where f:R— R is continuous and we have:
f{o)=0,for0s0; f(o}z0, fore>0; and j’f(rjdr=l.

Thus f can be thought of us a ‘weighting function’: it indicates the different impact
that different values of Z in the more or less distanl past have on the current
value of Y. In principle any kind of time-profile of such an impact can be
modelied by (3}. Under rather general circumstances, the lag can equivalenily be
represented in the form of a differential operator. If we restrict the variable 2 10
be zera for 1< 0, then, for each fixed 1, f(1)Z(z — 7} is also zero for all £>1.
Therefore, equation (3) can be re-writien thus:

' Y(n= I:f(t)Z(r ~7)dr. )

The expression on the right-hand side of (4) arises in the theory of the Laplace
Transform as the convolwtion of f and Z, and it is denoted by f+Z. We recall
that f « Z = Z « £ Moreover, under general conditions (see, e.g. Kaplan, 1962, p.
40), we have:

£/ +2Z]= 2171 #AZ], )

where ¥ is the usual Laplace Transform.
If, moreover, ¥[f] is the reciprocal of a polynomial

Vipi=awp" +...+a,,
fay=Z""[WVip)],

then Y = f ¢ Z is exactly the unigue solution of the differcntial equation
V{D)YY(i) = Z(1). (©)
where D =d/ds, with initial conditions Y= ¥'=_ . =Y""'=0 a1 1=0. {¢f.

Kaplan 1962, p. 358, Th. 20).
In particelar, if the lag is of a multiple exponential type of n-th order, we shall

have:
v G

that s

Troal
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and consequently equation (6} will take the form:

(PH—T+ 1)" Y()= Z(1)

or

Vi) = (¥+ 1) "z, )

where n is a positive integer and 7' is the time-constant of the lap.

I we now calculate the ‘weighting function’ f(r) corresponding to a muttiple
exponential lag by performing the inverse Laplace Transform operation, we shall
obtain:’

(6

fin= (;,)"(;1—_—1)-!&_"”- (&)

Considering now eguations (2} and (8), and putting a-=n and = T/n, it can
be shown that the weighting function of a multiple exponential lag of order u is
the same as the density [unction of a two-parameler gamma distribution.® The
time conrstant T of the lag operator corresponds 10 the mean and the order of the
lag, n, is invessely related 10 the variance. 1 can alsa be promptly seen that, for
n=2, f(r) will bave a ‘one-hump’ form, with a maximum at ¢ = F[1 — (1/n)]. The
greater the order of the Jug, the smaller will be the variance around the mean T,
For large values of n, therefore, the weighting function will have a peahed form,
indicating that the value of the output at any given instant f mostly depends on
the input delivered at a given instant of the past, 1 — 7, or in a certain small
neighborhood of it. ’ )

Twao simple cases are most common in the economic literature.

4.1. The Simple Exponential Lag

This corresponds to n=1. In this case, the reaclion 10 the input starts
immediately at £ = 0, but the temporal evolution of the output, that is the growth
of ¥, is proportional 10 the excess of the input over the output. This leads to the
following ordinary differential equation:

Y1) = ¥[Z(D - Y(), )

where y>0 has dimension fime™' and represents the speed of adjustmen:,

whereas its inverse 1/y=T can bc considered the length of the simple
exponential lag. In econumic applications, the variable Z sometimes represents
the desired, o1 equilibrium value of Y, so that equation (9) depicts an *Achilies
and the Tortoise’ situation in which the actual magnitude ‘chases’ the desired one,
approaching it at an exponentially slowing speed, and catching up with it only in
the limit for 1— + . The simple exponential lag, or exponential lag of order one,

? For the details of this operation sec. e g. Kaplan (1962)
* To the best of our knowledpe, this resull was first establivhed in IM guoied above.

o
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corresponds to a rather special {and crude) formalization of economic teaction-
mechanisms.

4.2, The Fixed Delay

When 1 becomes indefinilety large, the weighting (and the distribution) function
tends 1o a Dirac delta function on T', and the cominuous exponential lag tends to
a fined delay of length T. In fact, we have:

DT y°" .
lim (T-!-]) = M, (1)

The expression on the right-hand side of equation (10} is called the shift operator,
which, when applied to a continuous function of time, has the eficet of translating
the entire function forward in time by an ioterval equal o T {cf. Yosida, 1984,
Putt 11, Ch. VIII). Thus the fixed delay lag empicyed in models of the type {1}
can be seen as a special, limil case of a multipte exponentiul lag when the order of
the lag tends 1o infinity. Equivalently, the aggregate fired delay of those muodels
can he viewed as a limit case of a system characterized by gamma distributed
individual reaction times, which obtains when the dispersion around the mean
(the variance) tends to zero.

The question now naturally arises whether some or ail the interesting results
obtained by the investigation of onc-dimensional maps of type (1) ran be
reproduced by means of models adopting less drastic and more fexible
assumptions concerring the weighting function, and consequenily the time profile
of the lag.

Mathematically, this can be done by replacing equation (1) with the more
general, continuous-time n-th order differential equation:*

x,,=(%)+])7"6(x,,) [§3))
o1, equivalently, by the system of # first-order differcntial equations;
(§+])x,=x,,,, (j=2,....n) (12)
D
(;+ l)x,=G(.r,,), (13)

where T has been put equal to 1, G(-) is a one-humped function like (1) and
again ) = d/dr.

From what we have said before, it appears thal system (12)-(13) can be
considercd a continuous approximation of {1) and, for # — <, the fag structuses of
the two systems become equivatent. The main purpese of what follows is to show
that some of the most interesting features of equation (1) can e reproduced by

Y A umilar approach to this problem can be found in a paper by Colin Spartaw {1980) from the
study of which we have preatly henelned. In fact, some of the resules in thas section and the Tollwing
one can be considered as further developments of the same line of rescarch. See also R. May's
comments an This pant (19K, pp. S48-549 and 555) .
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system {12)-(13) at a rcasonably low level of dimensionality (i.c. for relutively
tow values of n). In particular, we wish Lo show that chaotic behuviour, which is
known to exist for the former, also exists for {relatively) tow-dimensional
specifications of the tatter. To make things more specific, we shall select, from
now on a particulas form of the function G{x,) which appears in {13}, namely we
put:

Glxa)=rx, (3 —x,).

Qualitatively similar results can be obtained with different specifications of the
one-hump function (¢f. IM quoted).

5. SYMPTOMATOLOGY OF CHAOS: ANALYSIS AND NUMERICAL SIMULATIONS

At present, complete global information on the struciure of trajectories of
comtinuous dynamical systems of dimension grealer than two can only be
obtained by intcgrating numerically the differential equations of the systems,
studying their geometry and computing the values of certain crucial quantitalive
properties. Although theoretical knowtedge is not sufficient to provide a complete
picture of the dynamics of the system, it is nevertheless indispensable to guide
numerical computations and to interpret their results, In most agplications, and
specifically in economics, therefore, the only promising research stralegy seems to
be at the moment an association of analysis and numerical simulation, through
which one can establish a series of ‘symploms’ whose concurrence is the best
available indicator of the presence of those patterns of behaviour one is looking
for. ,

In the sequel, we shall scarch for “symptoms’ of chaotic behaviour by inspecting
ceftain crucial qualitative and quantitative features of the sysiem, such as the time
profile of the variables, the morphology of the attracting set, the power spectrum
as estimated by the Fast Fourier Transform, the fractal dimension, as measured
by one or another of the various existing algorithms, and the so-called ‘sensitive
dependence on initial conditions’ as indicated by the presence of positive
Lyapunov Characteristic Exponents (LCEs).

Equipped with these idcas and tools of analysis, we first discuss some
propetties of the system (12)-(13) which are independent of the order of the tag
n.

From (12)-(13) we gather that the equilibrium conditions are the following:

n=x;=, =y, =jf
and
¥=ri(l-%),

whence we obtain the two equilibrium solutiens:
=0, d=1-(11), (14)

As concerns the stability of equilibria, consider that the auxiliary equation can be

ad
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wrilten in the simple form:

(1+4) =f(%). (15)
where nd indicates an eigenvalue of the Jacobian matrix and f'(£) =dG(x)/dx =
r(l — 2x}.

Hence we have:
ffa)=r  fi@)=2-r (1)

From cquations (14)-(16), we guther that, for r <1, the ongin is the only
non-negative equilibrium point and it is stable. AL r= 1, we have a transcritical
bifurcation: the equilibrium point at the origin loses its stability and a sccond,
initially stuble, equilibrium point bifurcates from i in the positive orthant of the
phase space.

For <3, nothing much happens when we increase the parameler ro Lhe
positive equilibrivm point remains stable for all values of 7 > 1 (for n = 2, damped
oscillations occur for r>2), Fur n =3, hawever, as r increases pasl a certain
value which depends on n, a Hop! bifurcation takes place and a penodic orbit
bifurcates from the stable equilibrium point that becomes unstable. Successive
bifurcations ¢an be detecied for greater values of 7, although their caact
structure still escapes us. Whalever value the parameter r may take, however,
nothing more complicated than periodic orbits seem to occur for low values of n.
However, when thg order of the exponential lag becomes sufficiently large, there
seems 10 exist a value of r beyond which the sysiem gives chaolic output.

In order to analyze this case in detail, we select s = 10,

In this case, the first Hopf bifurcation occurs for r ~ 3.6 and, for r =5, we have
been able to detect some quife strong symptoms of chaos, which are illustrated in
the following figures.'® . _ .

To begin with some “visual dynamic analysis’, Fig. 2(a) illustrates a time scries
for the variable x,, in which Auctuations prima fucie appeat to be irregular. Figure
2(b) shows the superposition of two trajectories with slightly different starting
conditions (the difference is of the order 107%). The reader will observe that the
trajectories at the beginning are indistinguishable, but, after a short time they
diverge and, for a while, become apparently unrelated. o

More impressive are the diagrams of Fig 3(a) and (b), which 1liustralg 2?1) afnd
3-D projections of the motion of the sysiem in the phase-space, afier elimination
of transicnts, The pictures show a sheet-like, approximately 2-D object which
looks very much like Rossler's Band. The latter is a chaotic attractor yielded by a
simple system of three differentiat equations (see Rossler, 1976). Our simulations
indicate that all orbits starting in the positive quadrant rapidly move toward the
attractor and, as time goes by, tend to fill it (but not quite), without settling on
any appatently periodic trajectory. )

This is a particulaily interesting result, all the more so since we know that
certain basic features of the dynamics of the Rossler model can be cicctively

*“* Notice that, although sieictly speaking there use 10 vanablcs in the model, essentially this is &
one-variable model. Al any raie, 1he chince of the variable(y) in whal follows is noi essential,
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approximated by means of a 1-D map, similar to the one we started with. We
shall return to this point later.

A third symplom is illustrated in Fig. 4. which represents the power spectrum
of a final trajectory of our model in the {presumably) chaotic zone, estimated by
means of Fouricr Fast Transform. (We mcasure log spectral density on the
ordinate axis, and frequency on the abscissa ) We observe that the spectrum is
characterized by a broad bund with no isolated peaks. This provides a strang

110 A. MEDIO

(a)

(b}

i, 3. {ay 2D projection of the attractor. (b} 3D projection of the artractor
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Fig. 4. The power spectrum of the final trajestory of the sysiem.

presumption (although not conclusive evidence) of chaotic behaviour, especially
so when the result is strengthened by the other indicators of chaos.

The fourth, and strongest evidence of chaotic behaviowr of our model is
provided by the caleulation of LCEs"' 10 evaluate. As is well known, the presence
of an attractor with positive LCEs indicates that the motion of the system on the
attractor has sensitive dependence on initial conditions, i.e. it is chaotic. Since in
our case the attractor looks approximately 2-D, we would expect the sign pattern
of the IWOLCEs to be (+,0,—,...,-).

And this is preciscly what we get from our computations. The essential results
are shown in Fig. 5 which shows the first threc LCEs (the other seven are all
strongly ncgative). One will notice that the convergence is pretty strong and the
dominant exponent is distincily positive (~0.35).

The interpretation is that the motion of the system is strongly convergent
toward the autractor from all directions but two. The zero Lyapunov expunent is
associaled with the direction of the motion along the flow. The presence of one

' Basic scading on the concepl of LCEs and the reluted computing techniques is Benettin e af.
(1980).
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positive exponent indicates that, on the attractor, there exists a direction along
which nearby trajectories, on the average, diverge exponentialty. This is
tanlamount to saying that the sysiem has sensitive dependence of initial
conditions; therefore it is chaotic,

From the knowledge of the LCE spectrum, we can also obtain an estimaie of
the fractal dimension of the artractor. By making usc of a method first suggested
by Kaplan and Yorke (1979), we can derive a measure of the Hausdorfl
dimension of the attractor from the calculated LCEs. Let us denote the 10 LCEs
as g, (i =1,2,...,10), and et us list them in descending order, namely:

X122 X217 o P fnr

Let j be the largest integer for which we have:

Nttt +5>0
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Then a measure of the fracial dimension can be written as:

+ E{-) X
5,41

In our case, we have x; = 0.35; x; = 0.00; 3, = —4.2. Consequently, we obtain:
d~=2.08,

d=j

which is in harmony with the geometrical shape of the attractor, as it appears in
the phase-space diagrams, and is of the same order of magnitude as the Hausdorft
dimension estimated for the Réssier attractor.

The fractal dimension has also been computed (always for r = 5) by means of
the Girassherger and Procaccia method. The results are shown in Fig, 6. The
estimated dimension is about 2.15 which is close to the Lyapunov dimension.

#. A RECONSTRUCTED 1-D MAP

Recalling a comment made in the previous section concerning the Raéssler
attractor, one may wonder whether the chaotic nature of our (conlinuous
multidimensienal) system (12)-(13} could be captured by means of a 1-D map.
After all, this was the starting potnt of our investigation.

To answer this guestion, we have adopted a procedure which is sometimes

-7
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called the '1-D Map Approach’ and which, although not yet fully justified from a
mathematical point of view, has become comnmuon in the Bierature on continuous
chaos. This procedure was successfully employed by Edmund Lorenz in his
celebrated paper (1963) and, more recently, by Rossler (1976), Roux er al. (14953)
and others. In all these cases, the authors showed that an auxiliary 1-1D map can
be derived from the original continuous model, which preserves much of the
behaviour of the full flow, in particular with regard 10 the chaotic nature of its
altractor. This procedure is purticularly appropriate when the rate of disvpation,
as mcasured by the trace of the Jacobian matrix, averaged over the attractor of
the system, is strong. This indeed applics to our case, where, as it can be
promptly verified, the trace is constant and equal to —n”,

In order to apply the "1-B Map Approach’ (o our system, let us consider the
chaotic case r = 5. Then let us construct a (planar) Poincaré surface of scction,
transversal to a 3-D projection of the atiractor, and study the successive
intersections of a trajectory with this surface. This is iflustruted in Fig. 7. We
ohserve that if a suitable projection of the attractor is chosen and, if the surface is
suilably positioned across the flow, the intersection locks like a (huctal)
coflection of points lying on an open curve. This is an intcresting result and
provides in itself a symptom of chaotic behavieuar." .

Next, iet us measure the values of either of the co-ordinates {(in the section
plane) of each intersecting point, and let 2, denote the sequence in time of these
values. Clearly, there are no @ priori reasons for there to be any definite relation
between such consecutive values. In peneral, we would expect them to be
scattered throughout the plane, within the limits of the intersecting curve.
However, if we plot z,,, as a function of its antecendent z,, we obfain a fairly
well defined curve, which has a familiar one-hump shape, with a rather stecp
slope (see Fig. 8). :

To complete our experiment, we can try to estimate the (unique} LCE
sssocialed with the reconstrucied 1-D map. The LCE in this case is defined by:"

x=tim 2 S,
ey Yt

where f(z) is the reconstructed map and f'(2,) is the derivative of the map at z,. In
practice, one takes # farge enough to show convergence of the LCE to a fimit
value. By fitting the data {i.¢. the points of the first return map) by cubic splines,
it is possible to calculate the derivative at cach point, and subsequently compute
the LCE. The result we have oblained is x = 0.68, which indicates that the
dynaniics generated by the reconstructed 1-D map is chaotic.

17 Notice that, in principle, the choice of a particular cul transveral to the flow should s no
caswntial way affect the resull we are pursuing. Indecd. laking 3 differet oot conesponds 10 a
co-vidinate transformation on the return map. snd a theorem by Oseledee (196E) guianives that the
L& L4 spectrum is invariant with respect to co-ordinate iransformation, $cc, on this proint, Lichienbery
and Licherman (1953, p. 12).

' See Lichtenberg and Licberman (1983, p. 15).
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Notice an important point here. We have been able 1o show that an essentiul
characteristic of the dynamics of our {continucus, multidimensional system) can
be captured by a 1-D discrete formalism. However, this is not equivaleat 10
finding a constant time delay between each two successive values of the
fepresentative variable. On the contrury, the time interval between each two
successive intersections of the ‘reconstructed’ Poincare map will in general be
different. This basic difference between the *1-D Map® and the fixed delay map
makes the former a more flexible and niore satisfactory representation of those
economic mechanisms (the great majority, we believe) for which no ‘natural
period” may be properly defined. .

6. CONCLUMNONS

Altogether our findings seem to confirm the possibility of chaotic dynamics in
continuous models of economics, withoul the need for recourse to unduly stnict
and unrealistic assumptions concerning the Jag structure,

Two considerations in particular s¢em to be prompted by our analysis. First of
all, for the class of models under investigation, it is the combination of
non-monotonic non-linearities of the one-hump type and a certain structure of 1he
Jags that produces chaos. The extreme assumptions implicit in 1.D, fixed deluy
models eppear unnccessary. Multiple exponential lags possess a much grealer
flexibility, they permit one 10 model a large variety of economic situations, and
their two controlling parameters, T and n can be estimated econometrically.

On the other hand. the results of this paper indicate that a sufficiently high
order of the exponential lag, which corresponds to a sufficiently low variance in
the distribution of individual reaction times, is a necessary {(not sufficicnt)
condition for chaos to occur. A hint for understanding this fact (slhough by no
means a rigorous explanation) may be given by considering that a peaked
‘weighling function’ corresponds 10 a low variance of the individuai reaction-times
around 1he mean, i.e. it corresponds to a system which, in this respect, is
homogeneous and tends 1o respond ‘rigidly’ to stimoli. 1t is known that, other
things being equal, such a dynamical rigidity makes the dampening of impulses
maore difficult and resonance phenomena, and the related fluctuating behaviour,
more likely.

I would be extremely interesting to be able to specify more completely and
rigorously the relationship between the pattern of the lags and the insurgence of
chaotic dynumics. However, this we shall leave for fulure research.

As a final critical note, we may observe that the comment, sometimes found in
the litcrature, that continuous counterparts of discrete modcls yield qualitstive
results sharply differem from the onginal ones, is il-conceived. When the
approximation is performed correctly, i.e. when it is fully understood that a
discrete model s essentially infinite-dimensional, it becomes possible 10
reproduce gualitatively in 2 continuous-lime setting the same results as those
obtained in a discrcte-lime representation.
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