s

I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/585-21

FIRST INTERNATIONAL SCHOOL ON COMPUTER NETWORK ANALYSIS AND MANAGEMENT

(3 - 14 December 1990)

FDD1
Fiber Distribution Data Interface

E. Sarissamlis

Networking Technology Consultant DEC - 1 Digital Equipment BOLOGNA Fiber Distributed Data Interface - FDDI

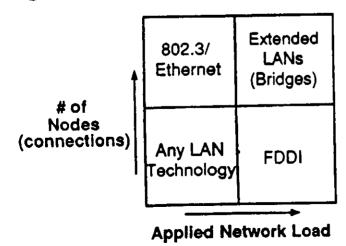
FDDI Fiber Distributed Data Interface

Dr. E. Sarissamlis Enterprise Integration Services Digital Equipment Corporation

CONTENTS

- Needs for "Next Generation" LANs
- General Characteristics
- The FDDI Standard
- FDDI vs. ISO 8802
- FDDI Components
- Inside the Ring
- Critical Considerations
- Digital's FDDI Vision
- Digital's FDDI Products
- Network Backbone Transition to FDDI
- Future Directions
- FDDI Market
- FDDI Program Summary

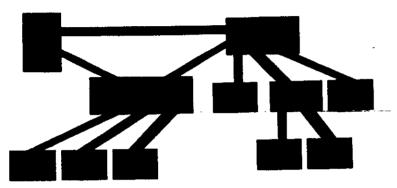
NEEDS FOR "NEXT GENERATION" LANS

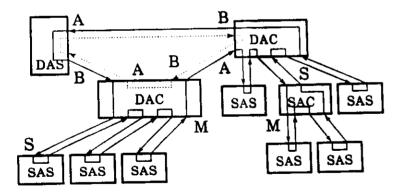

High-speed networking needs are dictated by:

- Increased number of users and applications
- Demand for greater geographic spans
- More powerful computers on current networks
- Network-wide intensive applications
- Increasing acceptance of the Client/Server Model
- Use of diskless workstations
- Backbone loading
- Integration of disparate networking technology

m : 1 ... Camultant - DEC - 3

FDDI vs. LAN TECHNOLOGIES


- No single LAN technology alone meets customer demand for both Bandwidth and End-user support
- Although demand for high-speed networking is strong, organisations will continue to build and expand on existing LAN (ISO 8802) technology
- Combining FDDI and Ethernet/ISO 8802-3 provides investment protection and guarantees business growth
- FDDI represents a component part of LAN integration


FDDI GENERAL CHARACTERISTICS

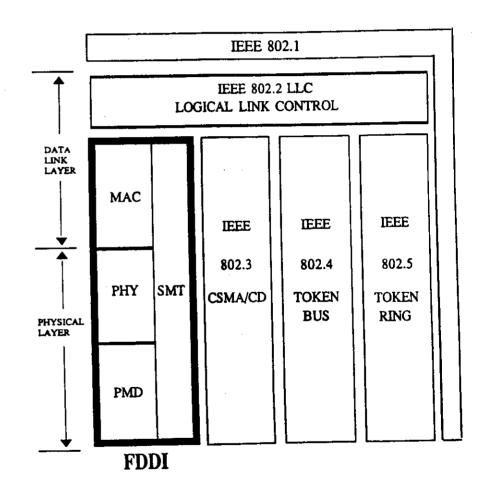
- International standard ANSI X3T9.5 (since 1982)
- Specifies optical fiber as a medium (62.5/125 multimode, 1300 nm wavelength/second window)
- Allows for Dual/Single logical Rings via Timed Token Passing media access mechanism
- Data rates of 100 Mbps (200 Mbps on both rings)
- 4B/5B NRZI (NonReturn to Zero Inverted) coding
- 500 Stations (1000 attachments)
- 200 Km of total fiber (100 Km of cable)
- 2 Km between stations (60 Km SMF-PMD)
- Several priority levels
- Type of Traffic
 - Synchronous (Voice, Real Time)
 - Asynchronous (Data)
 - Restricted Asynchronous (Bulk Data)
- Fully Distributed Fault Recovery, Clock, Elasticity, Initialisation, Topology Control
- Designed for overall bit error rate less than 10(-9)
 - Maximum Frame size 4500 Bytes

FDDI TOPOLOGY EXAMPLE

Dual Ring of Trees

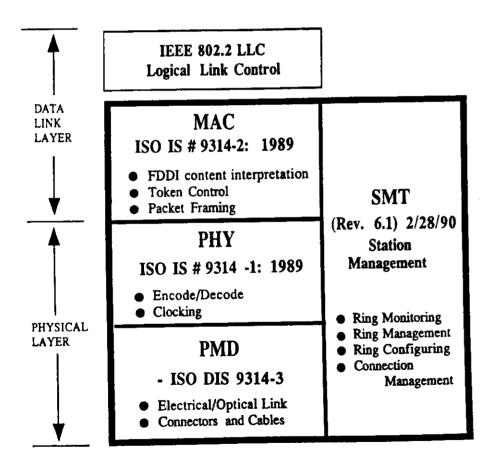
Types of PHY/PMDs:

A = Primary in, Secondary out


B = Secondary in, Primary out

M = Master (on concentrator spurs)

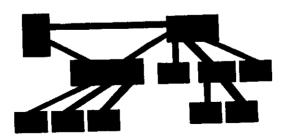
S = Slave (on single attachment stations)


Makadam Consultant - DEC - 6

FDDI vs. OTHER LAN STANDARDS

digital

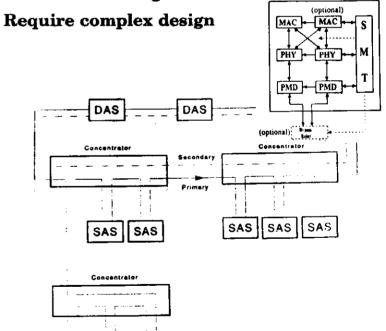
STATUS OF FDDI STANDARD


DIFFERENCES: FDDI, ISO 8802-3 AND ISO 8802-5

	FDDI	IEEE 802.3	IEEE 802.5	
Media	Optical Fiber	Optical Fiber Twisted Pair Coaxial Cable Microwsve	Optical Fiber Twisted Pair	
Media Access	Timed Token Passing Dual Ring	CSMA/CD	Token Passing	
Bandwidth	100 Megabits	10 Megabils	4 or 16 Megabits	
Encoding Scheme	NRZI-48/58	Manchester	Manchester	
Token Acquisition	By Absorption	CSMA/CD	By Resetting a Status Bit	
Token Release	After Transmit	CSMA/CD	After Receive (4) After Transmit (16)	
Maximum Frame Size	4500 Byles	1500 Bytes	No Limit (4) 18,000 Bytes (16)	
Maximum Nodes	1000	1024	260	
Maximum Interstation Distance	2 km	Optial Fiber 2 km Twisted Pair 70 meters Cosxial Cable 1.5 km Microwave 4.5 miles	300 meters to MAU	
Maximum Coverage	100 km	2.8 km	Varies with configuration	
Encoding Efficiency	80%	50%	50%	

FDDI COMPONENTS

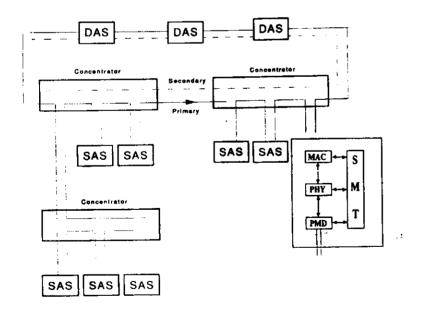
As with other LANs the ANSI/ISO standard defines


- Media: Fiber Optic cable
- Devices: Stations and Concentrators
 - Dual Attachment Stations (DAS) two PHY
 - Single Attachment Stations (SAS) one PHY
 - Dual Attachment Concentrators (DAC)-n+2 PHY
 - Single Attachment Concentrators (SAC)-n+1 PHY
- Topology: 'Dual Ring of Trees' configuration

DUAL ATTACHMENT STATIONS (DAS)

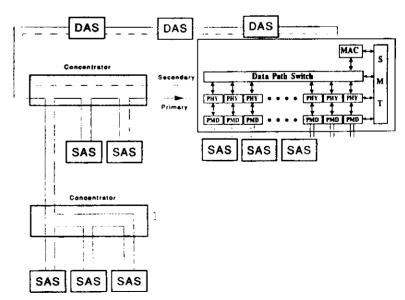
• DAS stations interconnect to form dual loops (primary and secondary rings)

Attach to the rings with four fibers (two cables)

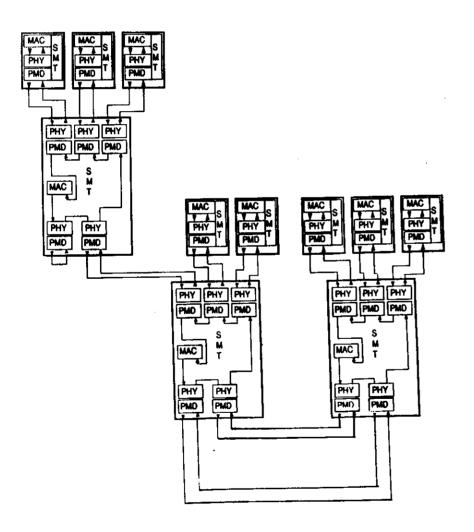

SAS

10

. . . . DEG 1

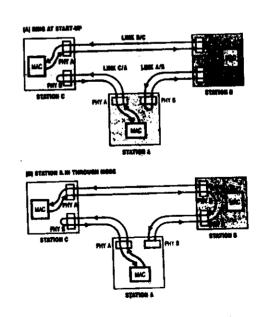

SINGLE ATTACHMENT STATIONS (SAS)

- Connect via two fibers to a multiport DAS station (one ring)
- They lack fault recovery capabilities
- Allow for optimum plant design



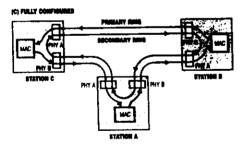
WIRING CONCENTRATOR (CON)

- Attaches to the dual ring as a DAS and provides connections to SAS
- Dual Attachment Concentrator (DAC) the "root" CON of a Tree, connects to other "root" CONs via the dual ring to form a "Dual Ring of Trees" topology
- Single Attachment Concentrator (SAC) forms the branches within a tree (radial wiring to a DAC)


FDDI: ANOTHER VIEW

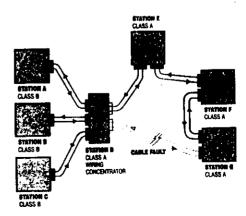
FDDI: INSIDE THE RING

RING FORMATION


- During Ring Startup, a series of minirings are formed (min: 2 PHYs and 1 MAC)
- Link integrity is guaranteed by PHY (Physical Connection Management)
- After HANDSHAKE both PHYs go into THROUGH_MODE

FDDI: INSIDE THE RING

RING FORMATION


- It is an asynchronous process (stations go into THROUGH_MODE at different times)
- Process completes when all stations are in THROUGH_MODE

FDDI: INSIDE THE RING

RING RECOVERY

- Both Physical Connection Management and Station Connection Management continue to operate after Ring Formation
- If a station goes down, the adjacent stations detect broken links, wrap-up and switch to secondary ring (outgoing)
- Other stations also channel data to the secondary ring
- Thus the faulty station (DAS) is isolated
- When Faulty DAS comes up the Ring Formation process initiates

FDDI: INSIDE THE RING

THE CLAIM PROCESS

The TIMED_TOKEN Ring establishes the following:

- One station transmits at a time
- Bound on the the ring circulation time

The claim process determines which station issues the TIMED_TOKEN

- MACs detect need to initialise the Ring and enter in CLAIM STATE
- They transmit a CLAIM_FRAME with requested TTRT (Target Token Rotation Time)
- Every MAC receives incoming CLAIM_FRAMES and compares bids (TTRT)
 - If bid is higher (slower TTRT) MAC continues to transmit its own bid
 - If bid is lower (faster TTRT) then it is transmitted
- The MAC that receives its own CLAIM_FRAME issues the TIMED_TOKEN

FDDI: INSIDE THE RING

BANDWIDTH ALLOCATION

To guarantee that each station actually transmits data, FDDI provides two services:

- Asynchronous
- Synchronous
- Time for synchronous transmission (T_SYNC) is variable (per station) and bounded
- BANDWIDTH ALLOCATION asigns each station a fixed T_SYNC and the rest goes to T_ASYNC
- Sum of all T_SYNC and T_ASYNC does not exceed TTRT

digital

FDDI: INSIDE THE RING

UNRESTRICTED TIMED_TOKEN ACCESS

To control the access, FDDI uses the TTRT (negotiated) in conjuction with each station's

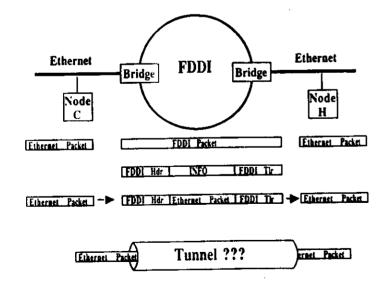
- Token Rotation Time (TRT): time since token was last seen
- Token Holding Time (THT)
- Asynchronous data is transmited when TIMED_ TOKEN arrives earlier than expected
- Synchronous data is transmited when TIMED_ TOKEN arrives
- Station never exceeds target, THT = TTRT-TRT
- The mechanism is further refined via the introduction of priorities.
 - T_ASYNC are categorised in priority levels and are assigned values
 - The values are compared with remaining THT until the overall Threshhold is reached
- The TIMED_TOKEN is released immediately after transmission

FDDI: INSIDE THE RING

RESTRICTED TIMED_TOKEN ACCESS

Some stations may wish to utilise the entire allocated bandwidth.

The use of RESTRICTED TIMED_TOKEN - that differs in format from the UNRESTRICTED one - is used exclusively for Asynchronous traffic

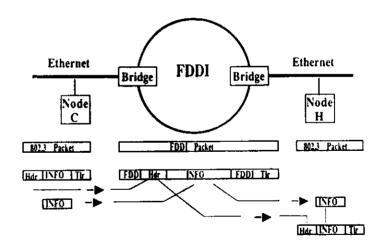

- A station captures the UNRESTRICTED TIMED_ TOKEN (Initiator)
- The MAC isssues a RESTRICTED TIMED_TOKEN and informs the others that restricted dialogue is initiated
- Interested stations are enabled by their MACs for Asynchronous transmission
- Any station can capture the RESTRICTED TIMED_TOKEN after the final message is delivered and issue an UNRESTRICTED TIMED_ TOKEN (Terminator)

digiltal

FDDI CRITICAL CONSIDERATIONS

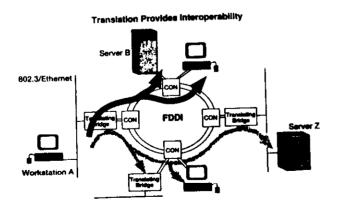
ENCAPSULATION BRIDGES

- Encapsulation bridges are designed for quick market share
- Implement proprietary encapsulation protocols
- Do not facilitate interoperability between DAS, LAN and servers
- Can be poor performers (bottlenecks)



monature attended makes of considered DEC - 99

FDDI CRITICAL CONSIDERATIONS


TRANSLATION BRIDGES

- Translate data packets between Data Link protocols
- Provide full interoperability between LAN, DAS and servers
- Increased performance (FDDI:446,429 pps, ISO 8802-3:14880 pps)

ENCAPSULATION vs. TRANSLATION

Server B Server B Encapsulation Provides Pass-Through Only Server B Encapsulation CON FDOI CON Generalization Bridge Workstation A Francestation Redge

FDDI CRITICAL CONSIDERATIONS

LARGE PACKET FRAGMENTATION

Connecting ISO 8802 LANs to FDDI requires the resolution of the differences in maximum packet sizes.

- Applications' utilisation of large packets is a major concern (eg. file transfer, NFS/UDP)
- The IP RFC 971 (Request For Comment) specifies packet segmentation and reassembly
- Allows the use of maximum packet size on the respective networks

FDDI CRITICAL CONSIDERATIONS

SAS vs. DAS

There is need for both schemes

- DAS workstations are most appropriate for small groups
 - No structured cabling
 - High availability on Dual Ring
- DAS connection costs are high
- DAS may result in unstable backbone (reconfigure each time a DAS is turned off)
- In contrast, SAS connections via DAC provide
 - Manageable, flexible, stable configurations
 - Economies of scale
 - Facilitate the integration of FDDI and existing cabling systems
 - Isolate FDDI backbone resources (Bypass)

FDDI CRITICAL CONSIDERATIONS

ROUTING AND BRIDGING

- FDDI bridges should filter and forward packets at high speeds
- Perfomance depends on the ability to
 - perform table look-ups
 - translate between Data Link formats
 - fragment large FDDI packets (4500 Bytes)
 - execute the IEEE 802.1d Spanning Tree
- Worst case scenario at minimum 461,309 pps:
 - ISO 8802-3 64Byte packets: 14,880 pps
 - FDDI 20Byte+48bit address: 446,429 pps
- Router/bridge differences are blurring (Brouters)
- Multiprotocol Routers restrict interoperability
- IEEE 802.1d is the standard for LAN bridging
- Source routing is restricted to ISO 8802-5
- SRT specs are currently written for ISO 8802-3/ISO 8802-5 interconnection

FDDI CRITICAL CONSIDERATIONS

FDDI NETWORK MANAGEMENT

A high level of confusion exists in the market about the role of SMT

- SMT is a low-level, limited-function protocol addressing specific portions of the FDDI product set (PMD, PHY and MAC)
- Typically resides in firmware
- SMT is limited to a single FDDI ring
- Higher level protocols (CMIP/CMIS, SNMP)
 provide management across multiple rings on
 the enterprise network.

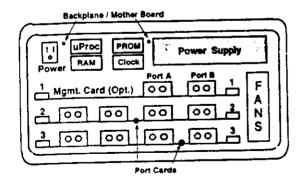
DIGITAL'S FDDI VISION

- FDDI complements the existing LAN technology
- Digital's FDDI product strategy is two-fold:
 - FDDI as a backbone for high-speed interconnect among LANs
 - FDDI as a dedicated high-speed network for specialised applications

DIGITAL'S FDDI PRODUCTS

The following FDDI products feature Digital's FDDI Chipset, which is licensed to leading semiconductor suppliers (Motorola, AMD) for use in multivendor offerings

- DECconcentrator 500, FDDI Hub
- DECbridge 500, LAN interconnect device
- DECelms, Extended LAN Management Software
- DEC FDDIcontroller 700
- A future communications controller from the DEC FDDIcontroller family will enable direct connection to the FDDI LAN by the XMI-based computers, such as the VAX6000 and VAX9000 class systems

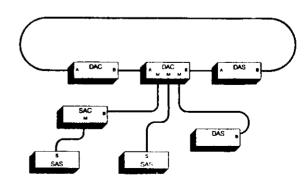

DECCONCENTRATOR 500

- Standard compliant DAS (ANSI X3T9.5 Class A)
- In standalone used to create small, dedicated high-performance LANs
- As a backbone interconnect provides attachment to FDDI dual ring for workstations, computing systems and LANs
- Permits the design of "Dual Ring of Trees" by cascading several levels deep (SAC)
- Connects both DAS and SAS
- Optimises topologigal flexibility by inserting and/or removing stations (plug and play)

Connection to FDDI dual ring and Network Management?	Number of FDDI device ports?	Number of DEPCN-Mx Modules Required	Number of DEFCN-Nx Modules Required
Yes	0	1	0
Yes	4	1	1
Yes	8	1	2
No	2	1	0
No	4	0	1
No	6	1	l.
No	8	0	2
No	10	1	2
No	12	0	3

DECCONCENTRATOR 500

- Two-port for primary and secondary ring connections
- FDDI SMT in firmware, downline loadable for future upgrades
- Three slots available for any combination of
 - Network management module (DEFCN-Mx)
 - Port modules (DEFCN-Nx)



DECCONCENTRATOR 500

To properly configure the FDDI network one needs to be familiar with the following:

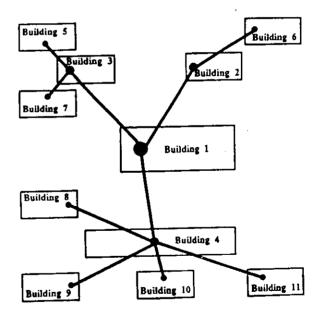
- Port A connects to incoming primary and outgoing secondary rings; implemented in DAC and DAS
- Port B connects to outgoing primary and incoming secondary rings; implemented in DAC (DEFCN-Mx) and DAS; connects DAS to CON
- Port M connects a CON to a DAS, SAS or another CON (DEFCN-Nx) CON only port
- Port S connects SAS to CON

But it is not enough... There are numerous configuration guidelines.

DECbridge 500

- Interconnects ISO 8802-3/Ethernet LANs to an FDDI backbone
- One FDDI port and one ISO 8802-3/Ethernet Thin/thickwire
- Connects to a DECconcentrator 500 as a SAS
- Standards compliant: ANSI X3T9.5 ISO 8802-2, ISO 8802-3, IEEE 802.1d
- Bridges traffic at maximum allowable speeds: 14,880 and 446,429
- Self-learning, bidirectional translation of Data Link formats
- Downline upgradeable firmware
- RFC 971 large data packet fragmentation
- Address and protocol filtering
- Protocol transparent
- Autoconfigures with LANbridge100 and IEEE802.1d

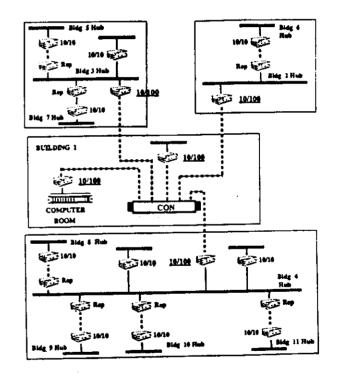
DECELMS - EXTENDED LAN MANAGEMENT S/W


- Allows for the management and control of bridges and concentrators from a remote location
- Supports DECconcentrator 500, DECbridge 500, LANbridge 200, LANbridge 150, LANbridge 100, Metrowave bridge
- Superset of RBMS V2.0, replacement in DECmcc EMS/SMS
- Network operation and topology management
- Provides ANSI SMT management functions
- Polls devices for faults, errors and changed information
- Enables password protection, address and protocol filtering
- Runs on VAX/VMS host systems
- Remotely invokes device self-test procedures

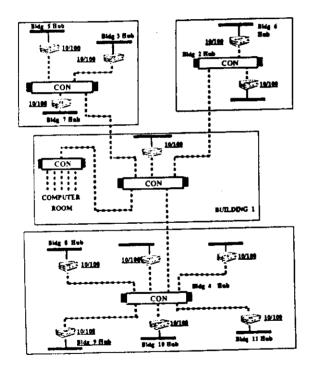
DEC FDDIcontroller 700

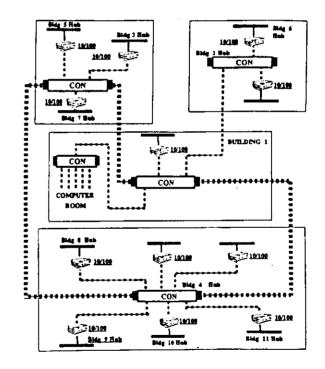
- Enables RISC workstations (DECstation 5000/200) to connect to FDDI as SAS
- Compact (single slot, VLSI), TURBOchannel bus interface
- Supports network-based high bandwidth graphics applications
- Can install up to three
- Entry level IP router between OSI 8802-3 and FDDI resources

BACKBONE TRANSITION TO FDDI



BACKBONE TRANSITION TO FDDI


BACKBONE TRANSITION TO FDDI


BB0 9/

digital

BACKBONE TRANSITION TO FDDI

BACKBONE TRANSITION TO FDDI

FDDI FUTURE DIRECTIONS

Digital is currently investigating:

- XMI FDDI controler
- Single mode fiber
- Copper alternatives (UTP)
- Combined Bridging and Routing
- FDDI to FDDI connections
- CI and NI VAXcluster to FDDI interconnect

FDDI MARKET

- Technology
 - Considerable misinformation
 - Proprietary or 'FDDI-like" products
 - Uncertainty about product availability, associated costs, actual FDDI peformance, FDDI utilisation
- Market potential
 - Predictions vary dramatically
 - Greatest growth from 1991-1994

FDDI MARKET

- More than 25 vendors with differing perspectives/interests
 - Full systems (IBM, DEC, AT&T, UNISYS, HP/Apollo...)
 - LAN (Ungermann-Bass, 3COM, BICC, NOVELL ...)
 - Internetworking (Proteon, Artel, Cisco, Wellfleet, Vitalink, NSC...)
 - Workstations (SUN, Apollo, Apple ...)
 - Fiber Optics (Fibronics, Chipcom, Fibercom, IN-NET...)
 - Cabling (Focom, Codenoll, Synoptics, Cabletron...)
 - Silicon suppliers (Sumitomo, AMD, Motorola, National...)
 - T1/mux (Timeplex, Racal...)

FDDI PROGRAM SUMMARY

- FDDI is the next generation network interconnect
- FDDI complements Ethernet/OSI 8802-3 technology for building large networks
- FDDI is an evolving international standard
- Large, high-availability LANs can be built with standard FDDI products
- Design methodoly is critical to the creation of a unified 'FDDI system"
- Transition from Etherner/OSI 8802-3 to FDDI is simple

: i
1