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1 Introduction

Topological gauge theories were e fivst of the topological field theories to be put
forward. The two hroad types of topological field theory were introduced otiginally
by Schwarz {1]. to give a field theoretic description of the Ray-Singer torsion
2], aud by Witten [3], to give path integral representations of the Donaldson
pelyuomials {4].

Of the Schwarz type, only the Chern-Simons model of Witten has been exten-
sively analysed [5]. The non-Abelian generalizations of Schwarz's original actions,
the so called B4 models [6. 7] have been shown to have partition funstions which
reduce to integrals over the moduli space of flat connections with some power of
the Ray-Singer torsion as the measure [6, 8]- Apai from establishing that cer-
tain correlators caleutate intersection numbers of submanifolds there have been
virtually o concrete caleulations performed with these theories [6, 9]. ‘

The Witten or colomological type theoties have suffered a simslar fate. The
one exceplion here being two dimensional topolagical gravity (10} where a wide
rauge of iuteresting results have been oblained (see [11] for a recent review). On
the fovmal side. topological gauge theories, of Witten type, can be associated with
Particuls geometric structures on the space of connections A modulo the group
of gauge transfonnations G. A/G has a natural principle bundle structure {the
usiversal bundle of Ativa' and Singer [12]) and also a natural Riemannian struc-
tuce {13]- 18] Hitherto. in cohomalogical gauge theovies, A/G has been considered
from the priveiple bugdle point of view {16]-[20] and as a Riemannian manifold

(21, 22] For a general reference to, both the Witten and Schwarz, topological

theories see [23].

‘There is one wmore geonetric strneture that may be placed on A4/G, under ideal
cireumstances, aml this particular aspect of the space is a meeting ground for the
Sehwarz and Witten type theories. Depending on the underlying manifold M it
may he possible to induce a symplectic structure on A. This is indeed possible

when Y ois Nilile {though it need not be). Examples include Riemann surfaces
and complex Kahler surfaces.

The tapological field theories, that we will be concerved with, are a topological
gauge theory of flat connections over Riemann surfaces and a topological gauge
theory of instantons over four dimensional maanifolds. It turns out that, in order to
define thtopatugical theory, one needs to ‘tegularize’ the model to avoid problems
with reducible connections. This regularization amounts tu «nsidering instead

Yang-Mills theary which. i the limit as the gauge coupling €2 goes to zero. reduces

to the topological theory [24, 25]. We find ourselves in the interesting situation of
studying a ‘physical’ theory in order to extract topological information. Indeed
most of the lectures are devoted to an evaluation of the path integrals of Yaug-
Mills theory on Riemann surfaces.

Now, in their own right, gauge theories in two dimensions have for a long
time served as useful laboratories for testing ideas and gaining insight into the
properties of field theories in general. While classically Yang-Mills theory on
topologically non-trivial surfaces is well understood [26], very little effort had
gore into understanding quantum gauge theories on arbitrary Riemauu surfaces.
the notable exception being in the context of lattice gauge theory [27] whicl s
based on previous work by Migdal [28] (see also [29]}. In the continuum quantum
Yang-Mills theory on R? was solved in [28, 30) and on the cylinder in [31].

Here we study Yang-Mills theory from the path integral point of view. [n
particular we will get general and explicit expressions for the partition function
and the correlation functions of {contractible and non-cottractible) Wilson loups
on closed surfaces of any genus as well as for the kernels on surfaces with any
number of handles and boundaries. These expressions wiil yield corresponding
results for the topological theary in the limit. We will not be able to fix vverall
constants in our formulae, these require a more detailed aualysis and/for mput
from another source. The method of calculation is based on published work with
Matthias Blau [32]. An analogous, but perhaps more mathematically rigorons,
derivation of some of these results may be found in the work of Fine [33]. There
are also unpublished lectures by P. Degiovanni [34] where a mixture of canonical
quantization and the axiomatic approach to topological field theories is used 1o
get to these results. A derivation in the spirit of {28, 27], was provided by Witten
{24}

Perhaps the correct way of of deciding on the ‘type’ of topological fickl theory
one has in hand is with respect. to which fixed point theorem applies to it. Atiyah
and Jefrey [35] have shown that the cohomological field theoties, as they had heen
discussed, were naturally understood in terms of the Marhai-Quillen coustruction
[36]. An introductory account of this point of view, explaining how the zero’s of a
map are singled out, is given in [37]. On the other hand, it had also been kuowi
that the path iniegral formulation of index theorems [38] devolved to caleulations
of fixed points because of the theorem of Duistermaat and Heckman [39]. Tt is s
aspect of the two dimensional cohomological gauge theory that is stressed in [25].
Unfortunately, there is no time to go into this side of things. except in passing.

I have iaken this opportunity to prove some of the techuical facts that were
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passed over in [32] and also to include some previously unpublished calculations
[40]. Notatior is by and large explained in appendix A

2 Moduli Space Of Flat Connections And Topological
Gauge Theory

Our basic concern in these notes is with the space of flat connections (gauge
fields) on a Riemann surface. We define this space on a general manifold M. Pick
a connected, compact gauge group G. A connection A on a G bundle over M, or
a gauge ficld ou M. is said to be flat when its curvature tensor F, vanishes,

1
Fa=dA+ 3[4, 4)=0. (2.1}
Flatness 15 preserved under gauge transformations A —» AY where
AV = U Al + U, (2.2)

as Fia transforios to {77 Fy/. The moduli space of flat connections Mp(M,G)
15 the «pace of gauge inequivalent solutions to (2.1). This means that solutions
to (2.1} which are not related by a gauge transformation are taken to be different
points of M (M. ). On the other hand, if two solutions to (2.1) are related by
a gauge transformation they are Leken 10 be the same point in Mp(M, G), that
is AU = A,

There is another description of the moduli space which is useful. This is in

teris of representations of the fundamental group 7,{ M) of the manifold M,
Mp(M,G) = Hom(m,G)/G, (2.3)
that is of equivalence classes of homomorphisms
eim(M) -G {2.4)

up to conjugation. r1(M) is made up of loops on the manifold M with two loops
identified if they can be smoothly deformed into each other. All contractible loops
are identified. m (M) is a group under the composition of loops with the identity
element the contractible loops.

We can easily see half of (2.3). Given a flat connection A we can form a map
¥, by setting ¢, [A) to be the holonomy {which is an element of the group G)
around a loop 5 in M,

ol A) = Pexp/A, (2.5)

3

In physicists notation this is a Wilson loop. Recali that # stands for path ordering

Pexp U:f{t)dt) = ifol a’r,foll dtz.../ul"‘] di, fih0 . F ). (2.4}

n=0

Under a gauge transformation {2.5) goes to
P(AT) = U0y (AN (1), (2.7)

so, as U/(0) = U/{1), gauge equivalent A’s give conjugation equivalent o{ 41

We still need to show that the niaps only depend ou the homotops class of 1he
loop 7. This is where flatness cormes in; we have not used it vet. Add 16 4 a siall
homatopically Lrivial loop &y = @1 {it is the bouudary of some dise 1) then

Gt 2(A) = ol Al

1 L dyP(s) dvyr (1), s )

= § ——j Pex A, ———l
/‘; dLPexp ([’ A, 7 d‘) oA, (h = j P exp /r i, T

1 t iy v 1 TR
:/ dtPexp fAy‘b’ G ge) Rt gty pes [ 4,0 )fu)
[ 0 ds dt g {x
=0

i

(2.8)

The first equality follows from the variation of the detinition of path ordering
(2.6}, while the second arises ou integrating by parts in /. We have just shown
that only the homotopy class of the loup 5 is involved in the map 2,.

This establishes that each poiut in Me{ M. (') gives an elementin Ho(m,, M),
G)/G. The proof of the converse, that each element in Hone(m (M. (/0 natu-

rally defines a flat connection, makes use of the notions of co. ering imanifolds and
associated bundles,

Dimension Of Mp(Z,.G)

We now concentrate on compact Riemann surfaces of genus g, M = ¥, and
compact gauge group G. In this case it is known that Mg(S,, (7} is smooth
except at singular points which arise at reducible connections.  The rveducible
connections will be defined shortly; a great deal of the formalism developed is
there to get around problems generated by these conneclions.

Now to a Riemanu surface E, there is a standard presestation of 7, i terms
of the 2¢ generators a,, b, i = 1,....g. One basis for these “homology” eveles ix
displayed in figure 1. However, they are not independent. generators. To sec this
it is easiest to form the cut Riemann surface. One picks a point P on the surface
and then cuts from that noint along a fundan ental cycle back 1o the point. [his
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is repeated for the basis of cycles, the final resul being a cut Riemaun surface.
In figure 2 this process is shown for the torus T, Figure 3, shows the homology
basis for the genu 2 surface, and how the hasis is pulled to the point P and cut
is shown in figure 4. Now the path that is defined by the edge of the cut Riemann
surface is generated by

aybyartsy! - aghgar'tt, (2.9)
hut this path is contractible to a point in the interior of the cut Riemann surface,
s0 it is the trivial element in x,. We have the relation

arbya; ot caghia bt =1, (2.10)
Tt turns out that this is the only relation satisfied by the generators on the Riemann
surface.

The dimension of the moduli space for g » 1 and simple G may be calculated

from the information that we havi at hand, The Hom part of (2.3) asks for the

possible assigament of group elements to generators. There are 29 dim G ways of
doing this, but we must snbtract off the one relation (2.10), that is minus dim &
and also the identification of conjugacy clases implies that we ought to subtract

another dimn ;. We have, therefore,
dim Mp(Z,.() = (29 — 2) dia G, (2.11)

Wlien the 1aanifold is the two sphere, ¢ = 0, all loops are contractible so 7y ($?) =
d and Mg(E, ) is one point, the trivial representation. This means that up
Lo gauge equivalence the only flat connection is the trivial connection 4 = g. For
the torus. g = |, the situation changes somewhat. In this case the relation (2.10)
is ab = ba so that @ and b must commute. The honomorphism must therefore
ensure that when inapped into (7 their images commute. Generically a and b can
be represented, in this case, by elements lying in the (same) Maximal torus T of
G. The dimeusion is

dim Mp(5,,G) = 2dimT. (2.12)

Life is simplified when G = [/(1). As everything in sight must commute, the
relation {2.10) is automatically satisfied and conjugation acts trivially. We have
dim M p( 8- 11(1)) = 2¢.

Topological Gauge Theory

We would like to be able to get more information than just the dimension.
Different types of topological field theories indeed give different sorts of informa-
tion about these inoduli spaces. Let us define what we mean by a topological field
theory.

For the purposes of these lectures a topological field theory is a field theory
defined over some manifold M whose partition function is invariant under smooth
deformations of any metric one puts on M. In such a theory it is possible to
find correlation functions which enjoy the same property. A topological gauge
theory is a topological field theory which is also a gauge theory. The correlation
functions of interest in this case need to be not only metric independent but also
gauge invariant.

In the course of the lectures we will come across two types of topological gauge
theory, The first, known as & BF model, has a partition function that equals the
volume of Mz(E;, G). Due to the singularities of the moduli space, we will need
to generalise the discussion somewhat and consider Yang-Mills theory. The parti-
tion function for the Yang-mills theory will be determined and in the topological
limit we will be able to get a handie on vol Mp(%,,G). The second type of
topological field theory that we come across is known as a cohomological gauge
theory. Considerations from this theory show us that the volume we calculate is
the symplectic volume of MEg(Z,;,G). Correlation functions in the cohoemological
theory may be interpreted in terms of intersection theory on the moduli space.
We consider only the dual point of view, that is as integration of differential forms

over Mp(E,,G).

3 BF Theory on a Riemann Surface

We are interested in the moduli space of flat connections M F(Z,, G)on a Riemann
surface of genus g and compact structure group G. In the previous seclion we saw
that this is the space of gauge inequivalent solutions to the flatness condition

Fa=0. (3.1)
A field theory that restricts one to this space is given by the path integral [6, 7]

Z(L;) = jDéDAexp (I}r‘i -/E TriqSFA) s (3.9]
2]

where ¢ is an adjoint valued field. Traditionally the field ¢ here is denoted by B
and a glance at the partition function will explain the reason for the name BF
theory. We have broken with tradition in order to make a smooth transition to the
cohomological model. Formally, at least, on integrating out ¢ the path integral
gives the volume of the moduli space of flat connections

Z(S,) j DAS(Fy)
vol M£(E,.G). (3.3}

6
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As it s1nds this formula is far too implicit and we will have need to modify it in
making sense of the last equality. But first let us establish some [ormal aspects of

the theory.
(1) Gauge Invariance:

The action in (3.2) is invariant under the gauge transformation (2.2) combined
with

e =gl (3.4)

The infinitesimal form of the transformations are
6;\,4 = d,q."\1 6;\@ = [¢, l\] - (3.5)

In order to correctly specify the path integral, we will need to gauge fix. The
reason for this is thal gauge invariant operators are constant on the orbit of the
group of gauge transformations, One gets an infinity as one integrates over each
orhit. Tt is this infinity that needs to be factored out. Rather than integrating
over A one wanis to integrate over A/G. We use the Fadeev-Popov method to
pick the gauge and tix on

GlA) =0 (3.6)
where C/(A) could be. for example, dg, + (A — Ap) (where + is the Hodge duality

operator with respect to some metric g,, on L, and Aq is some prefered connec-
tion) or, as we will be mostly working on the disc, G(A) = A,. The partition

function 15 now

z

;Eg—‘

. 1 _y } G
/ DADgDeDéDhexp (I‘;“; /_:g TrigF, +]Eg Tr(sbG(A) + Cmd,qc‘)) .
{3.7)
The extra contributions to the action may be written as a BR. T variation
Q /E TraG(A). (3.8)

with @ the BRST operator,

QA =dac, Qe= v%[c,c}‘
Qc = ib. 0b=0. (3.9)

As usual one has traded overall gauge invariance for BRST invariance.

This is not quite as much of the group volume that can be factored out.
Elenients & in €7 (that is constant maps & € §) that form the centre of 6. Z2(G)

do not act on A or . It is also possible factor out the number of elements # Z(()
so that one should consider

b3
ol zs,. (3.10)

but this factor will generally be omitted.
(#t) Metric Independence:

At the level of (3.2}, this is manifest, for the me.ric makes no appearance
at all there. However, upon gauge fixing, we have introduced an explicit nietric
dependence in the action of (3.7). All of the explicit metric dependence rests i
G(A), so that, on varying {3.7) with respect to the metric, we find

625,
69’##

SG(A)

:f 1O O Tra (311
[ é

Gur

where @ is generic for all the fields and

L(®) = # ]E, TrigFa + /zg TriibG(A) + égd_4c). (3.12}
By the BRST invariance of the theory the right hand side of (3.11) vanishes.
whence the metric independence of the partition function is established (an ac-
count of how one derives such a Ward identity is given in'section 4). This has all
been rather formal. A more carefu] analysis, working with a regularized form of
the theory, shows that indeed the theory remains metric independent. substanti-
ating the analysis we have made.

{(#it) Relationship to the Ray-Singer Torsion:

Let us suppose that the only flat connection is isolated and call it Ag. Split
the general connection A into 4 = Ag + A, and take as the gauge condition
ds, * Ay = 0. The path integral is

j DAB(Fagpa,) 6(da, * Ay) det (dag + dayia,)
= ] DAS(day A;) bldgy + Ay) det (dag + diagrs,)
= det (dy,, du, * )" det (da, +da,), {3.13)

where the last equality arises on noting that the two delta furctions imply Ay =10,
and the inverse determinant comes from extracting the operators out of the delta
function with the rule

400 $oo
d:....f_ dz8(T(z)) = det (T(0))™" . (3.14)
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Now the product of determinants is the Ray-Singer torsion. The torsion is unity
on an even, dimensional manifold, a fact that is easy to prove using field theoretic
techniques |6], and we will do so for this case when we consider the trivialising
map. Path integral representations of the torsion were introduced by Schwarz ).

When the flat connections are not isolated the connection Ag will depend on
‘moduli’ A. The path integral must now include an integration over the moduli
parameters, but for any A the product of determinants is still one, so that we are
again, formaily, left with

fau = vol Mp(E,,G). (3.15)

Reducible Connections

So far we have concentrated on the flatness equation {2.1) which is one of the

equations of motion that is obtained from the action of {3.2). The other equation.

of mution. obtained on varying the action with respect to the gauge field is,
dag =0. (3.16)

Connections A for whicli there are non-zero solutions ¢ to {3.16) are called re-
ducible. Thinking of the ¢ as gauge parameters, then (3.16) is the statement that
there are some gauge transformations that act trivially on the connection A. This
means that Mp{¥, () is not, in general, a manifold as the quotienting out by the
gauge group is not the same at each connection. Generically the connections are
irceclucible, and there will be isolated reducible connections. M(E;.G) is then an

orbifold. Turniug this into a hona fide manifold is the process of ‘compactifica-
tion'.

(3.16) clearly holds when the two conditions

dg =0, (A.¢]=0, (317

are fullfilled. As an example consider the su(2) valued gauge field

a 0
A:([} —a)’ (3.18)

with the possible form of ¢ being

X \
(0 —06) ) (3.19)

with & a constant. The connection (3.18) and the scalar field {3.19) live in a u(1)

subalgebra of su(2}). The SU(2} gauge field will be flat when a is flat as a (1)
gauge field,

Reducible connections are a source of great difficulty in making sense of topo-
logical field theories in general. The problem is that at a reducible connection
path integrals of the type (3.2) diverge. The reason for this is that there are
integrals to be performed over all the ¢ modes, but those modes which satisfy
(3.16) do not appear in the action and hence do not dampen the integrals. For
the reducible connection (3.18) there will be the undamped integrals
f+mdb= . (3.20)

—_r

Yang-Mills Connections

In order to overcome the problems associated with reducible connections, Wit-
ten has suggested a way of “thickening’ things out [24]. The idea is to spread the
delta function (3.2) into a Gaussian in a gauge invariant way. The partition func-
tion is taken to be

1 el
2 = -— t —_— 32
Zs, (£ A(%,)) fDADéexp (4”2 ./E, TrigFa + e, /29 Tréx dB) (3.21)
The ghoss and multiplier fields are implicit in this formula.

The dependence on the coupling €? and the area of the surface AT = [+in
the combination €2A(E,) may be derived as follows. Scale the melric by ¢, —

Agu. then the term
_ ”Y i ll .'
,/Eg Trcﬁtqb—‘[gg\fdeig rod, (

3.23
A -[2_, Tré+é. { )

o
o
o

scales to

This factor may be eliminated if we in turn send €2 to A~'e?. Shortly we will sec
the existence of a map that guarantees that the metric only enters as a measure
(there are no derivatives of it). The invariant combination is then TA(E,).

For an arbitrary metric, with no loss of generality, the part of the action
’fz Tré=¢ may be replaced with e?A(L, )IE Tré+¢ where the metric here has
area ﬁxed to unity, -{E * = 1. Because of this, we adopt the following convention:
in the the .ormulae obtmned for the evaluation of the path integral the combination
e?A(Z,) will be denoted by €, but also in the action we set ¢ = 2.

This is a rewriting of the Yang-Mills path integral which makes the relation
to the topological theory of flat connections transparent. To see that this is the

same as the Yang-Mills partition function, perforin the Gaussian integration over
the field ¢* with

—d‘/-z_ai;exp(—e’z’/2+izy}=——exp( v¥/ 2%, (3.24)

ﬁ
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to obtain

. ] 1
Zy, () = fDAe_\p (*s”ﬁé/zg TrEy F,,) . (3.25)
The original theory is obtained in the * — 0 limit (or in the limit A(Z,;) -+ 8).

The minima of the new action in (3.21) are
Fa=—ie"x¢, dao=0, (3.26)
on cotnbining the two one obtains the Yang-Mills equations
do* Py = (3.27)

A gauge ficld satislying {327} is said o be a Yang-Mills cannection. The solutions
o {3.26) fall into two distinct classes. The first is that ¢ = 0 in which case the

connections are flat. At this point we see that there is a partial resolution of the.

problem facing us, for in this sector we now have no ¢ zero-modes to worry about.
This does not mean that the flat connections can not be reducible. There may
well he nou-zero Lie aigebra valued funetions o for these connections such that
day = 0. The equations tell us that these o are not proportional to Fy. The
second class has @ # 0 for which the connections are not flat but are certainly
reducible. As ¢4 - 0 these classes merge to give back the complicated situation

of flat connections of which most, but not all, are irreducible.

To see that the action “regularizes” the contribution to the path infegra.i of
elements of the 1sotropy subgroup of the group of gauge tansformations consider
the pair (3.i8.3.19) and take a to be fat {choose the bundles so that this is
possible). [nserting these into the path integral (3.21) we see that up 1o the

volutne of the lat {1} connections we are left with an integral

- V{,if—rmp (,Td,z) Varte, (3.28)

thus regularizing the infinity obtained on using the original path integral.

A Trivialising Map

There is no dynamics in pure Yang-Mills theory in two dimensions, even at the
quantiun level, for there are no plysical degrees of freedom associated with the
gauge field*. Indeed we will present a map which eliminates all (local) reference
to the dilferential operatos that are implicit in (3.21). Explicitly the partition

*In d dimensions the annber of physical polarizations of a zauge boson is d — 2.

“"function is now

1 .
25 (6 = j DAD¢DcDéDbexp (m ]z TriéFa+ 5= / Trés o

+ L Tr(;'bG(A)Hi;%dAc)) . (3.29)
The map that we have in mind is A — (£,n) defined by [6, 5]
£A) = Fa.
n(A) = G(A} £4.30)
which has as its (inverse) Jacobian
Jt= detﬂ‘%ql) = det{d,, éc’é;‘m), (3.31)

Taking G(A) = dy, * (A — Ap), we need to determine
det(da, dg ) = detT . (3.32)
Here T may be thought of as the map
T:QYE,, LieG) — Q%(E,, LieG) & 0T, LieG)
T(a) = (sdsa, sdg, +a). (3.33)

We can give a path integral representation of this as
detT =jD0'D6Da exp (zTrﬂ_ odsjo+6dy, * 0) ) (3.3
Lig

where o and & are Lie algebra valued Grassmaun odd funetions. and fere o is
a Lie algebra valued Grassmann odd one form. In order to get a handle ou the
determinant we define

det, T = /DaDaDaexp (Trj Wwusa +1ady, o+ %Qu)
~g

It

jD(O‘/c)Dﬂexp ( Tr/E {dao + =d 4 0) + (d4o + *da,0 ))

fDaDoexp ( TrjE (cd,ic + +da, F)(edyo + xd a0 )) L (3.35)

with
detT = det,T . (3.36)
Taking the limit € — 0 in (3.35) is straightforward

detT = /DJD&exp (—Tr/v Fdy, * d,la) \ (3.37)
=g
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As the integrand on the right hand side is gai ge invariant, we see that the appli-
cation of & once more vanishes, that is the action is BRST invariant. This action
seems appropriate for our needs as the integral over B yields a delta function
constraint onto the flat connections. That it defines a topological theory is not
quite apparent, for the Hodge duality aperator appears explicitly. Let Z be the
path integral with this action. Then the metric variation 6, of Z is

82 = j; Loyl
fotan fo, T (Fat b )
j@ 8V, (4.5)

the last line being a defining equation for V. The order of é and 4, is not important
as they commute (basically hecause the transformation rules (4.1} and (4.2) do
not involve the metric).

The {ast line may be shown 1o vanish in some generality. Consider the vacuum
expectation value of any operator @

L LM, (4.6)

One may change integration variables & — & + §& and note that the action
satisfies L(® + &) = £(®) while also formally the path integral measure has the
same property fo g = fy. In terms of the new variables the expectation value is

[ 190 4 00) =je“‘°'((‘)(¢)+60(¢)). (4.7
& ¢

fram which we conclude that

L(“"MO(‘P) =0. (4.8)

This is exactly what is required to set the last line of (4.5) to zero Indeed,
replacing everywhere in this derivation 6 with Q gives the Ward identity needed
to establish that (3.11) vanishes, as well.

The theory defined by L seems to be just what we want, a topological field
theory that lands on M p(Z,, ). However, the partition function 2 suffers greatly
at the hands of the reducible connections. For, at a reducible connection, there
are zero modes for the B, v, @, n and @ fields!

A Formulation In Terms Of The Symplectic Geontet vy O A/G

Witten las proposed a wethod for avoiding the problems associated with the

wadinill, cmaia L Ty T s [ .

fields B, x, ¢ or 7 at all. Rather, one begins with the supersymmetric action

& o 7r(8Fat300) | (4.9)
7

which is a simple generalization of (3.2). Note that the fields 4 have no dynamics
at ail. Supersymmetry (4.1) fixes the relative coefficient of the two terms. Just as
for the action (3.2) there will be ¢ zero modes. One ‘thivkrns’ this action out as
well to

I‘%ﬂfz, Tr ("’F“L%W)*é{r?/z, Tre+é, (410)

with corresponding path integral

{ 1 €
Zz'(C) = jDADéexp (Zﬂ’—,j}:n Tr (éFA + -élbw) - m -[2, Tré = ¢) .
(4.11)
The exact elationship between the theories defined by (4.4) and (4.10) will be
given at the end of this section.

One of the important properties of the partition function associated with the
action (4.9} is that there is a canonical choice of measure. On making a choice for
DA we pick the same for D3; this is supersymmetry preserving and the product
DADv does not depend on the choices made. Put another way, if wesend A — A4
then 50 as ot to change the transformation rules (or the relative coeflicients in
the action) we must also send ¥ — Ay, and then there is no net effect on the
measure, DADy — D{AA)D(M) = DAY

Let us now interpret the extra term gly fzn Tripp as a symplectic form on A,
Recall that a symplectic form w on a 2n-dimensional manifold is a non-degenerate
two form (detw # 0) which is closed (dw = §). There is a natural symplectic form
on A which is inherited from the two manifold ;. If a and b are tangent vectors
in A, that is a,b € Q(T,, Lie}, then one may construct the symplectic form

n(a,b)=8—:3j2’ Tr{aAb). (4.12)

That (. ) is closed is obvious as it does not depend on the point A € A at which
it is evaluated. Invertibility is also clear. We see directly that 3ty ng Tr{vnaw)=
), ¥} represents the symplectic two form of A.

For a finite dimensional symplectic manifold M, of dimension 2m, an integral

analogous to (4.11)

f pm e, {1.'» A
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_ o (llfJ-i".IIJ)"‘
—.[Mdz =d'y m!
= IM% (4.13)

yields the symplectic volume of M.

We then have the immediale consequence that the partition function of (4.9)
{or the e¥ — 0 limit of {4.11)) evaluates the symplectic volume of Mg(E;, G).

Qbservables

There are three *obvious' conditions that an observable © {a functional of the
fieids} shiould satisly in a topological gauge theory. These are gauge invariance,
BRST invariance and metric independence. The third may be relaxed as we will
see later. Theve is still a fourth condition so as not to get trivial observables.
This is that O # &0 for any globally defined @°. For if @ = 60 then by {4.8)
its expectation value vanishes. lideed Lhis tells us that the observables must be
BRST equivalence classes of gauge invariant and metric independent functionals
of the fields. Tw . observables O, and ), are BRST equivalent (and have the
same cxpectation value) if Oy = ¢ + 40 for any globally defined ©.

On the space £, x A/G we have the exterior derivative d+ & and the curvature
form F' + 2+ o. There is also the Bianchi identity

(da+8)Fat+ v +¢)=0, T {4.14)
trotn whith we may derive the equations

(d+8)Tr(Fa+v+¢)" =0. (4.15)
Let n = 2 and write \

érrm +y+ ) = g;o,, (4.16)

whete the O, are i-formis with Grassmann grading (—1)~" and are given by
1 .
Oy = 3T?‘[<N>] - Or = Tr(i¢},
; 1 1
Oy =Tr(Fa¢ + 399), Op= :):TT'(FA’I’].

1
Q4 = 5TT'(FAFA)- (4.17)

A tore detailed account of when observables are trivial or not may be found in {19, 20, 23].

Expand the ‘descent’ equation (4.15) in terms of form degree and Grassmann
grading a..

500 = 0,
O = ~dO,,
0, = —-d0O;,
60y = —do,,
80y = —d0O,,
0 = —do,. (4.18)

The O; are clearly gauge invariant and metric independent. The basic olservables
in the non-Abelian models on X, are built from the ; for ¢ = 0,1,2. The first
of these is Oy(z) = %Tr(qﬁ(z)qﬁ(x)) which is BRST invariant, not BRST exact,
but appears to depend on the point z at which it is evaluated. Within the path
integral th'~ is not the case,

L Y AP .
ch Tr(¢e)(z)/2 = /;e 60, = 0. (4.19)
Likewise integrating O; over a one cycle v gives a BRST invariant abservable
Onty) = [ Trwe), (4:20)
¥
6 [ Triwe) = - [d0,=0. (4.21)

That the expectation value of [, Tr{1:¢) depends only on the homotopy class of
7 may be seen as follows. Add to v a homotopically trivial piece 4 = I, then

[ Trwe) = [ Trive)

[ Trive)

fdrrive)

5 fr 0,. {4.22)

il

The third observable is the integral of ) over the Riemann surface,
1
Zab 4.3
A’J, T"'(FA¢+2WIJL ( )

with BRST invariance established as for the other observables.
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The last observeble is the supersymmetric action (4.9) itself! Indeed taking
into account that %Tr(q&a&) is essentially independent of the point where it is
evaluated the thickening term in (4.10) is also esseatially an observable,

1
f,\:, 5Tr(0% ¢) ~ 0. (4.24)

Observables In Terms Of The Partition Furction

We now show how the expectation values of the observables are determined
from the partition function

1 i €
Zs,) = [ DADY Dyexp 15 fz, Tr(6F + )+ 5 fz, Tr¢*¢) .
(4.25)
The first example is afforded by considering powers of (7,

£ ‘ ,' 1
< MgaOulad > = [0 0eDsexp (g [ 77 (8P + Juw)
€ k 1
+m -/Sg Tre» ¢) . H g.;ET"ﬁﬁz(I,-) . (4.26)

i=1

In the path integral the position of Tré*(zy) is immateriat so we may replace this
with v, Tré » ¢, using the measure with unit area. We find
g

<TI0 >, = J DA Doexp (5 ng 7r (o + %w)

k
¢ - I
+W]S, "”’“’)'(s‘ﬁ fz, Trgb#qb) (4.27)

which 1s
92y (e)
- (4.28)
As a second example consider
<o > - [ PADE Dgexp (ij Tr (¢F+ 1¢¢)
bl E o 472 JE, 2
¢ LA
+ 37;'"2/2, Tros qb) ];[lm){' Tréw.(4.29)
Here 2 st be even or this vanishes. The action is invariant under 1 — — while
the integrand changes sign if n is odd. A simple way to perform this integral is
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to introduce n anti-cornmuting variables . and consider instead the partition
function

Zg (em) = j DA DY D¢ exp (E;_! /Ea Tr (¢F + %w)

3 1 &
+ F/E, Trowd+ m'gq,- fh Tre;bt,b) . (4.30)

On differentiating this with respect to each of the 7, (in the order i = n to ¢ = 1)
and then setting these Grascmann variables to zero one obtains (4.29). Now we
introduce De Rham currents J with the foliowing properties

[2 J(vi)A =£A, dJ =0 (4.31)

for any one form A. One completes the square in {4.30) in the ¢ field

¥ =¥ =iy nd(w)e, (4.32)

=1

to obtain

ZE,(EJI") = /DA D Dgexp (# jEy Tr (¢F+ %wjrd,)

€ i n N
+ “8_.1_’.[2, Trés ¢ — e EW’I} ng J(¥) ()T o@) (4.33)

The terms with i = j vanish as 7% = 0, so that there are no problems with
self intersections. The De Rham currents have delta function supporl onto their
associated cycles so that, for any zero form ¥, (i # 1)

f}: Jwd ()= Y o(PIW(P), (4.31)

Peynm,

with P the points of intersection of 7; and 7; and o{P) [= +£1) the oriented
intersection number of v; and ; at P. This means that

1 n
— 3 s O
ypo %'i'h /E, J(%)d{(7,)Tres

1 n
= m E'}.“].’)TT¢Z(P)
i<y

) . ) )
= 4—52"1-'7;;75;'/2 Trexg, (1.35)
¥

iy
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where we have used the fact that Tr¢? does not depend on the point at which it
15 evaluated and =, = $#(¥, N+,) is the matrix of oriented intersection numbers.

Putting all the pieces together we arrive at

Zy (eom) = Zy, (&), (4.36)
with

im - 25 (4.37)

<5
For w = 2 we oblain
1 ’ 1 o a4 9 P
< 4?(' |(71)3‘; W) > = 51;;% SQ(‘_ 2mn2a)
. a

= 217;;5225(5). (4.38)

Likewise for higher values of n the expectation values of =xOh( %) ate obtained

on differentiating Z\_:U (e}

Clearly. expectation values of mixed products

1
< s
4T

u:'_':»

AU |
u(a-i}JI:Il 9> (4.39)

are simtlarly obtained.

Integration On Moduli Space

We have the observab'es and a way of computing them, at least in principle,
but what is lackiug, however, is their interpretation. We should think of the 4's
as one-forms on A/G and the 9's as two-forins on A/G. When A/G is restricted
to Mg(E;, G}, ¢ and ¢ should be thought of as a one-form and a two-form on
the moduli space respectively. This means that Oy is a four-form on Mr(Z,,G)
while (7 is a tl.ree-form there.

On any n dimensional manifold we may integrate an n-form without the need
to introchice a metric. The moduli space has dimension (for g > 1) (2¢ - 2)dim G
so that any product of the observables as in (4.39) with 4k +3n = {2¢ — 2)dim G
is a form that may be integrated on Mp(L;,G). On the other hand, once the
constraint that £y = 0 lias been imposed, the path integral over A/G devolves
to an integral over Mp(E,,G). In this way (4.39) is seen to be the integral over
Mp(Z,.G) of a (2 — 2)dim G-form. Let us denote with a hat the differential
form that an ohservable corresponds to. Then {4.39) takes the more suggestive

k a £ "
<1 #oo(x.;};[l 230, >= f.I 2300(z) I 0 (e,

: (4.40)
When 4k + 3n = (2¢ — 2)dim G, the symplectic form makes no contribution.
However, if 4k + 3n = 2m < (2g — 2}dim G there will also be contributions from
the action to soak up the excess form-degree. On expanding the exponential, the
symplectic form ${1), %) raised to the power {g — 1)dim G — m will survive the
Grassmann integration.

We now know that we are calculating integrals of metric independent difer-
ential forms on Mg(%,,G). What do such integrals correspond to? Theyv are
naturally interpreted as intersection numbers on Mp(E,;,G). An explanation of
the relationship between the differential form and intetsection viewpoints is pro-
vided in {23].

Relationship Between The Old And The New

The problem with the presence of B, x, ¢ and 4 zero modes is that the thoory,
as it stands, is not defined. It is possible, however, 1o deal directly with tiese
modes. We add to the action a term that is supersynimetric and that danps
them. The new action is

Lit)

It

L+Mij2 Try* ¢
&

I

iﬂ; Tr(BFy - xda¥ +nda + ¢ + ¢da » dad + (v, +v'})
2
[T b — . 41
+tt/29 r(B*qS X*TI) (1.41)

By an argument that is similar to the proof of metric independence (4.5}-(4.8),
the path integral defined by this action is independent. of smooth variations of £,
One must be careful, however, as the ¢ — 0 limit is not the same as taking { = 0
directly precisely because of the presence of zero modes.

Integrating out the fields B, ¢, y and 5 generates a new action solely in terms
of the geometric fields,

L@ = :fz Tr(+Fada» dad+ +dapdayp + Folv o8} . (1.42)
'D

The integral over ¢ lands us on the space of solutions to d4 +d 4 * 4 = 0, but this
equation is the same as the Yang-Mills equation d4 » £y = 0. One proves this by
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considering

o
il

f TTFA*dA*dA*FA
Ly

f Tr(das Fa)x(da= Fa}, (4.43)
%

the last line being the norm of d4 # Fy, which vanisles. Hence dg*Fy=0Tn
passing to the new action we have moved away from just a description of the flat
connections, and find that all the Yang-Mills connections contribute.

Now suppose that we wish to compute the expectation value in this new theory
of

i ) 1 13
exp (m ‘/Ey Tr(¢F + E’did’) + P /zg Tro= {b) . (4.44)

The expectation value continues to be independent of ¢. We may, therefore, set

! = oo as the theory remains well defined for this value. This is the correspondence’

we were looking for. The partition function of Yang-Mills theory that we have
been using (4.11} is, in terms of the original model, the expectation value of (4.44).
The expectation values of the observables (4.26)-(4.38) are the same in the original
theory as long as it is understood that (4.44) is inserted.

5 U(1) Theory

Fir.t Chern Class

(1) bundles over a Riemann surface Y., are classified by their first Chern class

|
e = )—jE Fi, (5.1)

which is an integer, say k, and for the Abelian theory Fy = {A. The most
familiar configuration that has a non vanishing first Chern class is the magnetic
monopole of Dira~. On §2, for example, we may consider a connection Ay on
the northern hemisphere ¥, and A. on the southern H,. These ‘patch’ together,
if on the equator, where they overlap, they agree up to a gauge transformation.
This means that on the equator there exists a  such that

Ay =A_+dg. (5.2
The Chern class may be expressed as

1 I
5 P = 2—xj”ndA++/mdA_

25

Lfa-ifa
%f@, (5.3)

with the relative sign appearing due to the upposite orientation of the circle bound-
ary of the northern and southern hemispheres. When, in local coordinates, w =k
the first Chern class is k. Such a ¢ is allowed as it corresponds to a periodic group
element, exp (ki#), with 0 < 8 < 2x.

On the Torus T? = $" x S! with local (angular) coordinates (o;, 03) the gauge
field

m n
A= E‘G]dd’g + ‘2—;02610'1 N (54)
satisfies
1
ko= ﬂ/ﬁ Fa
1
= $jﬂ(m ~ n)dodery
= m-—n. (5.9)

The gauge field is not periodic, but it is periodic up to a gauge transformation. If
we send oy — 0y + 2x then

Aloy + 27, 07) = A(gy,03) + €™ 2ide ™01 (5.6}

with a similar relationship for o3 — o3 + 2r. The gauge group elements arc
globally defined.

Flat Connections

We have scen that the moduli space of flat /(1) connections on a genus g
surface, Mr(Z,, U(1)), bas dimension 2g. Indeed it is a 2¢ torus Mg(X, /(1)) =
T, Let us see how it comes out for genus zero and one.

For the sphere (g = 0) all loops are contractible and the only flat connection,
up ic gauge equivalence, is the trivial connection. The moduli space is therefore
a point. For the torus (¢ = 1) there are two possible non-trivial holonomies. Tle
corresponding flat gauge field has the form

_01 [*4] g =
A—é';dﬁ'}g;dd‘g. (5.7}

But what are the ranges of a; and 4,7 Note that we may still perform (single
valued) gauge transformations

A = A 4 elimeitimm) g (—im 01 ~img o) ] (5.8)
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which corresponds to the shifts
o — a; + 2xm;, {5.9)
for all integers m,. In other words tle gauge inequivalent A have o that live on

T?. This then is the space Mg(T?, ti(1)).

This correspondence between the holonomies of the flat gauge fields and the
prints of Mg(X, U/{1)) can be made even more explicit. The local coordinates

of Mp(Z,.{7(1)} = T% are simply

(f;} A,...,égA,};l A,...,ﬁ:A). (5.10)

In order to establish that the moduli space is a torus, in general, we would
need soie more notions from the theory of Riemann surfaces, so we forgo this.

Maxwell Connections

These are delined 10 be the class of connections that satisfy the Maxwell equa-

tion

d+Fy=0, (5.11)

In terms of the zero-forin, f4 = «Fy4, this equation becotnes
dfa =10, (5.12)

wlich has as its solutions the karmonic functions f4 € Ho(M, R). On a compact

manifold these are the constant functions, so that we find
Fi=aw, (5.13)

wliere @ is some coustant and w is a volume forin normalised to unity, On a bundle

with first Cliern class equal te & we have
Fy=2rhw. (5.14)
This last equation is equivalent 1o the original Maxwell equation, and when k =

0, the Maxwell connections are flat. ‘The conneetion (5.4) on T? is 2 Maxwell

connection.

The moduli space of Maxwell connections, M4 (E,, {/(1}) is the same as the

moduli space of flal connections, that is

ME, (£, U(1)) = Mp(E,,07(1)), (5.15)

[
-]

and as this correspondence holds for any k, we may supress it. To see that this

** must be true, let Ay be any Maxwell connection satisfying {5.14). Then all other

connections on the {¢; = ) bundle are of the form
A=A+ X, (5.16)
for some one from X. For A to also be a Maxwell connection X must satisfy
dX =0, (5.17)

which is the flatness equation and does not depend on k. Gauge inequivalent X's
are the points of the moduli space M (E,, U/(1}), but clearly are also the points
of Mp(E,, U(1)).

There is a more geometric way of stating this. We have seen that, for flat
connections, we can form a map from m(M) te ¢ and, conversely, that these
maps, up to conjugation, characterise the moduli space of flat conrections. We
can likewise show, that given Maxwell connections on any surface ;. we may form
maps from 7,(X;) to G. Fix a Maxwell connection A;. Then for any Maxwell
connection A, also with first Chern class equal to &, we can form the required
map @,(A) = @, (Ar)" 1@, (A). We see that $,(A) depends only on the homotopy
class of «, for varying the path we get an area contribution from o { 4] that
cancels that from .(A4) (the area dependence may be seen in the second last line
of (2.8)).

5.1 Maxwell theory on compact closed surfaces

We take the classical action of Maxwell theory on a two dimensional {arientahle)
surface to be

r

1 ) € )
LZE?/E,WF"_Q./EQWO' (5.18)

The partition function of Maxwell theory in the topological sector with monopole
charge (first Chern class) £,

1
2_:r/;“ Fa=k,

at'}

is then

1 . € 1 _
Zy (k)= jDADqS exp (3;;[2, i6F, — @A‘g ¢*¢)5(2—w /29 Fa—kb .
(5.19)
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This still needs to be gauge fixed, but we make use of the trivialising map so we
forgo the introduction of the fields associated with the gauge fixing proceedure
and pass directly to the partition function in the form

1 . € 1
Zs,ke = [ Debs exo (g7 f ik~ o o, ¢ 9oz ¢ #
-1 1
f Dé exp (g,}“z: fzg £ 5)5(5 fz, €~ k). (5.20)
Introducing a multiplier A to represent the delta-function as

N% fgy E-k)= f:ﬂ dX exp (U\(fgg = 21:]:)) ,

the Gaussian integrals over £ and X arc easily performed to give

e ,
\/Q_ee p( 5 ) . {5.21)

Note that ZEQU‘" ¢} is independent of the genus of I,.

ZEQ[K‘,() =

Fixed point theorems

Apart from the universal factor 1/v/2xe, which arises from the reducibility of
the counections, the partition function (5. 19) is given entirely by the contribution
at the Maxwell connection (5.14). That is, (5.21} may be re-written as

Zs, (k,€) = —— exp (L(As)). (5.22)
¢ Vv 2re

Furtherinore, if we suin over the different topological sectors to caleulate the
overall partition function we find

Zyv (€] EZE {k,¢)
g < 7

f ]
; E_;exp(L(Ah)). (523)

These results are rather astounding. They tell us that the entire contributiva to

the path integral comes simply from the values at the critical points of the action.
The critical points being the Maxwell connections.

Perhaps the impbxtance of the result is overshadowed by its ‘obviousness’. We
have only had to perform Gaussian integrals and these are evaluated by their
equations of motion; in (3.24) this is r = = y/e?, which, when substituted back into
the ‘action’ yields the exponent on the right hand side. But two facts conspired
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to turn the problem into one of simple Gaussian int=gration. The availability of
a tnvulnmg map and the fact that the Maxwell equations become ‘algebraic’
(5.14). The conspiracy continues unabated in the non-Abelian theory [25].

For integrals over finite dimensional symplectic manifolds such reductions to
the fixed point set of the action (exponent) are explained in terms of the fixed
point theorems of Duistermaat and Heckman [39]. Witten has generalised these
theorems to the non-Abelian case and an infinite dimensional setting (the manifold
A). Quantum Maxwell theory furnishes a very simple example of these ideas.

Reducible Connections Aad vol Mp{S,,G)

For the Abelian theory, reducible connections do not constitute a real problem
as all Abelian connections are reducible and in the same way. This means that
we may extract an overall contribution from the constant ¢ field,

+oo € 4\ 2m 2 5
[ deewe(~gm¢") = e (5:24)

Dividing this out of the partition function ZE,(kv €) gives

1 -&? .
ZE {k €= 4——exp( 3 ) . {5.25)

Clearly as ¢ — 0 this vanishes for all £ except k = 0. This is consistent with the
fact that we should land on the flat connections in the limit.

For k== 0 at ¢ = 0 we have, tentatively,

Zzn =uolMF=-,;;. (5.26)

This result should not be taken too seriously, as there are many factors that we
have not been able to fix uniquely {such as the normalization of the pith integral
measure). These factors, however, will nat be dependent, and they will have
a smooth ¢ — 0 limit. Nevertheless we see that it is possible to obtain a finite

expression, and, in principle, with a more careful analysis, a correct form for
volMp. .

Nen Contibution Of Harmonic One.F

The reason for needing more care is that in one sense we have missed the
volume we are looking for altogether! The trivializing map is invertible everywhere
in field space (that is in 4/G) outside a finite dimensional set, points of which
are in one to one correspondence with the space of flat connections. These are
the fields X in (5.16) which satisfy (5.17) and are gauge fixed d « X =0, so that
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they are harmonic one-forms. The partition function (5.21} is then still to be
multiplied by the vol Mp. The result for the partition function, up to a standard
renormalization (see section 7). that we have derived, is re-obtained in the next
section. The standard renormalization implies, that for genus g, the partition
function has the form

xl2-29) —k?
Zgg[k, (] = ﬁexp (—5:-) N (5.27)

for some x. Clearly a different input is required to fix the constant.

Triviality Of Wilson Loops Along Homology Cycles

The harnienic forms also do not contribute to correlation furctions of operators
which can be expressed i terms of € (= F4), and the volume of the moduli space
of flat connections will consequently drop out of normalized correlation functions
in this casc as well. Oue may wonder, however, what happens to correlation
functions of operators which are sensitive to the holonomies of the gauge fields

along the homulogy cycles of T,. The gauge invariant observables of interest to

exp (m}; A)

along closed loops 3. I 4 15 homologically trivial then - by Stokes theorem - the

us here are Wilson loops

Wilson loop is expressible in terms of € and thus falls into the category of operators
already deall with above. One may have some doubts on the validity of Stoke’s
theorem for connections on nen-trivial bundles (& # 0} but for ko € Z Stoke's
theoretn can indeed still be used in the exponent. This is precisely analogous to
the quantization condition in the WZW action, and we will derive this condition
helow.

This leaves us with Wilson loops for homologically non-trivial 4, which are
indeed seusitive to the hoionomies of A. In this case o has to be an integer in
arder to define a gauge invariant operator (under the large gauge cransformations).
With & € Z. however, we find that the expectation value {exp (ia s, A)), as well
as any correlator involving homologically non-trivial loops, is identically zero,

(vxp(ioiﬁl))k:(l for v# 0T ,a#0.

Thus the failure of the trivializing map in this case causes no distress. One way
ol proving the vauishing of this expectation value is to note the fact that the

evaluation of the holonomy of one of the X is

1
]d.\' exp (m){ _\’) ~ / dfe?™ ' — ac? a#0,
“ X

3l

as the muduli space is a torus.

Thus in the Abelian case this rules out hoinologically non-trivial Wilson loops

as interestiug observables on closed surfaces.
* A Quantization Condition And Contractible Loops

We now turn to the computation of correlators of any number of (possibly
intersecting and self-intersecting) contractible Wilson loops, starting with the case
of a single non-intersecting loop. The first thing to note is that on a closed
surface there is an intrinsic ambiguity in trying to write § A = [, €, where Aisa
connection on a non-trivial bundle and @0 = «, as one could equally well replace
D by its complement £;\ D = — ¥, Making a particular choice now, we will ha-e
to inquire at the end under which circumstances the result is independent of any
such choice (and this will, as expected, give rise to the quantization condition on
o). Using the same representation for the delta function as above and performiung
the Gaussian integrals one finds that the normalized expectation value is

{exp (iﬂjof))k
1 1 , i _
zzy(k,e}./'_% exp (_sﬁfsgf*“”’foi)“z—xfsgf - h)
A(D) ALY} oo A{D) -
exp (—szeazmA(Ey))exp (PJMGA(EQ)) : (5.28)

The first term is manifestly symmetric in D and D' and if we compute instead
{exp (—iar [ £))s we find that

{exp (-iaj;l {))k = (exp (iq]Df))k exp{—2rika) ,

so that {exp (ia 5, A))p,. can only be defined consistently if k = 0ora =2, n € Z.
In the first case the structure group of the {/{1} bundle can be extended to R and
a € R labels the unitary representations of the universal covering group R of

i

U(1}. In the second case o defines a representation of a k-fold covering of £/{1}.
The quantization condition on a has, like that of the WZW model, 2 natural
group theoretic and geometric explanation.

When considering loops with self-intersections or several intersecting loops no
substantially new features arise and the calculations can be done in much the same
way as that leading to (5.28). The result is that in the general formula for the
correlator of n intersecting but non-selfintersecting loops the exponent in (5.28)
is replaced by

= AD;) AD)

—2r%) o’ A(T) A()

AD,)

+2rika Yy oy )

j=1

F=1
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{ A(D;) A(Di} A
4“zza,. A AT A(D,nD.)) . (5.29)

J=ti<y

Again it can be checked (with a little bit of algebra) that the result is indepen-
dent of the choice of D, or I¥; provided that ke; € Z. Moreover, by regarding
a self-intersecting loop as two touching but non-selfintersecting loops with op-
posite orientations, equation {5.29) gives the general result for the correlator of
intersecting and self-intersecting loops on a closud surface of any genus.

One curious observation is useful to keep in mind when checking if the result
(5.29) is sensible and correct. in flat space the figure eight loop and the figure eight
folded into itself give different results [30]. This is of course perfectly reasonable as
the folding leads to points in the interior part of the loop being surrcunded twice
by the loop so that (energy being proportional to the flux squared) these points

contribute 1o the path integral with the four-fold weight of those surrounded by

just one loop (something that is also reflected in the quadratic composition law
of (5.29)). On the two-sphere, however, these two configurations are indistin-
guishable, whereas on the torus they are again manifestly different, and one may
wonder how the path integral manages 1o take this into account. As it turns out
the path in egral antomatically gives a sensible answer. Indeed, by staring at a
figure eight on the two-sphere one can convince oneself that the process of folding
(say) the upper loop into t e lower is equivalent to going to the complement of
the lower loop. and {5.29) does not depend on whether we choose one interior of

a loop or its complement.

Wilson Points

The evaluation of expectation values of Wilson loops is also quite straightfor-

ward. The correlator

-

i o ]
= _—Zgg(k‘t}fﬂfl)ab exp(m'fsg :Eo—g;?jzgété

: 1
% ;]& J(rJ)w) Mz_rjz,f — &), (5.30)

is easily evaluated by performing all the Gaussians, but may be obtained directly
by redefining £, Change variables according to {J(z;) is a two-form De Rham
current thal fixes one to the point x;)

£ €= Y qilix)). (5.31)
i
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'h:dl simply ads to get rid of the Wilson points in the exponent and shifts k

“to k+ r;¢in the delta function, so that the sumn must be an integer. We find,
:thuefore, that

E+ 3. q)?
(exp (5; ;q,-qs(x,-)) e ‘/%exp (-2
Zzg(k+2n,-,e). (5.32)

There are a few points that are worth special mention. The effect of introducing
the Wilson points is to make the theory behave as if it is on a bundle of different
Chern class. The correlation function does not depend on the location of the
Wilson points, a fact which is clear from the cohomological field theory nature of
the correlator but not so obvious from the BF point of view. The expectation
value of Wilson points with Wilson loops on non-trivial homology cycles will
vanish, The expectation value of Wilson points with homalogically trivial Wilson
loops will reproduce (5.28) but with the shift ¥ — &k + ¥, q;. This last result
comes from the fact that under the shift (5.31)

exp (z'arjpf) —-;exp (ia[DE) exp (21riazfo qJJ(.rJ)) . (5.33)

f J(z;) = (£1,0), (5.34)
D

depending on whether the point x; € I} or not. In either case the second expo-

and

nential is unity, providing we take account of the fact that both & and T, ¢, are
integers.
Topological Observables

As far as the Schwarz type topological observables are concerncd, only the
partition function is non-trivial. We concentrate on the cohomologicat observaliles.
In the case of U/{1} we may also take n = 1 in (4.15) so that the integrals of ¢
around the homology cycles are observables. Let us set

fA:ai. bA=ﬂ.. (5.35)

so that the flat coordinates of the torus T% are (o, 5;). Then
= day, e dp 546
-é‘ ¥ 1ad 'é. Y {(H.406)
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where the exterior derivative d is that «n T% (it is § restricted to the torus).
While these observables are exact, they are not trivial as the coordinates {ai, B;)
are not glohally defined. We have the following correspondence

(‘_I:'Il f v }g ¥) = fm,.ljl,d""dﬁ" (5.37)

6 Field Theory On Manifolds Witk Boundary

The path integral on a manifeld M, with boundary M = B, requires boundary
conditions o he fixed on B. In this way the path integral becomes (for each
operator insertion in the interior of M) a functional of the fields on B, which can
be regarded as a state in the canonical Hilbert space of the theory on B x R. While
Lhis procedure is of conceptua! interest as it sels up the corresponuence between
the path integral acd operator formnalisins of field theory, it is generally of little
practical use as the path integrals involved are too complicated 1o be calculated
directly. In certain cases synunetry arguments may be invoked to determine the
stales umiquely (as in string theory [42]) or up to a finite ambiguity (as in Chern-
Simons theory [43]).

In the case of topological field theories it is possible to deduce certain general
properties of and relations between correlation functions. This is in line with the
axiomatic approach to topological field theory as propused by Atiyalr [44]. For
two dimensional Yang-Mills theory, which is almost topological, depending only
on the mneasure on the Riemann surface, and is also a gauge theory, it turns out
that it is possible to completely determine the states. In turn one may use this
information to evaluate the path integral on any surface.

We proceed Lo explain the underlying ideas and then we reproduce the results
we have obtained for the I/(1) theory using these techniques,

Boundary Data
When given a path integral to compute on a manifold with boundary, one
must specify some boundary configuration of the fields. In equations, we have

Var(o)= | _ Dec, (6.1)

B=%
Of course not all boundary data may be specified. There will, depending on the
theory at hand, be certain restrictions.

For a gauge theary, it may be possible 1o demand that ¥, be gauge invariani,
or at least transform in some well specified way under gauge transformations.

35

To see this in practice, suppose that the action S{¢) is invariant under gauge
transformations ¢ — ¢? that are not the identity on the boundary. Then we have

Ulp) = Awwexp—sw)

L. D& exp-5(e7)

| gy

L. Déexp-5(s)

#9| gy

= Wp(p5). (6.2)

I

The second equality is a change of variables of the dummy &, the third follows
from the gauge invariance of the action and the presumed gauge invariance of the
path integral measure. In the fourth equality gg stands for the value of the gauge
parameter on the boundary.

This 1 the behaviour that two dimensional Yang-Mills theory exlibits. An
example where (6.2) does not hold is Chern-Simons theory. Here the wavefune-
lions pick up a phase under gauge transformations and are properly thought of

as sections of certain bundles.

For manifolds with more boundary components, the partition function js a
functional of the data on each component of the boundary.

Glueing Manifolds Together

We want o see how to get at the partition function of a manifold by gh sing
together two manifolds. For concreteness and ease of visualisation consider Lhe
two sphere and put an imaginary line along the equator. Th path integral iz an
integral over all possible field configurations on the two sphere. Pick sorne allowed
configuration ¢ on the equator. We can think of performing the patli integral on
the two sphere by integrating over all configurations which are consistent with @
on the equator and then integrating over all possible . As we integrate over the
sphere, the path integral on the southern hemisphere gives the partition function of
the disc with boundary data ¢ while the path integral on the northen bemisphere
also gives the partition function of the disc (with opposite orientation) and with

- boundary data . We have deduced that

Zo = [ De¥n(p)¥_o(v). (6.3)

This generalises directly to arbitrary manifolds. If M is cut into two manifolds
M, and M, along B, then we have

Zu = [ Do W (o)0u (). (6.4)
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Note that we do not preclude M from having boundary or, equivalently, the M;
from having more boundary components than just B.

6.1 Maxwell theory on surfaces with boundary

The Disc

The first thing we have to determine is the allowed boundary conditions. If the
resulting state is to be invariant under small gauge ti1ansformations (i.e. satisfy
Gauss’ law) the houndary conditions have to be chosen to be gauge invariant.
Now the only gauge invariant degree of freedom of a gauge field on the circle 8D
is its holonomy # € R defined by

ﬁDA=21r9 ,

and the only admissible boundary condition is therefore the specification of 6.

Computing the path integral with this boundary condition then amounts to in-
serting &(§y;, A — 2 18) into the path integral, that is

Yplbe) = DA D¢
-53; fBD A=d
= jDADq&e’“ 5(—1«»}' A-9). (6.5)
2r Jap .
This form means that we may use the trivialising map again to simplify matters
1
8,¢) = La— - 0). I
V(9.0 = [ DEDye (5 f€-0 (6.6)

A question that arises al this point is point is what type of delta function
should appear here? We saw before that there are large gauge transformations
on the circle due to 7 ({/{1)) = Z. These act on § as & — 8 + n, neZ ad
we can demand invariance under these transformations which would then render
the wave function a periodic function of §. This is accomplished by inserting the
periudic delta function §7(f £ — 228), defined by

P2} = Y 8z +2xrn) = Y et 6.7)
neZ neZ
into the path integral,

With these preparatory remarks in mind we calculate, with the standard delta
function,

W(8,€) =

2
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-*‘PP(B, €)=Y exp (—21_’51:’) exp (2xind) | (6.9)

 with the periodic delta function. ¥7 is of the form 3", a, x4(8), where ., is the
character-of the unitary irreducible charge n representation of U(1). This is also
themdiorm of the states of Yang-Mills theory on the disc.

The wavefunctions (6.8) and {6.9) are solutions to the heat (Schradinger) equa-
tion on the line and and circle repectively, with the initial condition that they are
delts functions. This is an expected relationship between the path integral with
boundary and the Schrédinger equation (see appendix C). There is alsu an unex-
pected relationship between (6.8), {6.9) and modular forms which is explained in
part in [32],

Twisted States
It is well known that more generally states could carry a non-trivial unitacy
representation of Z (i.e. change by a phase under # — @ + n) labelled by a

parameter ¢¥™ € U(1). This is the familiar phenomenon of vacuum angjes or
f-vacua in an embryonic setting,

In the twisted sectors one finds, instead of (6.9), the wave functions
¥(6,¢) = 3" exp (~2x%(n ~ B)?) exp (2ni(n — 9)6) (6.10)
with the characteristic property
W8+ m, €} = exp (2ximd)¥° (8, ¢) .
All our calculations could equally well be carried out in one of the twisted

sectors of the theory but, as nothing is gained by this, we shall concentrate on the
invariant (9 = 0) sector in the following.

The Sphere

Write §? = Dy Ug (—D;) and decompose the delta function appearing in
(5.20) as

s e [T - feomy e

The two delta functions give rise to ¥p,(8,61) and W_p,(k -0, ;) respectively (cf.
(6.8)), so that the partition functian Zg(k,¢) (equation (5.21)) can be obtained
from the wave functions on the disc by

Zy(k,c)=j:d0\,'p,(9,£1)\l’-p,(k—9,cg) (6.12)
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as can of course also be checked explicitly, with the help of the Poisson summation

formula

Z e—-1»-7117! efrmé _ (47"}—% Ee—lhn)’f’t‘ . (613)

One may wonder what the calculation of I di¥f, (8, e;)'llfﬂa(k-ﬂ. €;) results
in. Note that U¥(k - 8) = ¥P(—#) = ¥¥(4), so that the difference among the
topological sectors is washed out in ¥ and not unexpectedly one then finds that

feld@‘bgz(ﬂ,q)!{"f&(k-—ﬂ,sg):ZZs:(k,f) . (6.14)
k

Thus if oe is only interested in results sumined over all topological sectors (as is
frequently the case) ¥% is adequate, but 1o get a handle on the individual sectors

we need to use .
Kernels On ¥,

Denote by %, .. a genus ¢ Riemann surface with n boundary components, Also
we denote the partition function on such a manifold by Ky, if we use a standard

delta function and by !\'S‘Dg‘“ when the periodic delta function is used. The symbol
22, is reserved for the partition function of closed surfaces (boundaryless).

Froni the derivation of (6.8) and (6.9). it is clear that they are valid not only

for the dise but more generally for a disc with an arbitrary number of handles,
i.e. for a surface ¥, | surface. We thus have the general result

]\’EE_I(B’[] = ‘I’(a~f} L]
KE (8.e) = WP(8,¢) . (6.15)

The generalization to surfaces L,, with n > 1 boundaries is also straight-
forward. In that rase we have to specify n holonomies #;,....8,. In the path
integral, for a manifold with » boundaries, when we change + riables from the
gauge field to the field st ngth we find that

Lw.fzif A, (6.16)

i=1 0}

so that one must still integrate over (n — 1) gauge fields at the boundaries, the
nth being determined by the above relationship. We want to perform the path
mtegral

/DADqse" flé(gi,f A-8). (6.17)

We may use the trivialising map to pass to the variable £ but this still leaves
the holonomies {6.17) to account for. We may interpret this in the following way.

19

On the manifold T, ,, the gauge invariant degrees of freedom of the gauge field are
reoresented by the holonomies and the field strength, subject to the one condition
(6.16). On using the trivialising map, the path integral measure goes aver to

L 1 1 H
— — —f e Lsumn . 6.18
/DA ./DE ;E‘! D (27 .é,. A) s (2# ]D'f 25 = fy. A) (6-18)
Integrating over the holonomies on the boundaries in {6.17) leaves us with
Ll - ¢
nge 5(%]2”5 (4. +8,)). (6.19)
This is easily done and one finds

Ry, b, 6e) = WO +.. 48, ¢
KE (01,...,8..¢) Yo +. . +0,.6 . (6.20)

Wilson Loops

In order to calculate the expectation vaiue of a contractible Wilson loop
expia § A on a surface £, ., denoted by

Kg,  (61,....0,,6:0), (6.21

we need only know what the expectation value of the Wilson loop on the houndary
of a disc is. Let the expectation value of the Wilson loop on the disc be denoted
by

Y8, a). (6.22}

Then evidently

Kz"n(al,...,ﬂ,.,c;a)=j+°°d9,.+,f\'3”“(91,...,9,,,0,,_,,1,(1)\1!{3,1“,ez;u)‘
- (6.23)
with sim.lar formulae in the case of the periodic kernels. It remains only to
determine (8, ;o). But this requires no calculation, for the boundary data of
the disc path integral fixes § A = 278, s0 we have

B(8, ¢, a) = exp (2riad)¥{8, ¢). (6.24)

There are two cases for homologically non-trivial loops of charge m € Z on a
surface I, . The first has to do with such loops that can be pulled ‘off”. Ir this
case simply atiach a Wilson loop to one of the boundaries, then convolute with



a cylinder on that boundary to move the loop ‘inside’. These manipulations give
the result
+oa
] 6K, B, ., Bne1,B, 1) exp (2ricd)Ko(—0, B, 1) . (6.25)
The second case is when the non-trivial loop cannot be pulled out of the
surface. In this case begin with the surface £,_1 .4 and put a Wilson leop on
one its boundaries, say the » 4+ 1th. The kernel for this is
Ke By By 6,m) = exp (2ximbp 1 }Kg, (01, ..., Bhga €},  (6.26)

91042 -’T(

The result we are looking for is obtained by convoluting the n + 1 boundary
component with the n+2, which lowers the boundary components by 2 but raises

the genus by 1 and at the same time introduces a non-contractible Wilson loop

into the surface. We get
+ou
[ 8K, nf8r.. 000, ~6.cim)

o+ o
= [ dexp (2mimb ) K, o,y O 80,0,~8,6)

+oo
= j diexp (2rimbn, )Ry, (B1,...,8,,€)

o

= bmokz, (B1,...,00.c). - (6.27)

This generalises the result that, for closed manifolds, non-trivial Wilson loops
have trivial expectation values (5.1).

Wilson Points

It is clear that the expectation value of Wilson points on an arbitrary surface
is obtained by convoluting surfaces with more boundaries with discs that have the
Wilson points in them. So for us the expectation valve of some Wilson points on
the disc is adequate. The calculation is exactly the same as for the closed sarfaces
in the previous section. We get for n such points with charges ¢;

YO+ que). 628)

=1

This resul' inay be understood from the canonical quantization point of view. 4
is the canonical conjugate momentum to A, so its action on 8 is by differentiation,
that is

i¢h = 2x . {6.29)
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In terms of operators the expectation value of the Wilson points on the disc takes
the form

n : \
exp (Z Sy %) J¥B.e)

(103
Z, 8
= = 11;9'
o (£ 035) v00

= \Il(0+iq,-,c). (6.30)
s=1

Consistency Checks

The next thing we check is the proper behaviour of the kernels Kg,, under
the operation of glueing surfaces along boundaries. Again, in view of {6.15) and
{6.20), it is quite sufficient to check this in the particular case of two cylinder:
and C; gleed along a common boundary 4, to form a cylinder C with A(C} =
A(Ci) + A(Cay, or € = & + €. Writing 8C), = 10 + 1., 83 = 7 + 72 one has
C =1 +7 ="+n — ™ + 7, so that we expect K¢ to be given by

dooar
Kc(0y,00,6) = [ dBKc, (8,,0,e1)]c,(~0,0r, €2), (6.31)

and using {6.9) and {6.20} this can easily be vefified explicitly. Mutatis mutandis
{6.31) is valid for the glusing of any two surfaces to form a surface with n > 0
boundaries. It is also possible to consider the joining of two boundaries of a
surface, £y iz — Zy41n. In general this is described by a formula similar to
{6.31) (which we used in the calculation of expectation values), but due to the
linear and additive way in which the holonomies enter into ( 6.20) in the Abelian
case, this simply results in

Krpialbry ... 00,6) = Ky, ,,,(0,0,01,....8,.¢), (6.32)

(and analogously for X7).
Aﬁy other more complicated calculation can be reduced te a combination of
the three examples discussed above.

7. Partition Function In Yang-Mills Theory

For U(1) gauge theory, we were able to evalnate the partition function on an
arbitrary genus surface directly. The global information about the trivializing
map was straightforward to encode. For trivial bundles, this amounted to the
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observation that ng Fy= fzn dA = 0, so that ngf = 0. This is a gauge invariant
condition. For SU(n) bundles (or trivial J{n} bundles) we would also expect a
condition of the form fE, dA* = 0 but this is clearly not gauge invariant and it
is far from obvious what one should take to be the non-Abelian generalization of
fzg Fa=10

On manifolds with boundary, however, ali the information that was required of
the trivialzing map, for the /(1) theory, had to do with gauge invariant boundary
data. By glueing manifolds with boundary together, it was possible to arrive
at the resuits for the compact closed manifolds. There is a direct non-Abelian
generalization of this. Indeed it is enough to know the result for the disc so as
to generate the results on arbitrary Riemann surfaces, with or without boundary.
Recall that identifviug the sides of a cut Riemann surface gives back the original

Riemann surface. A cut Riemann surface is just a disc.

In this section we restrict our attention to Lie groups which are compact,

connected and simply connected. All of the results obtained will be in terms of
group representation theory. The set of equivalence classes of irreducible unitary
representations of {7 is denoted by G. For A € G, we denote by d(A) the dimension
of the representation, y, the character (normalised by x,(1) = d{})) and by c(A)
the quadratic Casimir invariant of A\. We use various properties of the characters
that are treated in detail in, for example, [45, 46].

The Wave Function Qn The Disc

Lei » = 40D be the boundary of a disc I (y ~ 8'). Just as for the {/{1)
theory, e only gauge invariant degree of {reedom of a gauge field on the circle
is its holononiy. Choosing the boundary condition to be Pexpf, A = g, € G
(modulo conjugation, i.e. gauge transformations of A), our task is to compute the
path integral

Kol AN = [ etopeh?gy). (1.1)

We need to specify the delta function that appears in (7.1) and which is some
delta function on the gronp ¢ There are two possibilities. The first is to use the
delta function of L#((). given in the spectral representation by

Slgohy =3 dAhxalg™'h) (7.2)
\EG

With this choice of delta function, the path integral (7.1) is not manifestly conje-
gation itvariant but, as the result turns out to be, use of {7.2) is sufficient for our
present purposes. We can Lhowever build in conjugatio 1 invartance from the outset
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by using the deita function 8{g, b) on the space L*(G)° of conjugation invariant

-fanctions {class functions),

8g. k) =3 xalg " xalh). (7.3)
pYe]
related to &(g, h) by
(g, k) =jcdg’5(g!g'h9"‘}, (1.4

as a consequence of the relation

[doxr(zava™) = d0)  ale ity (7.5)
The group measure is normalised here so that the group volume is on
f dg=1. (7.6)
G

Some consequences of changing this are explored later in this section.

In the case of surfaces with more than one boundary component, the use of
(7.3) actually becomes mandatory if one wants to work with the gauge fixed path
integral and retain conjugation invariance, as explained in [32]. So here we will
use the second alternative, though for the disc both delta functions lead to the
same results.

The boundary data is given in terins of the gauge potential. We need Lo specify
it in terms of the field strength. Using the non-Abelian Stokes’ theorem. this is
possible in general on the disc and is explained in appendix B. The part we need
is that the Schwinger-Fock gauge

=3
-1

AL =0,
allows us to express the gauge field in terms of the field strength

1
A%(z) =]U ds sa* F2 (s2).

=1
o

The trivializing map is available, with G*{A) = z# 4%, so that we obtain

1 )
Kp(g:.¢) =jDE D¢ exp (E—,- jz iTrg + 8%.[2 Tré+ ¢) Y oxalg e
g v AeG
(7.9)

with ¢ = Pexp (f., A) and A expressed in terms of £ through (7.8).

Let us now assemble the techniques that will go into computing (7.1). It will
be convenient to replace the path ordered exponential in (7.1) by a quantum
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mechanics amplitude, namely

XA (P exp £ A)
= [ Dubi exp (s [ atiieyiiee
——=A“(7(*))‘!“(t)(n)«°n)(¢)l) T,  (110)

where 7* and 7*, k = .,d(A} are Grassmann variables {with the obvious
generalization to traces of the form X)(Pcf" ¢), ¢ € G) and where (7A°p)(t) =
7(¢)A%7*(1). A short proof of (7.10} uses the fact that the fermion propagator in

one dimension is
T o .
/DqD:}exp (i./o dtﬁ'(t)r}'(t))ﬁ‘(s)rp’(()) = §78(s) .
Together with the change of variables
¢ }
n(t) ~ [Pexp [ Aniras] o),
0 i
0
W) = P [Pexp / A:,\“-‘y“ds] ,
v Ji

(path ordering is dune from the lower end of the integral to the upper regardless
of which is greater) this can be seen to imply (7.10).

Using the Schwinger-Fock gauge allows us to write
[ @z S e
1 !
[ / asgz,sr 2 xemyie
/ @ | " ase, A7) ” )d(” L) o)
[ etmenn, (7.11)

i

with the local polar coordinates on the disc given by sv{t). To evaluate (7 9), we

first perforin the Gaussian integrals,

ij D¢ exp (Z-ﬂ—_; fDiTrd:{-i- é—:-,;L Tr¢t.¢-i‘[of(ij/\'g)(t))' :

1
= exp (=553 [ aume ). o

which then leaves us with the task of evaluating the fermionic inteénl . _
[ v exe (s [ astoiti - 5 [ r!t('i'nxt)(f:x'n)(t)) F(n*0).
o 8xt fy o

45

‘321’,91)@ encounters a slight generalization

(7.14)

fhnbmngﬂm ‘nth (7.10) and (7 2) or (7.3), we finally arrive at the equation for

: ﬂxe lmmel {wave function) on the disc (7.9),

Kp(g1,€) = 3~ dAa(er) exp (-g%c,m) : (7.15)

pY-lc}

“The Two Sphere ..

- Kp can be used to compute the partition function of Yang-Mills theory on 52

- a8 well as expectation values of Wilson loops. Considering 57 as the nnion of two

discs,
S=Du, b, 9D, =8(-Dy) =+ ,

we see that we can write Z5: as
Zs=(e)=fadgKo,(g.q)Ko,(g",cz), (7.16)

(the inverse g~ being due to the opposite orientation of 4D,). That dg, up to
some overall constant, is the correct measure to use can be seen from the change
of variables A — Pexp [, 4 o . Using the orthonormality

L doxtois) = [ doo@xals™) = 61, (7.17)
of the characters this becomes
Za(e) = Ed(a\)‘exp( =alh) | (7.18)

: ﬂwmc-— €1 + €7 (this is the statement that A(5?) = A(D) + A(D)).

. We are now in a position to determmcthe correct constraint on the field £ that

: .'-n Desded 50 25 to definie the trmalmng ap directly on the sphere. The required

oomtnmt can be deduced fron inserting the definition (7.1) of the kernel on the
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disc into (7.16). Doing this, one finds (the connection A should again be thought

of as being expressed in terms of £ via (3.30))

1
Zo(e) = [ Dexp (+y [ e v€)s (Pexp( - §_A),Pexp(- . A)) .
(7.19}
This constraint expresses the requirement that the holonomies of A along 8D,
and &(—D,) are equal up to conjugation.

We should like to express this in a form which makes transparent what the
condition on ¢ is. Via the non-Abelian Stokes’ theorem (details may be found in
appendix B}, the path ordered exponential entering (7.19) can be written as

Pexp—ﬁo‘.‘i:Pexp-—lef. {7.20)

We therefore abtain
Z 52 = t(+u: (-"‘52 Tr("{) - - )
Zsitey = [ pecloam 5 (Pexp [, P expi L&) @

The splitting of $¢ into ) and D, is arbitrary here and for any other choice of

disc an ! compliment this formula remains correct.
The Cvlinder

With this example ve come to the heart of the matter. It is possible to quite
straightforwardly, following closely the analysis for the disc, derive from scratch
the partition function for the cylinder C {32] However, such a direct approach
is difficult 10 implement in the case of higher genus surfaces, or for surfaces with
more boundary compouents. For that reason we will now give an evaluation of
the partition function on the cylinder which is Lased on nothing but the kernel
for the disc (7.15) and the fact that K¢ can depend only on the holonomies along
the boundaries and the area A(C’). These considerations will be seen to generalize
directly to any surface.

We deiorm the disc to a rectangle with the same area with edges a,b,c and
d, that is, we view it as the cut surface of the torus or of the cylinder. This is
as in figure 2, where ¢ is the a™! cycle and d is taker: to be the b~! cycle. Write
the holoromy g, around the boundary of D' as = Gagsgcgy {this is possible as
the halonomy is a path ordered exponential and can therefore be written as the
product of the group elements obtained from going along a, then along b, etc.).
ldentifying the edges a and ¢ (with opposite orientation) now amounts to setting
9c = g;' and integrating. Figures 5¢ and 5b give two ways of visualising this.
Using (7.5) an<l (7.15), we find

I'eige gane) = /Gdynh'o(yagay;'ya-f)

47

feg e

€
fadgo Egd(z\)n(yagag:‘ya) exp (—ﬁcw\))

2 xa(gs)xalga) exp (—S_;Cz(f\,‘) ) (7.22)

AeG

wiﬁch ‘agrees with the more simple minded approach in [32]. We should emphasise
that this proceedure works, as Yang-Mills theory in two dimensions is invariant
under area preserving deformations.

There are a number of checks that can be made on this result. One we mention
here has to do with the axiomatic approach to topological field theory. It is always
possible to think of a genus g Riemann surface as a genus g, disc glued to one end
of & cylinder and a genus g, disc ylued at the other end, with ¢ =61+ g2 Think
of the discs a8 generating states in the physical Hilbert space. The cylinder then
has the interpretation of an inner product between the ‘incoming’ genus ¢, state
and the ‘outgoing’ genus g; state. In the topological limit € — 0, (7.22) becomes

Y xalgw)xa(gal {7.23)
AEG

which is what we would expect. This simply says that the holonomies on the left
and right discs have to match up to conjugation. If we Fourier transform, this is
clear '

Cﬂm

1

fcdyefc d9axn{ )X m{gs) Z x(gs) v (ga)
A
Bam - (7.24)

Another direct check of the method is to glue a disc to the d end of the cylinde:,
which yields & disc, and to see if this reproduces the kernel for Lhe disc (7.15),
This indeed occurs

fG dgs Y x.(g:")exp (—8—:-,«::(#)) 3 xalgs)xalga) exp ("%62“])
L] rel

=A2Gxx(ys)e’q> (—gfgq(f\}), (7.25)
€

with € = € + ¢;. Other tests may be found in [32].
The Pants

Does the same method allov us to calculate the kernel for the ‘pair of pants’
Lo3? Indeed it does. In figure 6 we have exhibited one possible cut Riemann
surface of the pants. Once more express the holonomy around the boundary of
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the disc as the product of the holomies of the eight edges. From the figure we see
that it is enough, once we visualize the cylinder as a rectangle {disc) with a hole
a8 in figure 5, to identify the marked edges, call them a and a~!, as above. Thus,
to obtain Ky ., all we have to do is calculate

jdgnKC(guglg:lgzigih C) ) (726)

and, using (7.22) and (7.5), this becomes

. - €
Reon(g1.92,83.¢) = 3 d(A)  xalg)xalgz)xa{gs) exp ("8—;362(/\)) - (127)
reG
Again one may check that glueing a dise to any of the ends reproduces the kernel
for the cylinder.

Extension To Tgn

Kuowing the kernel of the *pants' and the rules for joining boundaries and’

glueing surfaces it is now a simple matter to deduce from {7.27) the general for-

mulae
Bypnlgr o gn€) = 3 dAF ™ "x5(01) .. xalgn) exp (—8—:_';*32(/\)), (1.28)
rel
and ‘
Zg,(0 = T d P exp (- g50(0) (7.29)

Al

It is vather remarkable that, in a sense, the basic building block of Yang-Mills
theory in two dimensions is not the kernel {7.27) of the ‘pants’ but rather that
of the disc (7.15). This can be understood as a cousequence of the fact that the
theory is not only almest topological in the above sense but also a gauge theory.

Note that in (7.23,7.29) the power of d{ A} is always the Euler number 2—2g—n
of By, That it is precisely this function of ¢ and n which appears is of course
no coincidence.  Compatibility of (7.28.7.29) with the operations of joining 2%
boundaries of a surface Eoms

Ep.n - Sg-i-b.n—?b N
and of glueing two surfaces £y, amd . along & boundaries,
{Ey,n- Sg',ﬂ') - :'\:y+g'+6+l.n+n’—25 »
requites the putative power p(g,n) of d{A) to satisfy
plg.n) = plg+b.n—2h)
plg.n) +pig'.n") = plg+g +b=1,n+n"-2b) {7.30)
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and this fixes p(g, ) uniquely (up to a acale) to be p(g,n) = 2 — 29 — n. The

scale can then be determined by computing e.g. the kernel on the disc (7.15) or
the partition fl:mctlon of the two-sphere (7.18).

vol M(E,, Su(@)

- We specialise to the case that the structure group is SU(2). Setting ¢ = 0, in
the partition function (7.29), we get

C vl M(Z,, SU@) ~ 3 d(a)h, (7.31)
AESU(2)

The irreducible representations of SU/(2) are labeled by the positive integers n
and the dimension of the n’th unitary irreducible representation is n + 1. There
is a simple formula for

2n+ 1), (7.32)
n=0
obtained [v passing to the Riemann zeta function
C(s)=3 n~", Re(s)>0. {7.33)
n=}

Thus we are interested in ({(2¢ — 2), which is related to the Bernoulli polynomial

B:,-: by ( )2 2
2x )29~
29 -2) = 55

our tentative expression for the volume being

| Byg-a |, (7.34)

vol M(S,,SU(2) ~ {(29~2)
(22

S5g —7 | Br-s |- (7.35)

This result is quite good. The volume of the moduli space is known, for
example by making use of Verlinde's formula, and is

{(2¢ - 2) (7.36)

ety

vol M(E,, SU(2)} =2

The factor of 2 discrepency between (7.35) and (7.36) is accounted for by noting
that the centre of SU(2) is Z; which has order 2, this being one of the lactors we
had previousty mentioned but omiited to carry around. The factor (2x?)~! has a
partial explanation in terms of our inability to fix the normalisation of the group
integral used in the glueing rule. The exponent g — 1 is uetermined in this way
but why it is 2x? and not some other constaat is difficult to ascertain.
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t d ormalizati

There are two obvious source of arbitrariness in our calculations, thus far,

which we would now like to control. They h.ve the same source, namely, that
we are not sure of the normalisation of the path integral measure. The first is
that the wavefunction or kernel on the disc should be muitiplied by an arbitrary
constant x. The second is that we are also unable to fix the correct Eroup measure
in our glueing rules, so let it be p times the one thus far used.

We derive some consistency rules. If we glue two discs together, Dy and D,,
along one common edge to reproduce a new disc D, then the convolution of the
kernels on the two discs should give the kernel on the new disc. This is the
case for the keruel (7.15) with group volume normalised to unity. With the new
normalisations we would have,

&pRp(e}) = kp,kp,pKple), {1.37)’

which serves to fix the dependence of x and p on the parameters that are in
the theory. If x is area dependent, then it must be exponential, so set xp =
exp (v + bA(D)). Consistency is achieved if p = exp—v. If we demand the scaling
symmetry that clates the coupling constant to the area, then bA{ D) shouid be
replaced by wue lor some u, The net effect of this factor is to multiply all of the
previously derived kernels and partition functions by expue. In the topological
imit this tern: plays no role. :

We would like to work out the dependence on expu for arbitrary kernels. The
way we do this is to begin with the kernel on a surface of genus zero with n
boundaries, glue on a disc and demand it vields the kernel on the zero genus
surface with n — 1 boundaries, It is not difficult to see that all of these kernels
are given by (7.28) with ¢ = 0 multiplied by expv. Higher genus surfaces are
obtained in the normal manner. Indeed for & closed manifold the result depends
on the genus only and is exp v{? — 2¢) times our previous result {7.29).

The ability to redefine the theory, by the introduction of the parameters u and
v, may be viewed as the normal ambiguity one faces in using different regulariza-
tions in any field theory. Changing the values of u and v amounts to renormaliza-
tion and Witten has dubbed these variations, “standard renormalizations’. The
factor (22%)!9, for example, may be obtajned on setting v = in{2x). These
considerations show, that if we know the volume of the moduli space of flat con-
nections for one surface (with g > 2), then all the factors may be fixed, The Torus
will not do, as exp »(2 - 2g} = 1, while for the sphere we run into ({—2) = 0.
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_:37,,1. Expectation values of Observables

_l ‘ Foz the case of the cohomological theories, with non- Abelian groups, we saw that
«.:...i8 1 enough to know the partition function in order to evaluate the observables of
' inferest. So here we concentrate on the observables that are intrinsic to the BF

theory, namely Wilson loops and Wilson points. The situation is quite unlike the
Abelian case as here the Wilson loops are most certainly not trivial,

With thegcneral formula (7.28) for K(E,.) and the rules for glueing surfaces
and joining boundaries at our disposal, it is rather straightforward to compute
expectation values of Wilson loops (the generalization to correlation functions «f
several non-intersecting loops being immediate). There are three different typo: of
non-selfintersecting loops to consideér, contractible (homeotopically trivial) loops,
non-contractible homologically trivial loops, and homologically non-trivial loops.
As it is really homology and not homotopy that matters, the first is actualiy a
special case of the second type, but for simplicity we will treat them separately,

Contractible LooE

Expectation values of contractible loops on a surface ¥, can be computed
by glueing a disc Lo, and a £, with a2 Wilson loop on the boundary. We do
the calculation for & Wilson loop on the two-sphere. We want to compute the
expectation value

(xu(Pexpf’ A))sz . (7.38)

We split S? along + into two discs Dy and I, and put a Wilson loop on the
boundary of Dy before glueing D, and 1, together again. In equations this
amounts to computing

(lPexpf Ao, = [ dokotg.allohnta™ ) - (139

In order to calculate this we make use of one further property of characters, namely
that

Wikl =xaeule) = Y xulg) . (7.40)
PENDu0EC
Then we find
1
(Xu(Pexp § A))sn, = I T oo (-t +elpren)) (741

for the unnormalized expectation valte of a Wilson loop on §2.
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To get the result on a general surface one replaces Kp, in (7.39) by K, (o)
Using the multiplicative property (7.40) of characters we thus find

(xu(Pexp § Az,
= ja dgKp(g,ep)xu(9)Kz,, {97 ¢x,,)

= T % dNdle) exp (g (elde + clplesh)
A PENMB L
In the topological limit this is
2 30 dA)diey, (7.43)
A€( PEARu

which because of the flatness condition should be d(u) times the partition function.

Non-contractible Homologically Trivial Loops

These types of loops exist on surfaces of genus > 1 and cut a surface Tore
intoa Xy, and a ;. Thus the only difference to the example above is that we
have to replace D in (7.42) by L, 1- This gives the result

(xu(Pei‘))E,ﬂ,
R zeexp( gV, + alper,,)) (.40

AEG PE \®u
which reduces to (7.42) for ¢ = 0.

Homologically Non-Trivial Loops

Not unexpectedly the formulae in this case turn out to be slightly more com-
plicated than (7.42,7.44). The required operation is now not that of glueing two
surfaces together but rather that of j joining the two boundaries of a Y, 12 witha
toop in between. In equations this amounts to calculating

(u(Pexpf Az,

fcdy 3 Ay (g)x,ghxalg™ Y exp (———C=(A))

AEG 8x?

¢

=L T 0 h e (- hal) (1.45)

: 8r2
AEG PEADL

ThLis means that a representation A € ¢ will only contribute to the sum if it

appears again in the decomposition of A @ 4. Let m () denote the multiplicity
of Xin A® u. Then

(> ,,(Pe‘cpf ARg,. = Y d(A) %, (A) exp (--—-—c;(A)) (7.46)
AeG

Fat SU(2), two ext:eme cases are represented by choosing i to be a half-integer

mmtmonotthespmonempmaentwon If i1 is half-integer, then for no
_ ﬂmdlwﬂl)m&ppeum)@y,sothatwehavethegenerairesultthatfora

honnhgcally mn-tnvul loop «
(Xurj(Pexp § A, =

On the other hand ifp =1, then m,(A) = 1 VA € G and thus all representations
will contribute to the sum in {7.46),

(ot (P exp f s, = Tdoren (~5ett))

AeC
= ZE,(G) . (7.47)

In the topological limit this gives back the volume of the moduli space.

The results of this section can of course also be used to calculate correlation
functions of several non-intersecting Wilson loops. The intersecting case is more
difficuit but can be dealt with at the level of the fermionic path integral represen-
tation (7.10).

Wilson Poi |

Let us work directly in the topological limit. In this case the position of the
Wilson points makes no difference to the result, so on the genus g Riemann surface
we may as well consider all Wilson points to lie in a disc. We proceed in the by
now familiar fashion. We calculate the insertion of the Wilson points on the disc
and then we glue this to T, to recover the result on ;. We content ourselves
with one insertion. The general case is a simpie extension.

We wish to calculate

ijDé exp (412‘/ :&)Trnexp(tqé) 3 xala) x;(PexpfA (7.48)

re6

on the disc and to do it we use the fermionic representations of the Wilson
points (3.46). The integral over ¢ restricts £ to satisfy (3.49), which tells us
that xa(Pexp § 4) does not depend on the loop. The path integral reduces to

<O{F 3 xalg)xalexpgn. Rijymi | 0 >
rel

=Y xa{g)TrrTraexp(gR® @ \°), (7.49)
aed

and [ leave it to the reader to dJisentangle this.
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8 Imstantons on complex Kahler surfaces

There are natural generalizations of the two dimensional theories .hat we have
considered. These involve the moduli spaces of Einstein-Hermitian structures [47]
and of semi-stable holomorphic bundles [48]. Here we will content ourselves with
a brief application to the moduli space of instantons over four dimensional Kihler
manifolds {complex Kahier surfaces).

Any two form @ on an orientable four manifold may be decomposed into its

self-dual and anti-self-dual pieces
¢*:%(1+*)¢, Q*:%{l—*)d), (8.1)
by virtue of the fact that »? = | so that 1{1 £ ) are projection operators. Thus
the space of two forms Q¥ (M) decomposes as
M) = QM) B DL(M). (8.2)
Extending this to Lie algebra valued forms we have the decomposition
DM, Liell) = Q4 (M, LieG) & O (M, LieGG) . (8.3)

In terms of this de('on;position, the curvaiure tensor F4 of a connection on a
bundle over M may likewise be split and a connection is said to be anti-self-dual

(ASD) if
Ff=u. (8.4)

An ASD connection is an anti-instantor.

Ou a complex manifold there is a second decomposition of 11*(M, Lief7) avail-
able,

VM. LieG) = QPN M, LieG) ® 00 V(M, LieG) § QO M. LieG). (8.5)

The grading (1. ) refers to the holomorphic and anti-holomorphic degrees so that,
for example,

Foyndndz; € QPNM LieG),
Fop,dzidz; € QONM, LieG) |
Fodzdz; € QUM LieG) . (8.6)

Farthermore, if the manifold M is Kahler then it comes complete with a non-
degenerate closed two form w of type (1, I) so that there is a further refinement

QUM LieG) = Q' M, LieG) @ QM LieG)u (8.7
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where Q{,“’(M.LieG) consists of the (1,1) two forms that are pointwise orthog-
onal to . f8(M, LieG).w is meaut to indicate the component of the two form
along the Kahler form times the Kahler form,

The complex decomposition and the duality decomposition of *(M, LieG)
are related by

]

(M, LieG) = QONM, LieG) & %M, LieG)w & MO M, Liel) .
(M, LieG) = Q5N(M, LieG). (8.8)

Anti-Instanton Moduli Space

The ASD connections using the Riemannian structure of the four manifoll
are, ag we have seen, compactly written in terms of one equation

Ff=o0. (8.9)

In terms of the Kahler structure of the manifold, the ASD connections are specified
by three equations, the first two being

FiPt=q, F =9, (-10)
while the third (Fa,w) = 0, is neatly written as
1
FAw=U=-2-{FA,w)w2. (8.11)

The space of connections that satisfy the equations (8.10) is denoted AU

Topological Field Theory For ASD Instantons

As Fjw is a four-form, we may integrate it over the manifold. This suggests
that we take as an action the obvious generalization of the two dimensional action
namely

where we have already included a term to take care of possible 4 zero modes. In
order to impose the other two conditions (8.10), we need to introduce two more
Grassmann even fields B3 ¢ 20 M, L1eG), BOD ¢ NODM LieG) and two
Grassmann odd fields x> € RO M, LieG), 09 ¢ MO M Lie(). These are
given the following transformation rules

Sx130 = pao) - 5RO _ [420) o)
5310 = glo3)  gpion _ [x©%, 9], (8.13}

56



50 that & continues to enjoy the property 82¢ = L£,9.

We add to the action the following & exact term
P j Tr (2O FO2 (02 pl20)
Ml (X A *x A )
- / Tr ( puoplY ¢ pea) plo
M
—x"*0(d, )R 4 X(O.l)(dAw(ﬁm) . (8.14)

Integration over the fields B*® and B'®? forces the gauge fields to satisfy (8.10)
so that the path integral over A is restricted to A1) Likewise integration over
the x forces the ¢ to be tangents to AU,

The path integral that we have is then an interesting mixture of two types
of topological field theories. These correspond to the two types of fixed point
theorems that are available. The first part of the action (8.12), just as in the two
dimensional theories, is a Duistermaat-Heckman type action. The second term
(8.14} is of the Matthai-Quillen form.

The analogy with the two dimensional version may be pushed further. The
critical points of (8.12), taking intu account (8.10) are Yang-Mills connections. We
can see this by noting that on A, Fw is essentially £}, so that on eliminating ¢
we produce an action which is, up to an additive constant, the Yang-Mills action.

One more point worthy of note is the relationship between the t.heoryA presented
here and Donaldson theory {in Kahier form). These are related to each other in
the same way as the old and new versions of the cohomological field theory in two
dimensions as described at the end of section 4,

Observables

The simplest cbservable is the path integral, with action the sum of (8.12) and
(8.14). For simp'icity, consider the case where H2 = 0, that is wheie there are no
zero modes at all of B, x or ¢. The B2 and x¥*® integrals give us

S(FEN6((dap)>), (8.15)

which, off the zero set and arcund a prefered connection Ay € Al Y A= Ag+a,

becomes
5((dapa)*M)6((d 4y #)39) = B(aONS(p2Y (8.16)

The determinants will exactly cancel (at the end of the day). up to a sign which
is not indicated. The sign, however, is irrelevant, for when we take into account
the (0,2) contributions we will obtain the same sign which squares tc unity. The
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path integral is now over the (co-)tangent bundle of A, with the action given

: 5!!{8‘2)

WO may met ¢ -0 !nt.h xmpumty and we do so. ‘The partition function is then
eqml to the lymplectxc volume of the moduli space. This establishes that the

- um;ﬂest ofDom.ldlcm invariants is not zero (indeed is positive).

: Iu themmndﬂ‘ we relax slightly the condition that H3 = 0 and allow for the
“shetruction” space H3 to be made up entirely of Hw. In other words, we allow
for ¢ zero modes (reducible connections) but not for B or x zero modes. The B

. and y fields may be integrated out as before and the partition function of interest
s '

Zule) = j exp (Zi—, jM Tr(¢Fw + %ﬂ)\bw) + g% ]M Tw*w?) . (8.47)

u.n

We do not evaluate this partition function, but rather can express other observ-
ables in terms of it. The easiest examples are the expectation values of products
of Op. One may follow line for line the steps in (4.26) and (4.27) to obtain a
formula in terms of the differentiation of the partition function with respect to ¢.

I we could follow the steps of the two dimensional theory to calculate the
partition function, we would be able to go a lorg way towards evaluating many of
the Donaldson invariants of these moduli spaces. Unfortunately our technology
at the moment seems o be not up to this task. The boundaries of four-manifolds
being three-manifolds makes the specification of the boundary data rather more
involved. In this context the work of Donaldson on the boundary value probiem
for Yang-Mills fields may be helpful [49].

A Conventions

 Lie Algebra Valued Fields

When, in the text, a field ¢ is said to be Lie algebra valued this means

: ¢=¢'T,, (A1)

whue the.(mﬁ-heﬁnitim) T, are generators of the Lie algebra. Commutators are
e e [Te, Tl = F° uT., (A2)
S oodad = dh 4[4, = (@ + 7 o AN, (A.3)

58



and 1 1
Fi=dA+ §1A, A] = (dA® + 3 F° 2 APASIT, . (A.4)

Local Coordinate Expressions

In the text differential form notation has been used. For those that prefer
explicit index notation, we give the correspondences here.

A zero-form is a function. Any one-form A has as a local expression
A= Ade* (A.5)

while a two form B is

B = B, dr* ds". (A.6)

The differentials dr* anti-commute amongst themselves, so that 6nly the anti-
symmetric part of B,, appears in {A.6). The diffcrential d is

d=dz"g,, (A7)
and squares to zero. With these rules we have

(8,1, + %[A,,. A))dz¢dz”
i
3

The local gauge transformation, for the gauge field, becomes

Foda'dz . (A8)

85A=d +[A,A] = D,Adz", (A.9)

with
Dy =0+ [Au . {A.10)

Given a metric g,, on the manifold we also have the Hodge * operator that in
n dimensions maps p-forms to (n — p)-forms. Its action is defined by

® (dr™ . dr¥r) = T 9 i

e ada L de (AL

where detg = detg,, and the epsilon symbol with all the labels down is the

antisymmetric matrix density with entries (0,1, —1) when any labels are repeated,
or they are in an even permutation, or an odd permutation, respectively. For
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example, iz two dimensions £; = €3 = 0 and €12 = =gy = 1. One rajses the
labels with the metric tensor, so that

uyun = det g 10e (A.12)

The invariant volume element is /det gdz* ...dz#*" which is often written as

Vdetgd'z.

The following are now easily derived

_ 2. .2
j;:gqﬁt¢ - /Ey\/c?tgdm (z)
= . A.13
f:s, $F4 jz PzgF; (A.13)
We also have, in two dimensions
tdg + A, = V, A%, (A.14)

where V,, is the covariant derivative in the metric sense, and also covariant with
respect 7 Ao, while the Yang-Mills equations read

. dA*FA=%VuF“ ydl'". (:\.15]

Instantons And The Symplectic Form

Let us fix on B! the standard coordinates z¢, and on the complex 2-plane the
coordinates z' = z' +iz?, z? = 23 4 iz%. The (2,0) and (0,2} forms are spanned
by

dznidz; = (dr'ds® - dz’de*) + 1(dr'de® + dz?dz),
didz; = (dz'dr’® - de¥ds?) — i(dz'ds? + drdz). (A.16)

The symplectic 2-form is

w= %dzldfl + %dzzdfg = dz'dz? + dz%dz?. (A1T)
The self-dval two forms ¢ satisfy
b5 = %gaﬂ.f;(b"" s (A.18)
so that
® = 20i(dr’dz’ + dr’dz!) + 20.a(dzldz® — dr2dz) + 26, (dc'dz? + dr¥de?)

"

'.Qﬂw + (°18 - l-¢“)d23dzz + (le + 3.¢14)d2‘|d22 . (Alg)

This is the decomposition advertised in the text.
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B Non-Abelian Stokes’ Theorem

In the following we are working on a contractible manifold M of dimension m
or, equivalently, consider what follows to be performed on a single coordinate
neighbourhood, which is diffeomorphic to an open set in R™. Given any gauge
field (cornection) A on a principle G bundle over M, there ia a gauge transformed
connection AY = U~ AU + U~'dl/ such that

z.AY = 0. (B.1)

This (Schwinger-Fock) gauge allows us to represent the gauge field A in terms
of the field strength {curvature) *4 and the group element U. Equalion (B.1)
serves as a definition of U7, It is in terms of these quantities that the non-Abelizn
Stokes’ theorem is stated

Abelian Stokes' Theorem

The integral around a loop + of a connection A iz, by Stokes’theorem, equated
with the integral over any surface I' with boundary 8T = 4 of the curvature

Fy = dA,
LA:[FFA. 7 (B.2)

Altern.tively for Wilson loops this is

exp ( j A)=exp( [ Fa), (B.3)

and it is this formula that generalises, in a gauge invariant way, to the non-Abelian
case.

Non-Abelian Stokes' theorem

Before turning to this let us make one observation. Within M the surface T
may be quite contorted. However by a suitable choice of local coordinate functions
it may be taken to be the unit disc in an R? plane of R™ centred at the origin.
We work with these local coordinates.

As it is not, perhaps, apparent that one may specify any connection in terms
of its curvature and a group element (corresponding to the usual gauge freedom)
we show this first. We express AV in terms of F§ = F(AY) = U-'F, U,

1 g
Aff /c.asa[Af(sz)s]

/ ' ds[s2*9AY (s2)B(s") + AV (s3)]
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¥ " dafoz"0AY (s2)/8(s2”) — a3AT (s7)/3(s2")]
/: dssz"Pﬂ(s:) (B.4)

F(s) = 5 AZ(az) S Y(oz) 4 (A0(er). Ao (BD)

The third line in (B.4) follows by dlﬂ'erentlatlon of (B.1) at the point sz, that is,
AY(sz) + s2*BAY(sz)/B(sz*) = 0, while the last line follows from the fact that
s2#{AU(sz), AY(s2)] = 0. In terms of the original field we have field

-Ay(x) = U(z) j: ds sz* U™ (sz)Fu(sa) (s2)U " Mz) = BU(n)U Mz}, (B.6)

though this may be unedifying.

More interesting for us is the application of these ideas to the path ordered
exponential
Pexp{f A}, {B.7)
i

around a (necessarily) contractible loop +y with prefered point . The path ordered
exponentials for A and AY are related by

Pexp(f A%:U"(::)Pexp(f Az}, {B.8)

Pexp(p A)
Yz
=U(:)Pexp(f AVYUY(z)
=U(1)Pexp(f jols’y"U"(s’r}F.,,,(s*y)U(sﬂdsdy“)U*I(:c). {B.9)

The last equality is known as the non-Abelian Stokes' theorem. This terminology

is justified by noting that in the Abelian case this equivalence reduces to the

esual Stokes’ theorem. Let us parameterise the boundary curve (unit circle) by
t. The local coordinates z* restricted to the disc are given in terms of s and ¢
by z# = sy*(t). The & coordinate is ‘radial’ while { is ‘angular’. In this way we
see that for Abelian groups, where path ordering is irrelevant (all the matrices
commaute 8o thatwder is immaterial), the exponents appearing in (B.9) may be
oqmted as o

[a=¥ AN
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F [ Ptsr@or ) S ym(erasat
1 d d
$ Funls3(0) 3 (07" () - (7° (6)dsdt
frFA - (B.10)

I

H]

The gauge invariant version of the non-Abelian Stokes’ theorem is obtained by
taking the trace on both sides of (B.9)

TrPewp(§ A) TrPexp(f [ sy U™ an)Fuufon)Uiion)dsdr)

- Tr'PexperU, (B.11)

with the second line detining what is meant by the surface ordered-exponential.

Alternative derivations may be found in 150, 51].

C Laplacian on G and the Schriodinger equation on the
disc

The Schrodinger equation that we are interested in is
{ & + 5 8 ]
at 54'6A

where ¥ is gauge invariant and depends on A only through its holonomy on the

V=0, S (C

boundary of the disc and { represents some ‘evolution’ from the centre of the disc.
We want to relate the solutions of (€.1} to the eigenfunctions of the Laplacian on
the group G. These are the characters of G,

Agxilg) = c2{A)xafg), {C.2)

where e; is the quadratic Casimir of the representaion.

By the Peter-Wey! theorem W must have the form

g} =3 axaly), (C.3)
X
where the uy ate functions of ¢ and
9= Pecpfa. (C.4)
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The A represent tangent space variables to the group elements, and, in particular,
for those group elements of the form (C.4}, the Laplacian at g is just the flat

{tangent space) Laplacian so that

5 &
—— = . C.5
§ 535200 = @) (C.5)
This may be obtained explicitly by noting
6 a
mrrpexp(f A)=TrP) exp (){r A), (C.6)
with the notation §, indicating that the path begins at z.
The Schrédinger equation becomes {by arthogonality of the characters)
r a ‘
iz t@al)ay =0, (C.7)
30 that the most general solution is

V(t,9) = Y eaxalg) exp(—tey(A), (C.8)

with the ¢, constants.

D Path integral Representation of Wilson loops

In the text we introduced a path integral representation for the character of the
holonomy of the gauge field in a given representation A of the structure group.
The solution of the following path integral was needed at various points of the
analysis

[#see? = [ DyDjexp ([ atinerite) + eeimaenio)
1 1 )
~g¢ [ dEeno@em) ko

Consider first the trace of this ¥i(p.e) = ¥a(p,€)76,;. We do not need to evaluate
the trace of (D.1). Rather we note that it satisfies the Schradinger equation (C.1)
with the initial condition that it is the character

¥a(p,0) =xx(PeXpr)- (D.2)
The solution, following our previous analysis, is thus
ilpre) = xa(Pexp f p)exp(~SealA)). (D3)

64



To see that ¥s(p,€) satisfies (C.1) (with t = ¢/2) firstly differentiate (D.1)
with respect to €/2 to obtain

a
275 Yalpe)

1
T (f atmrmmen)e)

il

§2
$ 5atie.0), (D4)

where {Z) means the insertion of the field Z in the path integral on the right hand
side of (D.1).

When considering the matrix elements 'y(p, €], we use the same argument
with the initial condition that at ¢ = 0 this is

¥sp.0)7 = [Pesp f ol | (D.5)

to arrive at

Viipe)” = [Pexp § ol exp (~5ea(V)) (D.6)
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Figure Caplions
Fig. 1 A genus g surface with a particular choice of the homology basis.
Fig. 2 The homology basis for the Torus with its associated cut surface.
Fig. 3 Homology basis for a genus 2 surface,
Fig. 4 The cut Riemann surface associated to the genus 2 surface.
Fig. 5a,b Two ways of seeing the identification of edges of a disc to form a cylinder.
Fig. 6 A possible identification of the edges of a disc to obtain the paats.
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