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1. Introduction

There has been much progress in understanding supersymmetric quantum
field theories in the last decade. Supersymmetry turns out to be a strong
symmetry principle which allows one to get a firm grip on certain aspects of
these theories. For example, Witten's index Tr(—1)Fe=PH [1] is an effective
tool in addressing questions of supersymmetry breaking. It is natural to ask if
there are other ‘index-like’ objects which can be computed exactly and provide
further insight into the structure of supersymmetric theories. The aim of this
paper is to show in two-dimensional N=2 supersymmetric theories, there is such
an object: Tr{-1)}F Fe=#H_ We call this an index because it is independent of
almost all deformations of the action. It, however, does depeiid on a finite set of
(relevant or marginal) perturbations in a way which can be computed exactly.

Supersymmetric theories in two dimensions are among the simplest quan-
tum field theories. Two-dimensional conformal theories with N =2 supersymme-
try can be used 1o construct string vacua and have thus been studied extensively
recently. All N=2 theories in two dimensions, whether or not they are confor-
mal, have a set of observables, the (supersymmetric) chiral fields, which form a
ring under operator product. This is ealled the chiral ring [2] (for a review see
[31). This ring can be computed eractly using the techniques of topological field
theoties [4] {see alsa [9,6]) as all the N =2 theories have a topological counterpart
(called the “twisted version’). The study of chiral rings turn out to be a very
powerful tool in unravelling the geometry of the vacua of the supersymmetric
theory. 1n particular by joining the topological and anti-topological versions of
N=2 theories, one can derive (integrable) differential equations ({1* equations)
to compute the Berry's curvature for the vacuum bundle of the supersymmetric
theory as oue perturbs the N=2 theory [3] (see also [7,8]). [t was observed in
[3] that the solutions of these equations resemble a kind of partition function
for kinks of the theory. This, however, remained a somewhat mysterious con-
nection to be explained. In this paper we will see that these computations are
related to the new index Tr( =17 Fe=BH which encodes aspects of the spectrum
and the interactions of the kinks. In particular, the {f” equatious provide an

exact differential equation in 3 for the new index for any N=2 theory.

These somewhat formal derivations can be checked very explicitly in many
special cases. In patticular when the N=2 theory is integrable, the existence of
infinitely-many conserved charges allows one to construct the S-matrix (more
or less uniquely)[9]. In such cases, one can use the exact S-matrix to find
integral equations for the non-perturbative partition function Tr e 7Y This
powerful method is known as the thermodynamic Bethe ansatz (TBA)[10]. In
particular, the TBA analysis for a large class of N=2 integrable theories n two
dimensions was carried out in {11,12], confirming the conjectured S-mat-ices as
in particular reproducing the correct central charges in the UV limit. One can
extend the usual TBA analysis by allowing arbitrary chemical potentials, and
in particular one can compute objects such as Tre!®Fe= I This allows us, as
a special case, to compute Tr(—1)F Fe=PH in these theories in terms of integral
equations.

Thus for integrable theories we seem to have two inequivalent methods to
compute the new index: one in terms of differential equations characterizing
the geometry of the vacuum bundle, and the other in terins of coupled mtegral
equations coming from TBA. It is a highly non-trivial check on all these ideas
that the solutions to these equations are the same. We have checked this using
numerical solutions to both systems of equations. Due Lo the non-linearity of
our differential equation and complexity of the coupled integral equations, we
have not been able to show directly (i.e., analytically) that these are the same.
In fact, turning things around, physics has predicted a surprisimg equivalence
between coupled integral equations and certain differential equations (such as
radial affine toda equations), a result which is yet to be proven mathematically!

The organization of this paper is as follows:

In section 2 we introduce the new index, and discuss in what sense it is
ar index {i.e., we see that it is independent of D—term perturbations). The
derivation of this result in this section is very simple but unfortunately requires
a certain formal manipulation which is not always easy to rigorously justify. In
section 3 we discuss the geometry of vacua and review the resnlts of [3]. He e
we show how to rephrase our new index as a computation in the geometry of

vacua. In particular we show why our index depends only on F-terms, thus



giving a more rigorous derivation of the results of section 2. Moreover, this
allows us to effectively compute the new index in terms of solutions of certain
non-linear differential equations.

In section 4 we discuss the infra-red expansion of the index. We show in
particular that at least the leading term (the one-particle contribution) and the
next leading term (the two-particle contribution) are universal. This means
that they just depend on the mass and the central term of the supersymmetry
algebra and the allowed soliton configurations. In section 5 we review briefly
the results of [11] and discuss how the new index can be computed for integrable
theories using the TBA . In section 6 we consider a number of examples including
N=2 sine-Gordon and minimal N=2 theories perturbed by least and most
relevant perturbations. We write down the differential equations and the
integral equations which are presumably equivalent. We explicitly check this
for some of the examples numerically. Moreover in this section we use the TBA
to compute the more general object Tr(—I)FF’e_ﬁH and show that, for { > 1
it is nof an index and it does depend on the choice of D-terms, as expected.

In section 7 we present our conclusions. Finally in appendix A the it*
equations are red.rived, in a quick but somewhat non-rigorous way in the same

spirit as the arguments in section 2.

2. Tr(-1)F F e

In this section we discuss the existence of a new supersymmetric ‘index’ for
N=2 supersymmetric quantum field theories in two dimensions. Qur emphasis
in this section is just on formulating what this index is; in the following sections
we show how it may be computed.

Let us start with Witten’s index Tr(—1)Fe=PH [1]. This index is defined for
N 2 1 supersymmetric theories in any dimension. It is an index because it is
independent of finite perturbations of the theory, provided the space is compact
and does not break supersymmetry (e.g., a d-dimensional torus). The idea is
simply that there are two types of states in the Hilbert space: states which

corue in pairs |s), (J|s) where @ is the supersymmetry charge with Q% = H,
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and states which come isolated, i.e., the ones which are annilulated by ¢} and
are ground states of the theory with H = §. The pairs, which necessarily have
H # 0, do not contribute to the Witten index as they have opposite (—1)F.
This follows from the fact that {(- I)F,Q} = 0. Therefore this index simply
counts the ground states of the theory weighted with £1, depending on the
parity of (~1)F. Any finite perturbation of the theory does not change this
index: if massive states become ground states they must do so in pairs, so one
adds a +1 and a —1 to the index. Similarly, the only way a ground state can
become massive is for ground states with opposite (—1)¥ to pair up, so again
the net contrit:ution to the index is zero. This index has been a powerful object
in probing questions of supersymmetry breaking in supersynunctric tl-cories.
It is well known that the above argument does not apply for non-compact
spaces. Consider a Hilbert space based on R?. The above arguiment breaks
down in this case because the eigenvalues of H are typically continnous. In

particular it may not be true that the density of states for s} and Q|s) are

equal. The contribution to the index may be written as

(-1)/ / dE(g4(E) — g (E))e-PE, (2.1)

where g1 (E) are the density of states distributions for |s) and Q|s) and these
states contribute £(-1)f to the index. If 94 — g- is nonzero for £ # 0, the
contribution of massive states to the index does not vanish and thus as we
change the parameters in the theory the index changes. In particular it does
depend on 3. Examples of this phenomena have been found in soine simple
quantum-mechanical systems with N=1 supersymmetry [13] where it can be
computed exactly using the Callias-Bott-Seeley index theorem [14]).

Let us consider this situation for the N=2 supersymumnetric theories in o = 2
where we take space to be the real line. The N=2 supersymmetry algebra on

the real line can be written as
QP =Q2 =" =0 ={Q" 0 }={Q".G} =0
[F.Q*=+Q* (FT]=5Q"
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(Q* Hig) =@, Hypl = [F, Hi )l =0
{Q-"aa_} = HR
{Q-.Q }=A (2.2)

{t.Q"Y=H,
{Q+3Q+} =A

where iy g = Il £ P, and A is a e—number which is the central term of the
supersynunetry algebra. The fermion number F'is the charge corresponding

to the global ((2) symmetry of ¥=2 supersymmelric theories. We also have

(@)= Q and (@) =T . Defining Qs = (1/V/2)(Q* + Q") we have

{Q-.Q)=H [QuH=0. (23)

It is well known that on a non-compact space in general the central
term A can be non-zero [15]. A depends on the boundary conditions at
spatial infinity: with multiple vacua, we have the freedom of having different
boundary conditions at left-right spatial infinity and thus different central
terms. Let ns denote the vacuum at left spatial infinity by @ and the one
on the right by b, so that the central term in the above algebra may be
labeled by Ay, Having multiple vacua allows kinks which interpolate from
oune vacuum at lelt spatial infinity to another one at right spaital infinity. The
kinks we will denote by k.. In general, such kinks (even the lowest-energy
configuration in each sector) may be stable or unstable. We can, however,
derive a lower hound on the mass of any kink. In the ab sector the positivity
of {A A where A = (Hp&)V2Qt — (HpA)'V*() ™ implies the Bogomolnyi
bound 1% — 1" > |Au|®. A kink kqgp or, more generally, any state in the ab
sector st therefore have mass m > |A ).

We now ask whether Witten's index is a good index for the N=2 case on
open space. Consider varying the Hamiltonian of the theory, respecting N=2

supersymmetry. We wish to compute

d0r( -1 e M = _gre(—1)F éHe-PH

Using (2.3) we can write this as!
—BTH(-1)F8(Q4,Q_ Je M
= —AT(~1)F({6Q4,Q-} + {Q+,8Q-De

Each of the above terms vanishes. To see this note that whenever we are

computing

Te(-1)"{A,B} O

where A and B are fermionic and where at least one of them commutes with
O, we formally get zero. Suppose A commutes with 0. Then for the AB
term contributing to the above trace, we can tak» A around the trace, because
the trace is cyclic. The term picks up a minus sign because A anticommutes
with (=1)F. This leaves —BA, which cancels + BA from the other term in the
anti-commutator. The same argument works if A and B are bosonic operators,
and we replace anti-commutators with commutators. We shall refer to this as
the AB argument. For this formal argument to be actually valid one needs
to put restrictions on the nature of the operators A and H, which we assume
to be satisfied in our case® [16). That the AB argument is valid in our case is
confirrned in the next section where we derive the results of this section without
making use of this assumption.

Applying these general statements to the above variation of the index,
where in one terrm Q_ and in the other term Q4 plays the role of A in the Al
argument, we find that the variation of Witten’s index is zero for N=2 theories,
and it is thus a good index even for non-compact space. This in particular means
that in sectors where the left and right vacua are not the same Tr(—~1)Fe 2

vanishes: we are free to take J large because it is an index, and since the ground

1 We have been somewhat cavalier with regard to boundary condilions at spatial
inf 1ity in taking the variations. This point is elaborated upon in the appendix.

% In the supersymmetric quantum-mechanical version of this statement, this can
be explicitly checked to be true, where A (after being dressed by O) is a trace-class
operator and B {after being dressed by O} is bounded.



state in this sector has non-zero cvergy (because it interpolates between two
distinet vacua) we get zero.

For an N=1 supersymmetric theory in two dimensions the fermion number
F is only defired mod 2. However, in a two-dimensional N=2 theory there
is a T7(1) fermion-number charge, because the fermions are complex. Given
the power of Witten’s index in understanding the structure of supersyminetric
quantun ficld theories, it 15 thus natural to ask what kinds of objects may be
of interest when we have this additional charge. The most natural thing to

consider would be

Z(a,B) = Tr et ¥e#H, (2.4)

At o =7 this is just Witten’s index. For o = 0 it is just the standard partition
function of the theory, so we expect Z(0,4) to be the extreme opposite to an
‘index’, as it should depend on every little detail of the theory. So let us ; o
b ¢k to the point o = 7 and just move slightly eway. In other words, consider

_9'2(a,)

L(3) = Sia)! |._, = Tr(—1)F Fle=ot

Needless to say, we should not expect all I; to be indices as that would enable
us to reconstruct Z itself. But maybe some of them are! In particular, consider
I} = Tr{-1)f Fe—2H, Amoung all I; with { > 1, we will show that this and only
this is a new ‘index’,

To define what we mean by ‘index’, we must recall that there are two
distinct ways to perturh an N=2 supersymmetric theory in two dimensions
(17: D-terms and F—terms. In general, the D—terms can be written as
integrations of superfields ove * the full superspace d*8 and the F—terms which
are integration of chiral and anti-chiral fields over half the superspace d?8% and
d?6~ respectively. Chiral fields commute with Q@+ and -Q+ and anti-chiral fields
commute with @~ and @ . The Tr (=1)F F e=#H is independent of the D-
terms and in this sense it is an index. It however, does depend on the F—terms.
In order to explain why we use the word ‘index’ when it dees depend on F-
terms it is convenient to consider the following interesting class of examples of

N=2 supersymmetric QFT’s. Consider 2d supersymmetric sigma models with
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target space being a Kahler manifold M. This gives an N=2 supersywnmetric
theory [18]. Any variation of the metric of Af respecting the compiex structure
of M and the Kahler class of the metric (i.e., leaving the integral of the Kahler
forin on the two-cycles unchanged) can be written as a D —term and so does not
affect our index. In fact this includes essentially all possible perturbations of the
manifold, modulo variations of complex structure and Kahler structure which
usually form a finite dimensional space of perturbations. So it is with this kind
of example in mind that we call the above object an ‘index’. Another interesting
class of N=2 supersymmetric theories is provided by Landau-Ginzburg theories.
In these cases the superpotential W is the F-term and it has only a finite unmber
of perturbations which do not change the behavior of potential at infinity in
field space. These turn out to be the relevant {(and marginal) perturbations.
The index depends only on W.

Here we show that TrF(—1)Fe ="M does not depend on the D—terms. The
variation of the D—term can be written as inserting {Q*,[Q . A(e)} in the
path integral where A itself can be written as {Q“,[@+,I\']}. This follows
from the fact that the D—term comes fromn integration over all four Grassman
coordinates. The path-integral is over an infinite cylinder of perimeter [ with
the above term inserted at all points x and integrated over the cylinder, Let
us denote by A the integral of A(x) over space. Since F commutes with both
A and the Hamiltonian we find that the integration of A over the perimeter
simply introduces an irrelevant factor of 8 which can be tgnored. So we can

write the variation of our index as (proportional to)
b= Te(-1)" F{Q*,[@", Al}e~"

We are almost ready to apply the AB argument, using @+ as our A. This
works fine, except for the fact that as we try to take Q™ around the trace, since

it does not commute with the F, we pick up a commutator term
§=Tr(-1)F[F, QY@ 7, Ale™" = Te(-1)TQ*{Q@ ", Ale™#H

Now we can apply an argument similar to the AB argument, by taking Q@ in

the term A around the trace. Here we pick up two minus signs, and so we
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get back AQ~ which thus cancels the second term in the commutator and we
gt zero, as was to be shown.

The AB argument does not allow us to show that any of the other I; are
independent of D-term perturbations®. In fact, in a free massive N = 2 theory,
it is easy to compute Ij; the Jp; are non-vanishing and for [ # 0 they do depend
on the mass of the particle, which in turn depends on the D-term. In section 6
we consider other examples for which all ; are non-vanishing and all of them
for { > 1 depend on the D-term. Therefore 1) is the only additional index that
cxists other than Witten's index. From now on we will refer to the new index
simply as I, dropping the subscript 1.

Onr index is actually a matrix, because we have to fix the boundary
condition at spatial infinities to be vacua of the theory, If we choose the left

vacuum to be o and the right one to be b, we have the index I as a matrix
I, = Trab(-—l)FF e PH

One Las to be careful about what we mean by (—1)¥. In general all that is
reqquired from this operator is that it anti-commute with fermionic fields. In
our case, as we have mentioned before, since F is in fact well defined as an
operator, one can just define (=1)F = ¢"F_ Note, however this operator no
longer synares to one. The reason for this is that in the (ab) sector the vacuum
will 1 general have a non-integral fermion number fy,. This plenomenon is
well known [19.20.21]. Only the fermion number relative to that of the vacuum

is integral. Using this fact and the henmiticity of H and F we can write
Tap = o' ™ oo | T (2.5)

CI'T invariance puts coustraints on our index. € PT takes a state in the
{ab} sector to one in (ba) sector, and it takes fermion number F to —F. In

particular, C'PT invariance requires fazp = — foq, and therefore

Iy = —17, (2.6)

3 One can show using the AB argument that the D-terms will not affect the one-
particle contribution of Bogomolnyi-saturated states to 7, in accordance with the fact

.y

that the mass and ferinion number of these states are independent of D-terms.

Q

There is no fractional fermion number in (aa) sector: the fermion number is
additive, i.e., foc = fab + foc, implying that foa = fap + fra = 0. We sece from
(2.5) that I,, is real, and from (2.6} it follows that

L. =0. (2.7)

Note that if we had defined (-1} = e{2"*1%7F then the index would have
changed by a phase Iz — gtinmfas [ However, under this ambiguity, the
eigenvalues of I are unambiguous. Because of the additivity of the fractional
part of the fermion number, and since fu; = — fta, We can write fop = fo = fo;
a change of basis b — e*"™/sp gets rid of the phase without changing the
eigenvalues.

In fact, we can do better; we can get rid of all the plases (modnlo £ ) of
our matrix by changing the basis b — e foh. In this way we find that I is a
purely real matrix, and the condition (2.6) implies that it is anti-symmetric.
Thus its eigenvalues are either zero, or (purely imaginary) complex-conjugate

pairs. To make the eigenvalues real, we define the @-index to he
i3 Fpo-dn
Qab = _L_Trﬂb{_l) Fe , (28)

where L is the volume of the space. With this definition, € is a hermitian
matrix with real eigenvalues, such that non-zero eigenvalues come in pairs of
opposite sign. To see the reason we divided by L in the definition of (7. consider
Z(w, ) (from (2.4)) with boundary conditions at infinity corresponding to
a normalized eigenstate of Qu. Because it is an extensive therniodynamic
quantity, InZ(a,3) = InTr(e’*Fe~%") is proportional to L as L - 0.

Therefore

_LTeR(-1)Fe i

B iaF -
=34 log Tr(e aFe Jrm)lc,:,, T Tr(=1)Fe- M

L

= (). (2.9)

where the denominator is not proportional to L, because it is Witten's index,
and can be chosen to be 1 in an orthonormal basis of eigenstates of Q. Thus

we see that (@ as defined above is well-defined as L — nc.

T



Usnally the contribution of n kinks (particles) to a partition function is
proportional to L". Oue may incorrectly conclude from this that only the
one-kink states contribute to Q. In fact we will see in later sectiuns that the
n-kink contributions to I do not generally vanish and are proportional to L.
The contribution comes from regions where all the kinks are near each other
and the factor of L is associated with the center of mass. It can be seen tlh: t
any configuration where one of the kinks is very far from the rest does not
contribute to Q: the contribution factorizes and at least one piece will simply
be the contribution to Witten’s index from massive kinks, which vanishes. One
can also see this from the path-integral computation where the exact fermion
zero modes associated to cach kink when they are far away cannot he absorbed
by one F.

In the next section we will see that Q is the same as the matrix element of

the ehiral fermion number:

Qae = (]Q°[6).

Using this expression along with the hermiticity of @, and noting that CPT
changes the sign of Q°, we again see that the eigenvalues of Q are real and
symmetrically located relative to zero.

For the remainder of this section, we will .}i..-uss the kind of states in the
Hilbert space which contribute to our index. In general, there are three types
of irreducible representations of the supersymmetry algebra (2.2). The generic
irre<lucible representation of (2.2) is four-dimensional, with a definite eigenvalue
for £ and P (as Hy g commute with everything). This follows from the fact
that the four supersymmetry charges which generate the algebra are pairwise
adjoint of one another and have c-number anti-commutators. We can generate
the representation by taking Q1 and @ as ‘creation’ operators acting on a

. _ =+
state which is aunihilated by the ‘annihilation’ operators @~ and Q " :
Isy QFls) Q@ |s) Q*Q |s) {(2.10)

When E? — P? = AQA, ie, if the state saturates the Bogomolnyi bound, then

it is well known {15] that this representation is reducible: 4 = (HgpA)'/2Q* —
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(H e AYHQ7 and its adjoint anticommute, and so both must annihilate |5}

This leaves us with the reduced supersymmetry muktiplet

Isy  QF|s) (2.11)

Finally, for F = P = A =0 this representation is further reduced to the trivial
representation. This representation unly appears for the {na) sectors, and are
the only states which contribute to Witten's index in this sector. However,
because [, = 0 these states are not relevant for the new index [,

At first glance, one might think that only the reduced multiplets contribute
to our index. If [s) has fermion number f, a non-reduced mnltiplet (2.10)
naively contributes (up to an overall phase) (f — 2(f + 1) + (f + 2))e 7t =
0, whereas a reduced multiplet (2.11) contributes (up to an overall phase)
(f=(f+1))e PF = —¢=BE Thusit appears that I receives contributioas only
from Bogomolnyi-saturated states, which are sinply the one-soliton subsectors.
This argrment is incorrect, for the same reason that the najve argument which
states that Tr(—1)Fe=?" is independent of 8 is not in general valid when H
has a continuous spectrum, as is the case in non-compact spaces. Formally, we
have deduced the vanishing of the contribution of the non-reduced multiplets
only when the spectrum of the Hamiltonian is discrete. Wlen it is continuous,
as with a model on a real line, we have to deal with the density of states of the
noun-reduced multiplets; they are not necessarily equal and do not necessarily
cancel in computing I. We may wish to regularize the theory by putting it in
a box of size L and then take L — oo. In order to recover the soliton sector ab,
the field configurations on the left and the right of the box (in this case just a
line interval) cannot be the same. Thus we cannot impose periodic boundary
conditions, We must compute the object in finite but not periodic box, and this
breaks the supersymmetry. The spectrum is discrete in this case, but without
supersymmetry the naive argument no longer holds. Thus for a finite hox we
may get contribution from non-reduced supersymmetry multiplets to the index

@ in the sector eb with a # b. This may persist even when the size £ — oo 4.

4 This is indced one way that the B-dependence of Tr(—1)fe=?¥ has been
computed in the supersymmetric quantum mechanics examples [22], whick is related
to the Caliias-Bott-Seeley index,

12
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Thus we are computing a kind of ‘anomaly’, which remains after the regulator
i1s removed.

Let g(F) be the density of states for |s), 2g7+1(E) be the density of states
for states spanned by Q*|s) and Q |s), and gg42(F) be the density of states
for states Q1 (@ |s). We should thus not expect the continuum densities g7 (E),
gr+1(E), and gre2(E) to be equal in the {a,b) sector of the theory with a # b,
Recall, though, that we proved using N=2 supersymimetry that the contribution

to Witten's index from these states must cancel. This means that we must have

gr(E) 4 gre2(E) = 29741 (E). (2.12)

since the states on the two sides take opposite contributions to Witten's index.
Using (2.12) we see that the contribution of the four dimensional representation

to the index I in the {a,b) sector is of the form
ot [ 4B (B - g (D" (2.13)

We will see explicitly how this is generically nonzero in the following sections.

3. Geometry of Ground States and the New Supersymmetric Index

In this section we review some aspects of the work done in [3] which are
nseful for the considerations of this paper. In particular, we show why the
*Q-matrix discussed there is i fact the new supersymmetric index given by
Tr{-1)" Fr™ " discussed in the previous section. It is convenient to exchange
the role of space and time (ie., do a ‘modular transformation’) and take the
space 1o be a cirele (with perimeter 3 to correspond to the index computation},
with periodic bonndary conditions. Thme s now a line of length L.

Consider an arbitrary N=2 supersymmetric quar tum field theory in two
dimensions, From (2.3) and the positivity of the inner product together with
the fact that @G- = QL. it is easy to show that the ground states of the theory
are characterized by

Hln) =0 — Q4la) = 0.
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There is thus a one-to-one correspondence between the ground states of the
theory and the Q4 or Q@_ cohomology. This cohomology is definable because
each of these operators squares to zero {note that on a compact space (circle)
the supersymmetry algebra has no central term and we get i = @* =0). The
analogy to keep in mind is that @ is like a d operator acting on the differential
forms on a manifold, Q_ is like the adjoint operator d' and the ground states
|a} are like the harmonic representative of d or d! cohomology.

In correspondence with the ground states in the Hilbert space, there are

chiral operators ¢; in the theory defined by the condition that
[Qs.0i] =0

and similarly there are anti-chiral operators ¢; which commute with Q. Acting
on a vacuum by a chiral operator, we get another state which is Q4 closed,
another Q4 cohomology element. In this way the chiral fields, modulo the
fields that are trivially chiral, ie. modulo fields which are themselves (04
(anti-}commutator, are in one-to-one correspondence with the (74 cohomology
elements and thus the ground states. If we pick a canonical ground state (to

be defined below) denoted by |0}, this can be stated as
#il0) = i) + Q+[A)

where i} denotes another ground state. Similarly we can label the gronnd states

using the anti-chiral fields ¢; which leads to the states |¢}. The chiral ficlds form

a ring among themselves, called the chiral ring, which is defined by
$id; = Cloe + Q7. A)

$ili) = CIk).

The matrix (C,');r = C,-kj denotes the action of the chiral field &; on the
ground states (once we ignore the components orthogonal to ground states),
Similar statements apply to anti-chiral fields with ij replaced by the complex

conjugate quantity (Cf‘J)"



We can define a symmetric metric 5 and a hermitian wetric ¢ among the
ground states by
wi =) g5 = ()
Note that the metric g is the usual metric in the Hilbert space of the N=2
theory and #, which is not hermitian, is a kind of ‘topological’ metric. As
discussed in the previous section there are two ways to perturb the action: the
‘D-terms’ {denoted by K(X,X) below} and the ‘F-terins’ which are the cliral

fields (now viewed as superfields) and integrated over half of the superspace:
S s 5+/d’.~d481{(x, X) +[422d29+ tid; +fd2zd29“ £3..

Then it is possible to show (see [3]) that the chiral ring and the metrics y and ¢
depend only on the F-terms, i.e. they depend only on ¢;,7; and are independent
of &', The flavor of the argument is very similar to the argument in the previous
section in showing that our index is independent of D—~terms, but it has the
advantage of being rigorous.

The ring matrices C; and the metric  can also be related to computations
of correlation functions in a topalogical theory [4] corresponding to ‘twisting’ the
N=2 quantum field theory and can thus be easily computed exactly [4,5,23,6].
Basically the topological theory is the same as the ordinary N=2 theory on flat
manifolds Lut differs from it when the two-dimensional manifold is not flat, in
such a way that the charge (J, transforms as a scalar, and is thus a symmetry
even if the space is not flat. The way this is accomplished is by introducing a
background gauge field set ecual to half the spin connection of the manifold,
and coupling it to the fermion number current. Thus a field which previously
had spin s and fermion charge ¢ will now have spin s — %q. This in particular
wakes ¢4 which had spin 1/2 and fermion number +1, a scalar. If § denotes
the action of ordinary N=2 theory, S; denotes the action for the topological
theory, j denotes the fermion number current, and wy, denotes the U(1) spin

connection we have

S, =S5+ %[ij”. (3.1)
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An important property of the topological action is that the cuergy-

momentum of the topological theory is itself @+ trivial:
¢ 1 ‘Cr
T;w = Tyu + 560(,“8;,)] = {Q+,A} (3.2)

implying that the correlation functions for chiral fields are independent of the
metric. By translating the computation of the N=2 topological theory into the
language of the ordinary N=2 theory, this provides exactly the quantitios i and
the ring matrices C. The basic observation is that if we consider a Lhemisphere
and do the path-integral in the topological theory we get i state (on the
boundary circle) which is annihilated by the symmetry charge (. Moreover
because the energy momentum tensor is Q+-trivial, any local variation of the
data {such as the variation of the metric on the hemispliere) does not change
the Q4 cohomology class of the state, and so the patl integral of the topological
theory leads to a well-defined state in the @ +-cohomology, and thus to a ground
state of the ordinary N=2 theory. In particular the state that we called the
vacuum [0} corresponds to the state we get when we do the path-integral with
no insertion of any fields on the hemisphere. Simple argumoents show that
and 5 depend only on ¢, and not on t.. In other words, they arc holomorphic.

Similarly, we can consider the anli-topological theory, which is obtained
when we make Q_ a scalar. This is done stmply by changing the sign of the

background field, which shifts the spins by s — s + %q. So the action for the

Sta= 85~ -;-/jﬁ,w“

From the anti-topological theory we can easily compute i and C which are

anti-topological theory S, is

simply the complex conjugate of the corresponding topological quantities 7 and
C.

The computation oi the hermitian ground-state metric g as a function of
perturbation parameters (t;,#;) is more difficult. It turns out that by fusing the
topological theory on one hemisphere with the anti-topological theory on the

other hemisphere, we can find equations which characterize it [3]. This we shall
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call topological-anti-topological fusion, or ¢t* for brevity. One simply introduces
» gauge connection such that the variation of ground states are orthogonal to

the ground states themselves:

D,-}a) = B,‘ - A,‘l&) 5,’](1) = 5,’ - Z,-la).

This in particular means that the metric g is covariantly constant

and one finds the equations
[Di,D;] = [D:.D;] =0
[D:.Dj] = -3*1Ci.C)) (3.3)

(and some other equations which we will not need here). The perimeter of the
space (cirele) is . We will give a quick (but not rigorous) derivation of the
above equations in the spirit of the AB argunment of previous section in the
appendix.

Uhe first equation {3.3) shows that we cau choose a holomorphic gauge with
A = 0. This tarns ont to be the natural gauge in the topelogical theory. In
iwore wathematical terminology we can say that the topological path-integral
antomatically gives holomorphic sections of the vacnum bundle. Using the

covariant constancy of tlhe metric we can write the metric g as
Ai=—glig™!
and so the second equation in (3.3) becomes
3i(90ig~") = B*CigClo™")

In many examples these equations turn out tu be among the celebrated
equations of mathematical physics. For the N=2 sine-Gordon theory the
above equation as a function of the scale turns ont to correspond to radial

selutions of the sinh-Gordon differential equation, which is a special case of

Painleve II1. These differential equations are always integrable, heing related
to a tau function. The integrability of these equations has been recently
elaborated upon in [24]. Explicit numerical computations have been done for
flows among conformal theories and also flows under generic perturbations away
from conformal theories [25).

Among the perturbations of the N=2 theory, there is a special one
corresponding to renormalization group flow. In particular if we denote the
perimeter of the circle on which we base our Hilbert space as e", then changing
7 should be equivalent to changing the coupling in the theorv in some particular
way. In the case of Landau-Ginzburg theories, this has the same effect on the
F-terms as multiplying it by e”. From the definition of connection it follows
that

Brla) = A,|a)

On the other hand it was shown in [3] that the variation of the ground states
with respect to the perimeter is related to the action of the chiral fermion

number charge (J* on the ground states by
1
Brla} = 5(Q° + n)la) (3.4)

where the above equality holds as long as we project both sides back to the
ground states. Here n is a number which measures the chiral anomaly of the
theory (equal to the number of chiral fields in the LG theory). So we see that
as far as the ground state action is concerned, in a holomorphic (topological)
basis®

(Q° + )iy = A71i) = (-g8-97 ") 1i) (3.5)

(=R

The equation (3.4) was derived in {3] in the context of Landan-Ginzburg
theories. Since this is an important equation for us in this paper, we will

now present a more general derivation of it.

5 More precisely, in a topological basis |i} obtained by inserting in the topological
integral chiral operators ¢; with 8,¢, = 0. Two such bases are related by a 7
independent ‘gauge transformation’. Under such changes of bases gd-q ' transforms

as a tensor.



It is convenient to work in the topological basis. Then a state {i} can be
obtained as a result of topological path-integral on hemisphere, with insertion
of the chiral field ¢;. In view of the fact that the energy moinentum tensor of
the topological theory is Q4 trivial, it sounds contradictory to expect d,[i) not
to be zero (i.e., Q4 trivial). The way this comes about is by a subtle boundary
term, as we will now see.

Let us denate the metric on the hemisphere by h = ¢?®d:d%. In terms of

¢ the spin connection is w = #d¢ and so the topological action (3.1) s
54 :S+«;--/j/\d¢a.

Now we are interested in the variation of this action on the right hemisphere as
we change ¢ by a constant. Varying the metric by an overall scale ¢ — ¢ + ¢
has the effect of changing the perimeter by shifting 7 — 7 + ¢. It is convenient

to first do a partial integration on the second term above and write it ass

/ jmz¢=f j¢~/ bdj
S st Sk

where Sy denotes the right hemisphere and $7, the boundary circle of Sg, is
where we base our Hilbert space. Shifting ¢ brings down from S the trace of
the energy momentum tensor, and from the topological addition the divergence

of the axial current plus the variation of the boundary term, i.e.,
) i )
65:[ (T¢ + 5D, #)Jréf"J
Sa s
where we have used that in two-dimensional Euclidean field theory fo =t 7Y,
The term integrated over the right hemisphere appears to be (O, trivial because
it is the trace of the energy momentum tensor of the topological theory. This
statement is almost true, except for the fact that there is a well-known anomaly
in the divergence of axial current which contributes n/2 (in the LG theory
n is the number of fields). But now we see that the boundary term is also
present, and is equivalent to the action of Q*/2 at the boundary (as follows

from j° = i(*j}). So the net effect on a state of the change of 7 is given by
1 s
8rla) = 5(Q° +m)la)

19

(as long as we compute the matrix element of both sides of the above cquation
among ground states). This is the equation (3.4) we wished to derive.

We have seen that the matrix elements of Q® among ground states of the
supersyminetric theory are possible to compute, if we know g (from (3.5)). Note
that even though the fermion number is always conserved the chiral fermion
number is conserved only at conformal points.

Since we are considering both massive and massless theories it may seem
strange to see that the matrix elements of a non-conserved charge are somelow
‘interesting’ and related to RG-variations of ground states. Let us rephrase
this by using a modular transformation. Consider the theory on a very long
cylinder of length L and circumference 3. Let us put a ground state [b} at one
end of the cylinder and another ground state (a] at the other end. We denote
the coordinates along the cylinder by r and that along the circumference by t.

The matrix elements of Q° can then be written as
{a|Q%|b) = (a|ij{ Je{0, t)dt|b)
bl

where 8! is a circle wrapped around the middle of the long cylinder. We Lave
ta take the limit L — oo at the end in order to project onto the ground states
in a natural way. It clearly does not matter where we insert the circle. So let

us put the circle at any z, integrate over all & and divide by L, ie.,

(a[Q°]b} = %(a][jt(x,t)drdt]b) {3.6)

Now viewing r as space, and ¢ as tine, we see that fjt(.c, t)er is the definition
of the fermion number F on the Hilbert space which is along the cylinder.
Since fermion number is conserved, integrating along ¢ will just introduce an

additional factor of the circumference of the cylinder 3. In other words we have

/j,(z,t)dardt: 8F
So we have finally
Qab = {a|Q°|b) = %B—Traa(—l)FF e PH (3.7)
20
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where the Tr,; means that we are taking the boundary conditions on the left
and right to correspond to {a| anu |b) vacua. This is the new index discussed
in the previous section! What is surprising is that the index can be computed
exactly in terms of ¢, and g is determined exactly by the differential equations

(3.3). In particular we see from (3.5) that the index is given by
Qup = %’ Trap(—=1)FF e~ = —(3939™" + n)as. (3.8)

where we have used 2gd,¢~1 = 8g859 ! which follows because, by scaling, we
can set i = ¢7/247 /2 Often it is difficult to compare the topological basis for
grownd states with the path-integral choice emphasized in the previous section
and more natural from the viewpoint of kinks, In such cases it is convenient to
compare the eegenvalues of the ¢ matrix on both sides of the above equation.

Note that the matrix @, since it can be written solely in terms of g, depends
ouly on the knowledge of the F—term and is independent of the D-terms in
accord with onr proof in the previous section. Qur final formula. (3.8}, expresses
the new supersymmetric index in terms of the geometry of supersynunetric
grouwd states. Becanse the curvature of this space is determined simply from
the cliiral ring struetnre constants using (3.3}, the index will be an exact solution
of a differential equation whose form is determined simply by the chiral ring.
In other words, though our index is not purely topological, its flow in 3 is
determined using only topological data, namely the chiral ring.

At the conformal point, where chiral fermion number is conserved, @
weasures the chiral charge of Ramond vacua, ie.. the left-mmoving fermion
number plus the right moving fermion number.  In this case the state
with highest clhiarge has (7 = ¢ where ¢ is the central charge of the N=2
supereonforiual theory [2,26]. So off eriticality each eigenvalue of the () matrix,
and i particular the highest one, is a kind of a generalization of a c-function
[7){which has no direct relationship with Zamolodchikov's definition [27], as

discussed in [3]).

4. The infra-red expansion of TrF(~1)Te ?¥

In section 2 we discussed which states in the Hilbert space contribute to
TrF(—1)Fe~#H. In this section we show how to calculate the one- and two-
particle contributions. These are the leading terms in infra-red limit where
8 >> 1. We will see the simple but non-trivial nature of our index. These
results must be the leading infra red behavior of the tt* differential equations
of the previous section.

Let us start with the contribution of one-particle (kink) states to the
index. In order to calculate the density of states, we put the system in a
box of length L with the ¢ and b boundary conditions ai the end of the box
To obtain a non-vanishing contribution to the index. recalling (2.7), we take
a # b; in particular, we do not want periodic boundary conditions. The
allowed mec .nenta of a particle in a box are quantized as p = nw /L, where
n is a positive integer. Thus the density of states for each component of a
supersymmetry multiplet is the same and given by g(E)E = Ldp/=. From
relation (2.13), we see that one-particle states in four-dimensional multiplets
do not contribute to the index; a single particle contributes if and only if it is
part of a reduced supersymmetry multiplet. This in particular means that its
mass should saturate the Bogomolnyi bound mgp = {Aasl. Su the one-particle
contribution to Qqp = i.E’I‘rﬂg,(—l)FF'e"f’”l’r from a kink multiplet with fermion

number { fog, fap + 1) is given by

V . d i > Hi
i'ﬂ(f“b - (fnb + 1)}("”1"”[ ‘-BPV »im

o 7 (1.1)
. 1
= — ilAqp}Be’ fﬂb;‘l‘l(lﬁablﬂ)'

where R is a Bessel function. This simple statement explains and makes
precise the observation made in [3] that in the infra-red the Q-matrix is a kind
o" partition function of the solitons of the theory. The fact that the leading term
in the infra-red limit is proportional to K follows easily from the #t* equations

(see appendix B of [3]).



The next-leading contribution in the infrared to the index comes from the
two-particle states. A two-particle state generally forms one or more four-
dimensional non-reduced supersymmetry multiplets. This is true even if both
particles are individually reduced-multiplet, unless m, + m, = |Ay + Ay Thus
the two-particle state generallydoes not saturate the Bogomolnyi bound. This
is the first case where we can check whether we get contributions of the form
(2.13) from four-dimensional representations. We will see that the two-particle
contribution is very simple and general, and often not zero, for the case where
both particles are part of reduced multiplets.

Computing the two-particle contribution is easy if one knows the two-
particle S-matrix; the S-matrix encodes the density of states [28]. In a large
box, the particles spend a negligible amount of phase space near each cther, so
the exact details of the interaction are unnecessary. The S-matrix allows onn
to match the free-particle solution of the equation with £, >> z, with the one
for oy << ry.

Consider a two-particle state [i{p, p2)) which scatters entirely into another
state |j(p),py)) with S-matrix element S;;(pi,ps). ® Relativistic invariance
ensures that §;; actually depends only on s = (E, + E;)? - (pr +p2)? =
mi 4 mi + 2mymgycosh(8; — 6,), where we define rapidities via p = msinh#§.
Generically, i} # |j) for solitons even in elastic forward scattering, where the
individual A change. Consider a two-particle wavefunction connecting vacua a

and b at the box ends. Properly-matched plane-wave states satisfy

piPLZ) Hipazy ) < Ig,

'10(-1':1.1'2) = {e,‘p‘l:1+:p',nsﬁ(92 _ 91) zy > Is. (42)

The momenta can change in the collision; the relations p) + py = P+ p, and
Ey + E, = E{ + Ej give us the final momenta in terms of the initial. Thus we
can write p = p}(p1,p2)-

Since our system is in a box of length L, an allowed wavefunction must

vanish at the walls. This quantizes the momenta just as in the free cuse, but

8 We neglect processes which take two particles to more than two (which should

be a good assumption in the infrared limit).
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here the two quantization relations are coupled. Requiring the vavefunction
vanish at r; = 0 means making a standing wave by subtracting the solution
with opposite p,. When making it varish at £, = L, we use the second relation
i (4.2), and it follows that?

t,'P;(Pl..U:)Lb".j(gz -8} = eiJ1;(—V|'P21LS’_J.(32 +6,), (43)

where we note that p{(—p,, p2) is not necessarily equal to —p) (p). pa ). Reqguiring

the vanishing at ry =0 and 2z, = L gives another equation:
e " tPalm ‘P“LSU(QQ _ gl) — e_iP;(p“—m”‘S,-j(~92 — 8, (_1_4)

Taking the log of (4.3) gives

Si;(8 - 6,))

2nm =k L+ Iinln ,
Si; (02 +81)

(4.5}

where n is an integer, and we define the kinematic factors

ky = P; (11, p2) — P;(_Plapz) ko =P’2(P1,P2) '“P;(Ph ~p2)

(notice that for forward elastic scattering, k; = 2p;). Taking the log of (4.4)

gives another relation:

S5:i;(02 —8y)

2um = kyL — Linin ,
2 Sii{—6.-18))

(4.6)

The contribution to the index from the two-particle state 1 comes from
summing over all integers n and %, so that p, and P2 are greater than zero.
Since we have free on-shell states, the energy is just the free-particle encrgy.

The levels are close together because the box is large, so we replace these sums

T We also need to deine the states so that when [i{p;,pa)} scatters only into

l7(#1.82)), then |i(p)(=p1, p2), pa(—p1,p2))) also scatters only into |i(—py,pp)). In
other words, the scattering remains diagonal even after a particle bounces off the

wall.
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with integrals. We also make the integral over 8y and 6, so that we must
multiply by the density of states gy, which is the Jacobian

=t 47
91-= 76, 08, 06, 06, (47)

The relations {4.5) and (4.6) give dn/06; and J7m/d8; each as the sum of
two terms, one proportional to L {the “free” piece) and the other involving
the S-matrix. Thus g7, has a piece proportioral to L?. This results in the
two-frec-particle contribution to the index. However, sumining over each four-
dimensional representation gives a contribution of the form {2.13), and the L
piece vanishes in grip — gy, We know this must happen, from the discussion
following (2.9;. The contribution proportional to I. from a state with fermion

numher f; 1s

in a
fio 2(% //3492(091 P )(L.-}—kg))

—Imln $;;(f2 — H Je ™Al cosh Bty coshfs)
' (4.8)
To simplify the expression, we have rewritten the rapidity integrals to go from
—~oc to x by using the fact that 5(—8) = §*(8) = 1/5(#), which {ollows from
analyticity and nuitarity of the S-matrix.

We now snecialize to the case where both particles are in reduced multi-
plets®. The result simplifies remarkably, and only tepends on the individual
A’s of the particles and not on any details of the S-matrix. We decompose
the initial states into four-dimensional supersymmetry representations ¢ with
fermion numwbers {fi, fi + 1/ + 1, fi +2) as in (2.10). Denoting a reduced mul-
tiplet by (d.u), a two-particle state with fermion number f; + 2 is of the form
Juyug)i, while the one with fermion number f; is |dydy)i. By fermion-number
conservation and supersymmetry, fu) 1#y); must scatter only into a state |ujuy);
and likewise |d;dy); must scatter only into a state |djd,);. We denote the
corresponding S-matrix elements by a;; and a;; respectively.

8 1t is perfeetly ronceivable that only configuraticns comprised of particles belong-

ing to reduced multiplets contribute to the index.

The re tion (2.13) means that we do not need to calculate all of the
densities: we only need the difference g5 42 — g7, Looking at (4.8}, we see

that the index thus depends only on the ratio of S-matrix elements a;;/d;;. The

striking fact is that this ratio can be found without knowing the full S-matrix; it
follows from the supersymmetry alone. We know that QY9 ) = Ml(F+2)),
where ), depends on the details of the representation 1. The S-matrix commutes

with the supersymmetry generators, which means that the diagram

ldidy) —— |did3)
er| e
leyug)  ——  |uyuy)
must commute. This implies that
G _ N (4.9)
ai; A
We can find the A; from one-particle information. The supersymmetry is

represented on a doublet with m = |A] as

T |u(®) = wﬁr" 'W|d(9)
Q 1a(8) = wrme™"lu(d

Q™ [u(8)) = Vme®/?|d(8))

{4.10)
QF1d(8)) = Vme®?|u(8))

where w = A/|A]. All other actions annihilate the states. The supersymmnetry
is defincd on multi-particle states in the usual manner. Since ¢} 1s fermionic,
onie picks nup phases when ¢ is brought through a particle with fermion number.
For example, bringing ¢ through a fermion results in a minus sign. Since we
have fractional charges, we must generalize this notion, so that the action of

Q% on the tensor product of two states is
Qﬂ:®l+eﬂ:l’1F®Qiﬁ. {411)

The charges GZF act with the same phases as @*. In our two-particle case of
interest, we have
@ |d1(61)d2(82))

. (4.12)
= o'"h e (w;e(ﬂz—ﬂl)/l _

wyel® “9”/2) [ty (81 Yua(f2)).
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The quantity of relevance in (4.8) is thus

. inl 8:-8;
Oyt O, b ) (4.13)
o a; o8 sinh(-%-L + ')

where = 2 Inwsw;. The contribution of two reduced multiplets to the index
Q2 thus depends only on Ay, Ay, AY and Aj (the masses and hence the 8’ follow

from this becanse m = IAI), and is

nf, U fl _(2_ _?_
¢ 2(27]‘)2 /]dﬂ,rl 2 ((691 + 392 )(k] +k2)

siuh(glg—?-‘» + 1)
—Imln -
a8, sinh( =52 + )

e—ﬁ(m; cosh 8, +my cosh 8;).

(4.14)
The result simplifies in the case of clastic scattering, where the masses of the
particles do not change. (Forward elastic scattering is the only allowed process
in integrable theories.) For forward elastic scattering, the kinematic prefactor
in (4.14) is 20y cosh @) 4-2m, cosh 6. Moreover, for forward or backward elastic
scattering, once has

b1 — b2 =6 — 8, wo=—p

showing clearly that the elastic two-particle contribution to the index vanishes
ouly when p = 0,ir/2.

For the two-particle contribution from all the reduced multiplets, we sum
(4.11) over ail pairs. We have thus seen that two-kink contribution to the index
from kinks belonging to reduced supersymmetry multiplets is non-vanishing
and casily computable.

The resuits in this section can be compared with the infra-red limit of
the index as obtained from the t¢* differential equations discussed in the
previous section. It is non trivial that they agree, but they must. This is
being investigated numerically in some examples of N=2 theories which are
not integrable [25]. In the next sections we will focus on integrable theories
since then we can obtain, via the exact § matrix and thermodynamics, exact
integral equations for the index which can be compared with the tt* equations

along the entire renormalization group flow.
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5. TrF(-1)¥¢=9" in integrable theories

In this section we will show how to compute the index for an integrable
theory, using the exact S-matrix. Integrable theories in two dimensions have
been under intensive investigation recently. These theories are characterized
by the existence of infinitely many conserved charges, which essentially allows
one to solve these theories explicitly. In particular the scatterings are purely
elastic; the particles behave as if they are free particles and as they pass through
each other they just pick up phases (modulo change of internal tdices). The
multi-particle S-matrix factorizes into two-body S-matrices and these are often
completely determined by the symmetries of the theory (plus some minbnality
assmiptions whieli can be verified {10]). The factorizability and elasticity of
the S-matrix in an integrable theory implies that we can assigin rapidities
{momenta) to individual particles even in multi-particle configurations. In
particular the total energy of multi-particle configurations is simply the sum
of the individual oues. The only effect of the interaction is to shift the density
of allowed states. This is an ideal situation for computation of our index: the
non-trivial part of our index (2.13) results precisely from a discrepancy between
densities of states within a non-reduced supersymmetry multiplet.

It is clear that we can in principle continue the analysis of the previous
section, using the exact S-matrix of an integrable theory, to calculate higher-
order corrections in the infra-red expansion. In fact, we can do much better.
There is a trick (known as the Thermodynamic Bethe Ansatz [10]) which allows
us to compute the index exactly along the entire renormalization group fow,
even in the ultra-violet limit! The idea is to not fix the number of solitons, but
to consider a thermodynamic ensemble of them. We then minitnize the free
energy in the ensembie. As we will review, this allows us to calculate exactly,
i.e. non-perturbatively, TrF(~1)Fe=?# in an integrable theory with a known
exact S-matrix. In fact it is no more difficult to compute the more general
quantity log Tr(e**fe=A#), This allows us to test our claim that while this
quantity depends on the D-terms its first derivative with respecttoa at a =

is independent of the D-terms. Even more generally, let us consider the free
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energy F,. () with chemical potentials y, for the various conserved species

labels

_BF..(8) = InTr(e? Lo oo p=BH) (5.1)

where N, is the number operator for conserved species a. Using the exact S-
matrix we can obtain an exact expression for 3F,_(/#) by finding the minimum
value of 3E — 8§ — 33 ta N, in the space of all states, where S is the entropy.
Choosing the chemical potentials in (5.1) such that 33 u N, = iaF, we
thereby obtain Tr{eieFe=8H),

Sirce the S-matrix of an integrable theory preserves rapidities and some
set of species labels a, a general, multi-scliton state can be characterized by a

collection of distributions pg(#) of rapidities ecccupied by the various solitons in

the multi-soliton state. In particular, the energy of this state is given by

E= Z/dﬂpﬂ(ﬁ)mamshﬂ. (5.2)

To do thermodyuamics we need to calculate the entropy § and so we need to
know the distribntions £7,(8) of available levels as well as the above distributions

pa(f) of occupied levels. In particular
S=Y /dﬁ Po1og Pa = palog pa — (P = pa)log(Pr — pa), (5.3)

corresponding to one particle allowed per level.
Using the exact, factorizable S-matrix it can be found that the distributions
of available levels are given in terms of the distributions of occupted levels in

the general manner:
. ) / ' !
7 P,(#) = my L cosh 8 + Z/dﬂ Pl 0 ) das(8 — ). (5.4)
b

The m Leoshé termr in (5.4) is the usual density of available states for a
free particle, the @44 reflect the interaction with the other particles, as given
by the exact S-matrix. If the S-matrix is diagonal, with species ¢ and b

scattering with the phase shift Sgp, the interaction is seen to be given by

bas(8) = —idlog Sa5(6)/09. For non-diagonal S-matrices such as our N=2
S-matrices, it is generally difficult to obtain the ¢qp from the S-matrix; one
needs to find the eigenvalues of the multi-particle transfer matrices.

Now we minimize BE — § = i3 Y _ jta Na, expressed in terms of the ahove
distributions, with respect to the g4 () subject to the constraints (5.4). Defining

the quantities e,{f} by

pal8) ePHa—¢a(8)

Po(f) 14 ePra-cal®)’ (5.5)

it is seen that the free energy is given by

logTr(eﬁZ baN —,GH zma /——cosllgln(l+E’H““-r"w)) (5.6)

where the -;(f) are obtained as the solutions to the coupled integral equations:

€a(6) = m,0 cosh{@ Z/‘-@i% (8 — 8")In(1 + cPme— ), (5.7)
These are the thermodynamic Bethe ansatz [10] integral cquations with
chemical potentials [29].? Our interest is in the case where the chemical
potentials are chosen such that 33 paNa = taF. The expression (5.6) was
obtained by summing over all boundary conditions at spatial infinity. The
different eigenvalues of our matrix trace can be obtained from this expression by
inserting appropriate additional chemical potentials. Examples will e discnssed

in the following section.

6. Examples

A generic N=2 theory will not, of course, be integrable. Nevertheless, our
index for such a theory can be obtained by solving the differential equations

iscussed in the #* section of this paper. We would like, however, to compare

¥ We 1rote that it is straightforward to rederive the TBA equations with our fixed

boundary conditions instead ot the usual periodic one. The result is the same.



the computation of the index from the ¢t differential equations with the
computation from the thermodynamic integral equations. We will thus restrict
onr examples to integrable theories for which the exact S-matrix is known (or
conjectured). Examples of such theories are discussed in [11,12).

We will focus on integrable theories with spontaneously broken Z,, syin-
metry. For every n there are a wide variety of such examples, including pertur-
bations of N=2 minimal models and Kazama-Suzuki models, supersymmetric
C P71 sigima models, and N=2 affine toda theories. For a given value of n, the
tt* differential equations and the TBA integral equations for all these Z,, inte-
grable theories are found to be essentially the same, the only variation being in
the boundary conditions. We will first consider several examples of Z, theories.
namely ordinary N=0 sine-Gordon at the particular coupling where it is N=2
supersymmetric, V=2 sine-Gordon, N=2 minimal models perturbed by th
least relevant perturbation, and the supersymmetric C P! sigma model. The
indices for all of these theories are obtained from the same differential equation,
Painleve III. They span all the possible regular boundary conditions. The TBA
integral equations also exhibit this fact in a non-trivial guise. We next discuss
the more general Z,,-type integrable theories starting with the simplest such
theory, the 4,, N=2 minimal model perturbed by the most relevant operator.
We finally discuss how to modify the equations in order to determine the index
for the other Z,,-type theories.

For the most part, we will consider N=2 theories which can be described

by a Landau-Ginzburg action'®. Such an action is of the form [26]

/K(X,-,T‘:)+/W(X.-)+fW('ff‘.-)

where the superfields X; are chiral {in supersymmetric sense, i.e. annihilated
y D*,ﬁ) fields, W is the superpotential and is integrated over half the
superspace, and K gives the kinetic terms (the D-term) and is integrated over

the full superspace. Using topological techniques one can prove that the chiral

0 The existence of Landau-Ginzburg description seems to apply :lso to non-

supersymmetric and N = 1 supersymmetric theories [30].

ring of this theory is exactly characterized by W [6). In particular the chiral
fields of the theory are all products of the fields X, modulo setting to zero ;1.
The chiral ring structure constants entering in (3.3) arc obtained hy simply
multiplyi:g the various products of X, together and hmposing the relations
8, W=0.

Tle physical potential for the theory is
V= K99, W oW

where A7 is the inverse of the Kaliler metric 8:i3; K. The vacua a of the theory
are thus in one-to-one correspondence with the critical points of W, The kinks
kqp are the finite cnergy solutions to the equations of motion couneeting the a
and b vacna: X(o = —oc) = X%, X(o = 400) = X {an discussed in (31],
not all such kinks are to be regarded as fundamental solitons). The central
term in the N=2 algebra (2.2) is given simply in terms of the superpotential
by A = 2AW = 2[W(X (0 = +o0)) - W(X(o = —o0})]. The mass of the (u,d)
soliton doublet representation is thus given stimply in terms of the superpotential
by m = 2|AlV|.

The fractional fermion number in the soliton sector is also given simply in
terms of the superpotential by a spectral flow argument {12] or by adiabatic or
index theorem technigues {20,21). The result is that ‘he (u,d) soliton doublet
has the fermion numbers (f, f — 1) where

fe_ 17r(Imludet(a,-ajW{X)))|af+°°. (6.1)

2_ e=—o0

In all of the integrable theories we consider, the entire spectrum consists of
such soliton doublets saturating the bound. There are other integrable N=2
theories, for example the theories with superpotential W = z"+!/(n 4+ 1) — Az?
[31,32] , for which this is not the case; exact S-matrices for these and many

other integrable V=2 theories have been recently discussed in [33].

na
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6.1. N =4 sine-Gordon ct the N =2 point

Ordinary N = 0 sine-Gordon theory is N=2 supersymmetric at a particular
coupling [34]. In a manifestly N=2 supersymmetric setup, this point is
described by a Landau-Ginzburg superpotential

W:A(-)g—s—X), (6.2)
with some suitable choice of K [26]. The vacua |a) are at X = £1. Our matrix
index ) has cigenvalues Q(z) and —Q(z), where z = mf and m = AW (X =
H-W(X =-1) = %. We will first use the #* equations to find an exact
expression for our index in terms of a famous differential equation.

The tt* analysis of this theory was discussed at length in [3]. The result is
that the metric on the space of ground states, in the basis spanned by 1,.X, is
given by g = e7aw(21/2  sing {3.3) with the chiral ring X? = 1. it follows that
u{z) satisfies the radial sinh-Gordon equation

v 1du

dzt oz d:

= sinl u. {6.3)

The radial sinh-Gordon equation is a special case of Painleve 111 From relation

(3.8) it foilows that the index Q(z) is given by

Qz)= zz—ulz). {G.4)

If we wic It we could eliminate u(2) from these equations and write a differential

Q- = Qv QR+ L (6.9)

The solutions u{z) to (6.3) behave for = — 0, i.e. the ultra-violet or

equation for ()

conformal lhmt, as

u(ziry ~ rlug% +s+()(:2“|"|) with [r] < 2
" - {6.6)
~ Flog 5 + lt)g[ﬁ(log(z + )+ O(z*log”2) for |r| =2
where .
/2 r(f — %

and where C is the Euler constant, and r s just a parameter 1o label the
boundary condition. For our theory regularity requires 7=2/3 [3]. From {6.6)
it follows that £Q(z = 0) = £1/3. This is to be expected, since in this limit
the eigenvalues of the Q matrix index are the left plus the right U(1) charge of
the Ramond ground states.

We will now obtain integral equations for the function Q(z) [11], using
the exact S-matrix obtained in [9,35] . The one particle spectrum of this
theory consists of a soliton reduced multiplet (u, d}, with mass m = 2|AWY, and
fermion numbers obtained from (6.1) to be (1/2, —1/2). The soliton conuects
either vacuum with the other one. A multi-soliton state can be characterized by
a distribution p;(#) of rapidities occupied by the solitons. Because the v and d
solitons do not scatter diagonally, we can not assign individual distributions for
u type and ¢ type solitons. Instead, there are two additional distributions p;(#),
[ = 0,0, which encode the way in which the solitons are distributed as w or d
solitons. The distributions p(#)} arose in [11] in obtaining the eigenvectors and
eigenvalues of the multi-particle transfer matrices. We correspondingly have
distributions Py(#) and Pi(f) for the density of states. As discussed in {11],

these densities satisfy relations of the type (5.4), described by the diagram

0 1 0
o ®- O

The nodes in this diagram correspond, as labeled, to the species in (5.4). The
nodes for species 0 and 0 are open to signify that these species have m,=0
in the equations (5.4){arising from the fact that these species are not physical
particles but, rather, account for the additional u and d degree of freedom);
the ® node has mass m; = 2|JAW/|. The functions @a in (5.4) are given by
das(f) = (coshﬂ)"f,,b, where 1,3 is the incidence matrix for the figure, i.c. it
is one when species a and b are connected by a line and zero otherwise (and
l5a=0).

The remaining ingredients required in equation (5.7) are the chemical
potentials. These are chosen so that B3 . 1alNa = inF'. Thus we need to

express F in terms of the above densities. For a state with a total number &



of u solitons and a total ammber N —~ & of d solitons, these distributions are

delined to satisly
/dﬂpi(ﬁ): N and de(PO"m+P6):

The fermion number of such a state is k—(N/2) and so using the above equations

along with (5.4) we find

- / 48 p5(8) — po(6)). (6.7)

We are ready to use {5.6) and (5.7) to obtain exact integral equations for
In‘tre""Fe=PH  The m, and functions @as(0) in these equations are as given
above and, using {6.7), the chemical potentials should be taken to be Bu; = 0
and (g = ~Bg = wx. First note that at a =  (Witten’s index) the equations

(5.7) are solved by
e~ = () = 5(0) = 0
for alt 6. From (5.6) is is then seen that L=V log Tr(—1}Fe=PH = 0 when [ — o0,
as expected.
To move shightly away from Witten’s index, take @ = n + h with h small

and keep terms only up to O(h). The equations (5.7) are then solved by
e 18 = he= A9 and ep(8) = 5(6) = hB(#), where

d¢ 1 2
A#z) = 2cosh€~—]-2?mln(l+3 (¢;2)

(6.8)
B(#,z) = — /ilﬂ—l,_e-ﬂ(”;?f)_

2 cosh(8 —6)

Usiug (5.6) and (2.9), the (-matrix eigenvalues are given by +(}(z = mf)

where, in lerms of the solution to the above equations
= z’/ﬁcosh e Aldiz), (6.9)
iy

We have two exact expressions for the index Q(z), the differential equa-

tion (6.3) and (6.4) (or (6.5)) obtained from {£* considerations, and *le integral
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equations (6.8) and (6.9} obtained from S-matrix and thermaodynaimie consid-
erations. These expressions must agree! We know of no way, however| o show
directly from: the equations that this is the case. Physics has proven a highly
non-trivial statement about the above equations. A check js that the ultra-violet
limit for the index using the two different equations give exactly the same re-
sult Q(z = 0) = 1/3. Also, using results from [36] concerning the Painleve 111
differential equation, it can be seen (after some algebra) that the function ((z2)

has an expansion

{Z) 2(2 COS( (2 -Tr )2n+1 /211+1 e—zcuah &, dgt_ (6 10)
Z; n+1 1 cosh(———‘c-) a7 ’
(f2n42 = 61) and, for later use, we have restored the boundary condition

parameter 1 from (6.6); for the present example r = 2/3. ' Tlus is the type
of infra-red (large 2) expansion which we would expect for our index; the first
term is the usual Bessel function. Also, only odd numbers of solitons contribute
because only then are the vacua at spatial infinity different. It is casy Lo see that
the two-particle contribution computed in section 4 vanishes, because je=dmf2
here. By expanding out the integral equations (6.9) and (6.8) it is easily scen
that the one-soliton and the three-soliton contribution agree with the n=0 and
n=1 terms in the PIHI expression (6.10); after that the comparison becomes
more difficult to check directly. We have numerically verified (Lo real precision)
that the function ()(z) obtained from (6.3) and (6.4) does, indeed, agree with
that obtained from {6.9) and (6.8). It would be intercsting 1o see how difficult
it is to find a direct mathematical argument to verify this. In particular, would

we have to re-invent the shysics argument, in disguise, to prove their equality?!

6.2. N=2 Super sine-Gordon

As our next example, we consider the N=2 super sine-Gordon theory given

by the Lagrangian

/du({'g XX+ ”1(/(£2zdlacosg)s’+h.c.) (6.11)

A similar expression arose i the computation of Ising-model formn Factors [37).
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The coupling g, by a redefinition of X and X, can be taken to be real. Because
our index is ir.depcndent of the D-term, it must, in fact, be independent of the
coupling g since, by rescaling the rhiral fields, g can he eliminated from the
F-term: and put into the D-term. The general quantity Z{a, 3) = TretoFe-8H
can be caleulated via the TBA equations since this is an integrable theory.
Z(a. ) depends on g as a sign of its dependence on the D-term. We will show
that our index, the first derivative with respect to a at @ = 7, is independent
of g as expected by our general arguments in sects. 2 and 3.

The vacua of the N=2 sine-Gordon theory are the points ¢X, = an for
@ € Z. We thus liave an infinite numiber of possible vacua for the boundary
conditions at @ = toc. Because of the symmetry X — gX + 7, a configuration
with vacunm X, to the left and vacunm X, to the right is equivalent to one
with vacuum X,4, to the left and vacuum Xpyn to the right. Consider the
contribution (O to our index from a fixed boundary condition (ab). Then,
this symmetry, implies that Qap = Qasnp+n. The cigenvalues of a matrix M;;
whose entries depend only on i — j are casily found by Fourier transform. The
cigenvalues (@) are parametrized by an angle © and given by

o0

Q=:0)= Y " Qui2). (6.12)

=

In other words. we weight configurations by ¢*®7 where T is the topological
charge.

Using the results of [3] and (3.8), the index eigenvalnes Q(z:10) are all
solutions of the same PIIT differential equation (6.3) obtained in the last
example, where only the houndary condition (6.6) depends on ©. Regularity

requires [3] the solution Q(z,0) to behave (with : = m3) as (6.6) with

20
r(O) = 2(1 ~ —7;—) for 0 €O <7, (6.13)
with r(O) defined outside this interval by r{® + 1) = —r(0), a consequence of

the fact that. in {6.12), only configurations with odd [ contribute. By varying

0. we obtain all regular solutions of Painleve 1I1.

Now we come to the analysis of this theory from the viewpoint of the
TBA. The close connection between the index in this example and that in
the previous example can also be seen from the exact S-matrix and associated
integral equations. The important point is that every sine-Gordon soliton is
the same {u,d) supermultiplet, with fermion numbers (1/2,-1/2), seen in the
previous example. The {conjectured [38]) S-matrix for the N=2 sine Gordaon
theory is simply the tensor product of the S-matrix for the theory considered
in the previous example with the S-matrix for the N=0 sine-Gordon [9} at
coupling gf;?:o = g. The TBA integral equations for this theory are ohtained
by combining those of the previous section with the TBA system for N =0 sine-
Gordon[12]. The TBA system of integral equations for N=0 sine-Gordon at
generic coupling g is of the usual form (5.7) but with an infintte number of
species @ and a complicated set of ¢as(8). For the sake of brevity we will thus
focus on a nice set of couplings, ¢* = 8ms for s a positive integer s > 2. where
the equations simplify[39]. Of course, our index is independent of the coupling
g so we can work with any coupling we please. We will verify this fact, though
the more general quantity (2.4) does depend on s.

At the coupling ¢° = 8rs, as discussed in [12], we obtain a TBA system
of coupled integral equations of the usual form (5.7) for « + 3 functions e,{#).
The masses mq and ¢q(8) entering in the equations (5.7) for rhis theory are

described by the figure

where every node in the diagram corresponds to a species in the equations (3.7).
The ® node, labelled by 1, corresponds to the soliton; its mass in the equations
(5.7) is that of the soliton. The other species have open nodes to signify that
they have m,=0 in the equations (5.7). Again, the role of these additional
species is to account for the additional degrees of freedom (i.c. u or d, and which

vacua they connect). As in the previous example, the éq,(#) = (cosh#) " b

o



where {,p is the incidence matrix for the above figure. The massive node and
the nodes labelled 0 and 0 come from the N=2 part of the S-matrix; they
correspond precisely to the species in the previous example. The massive node
counccted to the s open nodes are the TBA species for N=0 sine-Gordon at
coupling (g475)? = 8ms. This result is obtained by using a technique known
as the algebraic Bethe ansatz to find the eigenvalues of the multi-soliton sine-
Gordon transfer matrices (sce the appendix of [39]). The TBA system for
the tensor-product S-matrix is obtained by joining the two component TBA
systetns at the massive node as described by the above figure.

Asin the last example, the fermion number is given by

F = /dﬂ(po—(ﬁ) - po(8)),

whereas the sine-Gordon topological charge {number of solitons minus anti

solitons) is given by [39]

T=s / d8(p5(8) — pe(8)), (6.14)

where the species labels are as given in the above figure. By introducing
chemical potentials Spy = —fpg = ia and Buz = —PBu, = isO, with the
other chemical potentials zero, the equations (5.7) and (5.6) provide integral
equations to compute log Tre'®Fei®Te=AH exactly. For generic a, the integral
cquations, in particular the number of functions €,(8), clearly depend on s. In
the infra-red expansion, one sees that the solutions of these equations are in
fact different. Thus In Tr{e'*¥e*9Te=84) depends on the coupling g2 = 87s, as
expected.

At a=m, the solution of the equations (5.7) described by the above
tigure with the above chemical potentials is given by e,(#) independent of 6:
o (f)=€5(8)=e~" =0, and
M)Z -1
5in©®
sin(s — 1)0

sin®@
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e 9 = ( fora=2,...,5-1

(6.15)

e =me T =

As expected hy supersyuunetry, (5.0) gives L~} log Te(—=1) ¢ =" = (0 in the
L — 20 limit.

We now move slightly away from Witten's index. At o = 4+ howith A
small, the solution of the equations (5.7} is given by € (0)=¢;(8)=hB(#)}, and
e~ UM =ph 1(9), where the functions A(9) and B(#) obey the equations

dg’ 1

A(f) = zcoshé ~— In(2cos Q) — Q_W
T Cosh -

In(l + B*8"Y)
as’ ) (6.16)

L )
27 cosh{f — 9') ’

B(#) = -

The other €,(6) arce {to lowest order in k) still given by the constants (G.15).
Using (5.6) and (2.9} we tuus sce that the Q matrix eigenvalues are given by
Q(z = mJ;0) where

16 :
Q(z0) = zf%;cosllge_A(B’z'B), (6.17)

with A(6; z;©) obtained by solving (6.16).

As expected, our index is independent of the coupling ¢ (i.c. s5}. Oue can
check by for example studying the IR expansion of the solutions to the full TBA
equations that all the other quantities I, for I > 1 do depend on g and are thus
dependent on D-tenns, in accord with the arguments of section 2. In fact, the
entire N=0 part of the theory has dropped out of the integral equations, leaving
just the constant In 2 cos @ in (6.16), which resulted from the constants (6.15).
This coustant piece is the only reflection of the N=0 sine-Gordon structure.
The close connections betweer. these integral equations and those computed
in the previous example was also to be expected from the t¢* considerations;
the In{2cos ©) termu in (6.16) specifies the boundary conditions in the Painleve
Il equation. Again, though (6.16) and (6.17) have no obvious connection to
the radial sinh-Gordon {or Painleve III) differential equation {6.3) and (G.4),
physics proves that the regular solutions are the same.

It is easily seen that (6.16) and (6.17) lead to an expansion of the form

Q(z0) = Y (2c0s0)" Ay,,44(2). (6.18)

n=>0
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Agnir is the contribution from the (2n + 1)-soliton sector, and is independent
of ©.12 1In the large mJ3 limit, Aznyy is O(e~+1ImBY) - We can compare
this result with (6.10). We immediately arrive at the expression {6.13) relating
the houndary condition 7 on the PIII differential equation to our parameter ©.
This is a further confirmation that the TBA solution is related to PIII solution,
as in both cases the dependence on PIII boundary conditions r or equivalently
O has the same structure. As a further check, the UV limit z — 0 of (6.17)
and {6.16) is obtained {using results from [40] for taking the UV limit of TBA
systems with imaginary chemical potentials) to be
Q(::O;(—)):(l—?), {6.19)
for 0 < © < 7, in agreement with (6.3} and (6.4) with the boundary condition
specified by (6.6) aund (6.13).
At O=0 mod 7 we have to be more careful in evaluating the UV limit
of the equations (6.17) and (6.16). Exactly as in [41], there is a log piece in
the ultra-violet limit. This log piece agrees with the expression (6.6) for the

Painleve I solution at r = +2.

6.3, N =2 mmimal models with least-relevant perturbation

An N=2 minimal model remains integrable when perturbed by its least-

relevant operator [32,42], The effective Landau-Ginzburg superpotential for the

[ . . o . - .
12 This leads to an atnsing intnition for our index. Write this result as

Q=01 = 3 Asnsr () 40P

n=0

and compare with (6.12). The factor «'® counts the solitons connecting vacuum & to
vacunin 1 + 1 {topological charge 1) and the factor e 7*® counts anti-solitons connecting
vacuwn ¢ to vacun 2 — 1 (topological charge —1). The fact that they are all weighted
by the same factor means that we can obtain the index by weighting each 2n + 1.
soliton configuration by Aa, 4. This mtuitica only applies to the computation of our

index, and not to the other thermodynamic quantities.

perturbed theory is identified to be a Chebyshev polynomial (as conjectured in
[3) and confirmed in [11]); e.g. for the perturbed Ay 41 theory the superpotential
is Wi(X = 2cos#) = (2/k+2) cos(k+2)8, expressed as a polynomialin X. This
is the least relevant perturbation of the conformal field theory W=Xk2/k+2
in the flat direction of [23]. The chiral ring of this theory vields the SU(2)
fusion rules [43].

The #* computation of our index here is a simple application of the
results from the previons example. The reason is that if we change variables
(k42)8 — Y, the above Chebyshev polynomial becomes the superpotential for
N=2 sine-Gordon. The eigenvalues of the index are thus obtained to be

mn

E+2

Qz=m3:0 = % (6.20)

for n = 1.....k + 1, where @(z;0) is the function discussed in the previous
example.

We now discuss the TBA calculation of the index using the exact 5-
matrix for these theories. The vacua of the Wi (.X) Chebyshev theory are at
X" = 9cos(an/k +2), forn = 1,.... k+1. The solitons are N=2 Bogomoluyi
doublets (u;,d;) connecting vacuum X with vacuum XU for j = 1.k,
cach identical to that of the example in sect 6.1; they all have the same mass
and fermion numbers (% —%) The structure of k + 1 vacua on a line is that of
the k-th RSOS theory [44), which describes the N=0 minimal models with least-
relevant perturbation. The N=2 Chebyshev S-matrix is a direst product of this
N=0 RSOS S-matrix with the N=2 S-matrix discussed in sect. 6.1, just as the
N=2 sine-Gordon S-matrix of the previous subsection was the tensor product
of the N=0 sine-Gordon S-matrix with the N=2 S-matrix of sect. 6.1.

There is a well-known reduction from N=0 sine-Gordon at a particular
coupling to the k-th RSOS theory. This same reduction can be used to obtain
our N=2 Chebyshev theories from the N=2 sine-Gordon theory: the comnton
N'=2 structure just goes along for the ride. We start with the N=2 sine-Gordon
TBA equations appropriate for N=2 sine-Gordon coupling g? = 8x(k+2).
The equations are described by the diagram of the previous subsection, with

s = k4 2. The reduction of this to our Chebyshev theory requires taking



e?s = M7 = 1 [39]. This reduction simply eliminates the nodes labelled
$, 5. and s — 1 from the diagram in the previous subsection, leaving the TBA
system discussed in [11].

The solution for this TBA system is the sine-Gordon solution @0 =
wf(k + 2}), giving the largest eigenvalue of the Q-matrix for the Cliebysh«v
theory. The remaining eigenvalues of the matrix index are given by Q(z,6 =
muf(k+2}), for n = 1,...,k + 1, and can be seen as other branches of this
solution.’® Tt follows from (6.17) that the non-zero eigenvalues come in pairs of
opposite sign, as they should. As another check, note that in the ultra-violet
limit we obtain (6.19) Q(: = 0,0 = mn/(k+2))=1 - (2n/k + 2); these are the
correct expressions for the left plus right chiral U(1) charges for the Ramond

ground states of the conformal theory obtained in the ultra-violet limit.

6.4. Supersymmetric CP' sigma model

The supersymmetric sigma model on CP! = §2 is a massive N=2 theory.
In principle we can consider an arbitrary kahler metric on C P!, Varying the
metric without changing its kahler class (i.e., preserving the area} is a D-term
perturbation of the theory and therefore the index only depends on the area.
Letting X denote the Kaller form of C P!, the chiral ring, which is to be
identified as an instanton-modified cohomology ring, is X? = e~* where A4 is
the arca of C P! (the two-sphere) [45]. The t¢* considerations have b en applied
to this and C'P™~' examples in [46]: using the above ring the index is again
giver by (6.3) where = = 83e~4/? and, by regularity, the boundary condition
{6.G) is determined to be © =0, Le. r=2.

For a generic metric ou C'P!, the supersymmetric sigma model is not an
ntegrable theory. However, since the index only depends on the area, for
computation of the index we may as well use a convenient choice of the metric.

I we choose the constant-curature metric on C' P! then this theory is integrable

13 The resulting factors of 2cosnz/(k + 2) = X, in (6.18) are the eigenvalues of
the RSOS soliton incidence matrix. The number of N-soliton configurations can be
expressed {for any boundary condition} as Eﬂ caAY with N independent ¢,. This is

in accordance with the intuition of the footnote following (6.18).
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[47] and so we can compare the ¢ analysis with the TBA analysis. As discussed
n [12], the TBA system for this theory is obtained by taking the & — . limit
of the Chebyshey TBA system. Our index for the supersymmetric O P! sigima
model is thus given by (6.16) and (6.17) with © = 0, in agreement with the ¢¢°
result, given our equality between tue Painleve HI differential cquations and

these integral equations.

6.5. The Basic Z,,-type N =2 Integrable Theories

All of the previous examples displayed a spoutaneously broken Z. synime-
try. The tt* equations for the index in all these examples were the same, the
only difference being in the boundary conditions. Likewise, the TBA integral
equations for the index in all of these examples were the same, the only differ-
ence being in the value of © in (6.16). We will now consider N=2 itegrable
theories with a spoutancously broken Z,, symmetry. The basic such theory s
the A, N=2 minimal conformal ficld theory perturbed by the most-relevant su-
persynunetry preserving operator. It can be described by the Landan-Ginzburg

superpotential [26]
_X‘n+l

n+1

This theory is integrable [31]; in fact, it can be described by an aftine Toda

W = \(

~ X). (6.21)

theory with an imaginary coupling and a background charge [32].

The tt* equations for this example were discussed i [3]. Because theory
(6.21) has the Z,, symmetry X — e?™/7 X the Ramond gronnd state metric ¢
is diagonal in the chiral ring basis spanned by 1, X,...,X""' Denoting these
diagonal clements by e, equation (3.3) with the chiral ring relation A" =1

yields the following relations for the eigenvalues Q(z; p) of onr matrix index:

d dqu 1dg, Tps1 — Tp—qp—1
Q(zp) = zEQP(Z) where 12 + T dz + el T =0, (6.22)
forp=0,...,n -1, with g4, = gp and with the constraint ¢,_, = —gp. For

n=2, (6.22) reduces to the sinh-Gordon (6.3) and {6.4) of our previous examples.
The An.; Toda equations with the constiaint gn-p = —@Gp can be put in the
form of C‘m Toda theory for n = 2m or BAC'm Toda theory for n = 2m + 1 [3].
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Exact integral equations for the above eigenvalues of our matrix index
follow from the exact S-matrix and TBA analysis discussed in [12}. The
vacua of theory (6.21}) are at X = ¢?7ii/n The soliton content consists
of 2(n — 1) solitons forming doublets (ur,d,) under supersymmetry; the soliton
species label 7 runs from 1,... ,n—1 corresponding to solitons connecting initial
and final vacua with Xy = 92’”"/"’{;. The fermion numbers of (., d,) are
given by (r/n,r/n — 1), and their mass is given by the Bogomolnyi hound
m, = Msinra/n where M = 4dnA/(n 4+ 1}.

The eonserved currents require that when a soliton of type r, i.e. u, or
4. seatters with a soliton of type s, the labels r and s scatter diagonally

along with the rapidities. The number N, of solitons of type r, i.e. the
number of w, solitons plus the number of d, solitons, is thus conserved for
r=1,... .1 —1 asis the total number of u solitons, and the total number
of d solitons. A nmulti- soliton state can thus be characterized by distributions
pe(#) of rapidities occupied by solitons of type 7, Le. u, or d,, along with, as in
the previous examples, two additional distributions pi(#) and { = 0,0 [12]. The
fermion mumber of the multi-soliton state is again found to he given in terms
of the various distributions by (6.7).
Using the exact S-matrix it was found in [12] that the distributions I, (8} of

available levels for the above species a are given in terms of the above occupied

distrilbutions p,(#) by relatious of the usual form (5.4) where m,. = M sin(rx/n}
is the mnss of species r = 1,000, n—1,m;=0forl = 0.0, and the ¢q are given
by
sin{rp
g =t i) = (re1) .
cosh{#) — a; cos{r ) (6.23)
o (B = /’H(,m . 2(‘05]1 ﬂfﬁi‘llh(ﬂ —‘r,u)tsulll syt ’
: sinh ot sinh pf
for r > s =1....0 — 1. with ¢ap = dpa, where ag = —ag =1 and g =7 /n.
We now calenlate the eigenvalues of Trap(e'*F e 7). The p-th cigenvalue

of this matrix can be obtained by weighting solitons of type r by e2mirp/n

forp =0,..., n - 1, and summing over al' vacua (ab) at spatial infinity. We

will thns caleulate log Tre'®Fe2miprNe/ne=0H Ly using (5.1) with the chemical

potentials Ay, = —2wirp/n and, from (6.7), Bug = —Bio = i, Plugging
these chemical potentials and the (6.23) into (5.7) and (5.6), we obtain integral
equations which determine exactly Tr(eiope'ﬂH).

At a = = it is seen by inspection that the solution of the cou-
pled integral equations (5.7) is given by e ¥ = g(8) = 0, and thus
L~ 'log Tr(-1}Fe PH = 0 in the large L limit. We now consider a = x + h

with & small. The solution of (5.7) is of the form ™' = e~ 2mirr/ne= A and
¢; = hBy, where the A, and B; satisfy the coupled integral equations
d8’ sin(rp) lu(ia; + Bi(8'))
Ar(8) = mrff cosh 0 + Zirpys - Z ] 21 cosh(f — 67) — vycos(rye)
16.24)

"z:l 6" sm(r,u) — A8

27 cosh(f’ — 87) — agcos(rp)’
where, again, a9 = —ag = 1, mp =M sin{rm/n), and p = x/n. Using (2.9) and
(5.6) we have the index eigenvalues Q(z = Mpip) forp=0,_...n—1 given
by

n—

1
Q{zp) = m,-ﬁ[-—(()shﬂc A=) {6.25)
~1

r
It follows from {6.24) that A.(f:z:p)° = Anor(@;zip) aud Bo(#iz:p) =
By
be. Furthermore, ¢~ (%3P = —e— An—rlEzn=T-p) §¢ 4 consistent solution

of (6.24) forall v = 1,....n =1 and p = 0,...,0n — 1. It follows that

Q(z;n - 1 — p) = —@{z:p); the non-zero eigenvalues coue in apposite pairs

(6; z:p) and, thus, the above eigenvalues Q{z:p) are all real, as they should

as they should.

We can compare these exact tesults (6.25) and (6.24) with the iufra-
red expansion of sect. 4. Setting By(6') = 0 in (6.24). we obtain the first
approximation e 4r = je-ixr(zpt)/mg-m fcosh® - Plygging this into (6.23)
we obtain the one-soliton sector contribution to the index. in agreement with
(4.1). Plugging this first approximation back into {6.24) we obtain the next
. pproximation

A - ~irr(2p+1)/ne—mrcosh9

€ e 1
E —ix -+ [18’ n, dcoah
(] [ 5(2}" l]/ﬂ / (9 9 } R Y] bt )



Plugging this into {6.25) gives the contribution to the index coming from the
two-soliton sector, in agreement with (4.8) and (4.13).

We have again found two different representations of our index: One in
terms of solutions to affine Toda equations {6.22) and the other in terms of
solutions to coupled integral equations {6.24) and (6.25). It would be interesting

to check this equivalence numerically and verify it analytically.

G.6. (Mher Z,, Iutegrable Theories

There are a variety of other integrable N=2 theories with spontaneously-
broken Z,, symmetry whose index can be obtained from the equations of the
previous subsection. Examples are the affine Toda generalizations of N=2 sine-
Gordon, integrable perturbations of N=2 Kazama-Suzuki theories described by
the SU(n)y generalized Chebyshev polynomial superpotentialsin n — ] variables
[43] and the C P~ sigma models [12]. We first consider the SU{n) affine Tod:.

the iries described by the action

n—l n

/ d*:d'y ,‘; XX+ f—'i(fd%dwg e 9N =X y h e, (6.26)

where Xy = X,, = (. The vacua of this theory form the n — 1 dimensional

weight lattice of SU(n). This theory has n — 1 topological charges T, and, as

i the sine-Gordon case, tle eigenvalues of the @ matrix index can be written
as

Q=:0,.. iBL Ve (—~1)Fe' L2 O T =001

Ona) = (6.27)

where the trace runs over all boundary conditions.

The t* analysis has been applied to this example in [3] where the solutious
are expressed in terms of solutions to the affine toda equations (6.22) but now
with different boundary conditions, which should now depend on 9,.

The S-matrix for the theory (6.26) is (conjectured to be) the tensor product
of the N=2 theory discussed in the previous subsection with an additional
N=0 structure with vacua corresponding to the weight latiice of SU(n): vacua

labelled by SU(n) weights 4 and v are connected by a soliton dovblet of the
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r-th type, with feruion numbers (r/nrfun~1) and mass m, = Af simirafn),
provided the representations satisfy 5 2 Ay = v b .. whoere A is the r-th
Sl =11 As far as N=2
supersymietry is concerr.ed, every r-type soliton doublet is identical to the
We will

we will use

fundamental representation of SUMRY (r = 1,..

r-type douhlet in the basic Z,, theory discussed in the previous section.
not explicitly carry out the TBA analysis for this theory. Rather,
the fact that, as scen in the previous examples, the only effect of (he additional
N=0 structure on our index is to modify the A,(#) cquations in (6.24) witl

some #-independent constants Cr(95) {generalizing the term 2cos O in (6.1G)

for the affine toda case):

n—1}
if
Q61,...,0,_,) Zmr[f/5;('05119(‘—"'(0‘, (6.28)
r=|
where the A,(6) are solutions to the coupled integral equations
Ar(#) = m g eosh® — In C, ( Z /‘d@ sinfr) i + By(#"))
. 27 cosh(f - 8') — q, cos(ri)

n-—1 = — AL

Bi(& sin(ryule '

(e = ,ZI/ 27 cosh(6’ ~ 6") — a; cos(rp1)
(6.29)

These equations lead to an expansion of the form
(s 3 o0
Q(20;) = Z Z C,N‘-'- AN N (), {6.30)
Ny=1 Noy =1

where Ay, n__ (2) is the contribution from the sector with V. solitons of type

rforr=1,...,n - 1. Comparing (6.30) with (6.27) it is scen that the C(9;)

are given by the character functions
AT
C(@)= 3 27,
AEL(A,)

where L(A,) are the weights in the r-th fundamental representation A, of SU(n)

{the SU(n) representation with r vertical boxes for its Young tableau), for
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r=1,....n =1, and T = ¥, Onan where a, are the simple roots of SU(n).
The above characters can be written (as in [43]) as

n

S G0, Bt = TI(1+2eit®=8s), (6.31)
=0 i=1
where ©p = 0, = 0; expanding the product in ¢t and equating coefficients

of # on hoth sides yields the above sums over the fully antisymmetric
representations. Plugging these Cr{©;) into (6.29) and (6.28) yields the index
()= 0,). It follows from (6.31) that C'(6)" = Cpo {05} from which it follows
from {(6.29) that 4,(8;z;0;)" = A,_(#: 2;0;) and Bo(8;2;,0;) = By(#;2:64).
It then follows that the index eigenvalues Q{z;0;) are real.

The above integral equations must provide the regular solutions of the
Toda differential cquations (6.22).  As in the PIII case, physics has proven
a statement for which there is, as of yet, no purely mathematical proof. In
particular this gives an n—1 parameter family of regular solutions to radial affine
Toda equations {6.22). The dependence of the solutions on these parameters
(©,) is again in line with the intuition discussed in the case of PIIT {see footnote
12).

We now consider the theory with superpotential given by the SU(n)
Chiebyvstey polynomtad W e (X, .00 X, _1)in n— 1 variables discussed in {43);

the generating fnuction for these potentials is

n-1
SN Yo" = —log(1+ > X (=) +(=N"). (6.32)
r r=1

These theories have been discussed in [43,3,48.49,12,50] (Sp( N} theories,
whicli might also be integrable, have been found in [51,50]). From the #°
analysis it is possible to see that the index is again related to the affine toda
cquation [3]. From the TBA iutegral equations the (n + &k — 1)!/(n — 1)!K!
eigenvalnes of the matrix index for the SU{n)x theory are expected to be
obtained from the equations (6.28) and (6.2¢) W setting C.(0;) = X, (n)
where X, {(p) are the solutions of W,k (X,) = 0. This is equivalent [43] to

setting C.(0;) = Su._,./Sou. where Sy, is the SU{n)x modular transformation

matrix, A, is the r-th fundamental representation SU(n), p is one of the
(n 4+ k — 1)1/(n — 1)!k! highest weight representations of SU(n)x, and 0 is
the identity. These integral equations for the index eigenvalues of the SU(n}x
Chebyshev theory generalize the SU(2)y results in subsect. 6.3 and the SU(n);
results in sect. 6.5. Finally, we consider the CP"! sigma model. Here again,
the ¢* equations give the affine toda equations [46] (with logarithmic boundary
conditions). The §-matrix for CP"~' sigma model is obtained from the I — oo
limit of this SU{n)i Chebyshev theory [12]. Thus, the index for this sigma

model is also given by the above integral equations by setting the &, = 0, i.e,

Cr = n!/r!(n - r)!, in (6.29).

7. Conclusions

We have seen that for two-dimensional N=2 supersymmetric theories
Te(-1)F Fe=## is a (matrix) index in a generalized sense, i.e., it is independent
of D—term perturbations. Though the index is not topological, it is determined
exactly via non-linear differential equations which are obitained using ouly
topological data, namely the chiral ring. These non-lincar differential equations
encode the geometry of the vacua of the theory. This allows us to read off. by
an IR expansion, the spectrum of Bogomolnyi saturated states of the theory as
well as some aspects of their interaction. In case the theory is integrable and
the exact S-matrix is known, the index can be computed using TBA methods
in terms of solutions to coupled integral equations. It is a very non-trivial
statement that in these cases the integral equations thus obtained are equivalent
to the differential equations characterizing the geometry of vacua.

It is amusing that one can apply N=2 formalism to study polymer physics
[39]. The index in this context is the partition function of a single polymer
wrapped around a cylinder of perimeter 3.

Given the fact that the integral equations which arose for us in the context
of the TBA are equivalent to differential equations, it is very natnral to ask
if this can be done more generally. In other words, is it always possible to

relate integral equations arising for integrable theories through the TBA to



ardiary differential equations? A first step in this direction may be to try to
prove mathematically why in our case the integral equations of the TBA were
equivalent to differential equations.

For non-integrable theories the #* equations can still be used to compute
the index. In the infra-red the leading contribution to the index is universal
{4.1).  However, even though the normalization of this terin can be easily
deduced from a Hilbert space interpretation, from the viewpoint of solving
the (47 cquations this is only fixed by requiring the regularity of the solution
(even in the UV regime). Therefore, it is a very non-trivial test of these ideas
that the normalization coming from solving the ¢t* equations in the IR agrees
with the Hilbert space interpretation. This has recently been confirmed evey
in i non-integrable case by solving t¢* equations numerically [25].

We have seen that the index basically captures the geometry and interac-
tion of kinks interpolating between supersymumetric vacua. It would be inter-
esting to write a general solution (say for Landau-Ginzburg theories) of the ¢
equations in terins of these kinks, Such a thing is not unexpected, given the
fact that tt* cquations depend only on the superpotential (which is equivalent
to knowing the kink spectrum and their geometry) and that the equations are
integrable as they can be rephrased as flatness conditions even if the under-
lying quantum field theory is not integrable, a fact which has been recently
elaborated upon in [24].

Given the power of the new supersymmetric index in encoding exact
results, it wonld be tempting to look for similar objects in other supersymmetric
theories. In particular a very similar setup to what we have discussed in this
Paper appears naturally in the context of four-dimensjonal N=2 Yang-Mills
theory. Again this theory is related to a topological theory [52] and the analog
of the chiral fields are the two-cycle observables. In particular for the SU(2)
gauge theory in the Higgs phase where SU(2) is broken to U(1), all the known
particles of the theory such as the massive gauge particles and the monopales
are known to saturate the Bogomolnyi bound [15] very much as our kinks in
the two-dimensional theory saturate the Bogomolnyi bound. In this case the

natural generalization of our index seems to be Tr(~1)F J2e~8# where J is the
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generator of U(2) symmetry of N=2 theories[53]. Tt would i exciting to see
what exact information about the S-matrix of these four-dimensional theories
are encoded in such an index.

To formulate our index we needed to put the Hilbert space on infinite line
to allow for kinks. If we put the Hilbert space on a periodic circle and thus
compute the index on the torus we get zero. This can also be seen by CPT
invariance. However if we replace F by Fy, the left-moving fermion uunlber,
in the definition of the index, CPT no longer requires it to vanish (s even on
the torus (—1)* is in general not %£1). This quantity has already appeared in
the context of conformal theories where it is related to the moduli dependence
of the gauge and gravitational coupling constants [54,55]. This modificd index
resembles the generalization of Ray-Singer torsion [56] to conformal theories,

We have seen that N-kink configurations each contribute to our index
through an *anomaly’ resulting from an inequality in the density of states for
a supersymmetric multiplet (2.13). Each of these contributions reninds one of
(though it is not the same as} the Callias-Bott-Secley index [14]. It would be
very exciting to uncover the meaning of such a ‘topological invariant’ for cach
N-kink contribution. Qur new index, which sums up the contribution of all N-
kink configurations, would then encode nfinitely many topological invariants
into a single function!
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Appendix A. An Operatorial Proof of the tt* Equations

In this appendix we show how the ideas of the present paper can be used

to give a quick (although less rigorous) proof of the t¢* equations of [3].
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Wo begin by rewriting the t¢* equations in terms of the Q inatrix only. We
Lave seen in the main body of the paper that
34

Qup = fTrab(fl)FFe_ﬁH, (A1)

where . b label boun lary conditions at spatial infinity associated to some basis
|} of vacua.
In terms of () the basic 17 equations read

D-Q = 23°1C., ()

1

A2
D.Q = 28%C, T+ (A2

%[QCJ] =+ D
LMQ.C-] = C- - D-Cr (A.3)
2y ! F
where D, (D;) denotes the metric covariant derivative and ', is the matrix
representing multiplication by 1 {in the case of a Landan-Ginzburg theory,
whicl we assie in this section for simplicity) on the vacua ja). Oue can think
of () in the speciad parametrization of the couplings of the theory motivated
from the renorualization group as @ = 2(A, — A,.) with 3 = exp(r/2+ T /2),
from which one can deduce the above equations from the usual 7 lorm {note
that a chital operator has an explicit 7 dependence given by ¢7¢;). The above
equations are written so as to make sense in an arbitrary basis (see also [8]).
Eq.{A.3) has the ollowing interpretation. For a quasihomogeneous family of
superpotentials €; = 0 and (A3) just states that the marginal chiral (resp.
anti-chiral) deformations have U7(1) charge +1 (resp. —1). The extra term in
the RS measures the ‘deviation from marginality’.
On the other hand, {A.3) allows us to write the full metric connection A;
in terms of () aund the ring coctlicients. Then we can compute its curvature in

terms of (). Becanse of this, (A.2) and (A.3) together with

;(, =10
;O

o O

(A.4)

D,’C';

reproduce all the tt* equations. (In fact, the second line is a consequence of

(A.3) together with known properties of the chiral ring). In particular, we get

D, D51@ = ~#°C:.T51.Q)
[D;,MD-J—-]Cr = —/32[[(?{,?;].6,]

‘ . T
from which we read the curvature of the metne connee tion**,

One has also the identity (A is defined in {2.2))
[Cr.Clas = %Trab(—i}FAEjf"H”- (A.D)

This equation deserves a comment. The simplest way of proviug it is to choose
the vacuum basis |a) to correspond to the canonical basis, i.e. the holowmorphic
point bas,s (normalized so that = 1). Then the central charge has a definite
value Agp = 2[W(a) — W{b)], and (A.5) follows from the definition of €', and
the obvious identity

(Co)ab = Tran(=1)F e ™1 {A.6)

However. the canonical basis is not the natural one from a “thermodynamical’
viewpoint. In this framework one decomposes the Hilbert space H into sectors
for which A and A have a definite value. Such sectors should exist on general
grounds. Now, whereas it is manifest that the canonical boundary vonrditions
give a definite value for A, it seems unlikely that they also have a definite A
Roughly speaking, the natural boundary conditions shonld correspond to the
‘real’ point basis for vacua, defined by prescribing the asvinptotical value of the

1h

scalar fields to te be a classical vaenum'™. We have two connnents: First the
identity above, being covariant under changes of bases, should he valid even in
such a ‘real’ basis. Second, in the simplest situations we can explicitly construct

the ‘real’ point basis and check the consistency of our formal manipulations,

14 At least for a genetic superpotential, these equations fix the enrvature nnambig-
uwously. k

15 This can be made more precise by defining the ‘real’ point vacna Ly starting
from a large cirele to quantize the theory where the point basis is nnawbiguons d

adiabatically change the radins of the circle.



At any rate it would be worthwhile understanding the real point basis more
clearly.

The new proof of 1t* consists in showing that Eq.(A.2) and (A.3) follows
from the representation (A.1) of ) and the ‘AB argument’. At the formal level

we have (using the *AB argument’)
b Tr (=1 Fe=2H =
= z’;iLTl-_(_l)"'F{Q-,[G* ¢ilye ?H
= —tJjLTl' {Q Q }¢| -84
—idLTr (1) AgePH

where « means sowe sector (a, ) of the Hilbert space. Clearly, in view of (A.1)
and (A.3), this is the same as {A.2) provided we interpret 8; as D,, i.e. as the
metric covariant derivative. This is the correct interpretation. In general we get
some contribution to the derivative of Tr.(-1)F F exp[— g H]| from the variation
of the boundary condition *. Such terms Lave a structure which allows to
absorb them in the definition of the connection in D;. This is natural, because
in a sense the path integral variation should ‘dress’ the vacua at infinity as well
to make them be the new vacua. In this interpretation, for example, what the
‘AB argument’ for invariance of the Witten’s index discussed in section 2 really
shows is that ground state metric g is covariantly constant. Similarly here this

suggests that we have some covariant derivative such that

DiTro(-1)" Fem" = i3LTr,(~1)FRpie—""

(Aud analogously for E;). The connection cannot be trivial. Indeed, as shown
above, we can use the resulting equation to compute its curvature which turns
¢ut to be non-vanishing. It remains to show that the connection predicted by

this argument is the metric one. Indeed the AB argument predicts
DTr.(—1)Fe PH = E;Tr.(—-l)Fe“'GH =0,

for the connection induced by the variation of the boundary condition *.
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The same reasoning applied to (A.G) gives

Di(C5). = D,Tr.(%l)’E}—e“”" =~ WITr(-1)"6{Q7,[0 Lo,

DiC)e = DiTro (=) g,e 4 = _yTr Yo dQ [@  agpe M - D,(C).,

showing (A 4).

Fmally we show (A.3). By definition, one has (as L — + )

] .
[@.C). = fTr.(ml)'Fe‘“”[Q (o= +L/2) = o)(r=~1/2)
11 L
= -—Tr.(— ) Fe f doo;.
L -1/ ’

For L large, we can replace
+L/2 L
f_;,. L (A o ST To

In this way we get an expression to which we can apply the "AB argument’.

One gets

Q.G =TT (-1)Fe 107, g7} 4 {?,6‘}]4@

~ATe (~1)Fe P Hg; = 3Dy [Tr.(-1)Fg, emPH]

H

In view of (A.4) and dimensional analysis (i.e. dependence of the ticlds on the
scale) this equation is equivalent to {A.3). Indeed, thi, i» the covariant version
of the statement (true only in special ‘gauges’) that @ is the connection in the
7 direction. To compare with computations done in such special gauges recall
that 8 = e™%+7°/2 41d s0 Bg8ag™"' = 248,97,
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i. Introduction

One of the most fascinating aspects of string theory is the way it modifies
our intuition of classical geometry. 1t modifies it in ways which in some sense
makes the classical geometry more symmefrical, and thus, in a sense simpler.
This is probably most manifest in the principle of duality in string theory, which
states that two classically inequivalent geometries (target spaces for strings) can
nevertheless be identical from the string point of view. The aim of this paper
is to develop this notion emphasizing the basic physical reasons for believing
in its universal existence. My presentation is written with the mathematically
otiented reader in mind and even though I will not be fully rigorous I hope that
the main ideas are more or less clear to mathernaticians.

1 will first discuss some general aspects of Hilbert space of strings propa-
galing in a target space in a geometrical way and discuss the notion of duality
in this set up (section 2). Then I give some simple examples of this duality
for bosonic strings (section 3). In section 4, 1 will discuss aspects of fermionic
(super-) string vacua highlighting aspects which are relevant for mirror sym-
metries. As we will see an important ingredient in this setup is the notion of
quantum cohoemoelogy ring of Kahler manifolds which is a deformation of the
ordinary cohomology ring. In section 5 the relation between singular-ity theory
and solutions of superstrings is discussed. This turns out to be a convenient
bridge between target space interpretation and abstract conformal field theory
definition of string theory. In section 6 the topological formulation of mirror
symmetry is discussed. This turns out to be a very effective language to describe
mirror symmetry. In this setup, mirror symmetry is stated as the equivalence
of two seemingly inequivalent topological theories. This topological formulation
has the advantage of simplifying the conformal theory to a much simpler theory
which is the relevant piece needed for the discussion of mirror symmetry. Fi-
nally in section 7 | discuss some puzzles for mirror symmetry and their potential
resolutions. | also discuss some potential generalizations of mirror symmetries

and some possible connections with quantum groups and Donaldson theory.

2. String Hilbert space

In this section we discuss the basic structure of string vacua which involves
the Hilbert space and operatorial formulation of the theory (this aspect is dis-
cussed much more extensively in the talks of Friedan in this conference; for a
mathematical introduction see [1]). Consider a closed string (one dimensional
parametrized circle) sitting in a Riemannian manifold M. The space of all such
configurations is given by the (parametrized) loop space of M which we denote
by £M. The geometrical questions that arise in string theory basically corre-
spond to probing the geometry of LM. The Hilbert space of bosonic strings is

an ‘appropriate’ category of function space on LM, which we denote by
Hbosonic = (D(EM)

with norm inherited from the metric on M. The Hilbert space of ferm:onic or

supersirings is the space of semi-infinite forms on LM:
errmicmic = Am(EM)

In addition to this Hilbert space, there is a more or less canonical one to one
correspondence between the states |v) in the Hilbert space and some ‘special’
operators O, acting on the Hilbert space. Roughly speaking, these operators
are characterized by the fact that they are ‘invariant’ under reparametrizations
of the string and that when they act on a special state {0) (the vacuun state)
in the Hilbert space, they give the corresponding state (O,10) = |v}). These
form a complete operator product algebra, in the sense that the product of any

two of these operator is another such operator. Choosing a basis, we have
0:0;= Y Ck0
%

whete the sum over k is generically an infinite sum.
A conventent method of computing (',’; is as follows: In string theory to

find the amplitude of how a number of loops {; € LM ends up changing to the



JOOPS 15 © L1 we have to sum over all terpolating surfaces ¥ immersed in

M, f(¥) C M whose boundary is

(=) = Pl - P

weighed by exp(—F) where E is the energy functional of the surface immersed
in M (a natural extension of this applies to fermionic strings). We can choose
a ‘basis’ for our Hilbert space of deita functions corresponding to fixed loops
in the manifold. The above prescription then gives a way to compute the
amplitude that two of these basis elementg ends up with the third one. This
can be extended to the full Hilbert space by multi-linearity of the amplitude.
The amplitude thus computed for the two string state |¢) and ) to end up
with the third one J&) can be obtained by integrating the ‘wave function’ of
these states against the basic ampiitude with the delta functions. The resulting
answer is in fact the same as C,";

'There are consistency conditions that Hilbert space and these coeflicients
need to satisfy for a consistent theory (following from the associativity of the
operator products and modular invariance of string amplitudes). Once we are
given such a structure, we can forget about M altogether and taik about the
‘string vacuum’, meaning this abstract Hilbert space with some canonical set
of operators satisfying some ‘nice’ operator product properties. Let us denote
such a structure by S and call it a string vacvum. Then two string vacua are
equivalent, or isomorphic, if there is an isomorphism between the corresponding
Hilbert spaces and the operators. Now it may happen that strings on two

different manifolds M, and M, give rise to isomorphic string vacua
M -‘,f M but S(ﬂll) = S(Mz)

In other words the map from manifolds to string vacua may be many io one.
In such a case we call the manifolds M, and M; dual or mirror pairs. Actually
the choice of the terminology is unfortunate, as it may happen that more than
two manifolds may give rise to the same string vacuum. One could also ask the
reverse question: Does every string vacuum come from a manifold, i.e., is this

map onto? The answer seems to be no (see for example [2]).

3

The existence of mirror Symmetry is thus simply the statement of the
existence of different geometrical ways to realize a string vacuuin. We can use
any representation we please. In such cases, if we try to study some aspects of
the string vacuum we can choose any realization and may thus end up equating a
‘hard’ geometrical computation in one representation to an ‘easy’ one in another
realization. In this lies the power of mirror symmetry transforming a hard

problem to an easy one. In the next section we give some examples of mirror
pairs in the context of bosonic strings.

3. Examples of Bosonic Mirrors

In this section we consider examples of mirror manifolds which lead to
the same string vacuum for the bosonic strings. We will give two classes of
examples: In one class the mirror Riemannian manifolds are topologically the
same but geometrically distinct, and in the second class the mirror manifolds
are even topologically distinct.

Let M be the d dimensional torus identified (as a Riemannian manifold)
with

Ed

M=

where I' is a d dimensional discrete lattice group acting by isometry on flat
Euclidean space E9. Let us consider the Hilbert space of strings on M which
is related to the function space on LMj. First note that LM natually splits
to infinitely many tomporents, corresponding to each elemnent of I' which can
be identified with H,(M,, Z). Moreover, the function Space on each con.ponent
splits to the functions of the center of strings which is isomorphic to ordinary
function space on M, and functions of oscillations of loops (which is universal
and independent of T'). The function space on M} is canonically isomorphic to
I, the dual lattice to I' using Fourier transform. So the dependence of Hilbert
space of strings on ", appears as a choice of loop component (an element of r)
and the Fourier component of functions of center of string (an element of ),
i.e., the dependence comes through a choice of element of

r+r

4
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This implies that if we consider the second manifold M,

Ed
Mz = T~

Then the Hilbert spaces of strings based on My and M, are isomorphic, both
depending on the self duaf lattice I' + T*. This turns out to extend to the
full string vacuum structure, i.e., to the operators and their products. So M
and M, are mirror pairs. In physical terms this implies that there is no phys-
ical experiment one can do in string theory to distinguish strings on M; from
strings on M. This means in particular that the notion of ‘length’ is not a uni-
versally invariant way to decide if iwo manifolds are different as far as strings
are concerned. This simple example illustrates the basic structure of duality
or mirror symietry in bosonic strings. This in fact was the first example of
mirror symmetry discovored in string theory [3]. The rest of the examples are
Just extensions of this to more intricate cases.

For our second class of example we consider a simply laced compact Lie
group G. Let H denote its Cartan torus. Consider an element g € G of finite
order which belongs to the normalizer of H (i.e., it acts as a Weyl transformation
on [}, This means that

H—gHg!

Let us denote the cyclic group generated by this transformation Ay (we take
g to act non-trivially on H). Choose an element h € H conjugate to ¢ € G.

Consider the action

H—-hH

and denote the group action generated by this cyclic group As. Consider taking

the quotients of ff by these two different group actions:

I i

M] = — ﬂfg = —_—

Ay A;
These two spaces are completely different. In fact M, is not even a manifold,
but an orbifold, as g acts by fixed points on H, but Mj is simply another torus,

as b simply generates translations on H. It turns out that (bosonic) strings

propagating on M and M, are equivalent {4]. It is somewhat surprising that
M; which is not even a manifold behaves very much like the smooth manif-ld
M, as far as strings are concerned. This means, in the mathematical sense (as
is also seen n examples for superstrings [4][5]) that loop space of an orbifold
is a far better behaved object than the orbifold itself and in a sense provides a
kind of universal space for resolution of orbifold singularity.

It should also be clear from the above examples that we can construct
examples where three (or more) inequivalent Riemannian manifolds lead to the

game string vacuum.

4. Superstring Vacua and Quantum Cohomology Rings

Most of our discussion up to now has been on bosonic strings. This is the
case in which the Hilbert space is roughly speaking the function space on the
loop space of manifold. However fermionic string s the physically (and mathe-
matically) more interesting case. This is the case corresponding to the Hilbert
space of semi-infinite forms on the loop space. In most applications one consid-
ers target spaces which are Kahler manifolds. In this case the Hilbert space and
the operators acting on it naturally admit Z @ Z grading, corresponding to the
(holomorphic, anti-holomorphic) degree of the differential forms. Let () denote

the space of physical operators. Then we have the decomposition according to

0= @ O

PgEZ

the degrees of the forms:

Naturally under operator products the degrees add, as expected. Note that
since we are dealing with semi-infinite differential forms, the degree of operators
runs from —oc to +co. This is an important difference with respect to the
differential forms on the ordinary manifolds where the degree of differential
forms is positive. As we shall see later this is one of the main reasons for the
prediction of mirror symmetry in the fermionic strings. There is an anti-unitary
involution which implies that Op 4 is the conjugate of O_, _;. The existence of

this anti-unitary involution is the statement of (CPT invariance of the thenry



In the language of forms, since we are dealing with semi-infinite forms, it is
roughly the statement that operation of ‘adding’ and ‘subtracting’ forms are
conjugate operations. This turns out to be an importent piece of physics in the
story of mirror symmetry.

Stuce the manifold M is naturally embedded in LM, one expects that at
least the differential forms on M are related to a subset of those on £M and in
particular the cohomology ring of M should correspond to some closed opera-
tor algebra (modulo addition of cohomologically trivial elements) of operators
acting on the fermionic Hilbert space. Let d denote the complex dimensions
of M. Then we expect that there exist a special set of operators A, € Opq
with 0 < p,¢ < d, such that the operator algebra of A, correspond to the
cohomology ring of M. This expectation turns our to be correct and we de
note this subsector of the operators by I{**. In fact more 1s true {6]: There
is a natural way to define the product of these operators which yields a closed
truncated operator algebra when restricted to this special finite subspace of op-
eralors which becomes finite and related to the cohomology ring?. There is one
important subtlety however: Unlike the ordinary cohomology ring, the ring we
get depends on the Kahler class of the metric on M. Only in the limit where we
rescale the metric § — Ag and let A — 00 do the ring of A,’s become exactly
the cohomology ring of M. The deviation from the classical result is due to
instanton corrections [7] (an explicit exact result for instanton correctjon on Z
orbifold is discussed in [8]). So string theory deforms the cohomology ring. A
nice description of this deformation is as follows [9]. In order to describe this it
is more convenient to go to the dual basis (i.e., homology). Let A® denote the
dual basis. Each & can be represented by a cycle in M. In order to specify the
ring, it is sufficient to give the trilinear pairing between cycles. The ordinary

ring is obtained by defining this pairing to be

<A APAY >= #C*nCP nev)

2 This is unlike the ordinary cohomology ring of manifold, in that the actual prod-
uct of harmonic representatives does not form a closed operator algebra.

7

Le., the number of cominon intersection points of the three cycies (and defining
it to be zero if the common intersection has dimension bigger than zero). To
define the ring we obtain in string theory we have to consider the space of
holomorphic maps from CP! to the manifold M (rational curves in M), with
the restriction that three fixed points on P! get mapped to points in ¢, (P
and (7 respectively. Again if the dimension of moduli of such maps is positive
they do not contribute to the cohomology ring. The isolated ones contribute
weighed by the instanton action. Let us denote an element of the space of such
holomorphic maps by A*%7. Let U denote the image of the sphere under h.
Let k denote the Kahler form on M. Then the definition of the deformed ring

(which is commutative and associative as shown in [9]) 1s

< A°APAY = Z; #(CNU)-#(CPA)-#(CNU) exp—/fl'“m(k) (4.1)
ho Y

Note that in the limit £ — oo only the constant holomorphic maps survive in
this sum and that gives back the ordinary definition of intersection between
cycles. So in this way we have a quantum deformed cohomology ring. To
actually derive (4.1) in the context of string theory (and define it properly for
multiple covers of holomorphic maps)?® is achieved by showing the topological
nature of computation (and showing that on the cylinder it can be rophrased
as a computation in a topological sigma model [9] whic'i is discussed briefly in
section 6). Without going to much detai! let me at least indicate why its form is
reasonable from what we have discussed up to this point. As we have discussed
before to compute the algebra of operators in string theory we have to consider
maps of a sphere with three discs cut out, to the manifold with three fixed
boundary circles mapped to specific loops on the manifold. For constant loops
or loops which are ‘close’ to being constant, we can take the limit in which
the discs shrink to points, and map a specific point on CP! to a particular
point on the manifold. Now the string loop amplitude computation tells us

that we have to sum over all such loops weighed with e~ E which in this case is

3 Recent progress from this viewpoint has been made in {10].

8



nothing but the exponential of the pull back of the Kahier form on the map, as
it appears in (4.1). The factors in front of exponential simply counts how many
inequivalent ways a fixed rational curve could map to the three cycles {which is
accomplished by an SL(2,C) transformation of CP! to move the three points
on the sphere). The fact that we sum over only holomorphic maps in (4.1) and
get an exact answer and its precise definition can be best understood in the
topological description of sigma models [9].

1t is quite natural to speculate that this deformed ring may be the actual
cohomology ring on a properly defined loop space. One way this may be realized
is to consider the space of holomorphi- maps from the disc to the manifold. The
map from the boundary of the disc to the manifold induced from such maps
may be viewed as a ‘modified’ loop space. In this loop space the points of the
manifold will be represented more than once in the loop space; in fact if we
look for the space of constant loops which was previously isomorphic to the
manifold, that would be the same as looking for holomorphic maps which take
the boundary of the disc to a point, which is basically a holomorphic map from
the sphere to the manifold. So in this case the manifold and ail the holomorphic
curves in it are representing the original manifold in this loop space. In this
set up it is likely to expect that there exists a fixed point formula for the
cohomology elements (corresponding to the circle action on the loop) which
reduces the computation of cohomology elements to the fixed point subspace
which consists of the manifold and the holomorphic curves in it. This would
then (presumably) give rise to the cohomology ring defined in (4.1) with k= 0.
We can then expect to get the deformed ring by twisting the cohomology ring,
which allows us to weigh the different fixed points (i.e., different holomorphic
maps} differently, and thus obtain the formula (4.1} with k # 0. This line
of thought is worth pursuing further and may lead to a better geometrical
understanding of the loop space itsell.

As an example, if one considers strings on C'P!, if we denote by z the
standard (1, 1) cohomology element, the classical cohomology ring is generated
by x with

1'2:0

Let 3 = exp — fk integrated over the nontrivial 2-cycle. Then the quantum
deformed cohomology ring can be computed from its definition given above and

is generated by z but the relation is deformed to [9]
2’ =

This can be generalized to CP™ [11] with the result that the quantum coho-

mology ring is defined by
.’L‘ﬂ+1 — ,B

We will discuss the conjectured generalization of this to the Grassmanians in
the next section (see also [11]).

Note that in the above examples the deformed or quantum cohomology
ring does not respect the grading of differential forms (in physics terminology
we say that the instantons have destroyed chiral fermion number conservation},
but the amount of violation of grading can be understood. The point is that

the (formal) dimension of moduli space M of holomorphic maps h s given by
dimM = d + c1(h)

where d is the dimension of manifold and ¢;(h) denotes the evaluation of the
first chern class on the image of h. By the definition of quantum cohomology
ring we see that the sum of dimensions of cohomology elements will have to he
d+c1(R) in order to get a non-vanishing result, which means that we have a vio-
lation by e(h). This explains the cohomology ring structure for C P discussed
above (where ¢; = n+ 1 for the fundamental cycle). Note the fundamental role
played by Kahier manifolds where ¢; = 0, i.e., the Calabi-Yau manifolds. In
this case there is no violation of the grading, and we indeed get a quantum coho-
mology ring which respects the cohomology grading. For Calabi-Yau manifolds
of dimensions one and two (torus and K3), there are generically no hoiomor-
phic maps (this is due to the fact that if there were any there would be a three
dimensional family of them by Mobius transformations, and so this would be in

contradiction with the above formal dimensian). So the first case of interest in



terms of the defo.mation of cohomology rings is the case of Calabi-Yau 3-fold,
which has also been the case of most interest for string theory*.

To obtain a ‘étatic’ solution to superstring theory, it turns out that the
target Kahler manifold M should admit a Ricci-flat metric, i.e., by Yau'’s the-
orem it should be a Calabi-Yau manifold®. In such a case the dimensions of
HY9(M) is one, and thus we have in our theory an operator corresponding to
this clement in /%9  This operator induces an somorphism on the space of
operators by muitiplication [6]. This is known as the spectral flow and gives
the isomorphism

Op.q ~ Op+d,q

"The fact that this is an isomorphism is related to the existence of the conjugate
(or inverse) operator. In other words By conjugation there must also erisi
conjugate operators in FI~?P. This operator induces a correspondence between
operators:

Om ~Up-dg

(similar statements of course hold for conjugate sectors of the Hilbert space and
amounts to shifting the anti-holomorphic degree by —d). This isomorphism in
particular applies to the special operators operators H?? with 0 < p,g < d

which represent cohomology of M and thus suggests that there are also ‘special’

4 For manifolds which have & < 0, by which I mean there are some two cycles
where ¢; evaluates to a negative nurnber, the underlying theory is not very well be-
haved (i.e., it is not asymptotically free) and it seems that similarly the quantum
cohomology ring is scmewhat il defined (in the Landau-Ginzburg description to be
mentioned in section 5 it corresponds to perturbing the action by non-renormalizable
terms with charge greater than 1). So quantum cohomology rings make better sense
for a1 > 0. However it would be interesting to see, and there is some indication [12]
that maybe the mirror map acts on the space of all Kahler manifolds {possibly non-
compact) by flipping the sign of ¢, which in particular sends a Calabi-Yau manifold
to another Calabi-Yau manifold.

5 Physically we should not ignore other manifolds a8 is commonly done, since one
can use them to construct interesting non-static solutions of string theory, of the type
relevant for cosmology (see for example [13]

1

operators which we denote by I{P~%9 py shifting the holomorphic degree by

—d. These special operators have the following properties which follows by the

above isomorphism:
dim H* = dim 179" = dim 0% = dimm {99 = |

dim H7P4 = dim pd-Pa < pd-pa

where A*" denote the hodge numbers of M. It looks as if the operators in If ~P4
describe the cohomology of a d-dimensional manifold which has the same hodge
diamond as M except that it is flipped. In fact from the structure of string
vacuum [6] it follows that there is a closed operator ring among these states
which is additive in terms of their Z @ Z grading just as was the case for
the operators HP? with 0 < P,¢ < d. Note that the correspondence between
cohomology elements of H~P9 and H-P4 do not respect the ring structure and
is thus not an isomorphisms of these rings. So we learn that for any Calabi-
Yau manifold we find not one but two rings—only one of which is related (o the
deformed cohomology ring of the manfold. This second ring we call the complez
ring of the manifold as it will turn out to (generically) characterize the complex
structure of the Calabi-Yau manifold®,

So far we have described the Hilbert space and operators corresponding to
strings imbedded in a Calabi-Yau manifold M. But usually we are given not
a Calabi-Yau manifold, but the string vacuum itself, i.e., a Hilbert space and
a set of operators acting »n it. Note that in the isomocphism class of string
vacua, if we just relabel the labels of O, , by O_p,4 we have not changed the
string vacuumn, and we obtain an isomorphic vacuum. This involution of one
of the gradings simply exchanges the two rings that we discussed above. In
this abstract setting how do we decide which of these two rings are ‘preferred’

in the sense that it corresponds to the deformation of the cohomology ring

6 The complex ring can be viewed geometrically as the ring generated by wedg-
ing H*(AO) where © represents the holomorphic tangent bundle {14]. That their
dimension is related to that of H%?7 can be easily infered from the existence of a
holomorphic d form for the Calabi-Yau case.
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of a manifold? Since these two rings are absolutely on the same footing as
far as the string vacuum is concetned, ie., that there is an isomorphic string
vacuum which relabels the sign of one of the gradings, the only way to restore
the impartiality is to postulaie that for every Calabi-Yau manifold M there 1s
another manifold M, such that the siring vacuum on either M or M gives rise

te both cohomology rings. This in particular means that

RP(M) = hI-PI(M) (4.2)

This is the basic idea of mirror symmetry [15] [6]. Note that this idea applies
to a Calabi-Yau manifold of any dimension {not just three as is mostly applied
to). Also note that the dimension of complex deformations of M which is equal
to h'41(AM) is equal to the dimension of Kahler deformations of M and vice
versa. So under this mirror symmetry the shape and size of the manifolds
get exchanged. Since the quantum cohomology ring encodes the information
about the Kahler class in it, and under mirror symmetry shape and size get
exchanged, this explains why the second ring, the complex ring, is characterizing
the complex structure of the manifold.

Let us consider the simplest examples of mirror pairs: As we have discussed
hefore for bosonic strings, strings propagating on a torus and the dual torus
give identical vacua and form mirror pairs. It turns out that these are in fact
also the simplest examples of mirror vacua for fermionic strings. Let us explain
this briefly in the context of simplest complex torus, a one dimensional complex
torus which is geometrically the product of two circles with radii Ry and Rj.

Then the complex structure 7 of the torus and its volume —tp are given by
p= 1By Iy

Now we apply the duality described in section 2 for bosonic strings in the
case of target space being a torus. This duality works equally well for bosonic
and fermionic strings. Let us apply that to the second circle of this exainple
sending B2 — 1/Hy and we thus end ip exchanging p —~ 7 . This 13 an

evamnle of tha ceneral nhenamena described ahave namelv that the moduli

controlling the shape and the size of the Calabi-Yau manifolds are exchanged
under such a duality”. This is the simplest example of mirror symretry. It
is worth emphasizing that the other beautiful examples that have been found
are highly non-trivial to describe geometrically [16] [17) [18] and have far more
out reaching consequences. Nevertheless the basic idea remains the same, and
fits very naturally into the general framework of duality just as we saw for the

bosonic strings.

5. Catastrophes and Superstring Vacua

In this section we describe a link between string vacua and catastrophe
theory. The origin of this direction of study of strings was motivated by trying
to ignore geometry of target space and classify all string vacua directly (as had
been emphasized by Friedan). So far we have mostly described string vacua
arising from strings propagating in some target space. However, there are other
useful ways to describe string vacua which may or may not be related to such
a picture. The main idea is to note that the string amplitude was defined as
a sum over all interpolating Riemann surfaces weighed by energy functional
exp(~F). Here E = f|D1:|2 where T denotes the map which defines an immer-
sion of the Riemann surface into the target space (with appropriate addition
of fermionic terms in the case of superstrings). The basic idea to generalize
this is to think of E as a functional of some fields (functions) defined on the
Riemann surface. This defines a quantum field theory in two dimensions. There
are many interesting examples of such field theories, but we will mention the
one most relevant, for superstring vacua which is the case of Landau-Ginzburg
theories. Without going to too much detail it turns out that in this case the
field theory is characterized by a single holomorphic function W(ri} where =

are superfields. It was found [19] that quasi-homogeneous s which have an

7 This duality extends to the full moduli of the torus not just to the case that it
is geornetrically the product of two circles. In the more general case the size also is
a complex modulus due to the appearance of the anti-symmetric tensor fields which
effectively complexifies the Kahler cone.



isolated critical point at z; = 0 give rise to a nice class of (super conformal)
theories. In this way the classification of quasihomogeneous singularities be-
came very relevant for the classification of string vacua. Moreover, it was found
[20] that if the index of the singularity® is integral and equal to the number
of variables x; minus 2, they are related to string vacua propagating on the
Calabi-Yau ‘manifold’ defined by (the possibly singular variety) W(z;}) = 0 in
weighted projective space with a very particular Kahler metric. This clarified
the geometrical meaning of the important discovery of Gepner [21] in his con-
struction of string vacua. Note that the complex structure of the Calabi Yau
is fixed by W = 0, but the Kahler structure of Calabi-Yau is only implicitly
specified by W (through its quantum symmetries) [22]{20]. As an example if
we take
W:x‘+y4+zz+ax2y2

Setting W = 0 in weighted projective two space, we get a one dimensional
torus whose moduli is fixed by @. The volume of the torus s implicitly fixed
(by the existence of quantum Zy symmetry) which teaches us that the volume
of this torus is 1 for ali @ {and the anti-symmetric field vanishes) [22]. So in
this way the study of strings propagating on Calabi-Yau manifolds can be very
effectively studied using this picture, and this has become an important tool in
the recent discovery of interesting class of examples of mirror syminetric pairs
of string vacua.

For strings on Calabi-Yau manifolds, as we discussed before we antomati-
cally get two rings, only one of which is the cohomology ring of the manifold.
What is the other, the complex ring, geometrically? Well, a subring of this
second ring can be described geometrically, when the Calabi-Yau theory is rep-
resented by a variety defined by W =0in a weighted projective space. In this
case if we consider the (integral dimension) ring of the singularity defined by

C[a:.-]

8 For a quasihomogenous function the index is defined as follows: By assigning
degree one to a quasi-homogeneous W we can obtain fractional weights ¢; of variables
zi. The index of W is simply 31— 2q:).
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they generate a subring of {~PP discussed belore (where p corresponds to the
degree of the ring element). It would be interesting to see if one can extend
this picture to the full ring for all H-r9 (and not just the diagonal elements).
Note that this ring certainly does depend on the complex moduli of Calabi- Yau
manifold (as that changes as we change W). This is consistent with the mirror
picture, namely the mirror ring depends on Kahler moduli (as the quantum
deformed cohomology ring does depend on Kahler moduli).

S0 can we describe the quantum deformed cohomology ring of some man-
ifolds using singularity ring for some W? The answer to this question should
be in the affirmative if the mirror picture is valid. After all the BUIrGE map
changes H~PP — HPP apd 5o maps (part of) the singularity ring to the diago-
nal elements of the deformed cohomoalogy ring. The computation of cohomology
ring for Calabi-Yau manifolds is in general rather difficuit. So in this way we
map a difficult problem (computation of deformed cohomology ring) to a sim-
ple problem (computation of the ring of a singularity) once we know the right
transformation.

The quantum cohomology rings are easy to compute in some cases, as
we mentioned before. For example for O P™ we mentioned that the deformed

cohomology ring is
2:"+I = ﬁ

This of course can be written in the ‘mirror’ picture by the ring of W according

to (5.1): o
xn

n+2—ﬂm
This can also be generalized to Grassmanians?. As discussed before for the

W(.‘l') =

case where ¢; £ 0 we expect to violate the grading of the ring, which means the

® The cohomology ring of Grassmanian U(n +k)/U(n) x U(k) can be written as
the singularity ring [6] generated by a single potential Wiz =Y 0" g kg1
where z; are syrnmetric polynomials of degree ¢ in z; (with 1o monomial appearing
more than once) and ¢ runs from I to n. The i correspond to the chern classes
of the n-dimensional tautological vector bun dle on the Grassmanians. The quantum
deformation of this ring is naturally conjectured tobe W — W_ Br1. The motivation
for this comes from the fact that a=n+k.

i6
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corresponding W would not be quasi-homogeneous. For Calabi-Yau manifolds
as we mentior:=d before the grading of the ring is respected by the deformation,
8o if the deformed ring is that of a singularity ring the corresponding W will

again be quasi-homogeneous.

6. Topological Mirrors

So far we have talked about mirror symmetry in the following sense: We
have strings propagating on two manifolds M; and M3, which lead, as described
before, to two Hilbert spaces each equipped with an infinite set of operators
acting on them. Then if these two structures, or vacua, are isomorphic, we call
M) and M; mirror pairs. Establishing this isomorphism at the level of Hilbert
spaces is in general a complicated task. It would have been nice if there were
a simple criterion to establish their equivalence. This question is also the same
as asking how do we find a simple way to classify string vacua.

Classifying string vacua (and in particular static solutions which corre-
spond to conformal field theories in two dimensions) has been investigated in-
tensively in the past seven years. We are unfortunately still far from a complete
classification. However for the fermionic vacua, an interesting class of vacua
have, as discussed before, a simple description in terms of quasi-homogeneous
singularities. In fact it is believed that for any quasi-homogeneous function W
there is a unique string vacuum. In other words it is believed that the infor-
mation about W is encugh to reconstruct the full Hilbert space of strings and
operators acting on it. More generally, whether or not the theory comes from
a quasi-homogeneous singutarity, it is believed that essentially given the chiral
rings in the theory one has enough information to reconstruct the full theory.
Applied to the special case of strings propagating on manifolds this may sound
a little strange: We seem to be saying that given the cohomology ring of a
manifold, we can find the manifold, which is certainly false. However it is for
the special case of Calabi-Yau manifolds that we are considering this and in
such cases just specifying the hodge numbers may go a long way in determining

the manifold itself. Moreover we have fwo rings the gquantum cohomology ring

and the complez ring, which fix the Kahler class and the complex structure of
the manifold respectively. Thus from Yau's proof of Calabi’s conjecture which
shows that knowing the Kahler class uniquely fixes the Ricci flat metric we can
reconstruct the metric on the manifold by the information encoded in these
rings.

Having said all these, it becomes clear that the phenomena of mirror sym-
metry can be formulated more compactly by stating that the two rings we get
for one manifold are exchanged in the mirror manifold. In other words we can
forget about the rest of the siructure of string vacua and Hilbert spaces and
the full set of operators acting on them and concentrate simply on tuis finite
dimensional subset of special operators. In fact this concept can be formal-
ized. Consider strings propagating on a Kahler manifold. It turns out there
is a twisted or topological version of this theory [9][23} which can be obtained
by a simple modification of the definition of the theory (by shifting the spin of
fermions) which has the effect that the only physical operators we obtain are
the ones corresponding to the cohomology classes and that they form the quan-
tum cohomology ring of the manifold. If in addition the manifold in question is
a Calabi-Yau manifold this twisting can be done in two inequivalent ways ( by
shifting the spins of fermions chirally, which is allowed for Calabi-Yau manifolds
because of absence of sigma model anomalies since (M) = 0), one of which
gives the quantum cohomology ring and the other gives the complex ring, which
(except for the diagonal elements) has a less clear geometrical meaning. In this
way we can get both rings depending on which twist we choose. Ilowever, 1t
is clear that in this topological description the ordinary cohomology ring has a
mote ‘natural’ origin, and it seems to be ‘preferred’. However, there is another
way to describe (fermionic) string vacua and that is via a Landau-Ginzburg
theory. In this case we can also twist the theory and obtain a topological ver-
sion [24] whose only (physical) operators correspond to the singularity ring of
W. Again, if W is quasi-homogeneous, this can be done in two different ways,
one of which corresponds to the singularity ring which when W describes a
Calabi-Yau manifold correspond to its complex ring, and the other which has a

less clear geometrical meaning (as it appears in the twisted sectors) correspond



to the deformed cohomology ring. So we see that agatn we have two rings, but
the complex ring is ‘prefetred’.

‘The notion of mirror symmetry can be simply translated to the equivalence
of a topological sigma model with a topological Landau-Ginzburg model, where
the ‘preferred’ ring of the sigma model (the quantum cohomology ring or Kahler
ring) gets mapped to the ‘preferred’ ring of the Landau-Ginzburg model (the
smgularity ring or complex ring). Stated in this way this mirror symmetry is
more general than Calabi-Yau manifolds, as the W may or may not correspond
to a Calabi-Yau manifold (even if it is quasi-homogeneous (see next section)).
Also W may not be quasi-homogeneous as the example of the Grassmanni-
ans mentioned before illustrates (ie., it goes beyond conformal theories) but

nevertheless we have a mirror symmetry in the sense defined above.

7. Some Puzzles and Conclusion

It would be nice to be able to state the mirror symmetry in full generality.
In geometrical terms, in the sense that strings on manifold M; behave the same
way as strings on manifold M; this would be rather difficult to do. It is difficult
even to fix precisely which category of geometrical objects we are considering.
If we fix the category to be that of Calabi-Yau manifolds this would be false
because there are examples of Calabi-Yau manifolds which are rigid (i.e., do not
admit complex deformations) therefore their mirror would not admit Kahler
deformations (i.e., A1 = 0), which means that the mirror would not even be
a Kahler manifold! So in this sense we have lost the mirror. However in the
sense of equivalence of two topological theories, i.e., equivalence of a topological
theory based on a sigma model and that on a Landau-Ginzburg model this
may still be possible. In fact now we will give an example where this is indeed
what happens. Consider a three-fold Calabi-Yau manifold defined by taking
the product of three two dimensional tori, with Z3 symmetry, and modding
out by a Z3 X Z3 symmetry generated by the elements (w,w™t,1),( lw,w1)
acting on the three tori, where w denotes the Zs3 action. It is possible to resolve

the fixed point singularities and obtain a smooth Calabi-Yau manifold. This

1¢

manifold is rigid, in that it does not admit any complex deformations W2 =g
The dimension of Kaller deformations is A = 84, What is the mirror for
this manifold? The answer turns out to be easy in this case: It is the Landay-
Ginzburg theory defined by

W= Z I?-{- E Qijk LiT;Tk
=19 EIRE
The way we know this is that at Gijk = 0 we can explicitly construct the
Landau-Ginzburg theory and compare it explicitly with the geometrical de-
scription which also turns out to be exactly solvable (before blowing up the
singularities) and one finds that ( with the metric and the antisymmetric field
of tori corresponding to the point of enhanced Z3 symmetry) they agree. More-
over one can map the fields z;z;z4 to the Kahler classes of the manifold. So in
this way the 84 Kahler deformations of the manifold {which includes the blow
up modes) will get mapped to the deformation of W which are captured through
varying a;;x above. This description of mirror symmetry is enough to capture
the counting of instantons on the original manifold by studying variations of
Hodge structure characterized by W [L4]so for the purposes of ‘simplifying’ the
instanton counting it works as well. So in a sense we do not really need a ge-
ometrical mirror; or if we insist we can say that the geometrical mirror in this
case is a 7 fold defined by W = 0 in CP®. But this description is only valid
as far as we are relating the variation of its Hodge structure with the deformed
cohomology ring of the original Calabi-Yau manifold1®. [his example reinforces
another view of mirror symmetry, namely, the abstract property of the rings
that may arise in conformal theory is the same whether or not they come from

the cohomology ring or the complex ring. So somehow the lesson is to forget

10 It would be interesting to see if turning on (possibly singular) dilaton fields
and torsion on this 7-fold, gives a sigma model which is equivalent Lo the three fold
Calabi-Yau we started with. As is well known turning on dilaton field shifts the
effective dimension (central charge) of the theory. In such a picture the freezing of
Kahler degrees of freedom would be related to solving dilaton equations of motion.

20
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about the underlying manifold altogether and concentrate on abstract proper-
ties of the rings, and the classification of the kinds of rings that can appear.
This s very much the question of classification of variation of Hodge struc-
tures{25]. This is in fact the point of view advocated by Cecotti [14]. In this
setup the existence of mirror symmetry is probably related to the ‘scarciiy’ of
inequivalent types of variations of hodge structure (with some given topological
invariants).

The same idea of mirror picture applies even to the general case of man-
ifolds with ¢; # 0, for example the Grassmanians, where the ‘mirror symime-
try” allows us to compute exactly instainton corrections to the analog of ‘Weil-
Petersson’ metric for such manifolds [26]. This follows from the structure of
special geometry which exists even off criticality. This reinforces the picture
that we should not restrict our atiention to Calabi- Yau manifolds if we are lo
have a deeper understanding of mirror symmetry.

The notion of ‘quantum’ cohomology ring might remind one of seemingly
unrelated subject of ‘quantum’ groups. - As is well known these groups have
representation ring which is a ‘quantum deformation’ of the classical represen-
tation ring of the group. The deformations being parametrized by a parameter
& which is the level of quantumi group, and as k — 0o we recover the classical
representation ring. Indeed this & seems to play a very similar role to the role
kaltler class & plays in quantum cohomology ring in the infinite limit of which
one recovers the classical cohomology ring. It turns out these two different
‘quantur rings’ are not as unrelated as might seem at first sight! In partic-
ular 1t has been shown [27] that for special class of such theories the fusion
ring (representation ring) of quantum groups get mapped to the chiral ring of
a Landau-Ginzburg theory (see also [28] [11]}. For example, if one considers
SU(n) quantum group with level k = 1, its representation ring is isomorphic to
the quantum cohomology ring of CP™-1 (discussed before). It would be inter-
esting to see whether or not all the rings of quantum groups can be interpreted
as the quantum cohomology ring of some manifold {for example which manifold
has the qnantum cohomolgy ring related to Chebycheyv polynomial?). This con-

nection ha become even more intriguing with the discovery [26] that precisely

these Landau-Ginzburg theories seemn integrable field theories in the sense that
they have an integrable classical equation describing the generalized special ge-
ometry (some further evidence for their integrability has been found in {29}).
It was further conjectured in [26] that whenever the ring of a supersymmetric
theory corresponds to that of a RCFT (rational conformal field theorieé), ie. a
solution to quantum group representation ring, the corresponding field theory
is integrable. These connections we believe are very important to understand
better for a more abstract understanding of ‘mirror symmetry’ and ‘quantum
rings'.

We have learned that mirror symmetry is the statement of equivalence of
two topological theories, one which is difficult to compute and the other which
is easy. It is natural to continue this line of thinking and suggest that the same
thing happens for other topological theories. In particular Donaldson theory
which captures some invariants for differentiable manifolds in four dimensions,
has a topological field theory description [30]. It is in general very difficult Lo
compute Donaldson invariants, just as it is in general difficult to contpute the
number of rational (holomorphic) curves in a manifold. But we have seen in
the latter case that there is a simpler topological theory which is the Landau-
Ginzburg description. It is tempting to conjecture that there is a similar thing
going to happen in four dimensions [31], namely that there must be a topological
mirror theory, far simpler than Donaldson thecry, which via an appropriate
mirror map allows us to effectively compute Donaldson invariants. It remans
to be seen if this conjecture is valid.

It is a pleasure to thank S. Cecotti for many discussions which has greatly
influenced my thinking on this subject. 1 would like to thank 3. Kazhdan for a
careful reading of this manuscript and for making suggestions for its improve-
ment. 1 also am thankful to I. Singer and S.-T. Yau for encouraging me to
participate in this conference. This work was supported in part by the Packard

Foundation and NSF grants PHY-89-57162 and PHY-87-11654.



1]
2]
3]
[4]
15]
(6]
(7

(8]

)

[10]

(1]
(12]
[13]
(14]

[15]
[16]
(17]
18]

9]

References

G. Segal, Conformal Field Theory, Oxford preprint; and lecture at the
IAMP Congress, Swansea, July, 1988.

K.S. Narain, M.H. Sarmadi and C. Vafa, Nucl. Phys. B288 (1987) 551;

J. Harvey, G. Moore and C. Vafa, Nucl. Phys B304 (1988) 269.

K. Kikkawa and M. Yamasaki, Phys. Lett. B149 (1984) 357;

N. Sakai and I. Senda, Prog. Theor. Phys. 75 (1984) 692.

L. Dixon, J. Harvey, C. Vafa and E. Witten, Nucl.Phys. B274 (1986) 285 ;
J. Lepowski, Proc. of the Nat. Acad. of Sci. 82 (1985) 8295.

S.S. Roan, Int. Jour. of Math., v.1 {1990} 211.

W. Lerche, C. Vafa and N. Warner, Nucl. Phys. B324 (1989) 427.

M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nucl. Phys. B278 {1987)
760; B289 (1987) 319.

8. Hamidi and C. Vafa, Nucl. Phys. B279 (1987) 465;

L. Dixon, D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B282 (1987)
13.

E. Witten, Comm. Math. Phys. 118 (1988) 411; Nucl. Phys. B340 (1990)
281.

P.S. Aspinwall and D.R. Morrison, Topological Field Theory and Rational
Curves, preprint, QUTP-91-32p, DUK-M-91-12.

K. Intriligator, Fusion Residues, Harvard preprint, HUTP-91/A041.

This idea arose in discussions with G. Horowitz.

A. Tseytlin and C. Vafa, preprint HUTP-91/A049; JHU-TIPAC-910028.
S. Cecotti, Int. J. Mod. Phys. A6 (1991) 1749;

S. Cecotti, Nucl. Phys. B355 (1991) 755.

L.. Dixon, unpublished.

B.R. Greene and M.R. Plesser, Nucl. Phys. B338 (1990) 15

P. Candelas, X.C. de la Ossa, P.S. Green and L. Parkes, Nucl. Phys. B359
(1991) 21; Phys. Lett. 258B (1991) 118;

P. Candelas, M. Lynker, and R. Schimmrigk, Nucl. Phys. B341 (1990) 383.
P.S. Aspinwall, C.A. Lutken, and G.G. Ross, Phys. Lett. 241B (1990) 373;
P.S. Aspinwall and C.A. Lutken, Nucl. Phys. B355 (1991) 482.

C. Vafa and N. Warner, Phys. Lett. B218 (1989) 51 ;

E. Martinec, Phys. Lett B217 (1989) 431.

23

20)

(21]
(22]
[23]
[24]
[25]

[26]
27)
[28]
29]

[30]
(81)

B.R. Greene, C. Vafa and N. Warner, Nuc!. Phys. B324 (1959) 371;

E. Martinec, Criticality, Catastrophe and Compactifications, V.. Knizhnik
memorial volume, 1989,

D. Gepner, Phys. Lett. 199B (1987) 380; Nucl. Phys. B296 (1987) 380.

C. Vafa, Mod. Phys. Lett. A4 (1989) 1615.

T. Eguchi and S.-K Yang, Mod. Phys. Lett. A4 {1990} 1653.

C. Vafa, Mod. Phys. Lett. A6 (1991) 337.

P. Griffiths, Variation of Hodge Structure, in Topics in Transcendental Al-
gebraic Geometry, Princeton University Press, Princeton 1984.

S. Cecotti and C. Vafa, Topological Anti- Topological Fusion, preprint
HUTP-91/A031; SISSA-69/91/EP; and HUTP-91/A062 .

D. Gepner, Fusion Rings and Geometry, preprint, NSF-ITP-90-184.

M. Spiegelglas and S. Yankielowicz, in preparation;

M. Spiegelglas, Setting Fusion rings in topological Landau-Ginzburg thes-
ries, preprint, Technion-PH-8-91 (1991).

D. Nemeschansky and N.P. Warner, Topologicai Maticr, Integrable Models
and Fusion Rings, preprint USC-91/031.

E. Witten, Comm. Math. Phys. 117 (1988) 353.

S. Cecotti and C. Vafa, Work in progress.

24



e

IR e I

Nuclear hysics B 367 (1991) 359461
North-Holland

Topological-anti-topological fusion

Sergio Cecotti

International School for Advanced Studies, SISSA~ ISAS, . rieste. and INFN. sezione i Trieste.,
Trieste, Italy

Cumrun Vafa
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, {54

Received 24 June 1991
Accepled for publication 5 August {991

We study some nom-perturbative aspects of N =2 supersymmetric quantum ficld theoties
tboth superconformal and massive deformations thereof). We show that the metric for the
supersymmetric ground states. which in the conformal limit is essentiaily the same as Zamalo -
chikov’s metric, is pseudo-topological and can be viewed as a result of fusion of the topalogical
version of N =2 theory with its conjugate. For special marginal /refevant de ormations {eorre-
sponding to theories with factorizable §-matrix), the ground state melric satisfics clhissical
Toda/Affine Toda equations as a function of perturbation parameiers. The wnmique cansistent
boundary conditions for these differential equations seem to precdici the normalized QP ol
chiral fields at the conformal point. Also the subset of N =2 theories whose chiral nng s
isomarphic to SU(N ), Verlinde ring turns out 1o lead to affine {oda eguations of SUCA ) type
satisfied by the ground state metric.

1. Introduction

N =2 supersymmetric quantum field theories have recently undergone an
intensive investigation from many different points of view: From the string point of
view N =2 superconforiaal models in 2 dimensions constitute the building blocks
of N =1 space-time supersymmetric string vacua {1]. From the point of view of
classification of conformal theories, they are in a sense the simplest type to classify.
and a nice subset of them, supersymmetric Landau-Ginzburg theories. s relate |
to catastrophe theory [2-5]. From the point of view of topological characterization
of the theoty, they have a finite ring of operators (chiral primary ficlds) (4] which is
believed to basically characterize them. There is a “twisted” version of these
theories [6), the topological version, which has as its physical degree of freedom
only these operators. These topological theories have been s udied from the view
point of 2d superconformal [7} and topoiogical Landau-Ginzburg theories [8]. and
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from the viewpoint of their properties under coupling to topolegical gravity in
[v-11).

I'rom a slightly differcnt point of view, N =2 supergravity theories has also
been studivd in four dimensions, and it was found that for the construction of the
theory o very special type of Kahler geometry is needed [12]. This in turn is related
o the fact that in the type I superstring compactification, leading to 2-dimen-
sional N = 2 superconformal theories, the metric on moduli space of a three-fold
Calibi-Yau has special properties, and is basically characterized by 2 holomor-
phic. topological object (pre-potential) [13,14]. This geometry is calle ! “special
geametry”™. The metric on moduli space of Calabi-Yau is the same as the
Zamolwdehikov metric of the underlying N = 2 SCFT, thus relating geometry with
SCET correlation functions.

In the tpological description of N = 2 thearies, one of the Iwo supersymmetry
charges plass the rote of @ BRST operator and the physical opcrators of the (heory
get truncated to the chiral ring. In this way the computations can be performed in
a more or less closed form. The topological correlation functions are basically
combmatorial ubjects, holomorphic functions of moduli, In the casc of spectal
geometry these topological correlation functions serve as coefficients of differential
cquations characterizing Zamolodehikov's metric on moduli space, which thus
nuikes the Zamalodehikov's metric pscudo-topological. The Zamolodchikov metric
which appeirs for example in the low-cnergy dvnamics of the effective field theory
description of strings is thus characterized by purcly kinematical / combinarorial
topalogical data. In these cases one finds that the Zamolodehikow {(Weii-Peters-
son)dometric s Kiihler and the Kihler potential is written as a finite sum of
holomaorphic and anti-helomorphic ~Mocks™ {periods) in the moduli of 1arget
SPHICL.

in the context of supersymmetric quantum mechanics related to LG theories it
wits Tound inref. T1] that the same sysiem of differential equations that character-
izes the ground state metric (hasically the Zamolodchikov metric) at the conformal
paint and gave rise to special geometry are also valid off the conformal point. That
naturally ruises a guestion of whether there is a generalization of special geometry
wtt the contormal point as well.

Gne ot the aims ol this paper is to uncover the special geometry for massive (i.c.
non-conlormal) theories as wel, and cxplain the rationale for finding a pseudo-
topologicil metric trom the topalogical viewpoint for both masstess and muassive
theoiies. Basicaily what we find is. that if one fuses a topological theory with itsclf,
one ends up with topological objects such as the holomorphic pre-potential which
arise i special geometry. )1 on the other hand we fuse a topological thcory with s
coniugitie, which we call anti-topological . we end up with pscudo-topologics
abjects such as Zamoladehikov's metric, The generalized notion of special geome-
uy simply cncodes this relation between topological-topological fusion versus
tapofogival- amti-topological fusion and their variation with respect to moduli. We

8. Cecouti, C. Vafa / Topological - anti-topological Susion 6

show from this viewpoint in precisely what sense they are topological and derive
the equations that characterize theny, thus generalizing the results derived in ref,
[14] for Landau-Ginzburg theories to arbitrary N = 2 QFTs. In this way we find 4
Zeneralized special geometry to be equally valid on- »r off-criticality. Even though
the equations are the same in the two cases, we find a sharp difference hetween
the solutions to these equations on- and off-criticality. Tn both cases we find the
metric to be a sum over z finite block of objects, but in the critical theory these
objects (periods) are holomorphic while in the off-critical theory these objects (ihe
generalized periods) are nor holomorphic functions of moduli and are genorically
far too complicated to give in closed form. From the viewpoint of chira! rings the
main reason for complication of solutions to special geometry in the mussive case
is that in this case the ring is rot nilpotent.

These ideas are made more concrete using many explicit examples of massive
deforinations of N =2 LG theories, which is the main reason for the unusual
length of the present work. The special examples that we obtain, which wre of the
form of generalized affine Toda equations, bring a completely orthogonal direetion
of interest to the present work. Namely, many of our examples provide interesting
nen-singular solutions to some affine Toda equations in terms of correlutions {the
metrics) of N = 2 thecries. In this way we can usc the methods availabie to us (rom
the N =2 theories, to gain insight into the solutions of (self-similar) alline Tody
equations, which one generally does not have a good handle on. Along the way we
are able to reproduce some deep mathematical results for solutions to Painlevé 11
{15] and Buliough- Dodd [16], which had been obtained using isomonodromic
deformation techrique and generalize them to other affine Toda heorics, We
basically find that the OPEs of SCFT solre the boundary conditions needed for
non-singular solution ro (self-similar} affine Toda equations.

As is the case with many works on integrable systems there ure MY Nvsteries
which need explanation. We find a number of intriguing results which beg for g
deeper understanding. In particular many ol our N =2 MASSIVE SUPCTSYMIMCtTic
theories are themselves described by quanrum affine Toda theorics (some non-su-
persymmetric and some N = 2 supersymmetric affine Todu lagrangians), In these
cases we find that the ground state metric, which could be viewed as some
particular correlation functions in these iheorics, as a function of the overall
coupling (temperature or scale parameter) satisfy ordinary classical affine Toda
equations of the same type (or reductions thereof). This is somewhat reminiscent of
the space-time—target duality obtained for critical N = 2 strings [17]. The magic is
€VEn more mysterious: some of the cases corresponding to N =2 supersymmetric
affine Toda lagrangians (the SU(N) cased turn out to be related 1o Verlinde's ring
for SU(N), RCFT [18].

The structure of this paper is as follows: In sect. 2 we review some topological
aspects of N =2 theories, and introduce the idea of topological-anti-topological
fusion. In sect. 3 we derive some equations satisficd by the ground state metric by
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considering a family of N = 2 theories. We also discuss some general properties of
the metric. In sect. 4 we discuss the relation to renommalization group flows, the
¢-function and Zamolodchikov metric. In sect. 5 we discuss the reductions to SOM
and in particular derive a rule which allows us to relate different models by
non-invertible change of variables. Morecver we find a “period”™ decomposition of
the metric which generalizes the known result at the conformal point to the
massive theories. In sect. 6 we discuss some Lie-algebraic aspects of our equations,
which are very helpful in a classification of their solutions. In sect. 7 we consider
same examples related to minimal models and some special massive perturbations
ol them. In sect. 8 we consider a few of the examples discussed in sect. 7 1n more
detail, using propertics of the solutions o Painievé 11F and Bullough-Dodd [15,16].
In sects, 9 and W we study more tricky models related to Verlinde vings. In sect. 11
we present our conclusions. In appendices A and B the properties of the metric in
the UV and 1R are discussed respectively. Finally in appendix C the relationship
with the “special eoordinates™ of special geometry is uncovered.

2. Topological aspects of N = 2 theories

I this section we review some of the background work which is needed for this
paper. Our main interest for most of the paper is N = 2 Landau-Ginzburg theory,
but many ol cur constructions are more general, and so in this section we will not
commt uuiselves to the Landau-Ginzgburg theory, and consider the more general
clss ol A 2 quantum field theorics. Morcover we do not make the assumption
that the guantum tield theory is conformal, and our treatment applies ta both
massive and massless (conformal) cases. We will be mostly interested in the 1- and
2-dimensionat deseriptions, but some of what we say generalizes in a simple way
higher dimensions (and in particular to Donaldson theory [19)).

tnane - 2 theory, there are two supersymmetry charges, which we label by
¢ and @ The main property of these supersymmetry charges is that

(O =(Q Y =0, (0@ )=H. (@) -0. (2.0

where /1 ts the hamiltonian. Topological theory is obtained by declaring @ to be
a BRST operator [6] and by identifying the BRST cohomalagy of O* with the
physical Hilbert space (note that in the context of two-dimensional theorics, this
means that we put periedic boundary conditions on the circle in order to have a
supersymmetry operator., te. we are in the Ramond sector)

O lg) =10, (g2~ 14>+ Q% [ p2.

We can fin the ambiguity of the topological theory in identifying the state, by using
the 2 operator and demanding that the physical states be aiso annihilated by
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Q. This is the analog of picking a harmenic representative in the standard
cohomology. As is clear from the standard arguments, this fixes the ambiguity of
adding Q "-exact states to the ground state. In fact using {2.1) we can identify the
topologicai states with the ground states of the supersymmetric theory.

The topological operators ¢, are defined to be operators which commute with

0. ie.
(@7 o] =0. (2.2)

These fields are called chiral fields, A ficld which iself is a @ "-commutator acts
trivially on the Hilbert space. It is obvious that chiral fields form a ring, because of
OPE of two of them is 0 *-closed and so can be expanded in terms of chiral ficlds,
But most of the elements that appear in the product are themselves (' -commuta-
tors, and thus are trivial operators in the topological theory. Since the translation
operator i~ itself a Q*-commutator (foltowing from supersymmetry) the chiral
fields and iheir translations differ by Q*-trivial operators. Thus we see that in
order to abtain the topological product of two chiral ficlds at different points it is
sufficient to take their product ar the sarme point. This will differ from the ficlds ot
different points by fieids which are U "-commutators. So to specify this ring we do
not have to specify the points at which we put the fields. If we choose a basis
for the physical chiral fields, we get a ring

b,p, = C,fcb,( + Q "-commutator terms.

This ring is in generic cases a finite ring. In the context of critical theory 1his g,
the chiral primary ring, was defined and studied in ref. (4).

The question arises as 1o whether there is a natural identification of the states
with the operators in the topological theory. This would be obvious 1 we can
identify a unique vacuum state in the topalogical theory which we denote by 0%
Once we have such a siate then we simply identify the states by the operation of ¢
on the vacuum

&, 103 = |i.

The property (2.2} guarantees that the resulting state is ' -closed and is thus itsell
a topological state. So the main question is how we identify the vacuum state. In
general there are a number of ground states which all have zero energy {n the 1.6
case the number is equal to Witten's index) and it might at first sound mmpossible
‘o pick a “preferred” one. If we were dealing with the SCFT there is a canonical
choice. Narnely in that case we have two Ud1) charges (the left and right charges)
which labels the vacua and we look for the unigque state with miminwam (left and
right} charge and identify that as [0). All the other states are obtamned from it in
applying the physical fields {chiral primary fields which all have positive Ul)
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charge) on it. Here we have crucially used the properties of the conformal theory,
and in particular the existence of an additional U(1} charge, which is the property
of the critical theory. In the general massive case there is only one U(1) charge and
that counts the fermion number (the difference between the left and right charges
at the conformal point). I particular this is not enough to pick a unique state (for
example in the LG theories all the ground states have equal left and right charges
and thus are neutral under this charge).

One might be led to believe that a canonical choice for the ground state of the
Ramond sector does not exist off criticality, but that wrns out not to be so. To see
this we can use the spectral flow to give an alternative definition of the vacuum
state [4). Consider the Hilbert space based on the NS sector, i.e. circle with
aniiperiodic boundary condition for fermions. The spectral flow is obtained by
changing the houndery condition for fermions continuously from antiperiodic to
periodic This can be done because we do have a conserved fermion number in the
theary even off criticality. In this way we can identify each state in the NS sector
with a unigue state in the Ramond sector. [n particular the unique vacuum of the
NS sector will flow to a unique ground state of the Ramond sector which we
identify as |07, Note that this description of spectral flow is equally valid wherher
or o, the theory is conformal. So in this way we see that there is a canonical
somorphism between the operators in the NS sector and the topological states (in
the Ramond sector). ‘

Phere is a niee way to implement spectral flow in the path-integral language
which will be very usctul for us: Consider a hemisphere with the standard metric
and with some operators inserted on it, The boundary of the hemisphere is 2 circle
o which we base our Hilbert space. The path integral will give us a state in the
thibert space. Now il we were doing the standard N = 2 quantum field theory on
the hemisphere, the fermion spin structure is trivial on it. but that induces an
aniiperiedic boundary condition for the fermions <. the boundary. So the standard
path-integral, if we do not put spin operators on the hemisphere. will give us a
state in the NS sector as is familiar from the study of SCFTs. The trick is to
consider the topological version of this path-integral. This is cquivalent {7] to
putting a background eauge field which couples to fermions number and is set to
boe hall ol the spin connection. In this background, over the sphere the fermion
number is violated by one unit, and over half of the sphere the fermion number is
violated by one half, which is precisely the flow from the NS to R sector. Put
detterently, the boundary condition for the fermions at the circle boundary of the
hemisphere is still antiperiodic, but there is a U(1) Wilson line which couples o
termion number. We can get rid of the Wilson line by changing the boundary
condition of fermions by the holonomy

c'\'p[ij;lA) = cxp(if

hemisphere

F) =explim) = — 1.
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ie. it is :quivalent to changing the boundary conditions from the NS to the R. This
is the magic of topological theory: it automatically “knows™ about spectral flow.

The topological description guarantees that as long as we put fields which
commute with % (ie. chiral fields) on the hemisphere we get a state at the
boundary which is in the topological Hilbert space, i.e. it is Q*-closed. In fact the
topological nature of the theory guarantees that the topological state that we gel
will not depend on the precise metric we put on the hemisphere. Changing the
metric has the effect of shifting the resulting state by the addition of a Q7 -closed
state. If we wish to obtain the actual ground state representative we will have to
choose the metric on the hemisphere which makes it look like the staadard
hemisphere with an infinite cylinder glued at the boundary to it. In this wiy the
propagation by exp(~ TH) for large T along the infinite cylinder will project the
topological state onto the actual ground state of the hamiltonizn.

In this way we see that for each chiral field ¢, we get a state |/ in the Ramond
sector by doing the path integral with that chiral field on the hemisphere. in
particular |0} is the state associated to the identity operator. The topotogical
nature of the theory will guarantee independence of where we put that ficld
precisely within the hemisphere. In particular we can move it to the boundary of
the hemisphere, in which case by operator formulation we see that th- stitte is the
same as multiplication of the state by the field ¢,

[ =10,

thus agreeing with the previous definition. Note that in this equation by |7 we
mean the topological class of the state, i.e. |5 may differ from an actual ground
state of the theory by Q*-closed stales. Again if we wish to obtain an actual
ground state we should propagate the state along a cylinder for a long time. -romn
the above we also learn that

i) =¢,0,100=Cld, 10> =CH k), (2.3)

where again the equalities are modulo @ 7-trivial states. We can thus represent the
action of the chiral fields in the subsector of vacuum states by the matrix €

(€)=}

Everything we have said in the above can be repeated replacing everything by its
adjoint. In particular this means replacing Q7 by its adjoint ) |, the chiral ficlds
¢, by their adjoint antichiral fields &;, and the chiral ting cocfficients ' with
their complex conjugate C,-j" =(CU“)* for the antichiral ring. In the path-integral
defin‘tion of the states, we introduce a backgroun ! gauge field which is now i
half the spin connection. In this way we get another topological theory which s
simply the conjugate one and we call it the anti-topological theory,
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It turns out to be crucial for us to have a deeper understanding of the relation
hetween these two topological theories. The crucial link between the two theories
turns out to be the Ramond sector. Namely, the physical states in both theories are
in one to one correspondence with the Ramond vacua, as we have discussed above.
S0 now let |i) and | J) denote the ectual ground states corresponding to the fields
¢, and &; respectively. In this way we have found two “preferred” bases for the
Ramond ground states. Of course we can write one in terms of the other, so we
must have

=< Ml (2.4)

The matrix M defined above is referred to as the real structure. It is crucial for us
because it is precisely an intertwiner between the topological theory and its
conjugate. In a scnse it allows us to compare a topological theory with its
conjugate. Since the Hilbert space is coming from a quantum field theory we have
a CPT ooperator which is an anti-unitary operator of order 2. Acting on (2.4) with
this operator and using its anti-unitarity one easily deduces that the real-structure
nuitrix sutisfics

MM* =1, (2.5)
where M * denotes the complex (not hermitian) conjugate matrix to M. In order to
completely understand the structure of our Hilbert space, in addition to the
operator content of the Hilbert space we also need to know its inner product.
Since we have a natural N =2 field theory underlying our constructions we
automatically have an inner product. That is simply the inner product in the

Riamond ground state. To write it down, we nced to choose bases. In particular we
can use the basis where the left and right states are taken to be the chiral basis

Gliy=m,,. (2.6)
or the chiral and antichiral basis
(Gliy=g,, (2.7)

and the complex conjugate of the above inner products. Of course the two metrics
n,, and v, arc related using the real-structure matrix M

g1 =7,M. (2.8)

Note tlat we can deduce from egs. (2.5) and (2.8) the very uscful identity which
relates goard

7 g(n'g) = 1. (2.9)
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The inner produact of immediate interest in N = 2 theories is the g metric, because
when we take the inner product of states we take the adjoinr of a state on the left
and the adjoint of the state |i) is {i| and not ¢i|. In particular the metric 7 is not
hermitian whereas g is obviously a hermitian metric. However, as we shall scc 7 is
much simpier to compute, and is in fact a purely topological object (it will be clear
as we praceed that 7 is a symmetric matrix).

To understand the structure of these two metrics better we represent them by
path-integrals, The path-integrals are represented by two hemispheres, one on the
left and the other on the right, joined by an infinitely long cylinder. We necd an
infinitely long cylinder to project onto the ground states. In addstion we have a
background gauge field, which for the computation of 7,, is set equal fo half the
spin connection throughout the sphere, and we insert the operator é, on the right
hemisphere and the operator ¢, on the left hemisphere. For the computation of
&> on the right hemisphere and the right half of the infinite cylinder we have a
backgro.nd gauge field which is half the spin connection while on the lefi
hemisphere and the left half of the infinite cylinder we have a background pauge
field which is minus haif the spin connection. The fact the the region were the left
and right meet is flat, means that the gauge fields glue smoothly from one 1o the
other, and we have a well defined gauge field. Also we insert the field &, on the
right hemisphere and the field é; on the left hemisphere.

From the above path-integral definition it follows that essentially both metrics
are topological, where by topological we mean if we perturb the corresponding
positions of inserted fields or the metric on the hemisphere, as long as there 1s an
infinitely long intermediate cylinder, with a fixed perimeter 8. the result of the
path-integral does not change. This is due to the fact that local perturbations of
this kind, as noted above, are equivalent to operations by ¢ or ¢ on sume
state, and propagation along the cylinder of length T results in exp( - 7#)(Q"
which goes to zero as T — =. However 5 is more topological in the sense that even
if we change the length of the intermediate cylinder or even completely change its
metric, or even move the positions of fields from one hemisphere to the other. the
resuit will still not change. This follows from the usual definitions of the topalogi-
cal theory, as all such variations are Q0 "-commutators and since the ficfds comnrite
with Q" we immediately see that the variations do nut change the result of
path-integral. Note that since we can exchange the position of the operators
between the two hemispheres 7 is symmetric. The fact that 7 is purely topological
allows us to give a simple closed form for it in many cases. The result for the 1.6
theory will be mentioned below. This general notion of topological invariance, ic.
without necessitating an infinitely long intermediate cylinder, would not work tor
g,, because we get both Q0 and @~ variations on the right and Ieft hemispheres
respectively which does not allow us to complete the argument. In this sense g,
which is obtained by “fusing” a topological theory with its complex conjugate is



R §. Cecorti, C Vafa / Topoiogical - anti-topological fusion

only “partially” topological in the sense discussed above °. In particular it depends
on the pernimeter of the cylinder B. It turns out that changing B is equivalent to
changing the scale of the theory, and the one-parameter family of metrics g,; that
we obtain can be viewed as the trajectory of the metric under RG flow. In the
following we set 8=1, and implement the change of scale by flow in the
caupling-constant space of the theory. Even though g looks only pseudo-topologi-
cal, as we shall see later in this paper the purely tepological correlations allow us
1o completely determine it.

Lt 15 also casy to sce these constructions in the operator language. In particular
in this way we can show that even though in the above definitions of n and g we
have used the ground states themselves the metric 7,, is independent of which
representative we choose. This follows by noting that changing for example the
representative <i | is equivalent to shifting it by {a | Q*, but this does not affect the
imner product (0153, because Q' 1) =0 (for any representative of |f3). Note
that the same argument to show independence of &; of the choice of the
representadive would fail and so this quantity does depend on the fact that we have
1o actualdly choose the precise ground states representing the cohomology classes.

So far we have been general. We will now illustrate these ideas in the context of
N = 2 LG theorics. These models are defincd by taking a number of superfields X,
in two-dimensional space with two left and two right moving anti-commuting
coondinates denoted by 8% and 8 *. The superficlds are taken to be chiral which
muans that -

o a —
D*X,:(- . +9‘u)x,=u=1)*x.
il dz !

and similarty )?, Is unti-chiral (and satisfics the ubove equations with 8* and 8-
exchanged). Then one writes down a lagrangian

=1 [d'o k(X X) + [ W(x) +he,

which has N =2 supersymmetry. This consists of two terms, the term involving K,
the D-term, and the F-term W, the superpotential, which is a holomorphic
function of X,. If we represent the operators corresponding to Dt and Dt acting
on the Hilbert space as

D+_.QI+‘ 5+_‘Q5}"

* the conshuction uf Tepologici] -anti-lopological fusion can be extended wy arherany genus. We take a
surhace consisting of alternitting regions, supporting the wpokogical theory and its cunjugate respec-
ey which are separated by infinitely bong tubes. However. once we know n. & and € on the sphere
I bitiary B owe can write down the corresponding answer at higher gerus wsing « ple ideas of
W
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we can write the two supersymmetry operators 0 * discussed above as

Q=07 + 0.

When W is quasi-homogeneous the IR fixed-point of the LG theory is belicved to
describe an N =2 superconformal theory £2,3] Here we will not make these
restrictions, and our discussion is equally valid for the critical as well as the
non-critical (massive) theory. It is easy to find the chiral ring 2 for LG models. In
fact the chiral ring is generated by the X, themselves. All we have to do then is
find the relations in this ring, or put differently, which product of the X, is
Q *-closed. These relations will come from the variations of the lagrangian. whig!
are the equation of motion for this theory. Varying the action with respect to X
and doing the 8*, 8" integrais in the D-term gives us

IW(X,)= -D"D*aK( X, X;).

This means that the chiral fields containing 4,W are ' *-commutators and thus are
trivial in the ring. Therefore we learn that the chiral ring of the theory s simply

A=C[X]oWw.

An important thing to note here is that W completely determines the ring (known
as the singularity ring of W) and the D-term K does not affect 1he ring. In
particular the D-term is trivial in the sense of both supercharges Q' This in
particular implies that the variations of K is trivial in the sense of bl the
topological theory and its conjugate. Thus, it will not affect the metrics we defined
above, and so the two metrics just depend on W. The metric 7 turas out (o e
particularly simple to compute and it is simply computable using the techiigues of
topological theories. A topological description of LG theories and Lhe computition
of its correlation functions is given in rcf. [&]. Alternatively, one can apply
dimensional reduction to supersymmetric quantum mcchanics. and compute the
metric % using properties of solutions 1o the supcrsymmetric Schrodinger cquation
[14). The answer is

;= <¢:¢j>lﬂn-= (= Rcsli'[¢f¢r]
in terms of the Groothendieck residuc symbol Res,, [ ] defined by

I, &(X)dX'A . Adx”
=— =V B RN R T
Reswl4] (2mi)’ f, aWa W, oW i 0D ’

where § denotes the hessian of W: © = det AW and we are assuming that the
critical points are non-degenerate in writing the last cquality. Note that with the

L

o
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above resutt, under field redefinition. the fields do not transform as scalars. This
~anomalous” behaviour, is connected with the fermion zero-modes in the back-
ground gauge ficld which we discussed for the topological theory. This anomalous
hehaviour will also be explained geametrically below in the context of SOM.

The comput; tion of g,;. or equivalently the real-structure matrix M, turns out
to be far more complicated and the study of its properties is the main focus of this
paper. In order to study these we need to review some techniques developed for
this purpose. This will be donc in sect, 3.

3. General properties of the metric and its variation

I'tie basic method to compute the metric g is to study its behaviour under
perturbations which preserve the N =2 supersymmetry. In this sctup, uJsing
“tandard perturbation theory techniques, one can derive Jifferential equations
which are satisficd by £ The coefficients of these differential equations turn out to
e completely fixed by the chiral ring o2 and thus, in the case of LG theores, they
only Jdopend on Woas they should.

Ihe Jea that there should be @ differential equation on the coupling-constant
apawe s not surprising. In fact in the context of non-degenerate perturbation
theory 1o quantum mechanics it is well known that there is a canonical curvature
on the perturbation space, and the integral of this curvature leads to the Berry
phase [20] 1o the case of degenerate perturhation theory, this lcads to non-abelian
patpe ficlds on the coupling space [21]. Qur case is generically of this type, with
(e added structure that we have a holomorpitic paramcter space and that gives us
some additional structure.

W will discuss the idea in the gencral sctting, Again, our considerations apply
tor vonformal and por-conformal cases with eguab validity. We consider changing
the action by giving expectation value 1o chiral and anti-chiral operators. This
means that we vary the action by

AL - fdlr; b, +cc.

where £ carrespond to the (complex) couplings in the theory. As we change the
Ramond vacua change. In perturhation theory one usually defines the variation of
the stite 1o be orthogonal (o itself (and to the other states with the same energy).
I s however more convenient 1o fiest allow an arbitrary basis for the perturhation
aned introduee @ connection in the space of vacua which projects out the compo-
nents ol the perturbed vacua which ar - not orthogonal to the vacuum states. Let us
denote this covirriant derivative by D 1ts basic property is that

(hIDiay=(bla —Alay=0.
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where a, & label the Ramond vacua in somz unspecified basis and {b| denotes the
state adjoint to |b). Put differently, we can define a gauge field A, on the
coupling constant space given by

A =(bl2 ] a>. (3.1}

It is easy to see that under a coupling-constant-dependent change of basis for the
vacua, the quantity A transforms as a gauge field. Similarly we can define £, and
A Let 7 be the space (the vector bundle} of Ramond ground states over
coupling-consiant space on which g defines a hermitian metric. Then it s casy
see that g is covariantly constant with respect to the gauge field voo just mtro-
duced. In fact, this is how we defined 4. One obtains

Dﬁgaﬁ:afguﬁiA:;g(FiAl‘f;gaF :();IJJ-L{'

where
h b7 ‘ oy
Am:AmFg " Aﬁil:('/‘ih) .

It is npatural to compute the curvature of these connections. We find *

[D. D] =]D.DB] -0
[p.D]=-[c.C). (3.2)
Marcover one has
pC,=DC, DBC-=DC. DC =D -0 (3.3)

where ¢, and C, are the matrices which represent the action of 6, and ¢, on the
vacuum states. Since in the topological phase we can moves tickds around.at s
clear in addition that

[¢.C]=0=[c.C)

In the conformal limit this system of cquutions was derived and studied i the
physics literature from many different view points [13.04], and gives rise to what 1
called “special geometry™. In fact it has been shown in the context of Landau -
Ginzburg muodcls [14] that these very same equations rematn valid even oft the
conformat point. The technique used there involves a careful study of the zero-en-

* These equations are a natural generalization of equations studied by Hitchin correspondne 1o
reduction of self-dual Yang-Mills equanions 10 1wo dimensiens
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cegy solutions to the Schradinger equation in the context of SQM. As we will see
these turn out to be quite general any apply to arbitrary N = 2 theories, regurdless
of whether they come from LG theories and they can be easily derived from the
path-integral viewpoint of fusing the topological theory with the anti-topological
theory.

In the usual non-topological setup, one can derive incorrect “theorems” by a
naive treatment of supersymmetric Ward identities which would lead one to
believe that the metric is constant, independent of the coupling constants. The
Targument” goes as follows:

il
E’f?@ th) :’[dlz de ke, 14y =0,
i using the fact that the ground states are annihilated by hoth 7, the
Grassmann integral seems o kill the above term, However, this is incorrect. The
ditficulty lies in tgnoring contact terms. It fact it is shown in ref. [22] that in the
conformal case such terms are crucial in obtaining the correct Zamolodchikov
metric. In the critical N = 2 SCFT theurics {corresponding to strings on Calabi-Yau
mandolds) the contact terms were found to be crucial in getting the correct
amswer [23] However, amazingly the topological theory allows us to be “naive”
about contact terms and ignore them and get the correct answer! This is precisely
becise contact terms which are UV singularitics have no invariant definitions in
the topological phase, as we can move fictds around with no consequence for
correlation functions.

Betore turning 1o the derivition of these equations let us describe their
nterpretation. The fiest ling in eq. (3.2 is telling us that the gauge connection is
umtary. and the second is telling us that its curvature is computable using the
vonmutators of the ring of the topological and anti-topological theory. Combined
willr cgs. (3.3) one sees that we can introduce “improved™ connections which are
acanally 1lat, namely consider *

T=di' (D, +C),
F=di'(13’+ﬁ). (3.4
Then the new connection T+ T s flar,
Vi=F'=pF+Fr=y, (3.5)

T+ ¥ s the analug of the Gauss—Manin (GM) corncction well known to mathe-
maticians [24] which in the physics wnguage plays a role when we are dealing with

©One could iy well comsider The dud conmection ' =D - ¢ 7 =D - which is also fur,
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marginal instead of inassive perturbations of conformal theory. Indeed, when the
N=2theoryisa LG theory which has a o-model interpretation, it is the usual GGM
connection (see ref. [14] for details).

In order to prove eqgs. (3.2) and (3.3) our strategy will be as follows: We wili first
show that it is possible to choose a holomorphic basis in which a, b run aver chiral
indices and with

Af=g*a,,=0.

Irld

Once we show this (and similarly the conjugate version of it) the fiest line in cq.
(3.2) will follow. Similarly, the fact that in this basis C, is holomorphic implies that

b =ic =0,

which with its conjugate version will prove the second line of (3.3). For the other
cquations we will have to work harder.

Let us start by showing that in the chiral basis we can choose a holomorphic
gauge, i.e. a gauge in which the antiholomorphic compenents of the gauge field are
zero. As we shall see, the topological path-integral automatically picks this gauge,
By definition of the gauge field we have to compute

Af=n*18) . (1.6)

The matrix element in the above equation can he conveniemtly represented by o
path-integral: We represent the state 1i? by a topological path-integral on o
hemisphere with a long tube attached to it with the field &, inscried in it This
space (with the long tube attached) we call the right-hemisphere 5¢. In order to
find 6 | j ali we have to do is to insert the operator

f d?z d%* &F,:jf d2 DB g,
Sg s

Sk

in the path integral. To compute the matrix element in (3.6) we can creale the
state (/| by a topological path integral on a left-hemisphere S, with &, inserted.
again with a long tube attached, and glue it to the path-intcgral on the right sphere
Sz. This we will represent symbolically by

(LND’B*@)@).

Since Q" isa symmetry of the topological theory and ¢, is closed under it, we cun

write this as
MQ*HIS 5*$,-)¢,>.

A.‘ﬂ = (¢1

s
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This vanishes because the topological theory on §; produces a state which is
annihilated by Q. Thus we have seen that the path integral in the chiral basis
provides o holomorphic basis for the connection in which the anti-chiral compo-
nents of the connection vanish, This concludes the first thing we wished to show,

Now we turit to harder parts of the derivation and show how the second line in
. €3.2) can be derived. To do that we have to show that

a}.A,:fa,A,;:[(‘,.(7,]:, (3.7

where we hive used that fact that in our basis the anti-holomorphic component of
the connection vanishes, and thus there arc no commutator terms on the left-hand
side . I Bt we know that even the second term on the left-hand side is identically
scre, but we will keep this as it cancels some of the terms from the first term on
the left-hand side and shghtly simplifies our analysis.

U'wing the path-ntegral representation of the left-hand side of eq. (3.7) it is casy
tor see that, afier some obvious cancellation between terms. we get a path integral
vn the sphere which symbolically can be represented by

0 Ay A <¢k(f\ n'F)'a&,‘){L Db @}m,)

(J 1)*?5'5,)@) (3.8)

Now we will show that these two terms give —C.C, and (',C respectively (up o
terms which cireel between them). Lot us concentrate on the first term

<¢A(Lln'5+a) (LRU B cﬁ}u‘))

Just as discussed before we can move D7 to the right where it kills everything
eweepl for 1) acting on ¢, which converts that into d {by using the fact that D°
hills o, and using the tanti-}ommutators of N = 2 algebra), Similarly we can move
i1 W the right wnd again the net effect on the path-integral on $, is to replace

Powath o So we are left with *

e

- <du(/;'l) I3 'b,)

ol e

olnonder temore 10 and £ owe have used the fact that *here are two tepological charges: (07 and

£
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Now we can do the integra! of the field on the right hemisphere and et a
contribution on the boundary circle C on the cylinder which separates the twe

regions S, ,. We get
feloflg e

where @, denotes derivative in the normal direction to the circle C, ie. in the
infinitely-stretched direction of cylinder. We can replace

aﬂ'éf: [H‘ ‘bi]

Since t¢,y is the same as the vacuum state [/, it is killed by /7 and so woe can
wrile the above matrix clement as

o (3|

We will divide the tntegral on the left-hand side to two roughly equal parts cach ol
which is infimitely stretched, the first part includes the field &, and contiins the
curved picee of S, with roughly half the infinitely stretched ovlinder, while the
second part includes only the other half of the infinite cylinder of 8, . The integnd
on the part further on the left will not contribute to the above matriv clement,
hecause the state one gets propagates infinitely long on the second part ot the
space, and so the net effect is projection on ground state which is accomplished by
the cxpl - TH ) tor large T, and the final state we get on the arele C s thus killed
hy H in the above matrix efement. We arc thus left with the sccond part of the
integral on the left which is on a very long cylinder. Let 7 denote the long direction
on this cylinder and let us take it to run from 0 to T = 1. Mcanwhile the empny
first part of the path integral will convert the path integral with the insertion of &,
to an actual ground state given by (k| So we arc left with

*(klfd'r¢t—fl‘_,(r)H¢dalH),

where we have written the integral on the cylinder as {irst running around the
perimeter on the cylinder at a fixed time 7 and then integrating over all 5. Since
the H kills the ground state on the left, we can replace A with its commutalo
with ¢5$}(7) which gives us a 73,9551. Thus doing the integral over © becomes casy
and we get the contributions from the boundaries at 7 = 0. 7. The contribution at
=T ts on the same circle as the one the operator ¢, is inserted and is vimeeled
by the same term from the second term of cq. (3.8). We are thus left with

(kI &, exp(~TH G &, 1),
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where we have to send 7' — =, This has the effect of projecting the intermediate
states to the ground states of the theory, and we recover the definition of the chiral
ring matrices * and so we get

n (E-'C‘)H

And similarly for the second term in cq. (3.8} we get the same as above with C; and
(_" exchanged places and with the opposite sign. We thus get the commutator on
the right-hand side, thus completing the proof of the second line eq. (3.2). Using
vory sinnilar technigues, which we hope the readzr would be able 1o reproduce, one
cian ventty the validity of the first line of eq. (3.3).

On closing this section let us note that in this holomorphic basis, we can write
averything in terms of the metric g and the holomorphic chiral ring clements C"
Nameldy {rom the fact that g is covariantly constant and that the dnuholnmorphlc

component of the gauge ficld vanishes we have

i

; .
Ani = _yi.n('fu"’ I) .
Muoteover, just from the definition of the basis we have

¢

(C), = (el "),

Putting cverything together, the zero-curvature conditions (3.5) become differential
cyuations for the metric g. We get

digig ') - [(‘,, g(C) e *) =0, (3.9)
LG =0 [elag )¢ - [e(ie V)] =a, (3.10)

all other conditions being either trivially satisficed, or c.nnsn.qumccu of these two
together with kanown propertics ol the topological tunctions €7 and n,

As we shall see in more detail in subsequent sections these cyuations have
Sl propertics, making them o natural generalization of the so-called
Specul Geamerry which plays o key role in understanding the geometry of the
moduli space of ¥ =2 conformal field theories (related to CY manifolds). One
mportant miracle is alreardy evident from this discussion: our non-lincar differen-
Hal equations are always in the form of o consistency requirement for a sct of
Hincar cgaations, i, they always admit a zero-curvature (Lax) representation.
instead of eq. (3.9 und (3103, we can study the wssociated lincar problem

r.,';=ﬁf;=ll. (1“)

TOWe e ke The pegimeter of 1|h. evlinder g 1o have unit fength, othe mwise The commutaton wilt he
aveompaancd wath o Bwrer of jf
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In this abstract sense our equations are always solvable. As we shall see below.
because of this Lax representation, for simple models the equations have u
tendency to reproduce celebrated equations of mathematical physics. More sur-
prisingly, generally speaking, to solvable models in the world-sheet sense. models
which lead to infinitely many conserved currents and connected with factorizable &
matrices, we find solvable (classical) systems for the dependence of ground state
metric as a function of coupling-constant space (the “target” space). Morcover
these equations tend 1o be of the sampie type' (Quantum affine Toda theory as the
world-sheet theory, and classical affine Toda thecory of the same type (o, its
reductions) as the equations satisfied by the ground state metric!) This bizirre
duality between world-sheet and target phenomena is reminiscent of what ane
finds in the case of critical N = 2 string theorics [17).

Not all the solution to the above equations can be accepted as ground state
metrics. There are other conditions to be satisficd. First of afll, g should be o
positive-definite hermitian matrix. Furthermore the metric should have all the
symmetries of the preblem and in particular in the LG case, it inherits all the
(pscudo) symmetries of W. Mereover, as mentioned before we have the “realin
constraint™

*

n 'g(n k) =1

There are some general properties of the metric which follows rom 1he abowe
cquations. Take the trace of eq. (3.9) which gives us

aa, log det g =0,

det g=|f(+)1* with f(¢} holomorphic.

In particular, we can find a holomorphic basis such that det =1

Another general property of g which should be consistent with our cquations is
that the metric should not depend on 1", the coupling associated to the operator
. Indeed. adding a constant to the lagrangian in chiral superspace docs not
change the modei because the Grassman integration over superspace kills it. This
is consistent with our equations. In fact, Cy=1 and henee it commutes with
cverything. This simple remark has a very useful generalization. Somctimes the
N =2 theory has a (pseudol-symmetry such that the space of vacuy viewed s a
representation of a subring #° of # gencrated by some o, decomposes into
orthogonal representations. Then if in a given irreducible representation some
non-trivial operator reduces to a multiple of unity, (717> (15) in the piven
representation) is (essentially) independent of the corresponding coupling.
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Al this point a natural question arises, Are these conditions sufficient to
uniquely determine the metric or not? A priori, one would think that the above
differential equation should be supplemented with boundary conditions in order to
predict ¢, However, the analogy with the geometrical case (the variational Schot-
tky problem) waich is the geometrical interpretation of these in the context of
marginal operators of conformal theories suggests that generically the above
conditions already Jead to a very overdetermined problem. Then just one boundary
condition would give a solution satisfying all the requirements simultaneously. In
this sense, the cquations predicr their own boundary conditions. Al hough we do
not hive @ general proof of this statement *, below we shali show in many explicit
muodels how the cquations are strong cnough to predict their highly non-trivial
boundany conditions. In particatar the OPE of conformal theories are predicted by
consisteney alone and they agree with the results previously obtained. As a
In-prcduet we shall also reproduce some deep mathematical results in the context
of somonodrontie deformation theory {(together with some gencralizations).

4. RG flow, Zamolodchikov metric and c-function

In the context of perturhing gquantum field theories one wsually defines a one
patiameter Lmily of quantum field theories related to cach other by a change in
weale, his defines o flow™ on the space of guantum ficld theorics which is known
as the renormiadization group tlow. Conformal theories are preciscly the fixed
poiats of (his Oow. For a given theory characterized by a point on the coupling
cosant space. one defines an UV (ultra-violet) and an 1R Ginfra-red} fixed point
Jelined s the short-distanee, and  long-distance limits of that given theory.
Generically one starts with a theory which s obtained by relevant perturbations of
conformal theary so that the UV fixed point is the theory we started with. The
mlrared ted points are generically infinitely massive theorics: however, if one
chowoses the perturbation of the quantum ficld theory judiciously, one ¢an end up
with another conmformal ficld theory as an IR fixed point. The study of this kind of
sittation 1 2-dimensional quantum field theories was given a big boost by the
wonh of Zamolodehikov [25]. In that work a function was defined on the parameter
sy, the ~e-lunction”, which has the beautiful property of decrcasing along the
renormalization group flows, and whose critical points correspond to fixed points
ol 12G Mow. e, CFTs. Morcover Zamolodchikov defined a metric on the parame-
ter pace. using the two-point function of perturbing operators on the planc at a
Ived distanee,

As we live been studying perturbed N - 2 SCFTs in this paper. it is nataral to
avk how the RG flows Took in this context. Some aspects of this has been studied

S baenon the geometnical teonformel}l case there s no geaeral proot.
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[26]. We will focus ¢n the case of Landau-Ginzburg theories. The non-renormal-
ization theorems of N = 2 theory come to our aid in the study of RG flows. These
state that the superpotential W of N = 2 theories does not get corrected perturba-
tively. We will take this to be true non-perturbatively. In fact it appears that the
non-perturbative non-renormalization theorem can be proven along the following
line of argument. In flat space, where the spin-conncction vanishes, the functional
measure for the LG model is identical to that of the topological theery with a
certain gauge-fixing term. The topological theory is not renormalized just because
there arc no local degrees of freedom *. Then its quantum cffective action [
should have the form

I=F, +sAl.

where 5 is the topological Slavnov operator. In the LG context this cquation s
interpreted as the N =2 non-renormalization theorem. Indeed. the usuil super-
diagrammatic proof of this result [27] consists of a loop expansion of this cquation,
For other viewpoints. see sect, 4 of ref. [S1. Anyhow, some evidence for the vahdiy
of this kind of conjecture is the correctness of some of its consequences [23] 1o
be more precisc. even though we take W not to change, the actton will pick up the
supervolume factor. If we take z > Az, =4 776 we gol

fdz atow(x,) A futs di WX,

This overall factor of A can be gotten rid of in the leading terms of W (the highest
degrecs of fields) by a field redefinition with the effect of rescaling the rest ol he
couplings. In this way the rescaling of W by A generates a flow. The TR imil s
when A —x and UV is obtained when A — (. This we tabc as our working
hypothesis as to what the RG flow is for us. Neodless to say the D-terms arc
expected to get corrected in a much more severe way. but as we have scen m
previous sections, luckily our computations for the ground state metrics are
independent of that **.

Now it is natural to sec whether we can compute the torm of the metric ¢ om the
UV and IR limits. These will also be a kind of “boundary condition” for the
differential equations we have discussed, cgs. (3.9). (3. 10). In the UV, as b~ U we
start from a conformal theory. In other words, in this limit we can take B o be
guasi-homogeneous by rescaling of the ficlds. For N = 2 LG theornies, this problem
has been solved in ref. [14]) which shows how the differential equations (3.9) and
(3.107 and other basic properties of the metric discussed above lead to the answer.

* The topological Green functions are computable. From their explicit form the non-renormaiization
is obvious,

“* In the formulation of topological-anti-topological fusico of sect. 2. the perimeter § of the
intermediate cylinder can be identified with A.
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[t turns out that the answer can be written in a simple closed form that we will now
discuss. Let ¢,{X, } be a basis for the chiral primary fields of the LG theory. Then
the metric can be given by finite-dimensional integrals over the variables X,. For
instance, it ¢, (X, }is relecant (ie. g(9,) < 1} one has the very compact formula

8= (6,8} = [[TdX, dX, 6,(X,)8,(X,) exp(W - ¥). {(4.1)

We have 1o be a little careful with this integral. For one thing for large values of
fictds it is typically a highly oscillatory integral. OF course our intuition says that
these highly oscillatory parts should not contribute appreciably to the integral. This
intuition can be made more precise by defining the above integral using surfaces of
constant W, Alternatively, we can define the above integrals by demanding
Riemann bilincar identities to hold: Let B*< C”" denote the asymptotic regions in
1" where Re W— 1o, Here n denotes the number of variables. Let ¥* label a
basis of cquivalence class of the a-chains in C”, whose boundary dy* cB?, in
other words they define a basis of the relative homology classes

v,  €H (C", B*).
Morcover. et € denote the intersection matrix between these cycles
C,=v" Ny .

Then applying the idea of the Riemann bilinear identity to the above integral we
vomce up with the following result *:

Kl ™ [ SAX) exp(W)C™ [ (R, ) exp( - W), (4.2)

Yo

The residue cian also be described in this way. One has
= 6 X) exp(WIC™ | $(X,) exp( - W)
Yt Ym

tor q(¢,) +4(¢,)<c/3
=@ otherwise. (4.3)

Note that the above integrals are well defined by the choice of the cycles on which
we intcgrate them. In appendix A we derive these formulas, by showing why they
provide solutions 1o egs. (3.9) and (1.10). It is important to notice that eq. (4.2) is

© Technically speaking, the symbols ¥4 represent locally-constant families of homology cycles rather
than given cycles. This remark applies throughout the paper.
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valid only at the conformal point where W is quasi-homogeneous. For more
general W othe story is far more complicated and cannot be described by such a
simple integral. However, using SQM, even in those cases one can write similar
expressions but one has to replace the fields in the above by the exact solutions 1o
Schrodinger equation. This will be discussed in sect. 5. Instead eq. (4.3) is valid for
arbitrary W’s. More precisely, the general fermula is

1= [ $Xe) exp(W)C™ [ 8,(X,) exp(~W). (+4)

However here there is a subtlety. Whereas both sides of these equations transform
the same way under a change of basis in <, they transform differently under a
change of the representative of BRST-classes

(X)) = d (X + th( X)) W,
!

Then eq. (4.4) holds only for special representatives. The special operators ¢, are
those associated to the special coordinates of TET £10,28]. These coordinates are
discussed in appendix C. There €q. (4.4) is proven. With generic represcntatives,
the r.hs. of eq. (4.4) would differ from 5. because of spurious mixings of the
operators of charge g with those of charge ¢ — k ( a positive intcger). Modifying
the definition as in eq. (4.3) we disentangle this mixing. Then eq. {4.3) holds for all
choices of the operators ¢,. See also ref. [29].

In the case that W =G defines a Calabi-Yau manifold in weighted proje tive
space these results are all consistent with what is known as special gcometry. In
fact the integral representation of the metric (4.1) is very remuniscent of the period
iniegrals of special geometry, but now in the context of general LG theory. We will
see more connections below.

We can vary W by marginal operators, and remain in the class of confornml
theories. Then it is natural to ask what is the relation between the g we have
computed, and Zamolodchikov's definition, which gives a natural metric on moduli
space of conformal theory. As we have discussed spectral flow relates chiral
operators to the ground states, and so the metrics that we have computed must be
related to the metric that Zamolodchikov defines. This refation is quitc precise in
the case that the perturbations are marginal and preserve the conformai properties
of the theory. In particular using conformal Ward identitics it is casy to show (hat
what we have computed in this case is

2= {#(0)3,(1))

evaluated on the sphere. This is not precisely the metric that Zamotodchikov
defines for two reason: The important reason is that ¢, and @; arc not themselves

e
. B
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the perturbing operators, but rather | dzﬂzb, and the complex conjugate of it are
the perturbing operators. That is easy to implement, as again the superconformal
Ward identities retate these to the above computation by muitiplication by a factor
of ¢ where g, is the U(1) charge of the field ¢, (which we assume to have equal
[eft and right charge — otherwise we would get ¢, ¢,z ). Note in particular that the
identity operator gets projected out once integration over Grassmann coordinates
in performed. For marginal operators the charges are all 1 and so this does not
alfect the above metric at all. The other point to bear in mind is that Zamolod-
chikov's definition is the expectation value of two operators, and we need to
choose a correct normalization for the vacuum by dividing out by {(0]0). So for
conformal deformations we see that the Zamolodchikov metric G is related to our
¢ simply by (the index 0 labels the identity operator)

G, =&,/ 8w {4.3)
whoere ¢ run over the marginal dircctions.

1 turns out that quite generally, one can show that the metric G for the metric
on moduli space of N =2 SCFTs is Kihler. This is in fact true for arbitrary N =2
SCETs and not just LG theories. In the conformal limit we have an extra U(l)
symmetry, with respect to which all chiral primary states, except for the identity
aperater which is neutral, have positive charge. Then by charge conservation we

have

Lop = k=0 for k=10,
(¢CTg1),"=0 for k=0

Lot the ndices i, § correspond 1o murginal perturbations, i.c. chiral primary fields
of charge ¢ = 1. Then from (3.9 we find

i logl010y = [Jf.(gn_g |)]“.) _ (C,)[,"g“C},"g'_“ =g./8m=G,.

where we used that €5 =€t =56% Let |p) be the Ramond state of maximal

chirge dual to [0 with respect to the pairing 7,,. Using eq. (2.9} we see that
a8, log(plp> = -84, log(0|0).
So we gl
G, =44 log(plp}.

I'hos we Tind that in the N = 2 case the Zamolodch .ov metric (along the marginal
direetions) s Kihler with potential K = jog{p1p). This is a result due to Periwal
and Strominger [30]

O s 4
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In the case of LG theories the integral representation of the metric (4.1} implies
that we can write the Kahler potential as an integral

gm=c"‘=f]_[d)£’, dX, exp(W - W). {4.60)

.

In the case that W is of a form to be directly related to Calabi-Yoeu manifolds [31],
i.e. with integer ¢ and the number of variables a = ¢ + 2, then doing the integral
above with respect to one of the variables (with a suitable change of variables)
results in (4 ) in the integrand. It was observed by Greene that if one continucs
this formal integration one more step one ends up with fw A w, whero w s the
representative of the (&, 0)-form on the manifold W =10 defined in weiphted
projective space. So in this case we have

e_Kxfw/\ﬁ,

which is a well-known resuit due to Tian [32]. One should emphasize that (4.9) 1~
valid regardless of a Calabi-Yau interpretation of the LG theory. From the other
equations in (3.9) we get additional constraints on this Kahler potential. 1 is casy
10 show that they reproduce the conditions valid for a vaniation of Hodge structure
on the algebraic hypersurface W =0 in weighted projective space, which may o
may not be a CY manifolds, This was discussed at length in ref. [14].

All we have said so far is only valid at the conformal point, i.e. the [imit where
A — 0. Now we wish to discuss what is the form of the metric in the IR, f.c. when
A — o, In such a case the critical points of W, i.e. dW =0 which arc the mimima of
energy, become infinitely separated from each other, and 10 leading vrder do not
see each other. In other words to leading order the metric becomes diagonal
basis of chiral fields corresponding to excitations near the vacua. So we can base
our physical vacuum by shifting fields to correspond to each one of the vacua we
wish to study. If the critical point is not a simple zero of dW. then the ficld
configurations near that critical point will still describe a {massless) conformal
theory and wh: t we said above about the computation of g remains valid for this
part of the metric. However at the critical points of W for which dW has a simpic
zero, we end up with a massive theory. In the limit that A — x the mass gocs o
infinity proportional to A. Again in this case the metric is trivial to compule vsing
free massive ficld theory.

These vacua will not completely decouple from each other. in the sense that
there are instanton corrections which tunnel from onc vacuum to another and
provide off-diagonal elements for the metric which are expenentially small as
A — o« In order to describe this situation, let us take the case where afl the cnitical
points of W are simple, i.e. that they all give rise to massive theories. [t 1§
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convenient to use the “point™ basis for #. Two holomorphic functions F{X) and
FA X} represent the same element in # iff

fl(Xk) =f2(Xk) VX&-

where X are the critical paints; this follows from the residue formuia (2.10). So
we can label each equivalence class by its values at the critical points. We denote
by ¢, the class such that we get | at X, and 0 at X, (h+4). In this basis, as
A - = we gel

LT
BT Tl

where 3 denotes the hessian of AW evaluated at the critical point. In the case of
ane ficid, one can also give a general form for the first correction (o this classical
limit. Onc finds that if there is a primitive soliton connecting the two vacua, the
cordition lor the existence of which has been studied in ref. [33], one obtains a
carrection of the form

e 12
s a4z, e[ - 22,,] k£, (4.7
(Rii&n7) .

wheie
L= ATW(X, ) - W( Xy H,

and er,, 15 a phasc factor. Here 2z, is equal to the mass of the soliton connecting
the two vacua. This result is discussed in appendix B.

Having discussed the two limiting cases of UV and IR. it is natural (o ask what
can bue said in general about the properties of the flow in between. In particular,
does there exist a natural “c-function™ for us? What is the relation of Zamolod-
chikew™s mietric to our ground state metric £ away from the conformal point? We
will now address these questions in turn.

The central charge of the SCFT is proportional to the maximum charge in the
ring of chiral primary ficlds {2.4]. Indeed

C/3 = (‘: = qn\}ll'

In the Rumond sector the charges are shitted by —¢/2, and they are symmetrically
distributed between ~¢/2to ¢/2. It is natural to try to define this charge, even off
criticality. and view it as a “c-function”. We should in fact be able to do more; The
charges ¢, of the chiral primary ficlds are all on the same footing from an abstract
point of view, So we must be able as well to define g-functions corresponding to
the charges of all these operators. In fact there is a theorem in Singularity Theory
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[34] stating that all these functions would satisfy a “c-theorem™. More preciscly,
suppose we perturb a singularity (which corresponds to a given N =2 critical
theory) in order to get a simpler singularity (which is interpreted as the corre-
sponding IR fixed peint). Let 4 denote the number of chiral primary fields. Order
the charges of the chiral primary operators in a non-decreasing sequence

O=g;<9,5 ... s9,=0c/3,

then one has
quq,:-ﬁ-%(c—c')quﬂ, (3 8)

where the primed quantities refer to the IR fixed point and §=4 3 is the
difference of Witten indices between the UV and the 1R theories.

Motivated by these observations one naturally looks for a definition of a
“charge” matrix. Note that by a change of phase of the Grassmann varighles, we
see that the phase of A is not a physical degree of freedom and all quantitics
depend on 1A}, Let

A=ge’.

In other words, the metric and all the other physical quantities depend on -
through its real part r + 7. Now we are to define a notion of a charge matrix, using
the only quantity available to us, namely the ground state metric . Near a
conformal point g becomes diagonal in a basis of ground state vacua with dclinite
charge. One can easily see using the Ward identities that, in the basis defined by
our path integral, as A —+ 0 g hehaves as *

Rt al V

£~ (AX} .

where here g, denotes the charge of the ith Ramond vacuum. We thus see that
near the critical point the matrix

gh g t—ny2

is a diagonal matrix with eigenvalue equal to the charges of the Ramond vacui, In
particular the maximum eigenvalue of this matrix reproduces ¢/6=2¢/2 ncur
criticality. So let us define the Ramond charge matrix ¢ as

a=gd g ' —n/2, {4.9)
i.e. the “gauge connection™ in the direction of flow minus the “anomalous™ pard.

" The shift of ¢, by n /2 is related to the behaviour of 5 under a rescaling of W Gwhich is a king of
“anomaly” arising from the Fermj zere modes). indeed, from eqs. (2.9) and (2.10) we have
det(g]= Idetfnll ~ |a] 73,

e ™

-

W
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This ¢ has a simple field-theoretical interpretation. Since nothing depends on
the D-terms, we fix them to be the “standard™ ones

K=Y XX,

i

If W is quasi-homogeneous we have a conserved U(1) current J . and we must

have
a = (k |951"(g) da|h).
Nacther's theorem gives the following expression ™ for J,:
L=l Ul
where
j.f =" |1 Zd_’!?’,ﬁﬁd’u-
!
U=YaXX.
Sinee E ]y isa Q-commutator, we have
4= kI Iyl = (k 1 ih.

Considier now a generic superpotential W. The current J: is still partially con-
wened. Indeed. it is only softly broken by the superpotential W

—a =i Wi [ (4.10)

Honce it makes sense to consider its matrix elements. Then the natural definition
of the off-critical charge is

aue = KIS 1A
I'his definition agrees with the previous one, eg. (4.9). To see this we compare

{410} with the path-integral definition of the connection. In our conicxt, =q. (4.10)
should be modified. Indeed. in order to produce the correct vacuum state we have

T 41, means the vector component of the superfield U.

T A R

ot et N R RGP -
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introduced a background gauge field in the right hemisphere. Then the axial
current develops an anomaly

~a,03=ifde Wi [0 W (n/2m)F.
Consider the connection along the flow

An=Shio thy =<hI(a, -3} kD

It has the following functional representation:

r<¢,,{(fs D*D*W - D-[")-W)dm

Sr

- _<¢,h|(fs A +(n/27.-)F]]¢*>

A THEREE U AL

which shows that the two definitions agree. This also guarantces the “gauge
independence” of the eigenvalues of g, which is not mantifest from cq. (L9). Under
a “gauge transformation” the variation of the anomalous term compensates the
change in the connection. From the QFT viewpoint it is manifest that the spectrum
of g is real and symmetric about zero. This follows most clearly in a basis where
n=n*=n"". Then from eq. (2.9} we see that

gn = - nq.

Now we can show that the criticality of g as a function of couplings occurs omly
the conformal points. This is an easy consequence of eq. (3.9). namely we have

da=[C,.eC7e"].

and at the conformal point the matrix C, is represented by multiplication by .
and since at the conformal point W is quasi-homogencous, it follows that Hotself
is in the ideal generated by dW and thus is trivial in #. Therefore €, =0 precisely
at the conformal point and thus from the above equation we sce that g is critical
precisely at these points. This is also true the other way around. namefy, (7 =0
implies W is quasi-homogeneous {35]. This is the aigebraic characterization of a
fixed point, in the sense that when this happens the chiral ring has the propertics

* Because of rezlity of the eigenvalues it is enough to check stationanty with resnect lo the couplings 7,
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prescribed for a critical point. Whether it is actually a fixed point is a more tricky
question depending, of course, on the D-term too.
At criticality ea. (3.10) reduces to

[C.l' q] = Ci‘

which increly states that only perturbations by operators of charge 1 are compati-
ke with conformal invariance.

From this definition of the g-function it is not ohvious that this quantity satisfies
i “o-thcorem™. This should be globally true, in the sense that the inequalities (4.8)
hetween the cigenvalues at the UV and IR points hold true. What is not manifest,
is that pointwisc along the “RG-trujectory” the derivative of these quantivies has a
definite sign, However, cxpericnee with concrete models suggests this is also true.
Meorcover, using the connection with Special Geometry it is casy to show that é is
nut-positive near a critical point. So, at least our version of the “c-theorem™ holds
i1 perturbation theory.

There is another way of getting the a-function which is more convenient since it
hatds in an arbitrary basis (provided the operators ¢, do not depend explicitly on
the ') without aeed of a compensating “anomalous” term. Consider the matrix

Qih = Guaf(c - )M-

where (7 is the above normalized metric. It is casy to see thal near the critical
point this definition of charge Q gives the list of the charge of chiral primary fields
and in particular the range of the cigenvalues goes from 0 to /3 =¢ Three times
the maximal cigenvalue is then a candidate c-function. Obviously. the two defini-
bions qgree. We will refer to this function as aefgebraic c-function. Tt would be
interesting to sce what is the precise relationship of this ¢-function with that of
Zamotodehikov.,

Now we turn 1o the question of the relation between the Zamolodchikov metric
oll criticality with the ground state metric g. If we wished to write the Zamolod-
chikov metric for both marginal and relevant perturbations, ar the conformal point
all we have to do is to multiple G by factors of charge mentioned above. It is now
clear that we cannot expect a simple relation between our metric £ and Zamolod-
chikov's metric GG off-criticality, because we already see that even near criticality
we have to know the charges of ficlds in order to relate the two, and the notion of
UL1) charges of fields is well defined only at criticality. It is natural to suspect that
given the off-critical definition of charge discussed above there might be a way to
define a natural metric which is rclated to Zamolodchikov's definition. Even
though there are some abvious gucsses, we leave a carefully study of this for the
tuture.

AR A e
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5. Reduction to SQM

There are other usefu’ points of view about the ground-state metric. In ref. [5] it
was shown that g can be computed by dimensional reduction to one diinension
(i.e. in Supersymmetric Quantum Mechanics). Roughly, this follows from the fact
that one can find a susy (but not Lorentz} invariant D-term which suppresses all
the non-zero modes in the Fourier expansion of the fields. Thus, independence
from the dimensions is a special instance of independence from the Kiihler
potential. Although the computations can be done directly in 2 dimensions. the
reduction to SOQM is useful for two teasons: first of all, here one has an explicit
construction for the isomorphism of primary fields and states in the Rumond
sector in terms of the wave functions of the SOM vacua. This also naturatly
encodes in a geometric way the “anomalous” transformation under field redefini-
tions, which as we mentioned is related to the violation of fermion numbers in the
topological description of the theory. The second reasom is that we cun give a
general solution to the linear problem (3.11) in terms of the vacuum wave
functions. This also turns out to be very closely related to the gencralization of
special geometry in the context of massive theories. As customarily, we identify
SOM wave functions with differential forms via

LTS 5 N €93 AN LTSRN )
=l ik i (X )AXT AL AX AdER A g
Then in the Schrédinger representation, Q) is represented as
O =d+dWa
and Q7 is represented as
O =d+di¥ A .

The isomorphism between the realizations of W-cohomo[ogy on fields and states
becomes

¢k—’_‘“—l_"7§'¢* dX]f\ . f\dX”'FQ!Ié*.

{(-2m)
Note that this isomorphism takes into account the topological violation of fermions
number mentioned before. In fact from the path-integral description of seci. 2 it
should be clear that once we se¢ why the identity operator can be represented
cohomologically by d X' A ... AdX" the above follows, and that representation of
the identity operator can be shown by taking a very tiny hemisphere, represented
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by a little disc and perform the topological path integral. In the language of SQM
it is manifest that under a field redefinition the Ramond state representing ¢,
should transform as a {n, )-form rather than as scalar. This is the origin of the
“anomalous™ jacobian. Clearly,

0 =0; +0n =exp| -W(X) - W(X)] dexp[W(x) + W(X)],

where o is the exterior differential. Since the vacuum wave-forms w, are annihi-
lated by () and its adjoint Q, the modified forms

o, = exp| W(X) + W(X)]w,.
u')kzcxp[—W(X) —W()?)] *

are d-closed. They represent some kind of cohomology of the d-operater. Obvi-
ously this cannot be the usual deRham one, since for €7 it is trivial. In fact, these
torms are representative of refative deRham classes. For @, the relevant cohomol-
agy s H70 %, B), where B < C” is the region where Re W is greater than a certain
{large) value. The &, correspond to the dual cohomology space. This dual space *
can be identified with {equivalence classes of) n-chains y,” such that on 4y we
llave Re B — +x. We put

Hf=f &, . (5.1)
One checks that 1] is finite and det[J7]# 0. From ref. [t4] one sees that there
exisis A, such that
Dw, = (d+dW A}, .
where
(5+dW AYA,, = aWa, ~ (C,);w,.
Then one gets
DU = —(CY'm. DI~ —(T), 1,
that s

vil=Vi=0. (5.2)

“ Tine daal space can be viewed as providing an integral basis for tive vacua

Ll e i

H
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The matrix IT gives the general solution to the linear problem (3.11). These
remarks give a simple description of the geometry of the bundle over the parame-
ter space discussed in sect. 3. Indeed, we see that the vacuum wave-forms, after
projection into the relevant relative homology, represent sections of the bundle
discussed there.

The real-structure matrix M£ has a simple meaning in SQM. The Schridinger
equation is real, and hence the complex conjugate of a vacuum wave-form w, is
again a vacuum wave-form and should be a linear combination of the w,. If the w,
correspends to the basis ¢, we have

(00)" = Miw,,
from which the reality consirairt is obvious. In particular. we have
O*-MIO = M=I*1" (5.3)
which gives an alternative way of computing the metric from the sotution of the

linear problem.
In SQM, eq. (2.8) follows from the definition of the ground-statc met, W

(kth) =[ ¥ wl Aw,, (5.4
and the cohomological identity
f v 0, Aw, = Resy[didy ) =700 (5.5)

which is a consequence of the Bochner—Martinelli theorem (see the appendix of
tef. [14] for details). In analogy with {(5.1) we write

one can easity show, using the uniqueness of solutions 1o linear differential
equations, that

- ey B
i =mae (17,
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where p” is some pairing * of the above cycles which is independent of the
couplings t'. Then (5.3} gives

n =IplT, g=TIipH",
which are a kind of Riemann bilinear identities for the integrals (5.4) and (5.5).

This SOM viewpoint is quite suggestive of the geometry of & variation of Hodge
structure (special geometry in the physics languages). Indeed, the mutrix {7 is just
the period map for the relative classes w,. Note though. the sin ‘larities are
semewhat mislcading in that the period matrix which is holomorphic in the case of
special geometry {or variation of Hodge structure) has the distinctive property of
mot being holomorphic in terms of couplings 1. And even though we have an
integrat representation for the metrics in terms of solutions of Schrédinger
cquation, s nor possible to give a closed form answer for them as integrals of
simpic objects, as it was the case in the guasi-homogeneous (conformal} case
discussed in the previous section. In this sense the problem is much more difficult
to solve in the massive case. We have already mentioned that 4 can be identified
with the Gauss—Manin connection. In fact €q. (5.2) can be seen as the defining
preperty of the GM connection in terms of periods. So, the structure arising out of
N - 2 susy s o generalization of special geometry.

The SOM viewpoint is very useful from another view point, and that arises
when one considers changes of variables. Indeed it turns out that one can do
non-invertible field redefinitions and still be abie to relate the metrics between the
twa madels. That this is possible is essentially why the formal argumc ats in ref. (311
relating 1.Gotheories o geometry of CY can be justified - at least as far as the
metrics o the moduli space is concerned [14]. Moreaver this will also Justify, to
the extent of getting the same moduli metric, the more recent work on relating
ditlerent LG theories with each other by non-invertible changes of variables {36]. It
turns out that for many of the applications that we will consider this is a very
important technigue.

The simpless way to understand how it works is in the languase of SQM. We
will use a mathematical language as it is most convenicnt to describe it in that
setting, where we sometimes refer to the nice propertics of non-invertible changes
ol variables as “functoriality with respect 1o branched coverings”. Let w, (k=
... 3) be the vacuum wave-forms for some superpotential W(X). In this
superpotential we make a substitution

S Justas in the conformat case, #'' is simply the inverse of the intersection mairix y" Ny, .t s
Pussible toshow this by nultiplying the integrand in eq. (5.4) hy one represented by explW +
Waexpt W — ¥y, and using the Riemann bilinear identity.

e oRya g, e
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where the map f is holomorphic but not globally invertible (otherwise we would
get just an irrelevant field rew.finition). Then consider the new superpotential

W) = W(1(%)) =f*W.
For the supercharges one has

Qr ;=0 +dW,A =f*Q5,

Q[_f=a+dW,/\ =f*Q;,
so that the forms f*w, satisfy

Qﬁ,ff*wk = Q[.ff*wk =0.

IN the case of just one field, these equations imply that o, h=1,... 4y ure
vacuum wave-forms for the superpotential W,. (Recall that if n = | the wave forms
are independent of X as form, not just as cohomology classes). In the general case,
the new wave functions are

'Qk Ef*“’k + QEJQ{..,#'D i I'1f*‘-“k-

where the dependence on the Kihler metric is hidden in A and $. The £2,°s are
manifestly cohomologous to the pullbacks of the forms w,. Indeed, it H iy not
degenerate, $' is a continuous operator in the {n — 2)-form sector. OF course,
these functions are just a subset of all vacuum wave-forms for W, since 4, = 3 for
a branched cover. Now for n = 1, one has simply

kimly, = [« nf*a,

:mqfu*aA%=m%fmeh. (5.0

(for 7 = 1, the Hodge dual * on 1-forms depends on the complex structure only).
The equality is true for the general case as well, the only difference being that n
order to prove it one has to use the full machinery of the cohomological compula-
tion for overlap integrals, see ref. [14]. Alternatively, functoriality foilows from the
(conjectural} uniqueness of the solution to our equations. Indecd, the topulogical
functions =, ; and C ,—f are trivially functorial, and hence the equations themselves
behave as expected under non-invertible change of variables. Therefore, if we
know the ground-state metric for W, we can get the metric for W just by

e i .

s

e
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restricting ourselves to the cohomology classes ¢, dY' A ... A dY " (with ¢, E5#)
which can be written as

by AY' AL ADY = fH (0 dX AL AAXT), g eR. (5.7)
Notc that in this way we automatically reproduce the “anomalous” jacobian.

The presence of a jacobian in the transformation has another implication.
Suppose that both W and f are quasi-homogenecus. Then so is W;. Both models
arc critical and we can speak of their central charge. Then using the fact that
hessian is the maximum charged element in the ring with charge ¢/3, eq. (8.7)
implics

c=¢,—6q,(]), (5.8)

whure g, (/) is the UCL) charge of the jacobian
det[af, /Y] €F,.

Fhe insertion of the jacobian just soaks up the excess of vacuum charge of the
branched model with respect to the original one. Note that we can use this
technigue to relate different conformat theories even with differenr central charges,
as Tar as the metric on chiral primary fields are concerned. It would be interesting
1o mvestigate the precise relation between the full conformal theories in such

Cunds,

6. Lie-algebraic aspects

Our cquations have an interesting group-theoretical meaning. This is well
knuown in the conformat case where W is quasi-homogeneous. where it is related
to the Lic-algebraic aspects of the period map of the corresponding hypersurface
(or the Lic-algebraic structure of the Variation of Hodge structure). It turns out
1hat the Lie-algebraic point of view is very useful even for massive perturbations of
our theories as well and they help us understand the geometrical content of the
cgatitions as well as to actually solve them. Qur discussion here is modelled on the
classical one for the topology of algebraic hypersurfaces (which arises in the
conformal hmit). This case we will refer to as the “geometrical case” below.

We begin by discussing the reality condition ¢n the metric (2.9). One can find a
“special”™ holomorphic basis such that the residue pairing is independent of the
couplings ¢ and

e R Ndt
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Such special bases have been considered before in the context of topological field
theories [1G;. Their existence is a deep property of TFT and they arc also
technicaily convenient. See appendix C for details. In such a basis, the reality
constraint on the metric becomes

gngt=n.

i.e. g is orthogonal with respect to the real metric . Then, g dg 7! belongs to the
corresponding Lie algebra, namely g(dg™ Y7 is antisymmetric. Thus the first term
in eq. (3.9) is skew-symmetric with respect to n. This is consistent with our
equations. Indeed, the topological 3-point functions C,]" are n-symmetric (that is,
Cu=Clny is symmetric. So is gClg™" (since nM =M Dtp*) Then
{C. gC}'g’}] is also m-antisymmetric. Note that, without loss of generality. we can
choose 1 = I, so g is orthogonal inh the standard sense. Of course, g helongs to
the complexified orthogonal group, not to the usual compact form.

To go on with the discussion, it is better to rewrite the linear problem (3.11) in
a more convenient way. Let g =expl#] and put ¢ = expl&/2). We perform the
gauge transformation

- el
Then the lincar problem becomes
[2—(deye ' +e 'Ce]T=0.

[6+e i(de) +eCe!|T=0. (6.1)
From now on, by T we mean the fundamental solution, ie. T is the matrix
solution such that 70} = 1. By adding an irrelevant constant to B, we can assuine
that tr C = 0. Then from (6 1) it is manifest that ' belongs 1o SL{J4, &) This is
similar to what one finds in the geometrical case, where however there are
additional algebraic restrictions coming from the topology. They reflect the so-
called Riemann bilinear refations. Under certain circumstances, similar restrictions
apply to the massive case as well. They are quite important. since restricting the
Lie group in which 7 takes values is a crucial step in soiving the equations for
particular models. Let G be this group and H be the subgroup guauges by the
connection for D, D. One had H C K, where K is the maximal compact subgroup
of G (this follows from the fact that the connection is metric - or put diffcrently.
from the eq. (6.1) and recalling that e is hermitian). Of course, g (and e} befong to
H, (i.e. they are complex gauge transformations). The importance of identifving G
and H is best understood by realizing what the equations become for special G and
H.

Suppose we have a family of superpotentials depending on just & single coupling
1. This will be the case of most interest for us in the rest of this paper. The simplest
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case is when H is the maximal torus of G. In this case eqs. (3.5) are just the usual
Lax-representation of a Toda system {indeed, consistency alone implies that the
matrix C, is the sum of an admissible set of roots for G). Then eqs. (3.5) reduce to
the standard equations of Toda field theory.

The Gauss-Manin equations for the variation of Hodge structure for an
algebraic manifold X (of dimension m) are also of the form (6.1) with

k-1

G=50(b,.b7). H=SO(h**} @ U(h™ "7} m =2k,
r=0

3
G =Sp(b,, R), H= & U(h™ ") m=2k+1,
p=9

where /19 (resp. b,,) are the Hodge (resp. Betti) primitive numbers and

bo + b =b_, b, —b- =1 (Hirzebruch signature).
In this case C, is the class in H'(®) of the complex deformation corresponding to
an infinftesimal variation of the parameter ¢', seen as the matrix of the endomor-
phism in H*(X) induced by wedge product (where @ represents the tangent
bundie). :

In particular, if we have a Hodge (sub-)structure such that for some integer a

hmrr=1 for |m-2pl<a

=10 otherwise,

and (AW #1) in 2, then the GM equations reduce to those of the G-Toda
muolecule tie. the non-affine version). The simplest example of this state of affairs
is the wrus. The o-model en a torus is equivalent to an orbifold of the LG theory
[311 with superpotential

W=X'+Xx{+x]+0x X, x,.

in this case #'" < A% = | and hence G = Sp(2, R) and H = U(1). In other words, in
this case the monomial XX, X, generates a nilpotent subring of order 2, and that
is how we end up with Sp(2, R). Solving the linear problem one gets (for details,
see ref, [37h

dr |}

dr

(a=172la=1/2) (
{a=-1721g= -1/~ 4{im 7i1)(?

g

ey Ry

[
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for some holomorphic function 7(¢). This is precisely the general (real) solution to
the 5142} Foda eguation, i.e. the Liouville equation

la=1/2lq=1/2) y ]
{g=-1/2lg=-1/2) = EXPLO Liouvie |-

However, in the LG language the function 7(¢) is further restricted by the
boundary conditions. It turns out that this function is just equal to the period for
the torus B = as it should from the general correspondence between LG theor.cs
and geometry {2,31]. Indeed, one can use the degeneration structure of the
algebraic surface to find out what () exactly is.

This example can be generalized. Take the CY manilolds %, associated (o the
superpotentials

W=XI+X]+. .. +X!+X,X,.. X,

and consider the Hodge substructure (i.e. the subset of &) corresponding to the
subspace of H "“2(.2',,) invariant under the automorphisms

X, - exp[Zwmj/n]Xj Y a,=0mod n.
j

(1t is precisely medding out the LG theory by this symmetry that has been shown to
be a beautiful example of mirror symmetry [38].) The ring invariant under the
above transformation is generated by X,... X,. In this case the equations one gets
for the metric g is the same as Toda molecule with G =Sp(n - 1, B} (resp.
S8O(n/2, n/2 — 1)) for n odd (resp. even). These follow very easily from eq. (3.9),
In particular these Toda theories emerge as a Z, reduction of s — 1) Toda, with

(X ZY |0 x) ) = exp(a,)

with 0 < r <7 - 2, and one identifies the vector ving ~q,_, =qu with a simpie
root of sk(n — 1). The Z, reduction follows from (2.9) implying g, +q, , ,=0. It
is the nilpotent structure of the ring generated by the symmetric monomial
X,... X, which directly reflects the sl{in — 1) Toda molecule struciure in these
equations,

The general case of arbitrary deformations of algebraic hypersurfaces is a very
natural generalization of the Toda molecule. In ref. [id] the ground state metric
for quasihomogeneous superpotentials was written in terms of holomorphic coun-
tour integrals. This explicit Tepresentation is just the extension to the more general
case of the standard Leznov—Saveliev algorithm to so've Toda equations [39). (This
is common knowledge in Algebraic Geometry). Indeed, this algorithm reduces the

4
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solution of the Toda molecular to finding a triangular hotomorphic matrix I7T
satisfying
dat=CHIE.

The period integrals of ref. [14] (after filtration 4 la Griffiths) give the special 11
matrix satisfying the correct boundary condition. Of course, this method works for
all variations of Hodge structure, even if H is not abelian and we have a
multiparameter family,

Now we come back to the more general case of massive perturbations, and wish
to determine G and H. There is a simple method to determine H. Decompose the
vacuum subspace 2 of the Hilbert space into orthogonal subspaces corresponding
tu different irreducible representations of the (pseudo)-symmetries of W, A priori
from the above discussion it is clear that H is 2 subgroup of product of U(NR)
where Ny, denotes the dimension of the representations in question. However 7,
which is of order 2, acts on the representations, and because of the eq. (2.9) relates
the ULN,) for each pair and so cuts the number of U(N,) by half. Also, if n maps
a4 representation to iself, eq. (2.9) implies that the corresponding H is in SOUNR).
Put differently, an irreducible representation we call real if it is real with respect
to the real-structure M. Then, a real subspace of dimension N, contributes a
fuctor SOUN) to H, and a conjugate pair of complex subspaces of dimension N,
contzibute a factor U(N). Le.

Hc @ U(N) @ SO(N,).
pairs real

In panticular, H is abeiian if all complex subspaces have dimension 1 and the rea!
ones al most dimension 2. In the geometrical case H is given by this recipe with
7= H"(X). the relevant subspaces being H”*(X) and under complex conjugation
P

The problem of determining G is more deep. A typical case when we have
special resizictions on this group is in the presence of a special Z, symmetry P;
this vccurs in a theory which has the property that for all values of the coupling ¢,

PW = —Wp. (62)

Such a symmetry operator P appears in the geometrical case as well and is called
the " Weil operator” {40]. This operator is order 2 as far as the NS is concerned,
but since the vacua are in the Ramond sector and two Ramond states produce an
NS state P acting on Ramond states can end up being + 1. Since the spectral flow
from NS to NS is cquivalent to product of two Ramond vacuum states. and this is
accomplished by the hessian of W, we leamn that the phase of P? is simply the
same as the phase of © under P. Let us write

Pi=(-1)".

[P PR

K | s
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Working in the holomorphic L.usic we represent P by
Piky=Pr k).
Note that we have
nP=(-1)"PTn.

This follows from the fact that a state and its dual with respect to » transform
under P the same way up to the phase (- 1) which is the way the spectral flow
(given by the hessian) relates them. We thus see that

nl-) - _q,lcPk}

is symm “tric for m even and antisymmetric (a symplectic form) for m odd. Now if
we consider

D=y 2y,
where ¢ is the solution to the linear problem in the holomorphic basis (3.11), and
note that eq. (6.2) implies that PC, = —C, P we see that *

P=dp=0 = ¢=1)

Then for m even (resp. odd) ¢ is orthogonal (resp. symplectic) with respect 1o the
constant pairing f2. If the signature of £2 is (r, 5), G CSO(r, s}. The geometrical
case 15 just of this type, with A =5, , r=8! and 5= (of course we can rewrite
all these in the other gauge for T).

7. Minimal models perturbed by the most relevant operator and related models

In the remaining sections of the paper we shall discuss particular classes of
Landau-Ginzburg models for which the computation of the ground state metric
can be done explicitly. We do this both for the intrinsic interest of the “solvable™
models in various physical applications and also in order to illustrate the general
phenomena of the previous sections (in particular, the overdeterminate nature of
the problem).

Among the perturbations of conformal theories by relevant operators Zamolod-
chikov [41] found a technique to find which directions give rise to integrable
models. The integrability is in the sense of having factorizable S-matrices for the
massive excitations of the resulting theory. The idea is to look for an infinitc

* We are miicking the geometrical case. In that case the bilinear form 2 is the intersection in FI”
(X.R).
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number of conserved currents which survive *he perturbations away from the
conformal point. These ideas were applied to N =2 minimal superconformal
theories in ref. [33] where it was found that these models perturbed by the (last
componcnt of the) chiral primary field of lowest (non-triviat) dimension, i.e. most
relevant operator, leads to an integrable theory. Moreover it was found that there
1s a beautiful interplay between the structure of the superpotential W and the
sulitons and their masses. Then essentially self-consistency alone fixes the S-matrix
in these models. It was shown in ref. [42] how these models (and their gencraliza-
tions) can be realized in terms of quantum affine Toda field theories with very
specific couplings. Also, the geometry of solitons and their conscivation laws for
specific perturbations of certain Kazama-Suzuki models (and in particular the
grassmannians) has been uncovered in an interesting recent paper [43].

As we will see it turns out that precisely these perturbations (and some natural
generalizations to be mentioned below) which can be described by N =0 quantum
(affine) Toda field theories [42] lead to equations for the ground state metric which
as a lunction of the perturbing parameter ¢ (which can be identified with RG flow
parameter) satisfy classical (affine) Toda equations of the same type (and thei -
matural reductions). This is an intriguing connection between the quantum theor,
and the correlation functions of that quantum theory, which begs for a deeper
understanding. That we should get Toda equations is already clear from the
discussion of seet. 6. In fact that discussion will help us organize what we should
expect for our equations. The gencral arguments of sect. 6 can be explicitly verified
in the concrete examples we study in this section. The models of the present
section are basically the ones for which the equations can be recast in a Toda form
by clementary tricks. In sect. 9 and 10 we shall consider other model which are
related to Verlinde rings whose equations are reduced to Today by more sophisti-
vited technigues.

Here we imit ourselves to a discussion of the relevant equations. However, the
rcial magic of the subject stems from the unique properties of the solutions
cortesponding to the actual metric rather than from the fact that the equations
themselves are among the nicer ones in mathematical physics. Part of the magic
will he discussed in some detail in sect. 8.

701 THE A, SERIES

In the LG approach, the A | minimal model corresponds to the superpotential
W=X""1/n+1). The {non-trivial} chiral field of lowest dimension is X. Then
we consider the supcrpotential

m+l

W(X.t)= — X,

(7.1)

n+1

AR Sy -

i

Slees 2

e BN

e A e P T

§. Cecotti, C. Vafe / Topological - anvi-topological fusion 401

and look for the dependence of the ground state metric g on ¢. As a basis on
#=CX]/(X"~1)
we choose
L X, x%. .., x"\

The vacuum state associated to X* will be denoted by | k).

The model described by (7.1} has the discrete symmetry

X - exp[2mi/n]X, (72)
under which the state | k) picks up a phase explmi(Zk + 1 ~ n)/n). Then (k|4
=0for k #h, ie. g is diagona. in this basis (from here till the end of the paper we
have chinged our notation and take (k| to be the adjoint of | & )). Therefore the
group H defined in sect. 6 is abelian. From the discussion there it follows that our
cquations are of the Toda type. This system is rather peculiar in that the metric
belongs to an abelian group just on symmetry grounds, i.e. before using the reality
constraint to further reduce the number of independent elements of g. Impuosing
the reality constraint will lead to a consistent truncation of the Toda system o once
with less degrees of freedom. Such consistent truncations are well known in the
Toda theory [44] and are understood algebraically as foldings of the corresponding
Dynkin diagrams.

To start with, ¢ takes values in SL{n) and hence the equztion for the t-depen-
dence is that of some A, _, Toda system. Which one depends on the admissible
root system to which C, corresponds. Multiplication by operator X is denoted by
the matrix C, given in the above basis of vacuum as

6 I 6 - 0 o0
0 01 --- 0 0
C=]: + ¢ D
0 00 - 0 1
¢ 00 - 0 0

i.e. (up to conjugacy) C, is the sum of primitive roots of sl(#} minus the Fongest
root. Then we get the affine A, _, equation,

To see what the truncated “real”. Today system is, it is better to distinguish
between even and odd #. If n is even (= 2m) we have a ** Weil operator™ P. This is
just the generator of the symmetry X — —X. This is an element of the group in
(7.2). From the phase a state picks up under such a transformation, we scc that
P?= — 1. Then, according tc the discussion in sect. 6 we have

G=S8p(2m, R),

g-‘m.

s

o W
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i.c. we get the € Toda equations (for m = 1 this is ;\, and for m =2 this is flz).
This can be checked explicitly using eq. (3.9) as we will show below.

The situation for n = 2m + 1 odd is less simplc. The truncated Toda equations
dare associated to a root system (denoted by E-E,,,) which do not correspond to any
Lic algebra, The corresponding equations are called the generalized Bullough-
Dodd cquations, since the first equation in the series is precisely the usual BD
cquation.

Let us sec how they arise. In our basis, the residue pairing is independent of ¢.
The only non-vanishing entries are

Tino1-x= 1L
‘Then the reahity constraint reads
CklkYnm=1-kln-1-k)=1.
tn porticular, if 12 is odd (= 2m = 1) one has
for all ¢.

{mlm)=1

ln this way we reduce to /2] unknown functions, namely (k|k} for k=
nol.. ., [ /2] - 1. In particular, for 7 = 2 or 3 we have a single unknown function.
Writing

e, =logliiiy, i=0,...,n-1,

and using the expticit form of C,, eq. (3.9) becomes
gy, + eI )2 e e o
':!.‘r?f¢‘! +el e o oleome ) o 0,
ddag, e gm0 et e gy (7.3)
' put these cquations in standard form, we put(i=0,....n - 1)

2t —n+1

log | ¢]°
o og |17,

¢ =4+

I(n-«- I)/rr.
n+1

Z =

We extend the definition of g, 1o all {’s by setting

ql‘+n EQ;-

ERETYEY - L ALY PR

%‘
22

D ems

A S R
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Then egs. (7.3) take the standard form for A, _, Toda equations

d,d,q, + eI Lt ad o ), (7.4)

However, we have stili to use the reality constraint which in the new variables
reads
g+ g, =0

If n is even {n = 2m), using this constraint we reduce to the C,,, Toda theory. To
write it in the canonical form, just write (notations as in ref. [45])

2i+m

Tt S

q,= log 2,

z = 21Hm =Dy
Then egs. (7.4) become

200, = e¥P -8 _ 7 o= 3,

265::5; =¥ d) b)) i -,

200, =2 e*¢m — g2bm-1—m),

For n odd (n = 2m + 1), the redefinition

q,=-2¢,,,— ]]logl

1 ( i+1

20 2m+1
Z__,z—l/Z(Zm*])z

puts the reduced equations into the canonical BC,, form

B AU FEL N

<
T

-
1l

A L AT R T S, SO PR

206, = €297 — ¢Xbn-m0m),

Of course, not all solutions to the above equations are acceptlable as ground
state metrics. At least two additional conditions are needed: first of all, (k | A>
should be real, positive, and regular for all values of the couplings, and second the
solution should not depend on the phase of the coupling ¢ since this phase can be

re-absorbed by the field redefinition
8- c—l(n 3 “"9/26.

toe®, Xoe/ny,
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Tuen only solutions invariant under rotations of z are acceptable. This property
applies to all models we consider in the present section.

There is strong evidence that these two conditions uniquely fix the solutions.
This will be discussed in sect. 8.

7.2 THE D, SERILS

In the D, case the most relevant perturbation of superpotential reads

erfl
= b XYIo X,
n-—1

As basis for # we choose

LY. Y2, X, X* . xrot

F'tis model has two symmictries, namely
X—exp[2mif(n-2]X Y-V,

X=X Y- -Y.

It follows, that in this basis the only non-vanishing off-diagonal eiement of g is
{Y? 1} One has

Res[ X)) = 46 Res[¥Y"X]| =0 for b,c+10,

aar =21

Resfy 1] =0, Res[Y ]= —1.  Res[¥*]= i {1.5)

T'nen, decomposing 2 according the representations of these symmetries, for a
cven (resp. udd) we have /2 — | (resp. (n — 1)/2 — 1) one-dimensional complex
orthegonal subspaces, 1 {resp. 2) one-dimensional real subspace, and | two-dimen-
stonal real subspace spanned by (1, Y?). Then (cf. sect. 6)

H=S0(2) & u(n"" 271,

is abclian and we get again a Toda system.
If n=2m+ 2 is even, the general arguments of sect. 6 uniquely fix the Toda
system our equations correspond to. Indeed, we have a “ Weil symmetry” P,
P X—--X.

This time P? = 1. Indeed, the hessian of W is even with respect to P, not odd as
in the A-case. On # (neglecting the “decoupled™ state | Y }) the + | eigenvalue of
P has multiplicity m + 1. Then,

G=80(m+ 1, m),

ind we have the ﬁm Toda system. Instead. the Toda for # odd does not correspond
Lo g root system and cannot be deduced ov -ymmetry arguments alone.

A R fenllab g oy L e

At ey

RN

7 v imasiny - 1A IR R R 0
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Explicitly the reality constraint reads

(XA XWX m ey = g =, n- 3,

(riyy=14,  IYH =3, (YD =i,
irf?
Ay = as T(lll).
The coefficients C, are
XX =1X, a=0,...,n—4,

XY)=XI¥i=0.
XIX" D=0 +1yH.

Let n=2m+2—5 with s =0, 1. The independent entries of g are (A [ X" tor
a=01... m — 1. In terms of these variables, our equations become
3,3, log(1/1) i LePCKX XD
-a.4 =— — |t .
i 108 iy
(X1X*H (XX ) _
—-ad log{X|X)= ~ — L1 CX XD,
/A log{X 1 X (X1X) CHiLy 1%
: (X X> (Xa+1‘Xu+l> (.X“lX")
— 7| X%y = - .
fod] Og l (anXn> (Xu—-l |X" l>
{a=2.....m~-12),
| ] 1 Pee g Vpxm by
—ad logt X" AT = - < .
L 03( l > 2<Xm—l le—l> (X”' Lle

(7.6)
To put these equations in canonical form, we define

¢, =log{X|X)+log{lI1)FF(le1}+(1+1)logiri

G = log{ X"V X7 —log{ X | XY+ F(Ie]), (j=2,...

—(L+s)log{ X™ "X D+ (1 +s){m—DF(le1) = (1 +5) exp el

m—=2),

ém*l =
rl+(l+!)8

1+5\2
|7 o
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where
1
= 1+ (m-1)(1+s)]

and
F(iety=28[(1+5) log(1¢1/2) +log(1+5) —log 2].
Then ¢gs. (7.6) become

A, =2t — gt

+

§i, = 2% - ctm ot e

ddp, =2c% —e® -t (a=2,....m—3),

i,y = 2etn imetn (2L s)) et
adg, _ =2ct o — (]l +5) e s

tn peneral, the Toda equations can be written in the form [44]

r?r'-'tb,, =C,, e,

where €, is the Cartan matrix of some root system. From the above explicit
formuZa, we sce that for s =0 {n even) we get the Cartan matrix of ﬁm, as
cxpected from the general argument. Instead for s =1 (n odd) we get the
transpose Cartan matrix. This is the Toda system denoted by DT(SO{2m + 1)) in
rel. [44].

T3 I'HE E-SERIES

The only new maodel is E,, since E, and E, can be obtained as tensor products
of A minimal models. In the E, case the most relevant perturbation of the
superpotential reads

W=1x'+lxy*_v
Asbasisin o2 we toke li= 1, ..., 7
&, ={L.Y, X, ¥ XY, X XY} (7.7
This moded has a Z, symmetry

X—oeX, YooY, ¢ =1,

$. Cecotti, C. Vafa / Topological - anti-topological fusion 07

Under this symmetry no two fields in (7.7) transform the same way, and hence the
metric g is diagonal, So H is abelian and we have again a Toda theory.
In the above basis the residue pairing reads

0, = {1 —48,,)8,,, 4.
and the reality constraint reads
QI8 —-il8-i=1, i+4,

(4[4 =3
Then H = UGIY. The non-vanishing elements of C, are
Ci=Cl=1, Cl= =3
Putting

2o, =logd313) + 1 log Feb?+ 1 log 24,
5

2¢,= —log(l11> — 3 log Irl "~ log 2+ 3 log 24,

20, = ~logdZ 12> — 2 log |11 +log b — I log 24,

. (24)" 747

82

il

N

one gets the eguations in the form
2o, =M -2 e g
Zaé;pz = ellvr-vd _ pllvi e
208, = et — gleamenl,

which is the BAC:, Toda in the notations of ref. [45] (i.e. GIXH ) in the lunguage ol
[441).

74 THE A, MODELS PERTURBED BY NEXT RELEVANT OPFRATOR

Next we consider the models

Xn+l Xl
= —r—.
n+ 1 2
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For .# we use the basis 1, X,..., X"~ '. These models have the discrete symmetry
Xsexpl2mi/(n - D]X,  §—sexp|—mi(n+1)/(n- D]e.
This implies
Chlh)=0 for k+h exceptfor (n—1)0> and Oln-1>.

Sinee the two-dimensional subspace spanned by 1 and X" is real, H is still
abeliun and therefore we get again a Toda system. In fact one has

H =S0(2) @ U( 1) 22
In the present case the residue pairing is
Wi = Biep 1 ¥ [LPINNT A
so the reality constraint hecomes
Glmyn=l=kln—-1-k>=1 for k20, mn-1,

W =13 = Sr{o ), - 110 = Lo o),

Ir!zmlu)
+ T .

(n=1ln—1)=

{01

W o+ 1 is even (= 2m) the model can be reduced to alrcady solved ones.
Incleed,

W(X):WU{XZ)

with

m

!
- —Y,

W”(Y)In+l 2

su the “edd™ states
RE+1) (k=0.1,....m-2),

are just the pullbacks of the vacua for the A, _, minimal model perturbed by the
most relevant operator. For our purposcs, these states decoupte from the others
and, by functoriality, the corresponding ground state metric

CA+112h+ D

v the solution to a Splar — Door a BC,, | Toda system according to whether m is
odd or even.

S. Cecotti, C. Vafa / Topological - anti-topological fusion Hy

Instead, the metric for the “even” states {2k} is equal to that of the D, |
model. This follows from the fact that the D models are the orbifolds of the A "

" oncs with respect to the symmetry

X - -

- Then for the even states we get B(m,wz or DT(SC(m + 1)) Toda according

VLS TS L T

(RCIN)

R A b T

B L =2 P YHTY PR

whcther m is odd or even.
On the contrary, when n is even (= 2m) we have no “Weil operator” and henee
we cxpect @ Toda theory associated to a generalized Cartan matrix. Indecd. lot

m+ 1
g, = —logQ2(i - 1)12(i- 1)) for i=1,2,..., 5

m+ 1
=log(m -+ 112{m-i}+1) for i= 3 J+l ,,,,, n.

Then the equations become

r—,\éql = : eldi—an _ '||Elf |2 g

adg, = 1 elwzman _ Letman_ Ly |2 etarvan,
ﬂl’iq‘I = %[e(qr_‘flol) - Clrh r"ll.)] (i' — 3' - ])-
P, = 117 e L eltn i

which. after an obvious re-interpretation of the symbols, is the samc as egs. (7.0)
Then by a redefinition of the variables it can be recast in the standard D'(SO{2
+ 1V Toda form,

7.5 PERTURBED GRASSMANNIAN COSET MODELS

The Landau-Ginzburg description of some of the superconformal modcls
proposed b Kazama and Suzuki [46] has been found in ref. [4] *. As another
application of our technigues, we will focus on an interesting subclass of such
models given by the level-1 superconformal grassmannian cosct models

3nm

/¥ =5U(n+m)/SU(m) @ U(n), €= ———,

/% =SU(n +m)/SU(m) & U(n) p—

perturhed by the most relevant operator. Again, these models are solvable as
quantum field theories and related to N = 0 quantum Toda systems [42].

* Actuatly this has been conjectured for many cases but not proven in full generality vet.*
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Let usx summarize it in a2 way convenient for our purposes. We assume, with no
loss of generality, that m > n. We start with n fields ¥, (k= 1, - n) with charge
= 1/(n +m+1)and consider the elementary symmetric functions

X =a(Y)= >

leli<iy< . hgn

VY, Y, (41, ). (7.8)

Then take the function

1
u/"(yk): R Eyknwrul_
k

By the fundamental theorem on symmetric functions, it can be rewritten (in a
unigque way) as a quasi-homogeneous polynomial in the oY) ie. in terms of t he
A one finds

Wi (Yo) =f*W(X).

where the map f is given by eq. (7.8). The function W(x) so obtained is the
supcrpotential for the grassmannian model. Thus the canonical branched covering
of the grassmannian medel is just n copies of the A, minimal model. To check
this picture of coset models, let us compute their central charge, using the formula
fur the change of ¢ under covering maps, eq. (5.8). One has

ﬁ.‘
J=det| =
N ov

y !

)‘A(Yp---.Y,,).

where AlY }is the Vandermonde determinant. Then

J n{n—1) 3nm
art )72(n+m+l) T T

(s 1t should.

As perturhed superpotential we take
W(X,.r)=W(X)-1X,. (7.9}

By going to the canonical covering, we get

n Y,:r+m+l
W, = f*W = - . )
Yo ) =frW(x. 1) *gl(n+m+l fYJ.—)

thus the perturbed model goes over to n copies of the already sobved perturbed
A, ., minimal model. The ground state metric for W, is just the product of the
kaown one for each factor.

PO RN LW I

LTI - T TN
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Now the metric for the grassmannian models can be obtained using change of
variables. Let P(X)}{r=1,..., (n+ MY /r'm',i=1,...,m)be aset of polynomi-
als making up a basis for the chiral ring # of the models in (7.9). Then ¢q. (5.6}
gives,

(PP =0/m)(AY )P (o (Y NIAYIP (o (V)]

there (- |- ), denotes the known metric for W
By the same token, we can also solve the grassmannian models perturbed by the
operator { X[ — 2.X,). Indeed,
- {y‘ll

and we are reduced to n copies of the model we sobved in subsect. 7.4

Frwexy - xi-2x,)] = p2

+1
yrrm
k

nAmotl

76 PARTIALLY ABELIAN MODELS

In addition to the models that ¢an be reduced to Today systems there are those
for which the ground state metric decomposes in two “non-inter wting” sectors
one of which can be recast in a Toda form. Many of these models can be related to
theorics leading to Toda equations by a simple change of variables. Then the
sector arising as the pull-back of the simpler theory “decouples”™ and has the Toda
form.

There are however, other more interesting examples. We make no attempt (o
completeness, but we merely mention an example to show ow it works,

Consider the model

W=X4/8+Y/4+2"/4—1XYZ.
It has a 7(4)} @ Z(4) discrete symmetry. Using the rules of sect. o one finds
H=80(3) @ U(2)'®50(2) @ U(1)".

The part of the metric correspending to the “abelizn™ part of H, SO(2}' @ U1,
(corresponding to 12 chiral primary operators out of 27) decouple from the rest,
and hence it is Toda. What is remarkable. is that the ground state metric for these
12 operators is a rational function of the metric for the thcory with B =X "~ (X,

8. The magic of the solutions

Up to now we have just discussed how equations take, for special models, the
form of interesting differential systems of mathematical physics, typically Toda
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cquations. However, the real magic of the ground state geometry appears only
when we consider the corresponding solutions.

In paridcular, we want to itlustrate how the conditions we have already stated
uniquely fix the metric. Basically, the requirement that g is a non-singular
positive-definite metric will fix it uniquely. Thus, in particular, the boundary
conditions for the differential equations are predicted. These boundary conditions
correspond to the values of the round state metric for the unperturbed conformal
thecory which is well understood. For the models of sect. 7, this implies that the
absolute normatization of the OPE coefficients for, say, the minimal models can be
deduced from our equations as the unique boundary condition allowed by regular-
ity. This wali be shown here and. in a more general class of examples, in sect. 9. On
the other hand, the behaviour as |r} -+ should be the semiclassical one, as
described at the end of sect. 4. Thus the equations also encode in a beautiful way
the geometry of solitons m the theory. Finally, the unique solution should also lead
te the carrect behaviour for the algebraic c-function.

S0 TRE MODEL B = X /3—1X

Consider the first model in (7.1). The equation in this case is A, Toda, i.e. the
sinh-Gordon equation. We know that the metric is a function of {r] only. Let
11" =x and y(x)={1]1). Then the equation becomes

d d1 , x
E(\’a Og y)—y —_‘,'—2.

Consistency requires that, as ¢ — 0, we get back the resuit for the A, minimal
moded, 1.e.

Y= (8.1)

_am e
Toley T [ ra/n e

On the other hand, as + — =, the two classical vacua at X = + 7 decouple.
Denoting by f | the corresponding chiral primary operators (the * point™ basis) we
must have

([*“+>= W+...,
(o= —ﬁ—,z"/z exp[—2z] + ...
TG

where

= |W(\/;) - W(—./f)| =%“l-‘/25 %x"”.

L At g
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" and B is some numerical coefficient. B is real by “ Weil symmetry”. Its sign would
. be predicted by the “c-theorem”. Since

1=i,+1, X=Vi(l,-1),
. we get
¥ x ~ o) = \/;[l —2B¥l?x‘3"“ exp(—%x‘”) + ]
We wiite
yAx) =V Y2, {8.2)
where Y(z) satisfies *
’=£~)%;);f{—- Y-‘~~:;. (83

This is just the special third Painlevé transcendent equation (Pill). The general
form of this equation is

e

L ) v +—(a¥Y +B8)+y¥'+ i
& Y 4 o
Y z z ¥ Y
the special case corresponds to a =g =0, y= -8=1.
QOur metric y{x) should be regular, real and strictly positive on the positive real
axis, The solutions to this equation without poles on the positive real axis e well
known. Following ref. [15) we introduce the function

u(z)=2log Y{z).

4 is a solution to the self-similar sinh-Gordon equation

FRRR TR B8 DEA CAY Pt TR

u,
u,.+— =4sinh(u).
z

= Inref. [15] it is shown that this equation arises from an isomonodromy problem. In
* fact. it turns out that the associated isomonodromy { = zero-curvature) problem v
nothing cise than our linear problem (3.11), for the model at hand. Indecd, let

1
1,34 o4
z=3x7°, A= ~31 R
3 FLA Y
(1)

A

" It is assuming that this very same equation is satisfied by the spin-spin correlation functions of the 2J
Iseng mudel off criticality [47}

A AR
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and make the “gauge transformation”
¢ = (1/¥2)o (1 +ioy) e 5y

In the new variables, the linea: problem becomes

a4 =d,¢=0,
with
a () 2! 1
a, = Y + - PR +chr, cosh u{z)— Fsmh u( z),
1t \
A=+ ' (x)er, + YizAos,
dz

which is the isomonodromy problem discussed in ref. [13). The relevant mon-
odromy which remains constant is precisely the monodromy of the period-map 7
for the SOM vacuum wave-forms introduced in sect. 5. In fact, this is true for the
weneral case. The linear problem ( the generalized Gauss-Manin connection) is
always an somonodromy problem for the SQM period map [T, Exploiting this
interpretation of the equation. one finds the properties of #s solutions [15].

T'he real solutions (for which the origin is not an accumaulation point of poles *)
are classified by their asymptotic behaviour as z —~ 0

w(zy=rlog z+s+0O(227 ") forlrf<2,

wic)=+2log z+2 Iog[—([og 1z +C)] +0(z' log?z) (r=12). (84)

(¢ is the Euler constant). For cach pair (r, s} with {r] <2 there is a solution. A
real solution is regular (no poles on the positive real axis) if and only if the two
houndary data r and s are related by the equation

/2 ! r(%f %r)

T r{i+r) (85)

=

S, requiring regularity fixes s as a function of r. Notc that a regular solution Y{s}
has o zero on the positive real axis. Indeed. Y7 is also a solution of eq. (8.3),
with just the opposite signs for » and 5. Since (8.5) is invariant under this change of

signs, ¥ ' has no poles and hence Y no zeros.

Y Wy pole” we meun a pole of the associated Painleve transcendent of the third kind Y{z).
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The connection formula for P states that the asymptotic behaviour of these
rcal solutions as z — @ is

a(r)

u(z)~—z-772~cxp[v22], z-x (#.6)

where

From c¢q. {8.2) one gets
u(z)=2logl11X(z) — 5 log(32).

Since the ground state metric is regular and non-zero as z » U, we have

s=2log{l1}},-0— 3 log 5.
Using the regularity condition (8.5) one gets

any ) 31”1 re)
O 10)

in agrcement with eq. (8.1).

More generally, all the elements of g for the A, minimal models can be
obtaincd {in fact in many ways} from regularity constraints on the solutions of our
equations.

On the other hand, the asymptotic behaviour predicted by cq. (8.6) precisely
matches with that predicted by semiclassical arguments (cf. appendix BY. The <ign
of the asymptotic behaviour of u may be surprising ar first, since 4 naive Chassical
picture might suggest the opposite one. In fact, the intuitive picture would apply 1o
the lcading semiclassical correction, which in this case just vanishes by supersym-
metry. The sub-lcading one has a sign which cannot be inferred by classical ideas.
However, the sign is fixed from the point of view of the c-thearem. Let us work in
the point basis, normalizing [, so that det g = 1. Then the metric reads

g=exp[-u(z)e./2].
By the redefinition X=X, we put W in the standard form with an overali
: L]
coupling A =1°"". Then the charge matrix g introduced in sect. 4 becomoes
Au( 2)
az

!
q = 10:2
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So the algebraic c-function is

du(z)
az

c= -1

as 2 +0, weget ¢ » 1, and as z — o, ¢ =+, as expected. The derivative of ¢ with

respect to the scale is

ac
= = —6z sinh{u).
P inh(u)
¢ s stationary only if z=00r u=0. 4 =0 implies
U 1y =0,

i.c. the “classical” theory. In between, ¢ is obviously monotonic with the scale.
Since for z — % we have ¢ =0, for farge, but finite z, ¢ should be a small positive
number. Using the asymptotic expansion (8.6) we get

c=(3/Vm )z expf —2z2]> 0.
It the leading behaviour of ¢ had the opposite sign. ¢ would be negative in this
regime. Thus the ¢-theorem explains physically the peculiar sign of the “instanton”
correction.

852 OTHER MODFELS LEADING TO SPECIAL PHI

In the list of models discussed in sect. 7 there are other whose equations can be
reduced to special PIIL
The first one is

3

t
WiX)y=— - —x*
(X) 4 2
Again we put = |7]” and yx)={0{»"". Then this equation becomes

d d! L, x7 1 8.7
K(II{%}}_Z} raeds (8.7)

By the redefinition
v=vi¥(z), =i

we reduce ¢q. (8.7) to the standard form of special P, (8.3),
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:%)r
nl

2IW(VE) - w(0)| =117 =22

For t = {t we have

y(0)

@iy [y
RIS

The soliton mass is

As in the above model we put
u(z)=2log ¥(zy=2log v{z) -1log 2.

- S0 w2 is the solution 10 PHI with

£ il

r=—1,

s=2log y(U)=2log2+2log I'(3) = 2log I'(}}.

PATYE CXT Y

* These numbers satisfy the regularity condition (8.5) (j.e. PO s predicied by
. regularity alone). The large- e€xpansion is

4 7 2
vu:r)=%(1+@mexp[—lrfz/z] Foo

in ugreement with the semiclassical analysis,
By the same token as in the previvus model, the c-function reads

c=—%z-5;u(zj. (8.8)
» In this case, as z - 0 we get € =3/2, as we shouid. The commenis abuve on the
sign of the “instanton” corrections apply to the present model as well.
;  Note that the boundary data r js (essentially) the central charge at the UV fixed
 point. That is, the UV central charge is a monodromy data (basically, the Stokes
: multiplicr). The condition |r| < 2 is just

¢ <3,

I oie. restricts to the minimal models! Then the PHI regularity condition (8.5) can be
scen as saying that in order to have a regular solution exp|s] should be the OPE
cocflicient appropriate for the given central charge. These remarks will become
clear in full generality in sect. 9.

Another model that can be reduced to special Pill is

Wra

LRI
X
=

]
|
}
|
X
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The matrix elements
{1ty and  3/3)
can be obtained from the X" /3 — tX mode| by a change of variable
i x-x2 (8.9)
Then there remains a single unknown function
y(x) = ({0l0%) 7",

which satisfies

d di x I
d_(I 08&)—:)*76;-

At + = () we must have

(414 re
TP R PR 1Oy
<0|U> rmi [(E)
Putting
_v=%7i;Y3(z). 2= qx

woe gt again special PI for Y(z). Then
u(z)y=2log Y(z}=log y - ilog z — % log 3+ log 2.

which gives

s=log y(0) - % log 3 +log 2.

Since rois as in the cubic model, ¥(s) — if regular - should be the same. Thus
regularity implics an algebraic relation between the two independent elements of
the ground state metric.

(e has

W) = W(0)] = sl =2

so the lurge-s behaviour is again the correct one.
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By the same argument as above, we have

W

= 32(()

{The factor 2 with respect to eq. (8.8} is due to the fact that now ((0{03) ' i
proportional to Y *(z) rather than Y(z)). So. as a function of z the central charge
is just twice that of the perturbed A, model which, pulled back by the map (3.9),
gives the present model. In particular, for £ = w2 get ¢ = 2, as we shoukl,

There are other models whose equations can be reduced to special P A very
important class will be discussed in sect. 9. There are a few other models that v e
omit for brevity. We have explicitly checked that all these models satisty the
regularity and consistency criteria.

K3 FHE MODEL W= X*/ 4

chl we consider the model leading to BC Toda. Putting v = ¢2[2} and
x=11l% we get

(¥ ¥ oy
)’" = —_ 4 — = =
y X x ¥
which Is again a special case of the third Painlevé equation, with « - - & - .

B =1y =0 This is the so-called “degenerate” PIII. Putting

T=wx' log y=u(r) + § log( ), (8.10)

we recast this equation in the form of the <cif-similar Bullough- Dodid cquation

A

{Tu.) =cv—e ¥

The properties of the asymptotically regular solutions were studied in ret. [16],
again by the isomonodromic deformation method. It turns out that these solutions
arc parametrized by four complex numbers B+ £y, £y, and s satisfying

B te(l-s)y+g,=1, BI =8B =81

$0 we have a two-dimensional manifold of solutions. From cq. (8.10) we sce that
regularity implies that, as r —{,

const.
expfu] ~ ey
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I his selects s = 1. In this case, one has

C,
explu} ~ 3r, = '/*
* lC(]

=0,

where {(for s = 1)
C, B F('
()

i
—

ry=gy—g +{l-i}(g —&).

To tix the residual ambiguity of the solution, we require that, as 1 — o, there are
no exponentially growing terms (i.c. no negative-mass sofitons). Then one gets
g,=#.=0, g;=1 = r=1,

and the solution is uniquely fixed.
At this point, both the value of the metric at =1 and the strength of the

“instanton’ correction arc predicted. One gets
r(:
r)

the expected value, The asympiotical expansion for r — % is

13 =
explu{r)] =1+ = Sy ey
2¥ 7

Fhis is the correct strong-coupling behaviour, because

_ Wy,
23iw(fl/\)__w(elnf/lrl/})‘= 2 “i-l,_!:m

A
—

Q12 a=2

=

and the cocfficient in front of the exponential agrees with the soliton picture
discussed in appendix B.
Again one has
au auf )

{1)=—-3z—=-6 .
of{T) zaz T ™

As 17—, we get ¢ =372, the correct value. To the best of our knowledge, no
mathematician has cver studied in detail the properties of the higher eguations in
sect. 7. However, we can casily work the o' .cr way around, namely, start from the
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known physical properties of the metric and deduce the corresponding mathemati-
cal theorems, analogous to the above oncs for the A] and the BC, cases. ln some
scnsc. this is just what a mathematician would do. In fact, the known results are
obtained by cxploiting the isomonodromic method, which is somehow built-in the
physical approach.

9. Models associated to Verlinde rings: the SU(2), case

Recently Gepner [18] has shown that the Verlinde rings of some rational CFTs
have the sume algebraic structure as the chiral rings of the N =2 LG modcls,
namcly they are polynomial rings modulo the ideal generated by the derivatives of
a certain superpotential W X,). This has been considered further recemiy [48,49]
The main case considered in ref. {18] is that of SU(N); theorics. From the N =2
viewpaoint, the corresponding superpotentials correspond to particular (relevant)
perturbations of N = 2 coset models. Then it is natural to ask whether, for these
special perturbations, the equations for g (as we vary the RG scale) are “solvable™
in the sense that they can be reduced to Toda. The answer to this question is yes!
Moreoner, the trick to solve them is based on the interpretation of the correspond-
ing .#'s as fusion rings. In particular, for the model associated to the SUCA )Y,
Verlinde ring the ground state metric is written in terms of & lincarly independent *
solutions to the (self-similar) affine SU(N) Toda equations.

In this section we discuss in detail the SU(2), situation, the generalizalion t
arbitrary N being discussed in sect. 10. In this case, the supcrpotentials arc the
Chebyshev polynomials [18)

W (X)=AT, (X), where T, (cosVY)=cos{m}).

Rescaling the field X, we see that as the coupling A — () onc gets back the
minimal model A, which is equivalenat to the grassmannian model at level ]

SU(Kk + 1), /U(k).

The fact that one gets Chebyshev polynomials is remarkable, since lor these
polynomials the SQM Schridinger equation is separable, and hence the ground
state metric is computable by brure force. In fact, scparability for the SOM
Schridinger equation (with one field) is cquivalent to separability for the Xd
Helmholtz equation {related in turn to SU(2) Toda). However, the corresponding
wive functions are not very managable, so it is morc convenient tu usc the
information coming from separability to simplify our egquations, rather tlan to
compute g directly. It has not yet been shown, in the sensc of having infinitcly

* x - . . . .
However, the reality constraint gives non-linear algebraic relations between these solutions
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many conserved currents, that the Chebyshev perturbation of minimal models is in
that class, but the fact that we find an affine Toda equation even for this case
suggests that this must be true. In fact for the A, model W=X"*" it has only
been shown that X and X? perturbations are integrabie [33,42], and it was
suspected that perturbation by X7~ 1 is also integrable. Chebyshev perturbation to
leading order {as A - 0) is of this type. So what we are finding is that this is, to
Icading order, integrable but to get it to be fully integrable it must be “dressed” by
fower-dimension operators which make it becon.e precisely the Chebyshev polyno-
muil. It would be very interesting to verify this by studying perturbation theory
ncar the conformal point.

The method we use for solving the Chebyshev models s again using the change
of variables trick discussed in sect. 5. This will in fact allow to solve them all at
oice. We take

W=AT(X),
f=cos(Y/n)=X,

W (Y)=A4acos(Y). (9.1

Then, o we are able to compute the ground-state metric for the N = 2 sine-Gordon
maodel, W,(Y), we get all Chebyshev superpotentials at once by truncation to the
operators ¢, €2, of the form

¢.(Y) =P, (cos(¥/n}) sin(¥/n),
wwhere £,0X) are polynomials of degree k <n - 2.
WA = 2SINC-GORDON
For the sinc-Gordon model we identify an element of # with the set of its

values at the {non-singular) critical points (the “point” basis). For Wi (X) the
critical points are

X, =mr, rez,
and we identify an clement ¢ €, with the sequence
{(¢), =d(nr), re2}.

The ring operations act componentwisce on @. One has {using definition (2.10))

1
Res[8] =~ £ (-1)"'(¢),.

ref
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We choose as basis in .2, the elements a, (k € 7) such that

in this basis we have

(a,),=4,,.

1
+1)
77&;;:(‘])“ I I‘Skh'

(Cole=(~1)'sh

The superpotential 9.1V is invariant {up to phase) for

Then, tn our basis one has

T: Y>Y+4r,

P Y-V

B 131 =8,
g*ﬂ.'}-=RJ.J'

Given an integer /| there is a unique decomposition

Using {9.3) we write

i=()+2{), with (i)=0,].

g,,'zg(,)(j)([f} - {j])'

an.!introduce its Fourier series

Bnein(8) = Ze’”'gmm(,r}_

Next, we consider the 2 x 2 matrix (0 < 6 < 27)

Eq. (9.3) implics

g0l ) £4i(0)

6 =
§(0) (310(9) 2,i(0)

gak0) =2,1(8),

g2i(8) = eiegm(g).

J |

(9.2}

(4.3
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and
£0(8) = 2an{ ). :
gal0) =e ’gp(—8).
Then we can parametrize the metric as

A(8) e28(9)

&(9) = e '*2B( ) A(8)

where

A(8)=A(-8), B(8Yy=B(-8).

% pa PO R e R T

The trunspose and the conjugate of the ground state metric in terms of the 2 X2
matrix g{8) read

O ==, g*(8)=[g(-0)] . H
Then 't
g'(0) =[r(0)]".
and g(#) i« hermitian in the 2 X 2 sense. Therefore
A(8)=A(8) .  B(8)=B(&) .
Maorcover, Al#) > (), since the metric is positive.
FFinally, we must impose the “real structure”™ constraint on g(8), namely
7 ' (®)e(0)(n*) (B)g*(6) = 1. (94)
In the 2 X 2 notation, one has
bi-1 0
8)=— :
m8) A ( 0 lJ’
. {1 }
co-{5 )
S0 . {9.4) reduces o ‘
E
A1 (A(8) - B(8)') = I

L{x.8)=
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Therefore, we can parametrize g(8) in terms of a single function of x{= | Al %)

A(a, 8) = (1/v¥x ) cosh[ L(x, 8)],
B(x, 8) ={1/Vx)sinh[L(x, 8)].

Putting cverything together, we get

g(x, 8) = (1/Vx )U(8) exp[o,L(x, 8)]U(8) ',

U(8) = exp(4ifo;).

a:lg 7' ](8) = —Uo U 3, 351 (x, 6).

[G.. G,](8) = =200, ' sinh[2L( x, 8)].

and the final equation reads

d, &;L(x,8) =2sinh{2L(x, 8)],

e for cach 8, 2L(x, 8} is a self-similar solution to the sinh-Gordon equation and
we arce back with our old friend the special PHI. To put the equation in canonical

2L(x,8)=u(z,8) where z=2x'"

For 2 = 0 we have the asymptotics (cf. sect. 8)

H(z,8)=r(8)log z+s{8)+..., with |r{8)] <2,

L{x. 0y =ir(8)log x+ 5[s(0) +r(8) log2] +.. .

whereas for x — « we get (cf. (8.6))

a(B) exp(-4x'?)y  a(8)
U VI

— AT

Nutice that the cxponent is precisely the soliton mass
21AW | =2 | lcos(km) —cos{(k + 1)m)) =4}Al,

m agreement with the semiclassical picture
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To specify completely the metric for N=2 sine-Gordon, it remains only to fix
the boundary conditions, i.c. the function r(8). This wili be done below,
In terms of L(x, 8), the point-basis metric reads

] ™
B0 = [: dé e B exp L{x, )] + (- 1) % exp[ - L( , 0))}.

(9.5)
Since g(8) is periodic with period 27, one has
Lix,8+2m)=-L(x.8),
L{x, -8)=L(x,8).

In particular,

Lix,m)=40.

"2 BACK TO CHEBYSHEV

Now we return to the original Chebyshev superpotentials,
W=AT,(X).

The critical points are

rm
X,=C()S(ﬁ) r=1t,....n-1.

n
Again we work in the point basis, We denute by I, the chiral field with value ! at
the rth critical point and zero elsewhere. From each I,. by pull-back, we get a
chiral primary operator in the sine-Gordon theory. Taking into account the
jucobtan, we get(j=1,...,n—1)

1 T
"‘lz‘—sin(f') Qrprai ~Gons i)
f 7 - ?l} 'EZZ[ 2rr+j 2nr j]
where a, is as in (9,2),

Then eq. (9.5) gives

28U = %sin( ;;) sin(zk)

n

x E [g2nr<-;.fru+E T Bnr— i T TR P TTS rraey T anr—;,zn:—I]‘

rsel
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where 25(0) is the degree of the cover. The sums in the r.h.s. can be computed via
the Poisson formula

1 n ! G [L{ 2mr X
e Teer = ——==68(0 5 e TR exp X, —J
r“zugk.., IMETER S 2”\/; (0) {

r=0 : n

+(-—1)“”exp[—L(x, 2%;"”1

/

Putting everything together, we get the ground state metric for the model I =
AT (X)),

b jmy g
aro = Y sm[;j] sm[—;k]
n-1

T w ) s
% Z Sil’l('—!k) Sin(Arj)lcl.(x.Zwr/n)+( _ E)(A i C'!l'" nr ml‘ (”.(1)
n H

rel

which expresses the metric as a combination of a finite number of solutions to
special PHT. All these solutions are bounded for x — = and regulat on the positive
real axis. Taking into account that

L{ix. 27 ~a)= —L{x.a),

we see that the metric for the T,-model involves [(n — 1) /2] independent solutions
ta P In particular, for n = 2 we have just elementary functions, and for # - 3, 4
we have a single Painlevé transcendent. This is in full agreement with: provious
work, since 7. is equivalent to the free theory, W =X-""2 T, is cquivalent 1o
HW=X"/3— X and Tolo W= X774 — (X772 These last tvo models have already

. been solved in seet. 8 in terms of a single Painlevé transcendent. In fact, by going

. through the ficld redefinitions needed 1o put these superpotentials in the stundard
form {paying attcntion to the “anomalous™ jacobian} one cheeks that tor # -~ 2. 3. 4
the above results reproduce the results of sects. 7 and 8. For brevity, we omit the
details of this check.

4.3 REGULARITY VERSUS BOUNDARY CONDITIONS

As In sect. 8, the boundary condition r(8) is fixed by requiring that the metric is
finite and non-zero as A — 0, Then the value of s(8) is predicted by the conditinn
of no pule on the positive real axis. We recall that for W =Y" the ground state

, metric reads

o+
(Y"IY"‘):[‘(—:—k)/nF(IkkJr‘) (k=0.....n-2) (9.7

n
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TAX)=2"""X"+k, ;X" 2+ .
The field redefinition
Y=2(A/2)"x,
puts the superpotential in the form
W=AT(X}=Y"+0(A"),

Consistency requires that, as A — 0, the Chebyshev metric reproduces (9.7).
The critical points for 7(X) are X, = cos{k#/n). Then in the point basis the
monomials X* €% read as

n-1 &
Xf= ¥ cos('—”” I (k=0,1...,n-2).
n

re=|

Taking into account the jacobian, one has

k| yh hy i)t P70 L h
vy = 252 o) ek xm,
Let us define the sums
n-t T T T
A, =Y cos"(—r) sin(—r) sin(—n‘],
o n n n
a1 , m ™ ™
B.=Y (-1 cos"{—r) sin[—r) sin(—r{).
i n n n
L:xplicitly, one has
AU,, = %"[5(1),“ - Sm,,.z;.- I] >
and, for £ # 0
!

! k+r) k k
A= g l- ]{(%(kw—l)n}“[%(k+:+l)n)}'

where (a), is a short-hand notation for ne unique number { < (a), < 2n, which is
congruent to g modulo 24, Moreover,

Blc.r =A

kt1+n'
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\

Putting everything together, the metric ir. the monomial basis reads

T e
) n*lAl

{h+1)

G52 [2ar)

n-1
x E [Ak.lAﬁJ e[L(x.Zm/n)]_l_ Bk..l Bh.r e_“-“‘h”/")i]'
=1

The cocefficients A, ,. B, , satisfy the “selection rules” (for 0 <t < n)

Ay, =0 for r>k+1, 0.8)

B,,=0 for 1<n 1-k, (9-
:The first non-vanishing coefficients are

Apsn = _Bk,nm!~k=n/2k+]- (9.9}

R R A

A consequence of the selection rules is that (1!1) is equal to (up to trivial
*factors) expl L{x, 27w /n)}, ie. it is expressed in terms of a single Painlevé transcen-
Tdent. More generally, the matrix element (¥* | Y} involves, at most, min(k + 1.4
"+ 1) transcendents. '

The asymptotic behaviour of the diagonal elements of the metric as A -+ (0 is

(Y*Y*S = (l/n"')(Z'_'”)“”I,\I“z"‘ +21/my- |

n—t

X Z Ail,(2!/\|)’[2m/”v2 e S2mi/ny?
f=1

: L
_; + Z Bkz.,(ZII\H ~r(2ewtfn) /2 e S2uismyl ]

Ly

'Using the selection rules, the requirement that the r.h.s. has a finite non-zero limit.

gives
2w 2t
r(—t)=2(]——) ((=loooin—1).
n n

Note that in particular |r| <2, as required by regularity. Assuming that the
solutions are regular, we get (8.5)

3w o)

(9.70)
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This, using {9.9), implies

<YA ‘YA>]!AIU= (]/n3)2<n— IXN”V"[A%(.&H +B.3.n4k-l]2‘"m2k_2)/n e[s(lw(k+|)/n)/2]

ol )

in full agreement with eq. (9.7). Moreover, the off-diagonal elements

(YRIY") k=h,

go to zero in this limit, as they should. Therefore regularity implies the correct
houndary conditions for Chebyshev superpotentials. It is amusing that all the
normalization coefficients of the A, minimal models can be deduced from regularity
theorems on Painleré transcendents of third kind and vice versa.

It remains to specify the boundary conditions for the solution of the N=2
sine-Gordon model. We assume that r(8) is a continuous {albeit not smooth)
function of 8. From eq. (9.10) we know it at all rational values of 8/, Then it
should be

[/
’(9)=2(1— —] for 0<8<27.
kr

Outside this interval, the function is obtained by using

r(8)=—r(8+27), r(8)=r(—-9).

Then the bound-state metric for the N + 2 sine-Gordon is completely determined.
Note that | #(8)] < 2, and that all the regular solutions to special PIIT appear in
the metric for the N + 2 sine—Gordon medel. The points # = 27k where | r(6)| =
2 coincide with the points where r(#) is not smooth. These are also the points
where Ly, @) even if continuous in 6 changes its asymptotic behaviour for A = 0
{cf. sect. 8). At the se points one has “logarithmic violations of scaling”. This is
precisely the boundary condition satisfied by the Ising model correlation functions
[47].

9.4 STRONG-COUPLING LIMIT
Let us take the limit A - . in this limit the various vacua at different critical
pomnts, X, = cos(wk/n), decouple (up to exponentially small corrections corre-

sponding to soliton corrections). Then we must have

&,
& ~41Al

a;, 1
(* )y = ! + * -
PR W X)) f‘ﬁﬁ_jW"(xj)w"(Xk)l JZIAT S

Feiin. 4oL

)

5003, Dy D e S

e’

s

v W ok

A0 AN 6 el
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for certain constants e, . Since

k+ %

(—h —_

[sn(Z))”

W"(X,)=An’

we must get

sin(mk /n) sin(mj/n) 1 |
1%y = 8, + R L S L
(; k) nzlAl 1k a}szﬁAl ( )
Using the asymptotics of ufz, 8), eq. (8.6), and the identity {valid for j. k= 1...., n

-1
1 “c_”"‘]~ T T
-[1+(—1) ]Esm(—-rk)sm(-—r;]zﬁ”‘
n o n no

the r.hs. of eq. (9.6) for large A has the behaviour of eq. (9.11) with

R

o, = %[f_(_utkvﬂ] j);:sin(:sk) Siﬂ(%s}]a r(;: :” : )
= - 5;’1{?[1 —( —1)“(_”] Z:-ZW‘(]] sin{;:-skJ sin( E\J] cn,\( :\)

1
= W (6;'.k+! +5t,,+1)-
in agreement with the results of sect. 8 and appandix B.
95 THE ¢-FUNCTION

Next we consider the c-function. By the same agrecment as in sect. 8, for the T,
model we have (2 = 2| A )

d
c{z)=3z—u(z,27/n),
az

(in particular for = 2, ¢ is identically zero, and for n = 3, 4 it is just what we got
in scct. 8% This follows from the fact that the Ramond operator associated to 1 is
the onc with lowest charge. As z goes to 0, we get for the UV central churge

X 2 2
et
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which is the well known result for the A, _ | minimal model. The leading correction
1o this result is of order | A|*", i.e. the modulus square of the perturbation.
The “running” U(1) charges of the Ramond ground state are

4
2.(z)= }z;u(z,?.'rrk/n) (k=12,....n—1).
z

As z =), we get back the result of the A, _, minimal model, whereus as z —» »
they all go to zero, as they should since the IR fixed point is trivial,
For the N = 2 sine-Gordon theory itself. we have

a
e(z) = %zEu(z, 0),

which in the UV limit gives ¢ = 3. However, now the corrections are logarithmic,

3

C(Z)=3+ m,

z-0.

It is tempting to speculate about the relation of this logarithmic scaling violation
with the ones appearing in 2d gravity at ¢ = 1. This is in particular tempting in
view of the conjecture of Li [9] about the relation of topological N =2 minimal
models with 2d quantum gravity. )

All the discussion in sect. 8 on the properties of these c-functions applies
word-for-word to the present general case.

Y96 VARIATIONS ON THE THEME

One interesting aspect of the equations for g is that they have a tendency to
reproduce nice field cquations. For ex-mple, above we got the equations of 2d
sinh-Gordon. There are other models leading to even more suggestive equations.
As a divertissement we present a class of model which lead to 3d chiral models.

We consider the multicritical sine-Gordon models, By this we mean a model
which has the same critical peints as the sine-Gordon one, but with a multiplicity
# > 1. All the critical points are assumed to have the same multiplicity u. For
simplicity. we assume u to even (= 2m). Then the superpotentia! is

W(X)z:\fsinz"',\’ ax

A (2m)! A m—'(—x)"""(

R, i o AN f2m) . _
T N L J sinf2(m - k) x],

k

A e S

=
Ey
“E
R
.

Fab TS

G

1 R A

3
s
3
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which has the pseudosymmetries

X-oX+kmw, X——-X. (9.12)

An element ¢ € F is uniquely specified by its (2m — 1)jets at the critical points,
i.c. by the set of data

-3 g (k) ke 7Y,

1 1
$(km), 0 (k). G(kT)...., @m-n!

(the ~point” basis). Then F is identified with this set of numbers written as a
two-index object

d=(d), k€, r=1,....,2m.

‘In this notation the ring product reads

2m
(‘b'p)k,r = 2 (d’)fc.s('b)k.r—v

s=1
Consider the ground state metric in such a basis &, From (9.12) we huve
i+ LrfiTs = gl’_rﬂ-

(r+5)
g—:.r::}'._!= ( - l) " gl,rf.—-"

Ax above we introduce the Foyrier transform

o

R B T o

p

Eoa=aa(i=i).  g.(8)= Le*g (k).
k

- The 2m x 2m matrix g18) satisfies

8(-8)=2.g(0)%,, (v.13)

where
Zy=diag(l, -1, 1, —1,...,1, - 1).

In this notation, the residue pairing is

n(8) =(1/0) 2,

e
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where
(2])” = 6i+j.2m+l'
As in the sine-Gordon case, we have
[e(a)] =2(8).

The rcality structure constraint reads

. 1
2g(0)2g(-8) - mzll

let (8= | Al g(8). Then the above equation becomes
F(0)X,g(-0) =
or, using eq. (9.13),
w(0) Nz (8) =
whuere
=-3 3
is u symplectic matrix. Hence
£(8) € Sp(2m}).

The matrix €, rcads

- {2n)!
(COL =8l 57
22m( )
ur, in the & basis,
2my! d
C,= ~in (2m)

27(m1)? d8
T save print we put

(2m)!
22m(mn?

I'hen the equations become

y d
ale)yaz0)] = » —[?(3)—5(0) }

AR s BB PV ot i
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Putiing
=Re z, x;=1Im z, Xy=0/27

-and using the fact that % is invariant under rotations in the (1, 2) planc. this
: equation is rewritten as (u =1, 2, 3)

algae '] =0, weSp(am).
which are the field equations of the (complexified) Sp(2m) principal chiral model
i three dimensions. This is the model corresponding to the lagrangian

¥=Tia,59,57|.

hOf course, the metric is a very special solution to rhese field equations. % should

Zbe a positive hermitian matrix, invariant under rotations in the (1. 2) planc,

By P T B 2 e

gpcnudu. wilh respect to translations in the orthogonal direction, and such that

Flx, xy, =x, ) =2.8(x, x,, 25) 3

R AR

%chcrlhclcss. it is amusing that we get a formal “unification” of the coupling

‘s constant A with 8 which labels the different critical points!

10. Generalization to SU(N ),

@ In this section we generalize the resuits of sect. 9 to arbitrary SUCN ). The
: + ground state metric of the assematcd models will be expressed as a finite combina-
Ztion of (self- similar} solutions to A v Toda theory.

SHLL N CHEBYSHEV POLYNOMIALS

We start by describing the superpotentials corresponding 10 SU(A ), Verlinde
ings, i.c. the generalization of Chebyshev polynomials to arbitrary N. These
upcrpnlcnna[s are closely related to those for the grassmanian cosl models of
scet. 7. and indeed reduce to them in the UV limit.

Following Gepner [18), we introduce the variables g, i=1..... N) These
vanahlcs arc subject to the constraint

b"l

N
[Ta=1. (10,1}

i=1

-3As in sect. 7. we denote by o,{q;) the rth elernentary symmetric function of the ¢,
Olwluuxly oylg) =1

o R
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‘The superpotentia. corresponding to the SU(N ), Verlinde ring
Woal Xy, Xy, X))

is the unique polynomial such that

A N
WN*k(Ua(Q)v 02(‘?)----,0.\;-1{4')) = N+k Z Q;Nﬂv

i=1

the only difference with respect to the grassmannian case being the constraint
(10.1}. Of course, this is a major difference since it spoils guasi-homogeneity.
These polynomials are mutually orthogonal with respect to the L:-measure defines *

by the weizht ‘d(q,} and obey the recursion relation
N-1

(s NI, X))+ L ()X (m+N=-iW,

i

L.et us parametrize g, as (m =N + k)

!
q,=cxp[k(¢,—<b,,)] i=1,2,....N,
m

with the understanding that

by=1¢y=0.

Let f,,,, be the map

Xo= (Sl #)), = o (exp[ (8, ~ ¢, }/m] ).

A N-2
* = . | (b, &) —dy
f(m)"/:n - m ev + E ¢ : v+e B B

i=]

which, up to an obvious field redefinition, is just the N =2 SU(N) Toda superpo-
iential. Then, by a change of variables, to solve the problem for W, (X)) it is
cnough 1o compuite the ground state for the supersymmetric Toda models. The
Jacobian is again A(g;). the Vandermonde determinant,

T Asn secl. 7, My, ) is the Vanden.onde deternunant.

m+N-I(X))+(*1)wam(xl)=0‘

s

et e TR g K
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10.2. N =2 TODA THEORIES

We are reduced to compute the ground state metric for the N = 2 SU(N ) Toda
theories,

N-2
e®r 4+ Z c(¢.¢n‘¢.3+c—¢~ il

fam |

z| >

W(¢1-‘¢52'-~--¢n—1)=

. This mode! has two symmetries:

27
qbr—!ti),,+f-h7rk+27ri1,, with k=0,1,...,V-1, (=

and
b, by

The critical points correspond to the orbit of the origin with respect to the first
symmetry. Then a critical point is labelled by the numbers

(klilalza---;1~_|), kzD, L....N-'], { 7.

r

% As usual, we denote by @4 the chiral operator with value | at the given eritical
§ point and zero elsewhere. The value of W at the critical point (&, 7 )i

— pldTmik N
Wiiy=c :

ham,) _  dnik /Nathany
(C.«)(u,: =¢ 5(*..',;-

F @nd the residue pairing is

2mik /N(s

Mkt anmy = Cn € k4 h an )

Here C,, is a numerical constant depending on N enly
(€7 = (/M) e, ),

whese €, is the SU(N) Cartan matrix.
The above symmetries imply the following conditions on the metric

sy

kA Ih m )y =(k, 1, +a,) I(h, m,+a,)), a,e7,

)

Ak LY R, m,)) = ( {k+p). 1 +

(e

b
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(p=0,..., & — 1}, where {a} is the unique number between 0 and N — 1 which is
congruent to a modulo N. Moreover,

(kA A, myy =k, —k=Iy_)I(h. —k—my_}).

The first property allows us to introduce the Fourier transform

Oy.)= L exv(i):l,ﬂ,]qh.o)i(k,1,)).

el

Eerl B ...

Then the other two properties read

Leorim(®) = 2(0) (forO<hk AN 1)

£e.1n(8) = exp -rfEre,]gk.m(o)‘

fzro,]g.\f_.;.(e).

Boi=1(8) = exp

gkt 8, Oy ) =exp

—i(h *k)xﬂrlgkﬁ( O By gm0

To put the equations in the Toda form, we have to diagonalize the N XN
matrix g(0). It has the structure

B.i(8) =A, ,(8) +exp[ —"Ersr]A(N*h*k)(a)7

where
4 e J —
A,(0) = {;,,,,,(e) for h- 0.1..... N-1
0 otherwise,
Given the peculiar structure of g(8), its diagonalization is elementary. We
introduce a new tasis in .# (k=0...., N-1)
N1

Bie(0) = 3.

r=i)

exp -l: 2mk + 358 ||a (0),
e

o ()= ¥ exp[i}:!,s,]a(,.,‘,v

fel

ARRAP T ke e L Tl

ok

T
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In this basis, the ground state metric is diagonal, indeed

N1

—if
(wk(e)‘d’h(o')>=5(9_er)ah.kN ): CXD[T(ZTT" + ):595) A, (8).
f=0 5

In the new basis,

Wi,(6) = ‘I’[L+I)(e)'

(C:o):( 8) = 5{;\ e
Therefore, for each value of 8,,...,8,_, the ground state metric »,(0),
(U (8) U (07) ) = 5(0" - 0)5,,%,(0).
satisfies the AN, , Toda equation,

) 4 0) %, (9)
—ad, log F(0) = BT
. y&(ﬂ’ 5(;\

However, in this basis the residue pairing is rather involved,

Y

Nt :
Res[w, (8)w,(8')] =6(0 ~0)C, T exp{%[fiw(k-ﬂ: Py 2N :

r=1N

~0 the reality constraint is not as simple as in sect. 9. Notice that — contrary 1o the
SU(2) case - the reality constraint gives £{ —0) in terms of 28} instead of putting
a condition on the metric for fixed 0.

This completes the argument showing that for N =2 guanim SUCN) attine
Toda, associated to SU(N ), Verlinde rings, the ground state metric can be written
as a finite combination of solutions to the classical A . | (self-simitar) alline Foda
cquation. Here we see the group SU(N ) in operation in three seemingly unrelated

Loways!

TV

ERRRIR . TR EEENSATE AR

11. Conclusions

We have scen that the metric on the space of ground state vacua of & — 2 QFTs
can in principle be determined by solving certain interesting differential equations
v:'hich cxpress the flatness of certain holomorphic and antiholomorphic connee-
tions for the vacuum bundle over the parameter spacc. Not surprisingly, this
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flatness condition reduces in special cases to well known systems of equations of
mathematical physics (of the Toda type) which are expressible in the Lax form. In
examples wlich lead to equations which had been studied by mathematicians we
were able to reproduce some of their results, derived from isomonodromic defor-
mation lechniques, from a purely N =2 QF7 point of view. The generalizations
that this N = 2 point of view would naturally lead to, are yet to be verified using
the isomonodromic deformation technigues.

The system of equations that we have used does not distinguish a “preferred”
direction of perturbation, and in a sense treats all the directions on the same
tuoting. This is partly a surprise, because only very special directions are integrable
OF1's in the sense of having infinitely many conserved current °. It is precisely in
these cases that our equations reduce to equations of the Toda type. Nevertheless
it is natural to study the full space of perturbations. In particular it should be
possible to flow from one conformal theory to another conformal theory and see
how the OPE of the two theories are predicted by self-consistency, and in
particular by the absence of singularity in the solution to the differential equations.
The cxamples leading to affine Toda are always massive at the IR, and unfortu-
nately do not provide any examples of this type.

We have seen that some examples of N =2 theories whose rings are the same
as the rings of RCFT (SU(N),) lead to affine Toda equations. Is this a general
property? is it truc that each case where Verlinde ring of a RCFT can be
represented by the chiral ring of an N =2 thcory the equations we get are
integrable and lead to Toda cguations? Is it truc that cach time our equations are
of the toda type we can interpret the ring as that of a RCFT? These are mysterious
links between a conformal theory (RCFT) and a massive N =2 theory, which
Jdeserve a serious study. Could it be that N = 2 theories Icad to krot invariants in
three dimensions through this link? (if this were true singularity theory might be
connected to knot invariants). Do the ¥ = 2 theories admit a direct three-dimen-
sional interpretation?

We have scen that the affine Toda equations that characterize the metric
encede o lot of the information about the solitons in the theory. Can one derive
the sotiton scattering amplitudes from this viewpoint using the techniques of
thermodynamic Bethe ansatz [51]7 The discussion in appendix B points in this
direction.

Many of our constructions work for Donaldson theory and is worth investigat-
ing. This might lcad to a simplcr derivations of Ward ideatitics in the context of
N = 2 supersymmetric Yang—Mills theories [52]. This would be interesting to study.

“ It would be interesting to see if one can imbed this in an integrable setup by infinitely extending the
number of couplings, similar to what one has in matrix modeb [S0]. We would like w thank authors of
the first reference tn [54) fur discussivns on this poinl.

s U g

ol
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It is our distinct feeling that we have only found the tip of an iceberg. There are
too many different things being related in too many seemingly accidental ways for
there not to be a bigger story. We hope that this will motivate further study to find
this bigger story.

We have benefitted from discussions with many people. In particular we wish to
thank L. Bonora, S. Coleman, L. Faddeev, P, Fendley, K. Intriligator, A.R. Its, A.
Kitaev, M. Martellini, S. Mathur, H. Qoguri, V. Periwal, N. Reshetikhin and A.B.
Zamolodchikov. The research of C.V. was supported in part by AP. Sloan
Foundation, Packard Foundation and NSF grants PHY-89-57162 and PHY-87-
14654.

Appendix A, The ground state metric in the critical regime

At a conformal point W is quasi-homogeneous. In this case one can give explicit
representations of the metric in terms of integrals of holomorphic forms. Basically,
this is the generalization of Gepner’s correspondence for minimal models: at
criticality an N =2 model is related to a o-model and thus can be studicd by
complex geometry techniques. There are three (equivalent) formulations of these
integral representations:

(i) In terms of the integrals ({¢,} a holomorphic basis of #)

w*ff*e‘ @, dX, AL AdX,. (A1)
/]

(ii) In terms of the period integrals for the pure (p. g) components of the
groups
H"}(E)) @ H""!(E,),

where E, are the (weighted) projective manifolds

E;: W(X)=0,
Ex W(X,)+X;, =0 (A2)

(i) For marginal operators the ground state metric is Kihler. The Kihler
potential has the representation

e~* = [anx d"X exp{W(X ) - W(X)], (A3)

e
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which can be rewritten as a bilinear form in the irtegrals of point i} as explained in
sect. 4.

To simplify the arguments notice that (without loss of generality) we can assume
W 1o be homogeneous. Indeed let the fields X, have U(1) charge g, = r,/d. Then
make the change of vanables

X =

In terms of the new fields W is homogeneous, and the original ground state metric

is related to the new one as in sect. 5.
A part of the above statements is elementary, Indeed, we known that {for
marginal deformations) the metric is Kihler. Then it is elementary to show that

a
s _ *
C_A“"]= Z IthA(tﬂ)[Xh(th)] 1
kh=1
where 1, is the intersection matrix and x,(7,), x,{1,) are holomorphic. In fact (cf.
sect. 4) expl ~ K J= (010), and (sect. 5)

*

{010y = Ephk[f CWH?‘”UHI ‘e—w-W * “’n] : (Ad)
ok ¥

Y

Then it remains to show that

fc‘“%.,. fc*“’-“_'wl,. (A.5)
¥

Yu v

are holomorphic. Indeed

0= [ e F ey [ W,

Y4 Y
since (€ =0 by charge conservation. The same argument (using the dual
connection 3°) works for the other integral in (A.5).

According to the discussion in sect. 4, to prove eq. (A.3) it remains to show that
in {A.4) onc can replace the integrals of the vacuum wave-forms with those of the
corresponding holomorphic forms. The proofs are hidden in ref, [14]. Here we try
to present them in a more “physical” form, We have already mentioned that the
hasic flatness equations

Hl=3all[=0, (A6)

have the same general structurs as Toda's. In the case of (quasi} homogeneous W
they arc analogous to the non-affine Toda, and hence can be solved by the usual
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Leznov-Saveliev method [39]. One starts from the Gauss decomposition of 7,
O=¢"4B

{here B is an upper-triangular * matrix, A is a lower-triangular one and [ is
block-diagonal). In terms of B one gets simpier equations

3B =3dD =0,
(#+e"PCe?)B=0. (A7)

The crucial point of the method is that, once we are given an upper-triangular
matrix B satisfying (A7) (for some D), we can reconstruct the full solutton by
Lie-algebraic techniques.

A direct computation gives

(aa+Ca)w=Law‘ (AH)
with L, zero above the diagonal. Now, consider the Gauss decomposition of @,
w=e48.

Eq. (A.8) implies that B is a solution to 2q. (A.7) {with 2 = D). Thus, vt of the
periods @ we can reconstruct a solution to our equations. The hard p.ore of thy
argument is to show that this solution coincides with the one given by the SOQM

“period map™ I1. We postpone the discussion of this poii t to the end.
Then one has

D=cftw, (A9}

with F block-diagonal and holomorphic and _# strictly lower-trizngular, e,
4 =1+ Z, with Z decreasing the charge by one or more units. The first compo-
nent of (A.9) gives

[ e wy=exp(F() [ e dX, A AdX,

.

Y Y

Analogously,

[ agm (BN - n 03,
Yi 4

‘ By upper-{lowerkriangular matrix we mean the identity plus the matrix of an operater which
increases (decreases) the U(1) charge. |t is actually block-triangufar,
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Then

e h= exp((ﬁ?)* +F) Zp“,f eMdax oA
bk v

*
AdX,,[j e”“’dX,A...AdX,,] . (A.10)

Y

This, together with the discussion in sect. 4 shows property (iti). (The factor in
front of the sum can be re-absorbed by a Kibler gauge transformation). That p
can be identified with the inverse intersection matrix C'! can be seen by the same
argument used in appendix C to show eq. {(4.4).

A slighi gencralization of this argument leads to eq. (4.1). Let ¢,(X) be the
refevant chiral operators with UCT) charges r,/d {0 <r, <d). Consider the auxiliary
superpotential

aux

W, (X, Yt s )=W(X, t)+Y+ ZstJJ(X)Y""".
;

W .. is quasi-homogencous and the couplings s; are moduli. So the above analysis
applics, As s, — () the field Y decouples and then

Gy | =(F Ty, (A1)

aux |y =4

where (... 3, denotes the metric for the A ,_, minimal model. On the other hand,
the Lhs of eq. (A1) is equal to

- (0 |0>uux aj‘ 8“ IOg(U |n>nux

w=0"

Replacing the integral representation (A.3) for {0|0),.x and neglecting terms
which vanish by symmetry reasons, we get

2= {(®,) = [T1dX, dX, 6 X,),( X,) exp[W(X) - W(X)]. (A.12)

In this form the cquality holds only for relevant operators. Let us explain why the
irrelevant ones are different. First of all, it would be contradictory to assume eq.
(A.£2} to be true for all fields. In fact, <$,-¢,-> =0if g; # g;, whereas the r.hs. of
¢q. {A.12) does not vanish for g, - g, integral. In other words, the bilinear form in
the r.hs. mixcs operators with charges diff..ing by an integral amount. More
preciscly, an operator ¢, of charge g, gets mixed with operators of lower charge
g;— L. g,—2,.... Only the relevant operators are well defined, whereas the
marginal ones can mix only with the identity. In this last case, the problem is
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solved by taking the “connected” part of the integral in eq. (A.12), i.e. one takes
the logarithm of the integral as Kihler potential. The fundamental reason behind
this mixing is the dependence on the choice of a particular representative for the
classes in . Under a change of representatives (preserving their U(1) charges)

¢, dX A AdX, 2 dX AL ADX, +DwAa,

the periods w change as
owow+Zw,

where the matrix 2 decreases the charge by an integral amount. Then mixing in
unavoidable unless we have a preferred representative to start with. Instcad the
SOM period [T is unambiguous since it is defined in terms of given forms. A
change of representatives is compensated in eq. (A.9) by a change in the matrix 4
Restricting t0 operators with 0 £¢ < 1, in eq. (A9} we can replacc .4 by | and
hence effectively identify the period w with the SQM periods If (F is absorbed in
the conventions). This explain why for relevant/ marginal operators we get nice
formulae and why they do not hold for ¢ > 1. In fact in the gencral casc the metric
can still be written in terms of w though not so explicitly *. The mixing above has
deep mathematical meaning. Some aspects are discussed in ref. [14]. To do hetter
than this one has to leave the elementary methods. Luckily the mixing — which at
the elementary level is a nuisance — at a more sophisticated level turos inlo o
welcome simplification.

We just sketch the ideaz of how one can compute the metric for in levant
operators out of the periods @. More details can be found in ref. [14] Baswcally,
onte has to reconstruct the complete solution of the linear nroblem (A 6) from its
triangular part e”B. In the Toda case this is done by Lie-theoretical methods {39].
The same applies here, but since in our case H is not abelian (in gencral) the
reconstruction is a bit less elementary. It is convenient to present the tricks in a
siightly more abstract language than in the abelian case. From sct. 6 we know that
Wiz, 1) is an element of the group G. So it can be scen as a map from coupling-
constant space to the group G. However, it is more convenient o project it o d
map g into the coset space ** G/H. G/H is an open domain in G, /B whcre B is
the group of lower triangular matrices {in our sense). This spacc is obviously a
homogeneous complex manifold. In fact, it is the classifying space for complex
flags of given type. Over GC /B we have universal tautological bundles correspond-
ing to these flags. They are homogeneous with respect tu the action of G. and
holomorphic. They have a unique hermitian metric - |- ) which is homogencous

° However, for operators with ¢ ~1<g <& one also has nice expressions. Indeed hey can be
ounaected to the relevant or :s by the reality constra.at. Then for ¢ < 2 elementary methods suffice
wgetall g.

** H is assumed 1o act on the lefi,
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and such that G acts by isometries. Correspondingly there is a unique universal
conpection which can be constructed by Lie-group techniques. Embedding G, H
into G, /B enlarges the **gauge group™ from H to B. Then ¢ and its triangular part
arc related by a gauge transformation, i.e. define the same map *

¢ couplings — G, /B.

In the triangular gauge & is holomorphic. Hence the map ¢ is holomorphic. Now,
the crucial point is that the ground state metric is precisely the pullback of the
universal one vig the map p. This is a consequence of the fact that the group G
acts homogencously on the ground state metric and hence g must correspond to
the unique homogeneous one **. Since the universal one is known, we can
reconstruct the full g out of the map . But ihe triangular part of ¢ is sufficient to
specify the map.

In tact ¢ is not just a holomorphic map, it is also horizontal. By this we mean
that it satisfies cg. (A.7). Horizontal maps are very rigid. Then in various situations
we have uniqueness theorems for the metric g. Using these results one can show,
v.g. that the map ¢ is the direct sum of the periods maps for the projective
manifolds E, and E, defined in (A2} [14]. Here we want to exploit them to prove
that the map p defined by the SQM period map coincides (at criticality) with the
one defined by the periods w. A typical rigidity theorem for horizontal maps
{24.40) states that two such maps are equal if: (i} they transform the same way
under modular transformations and (i) they agree at a single point in moduli
space.

Then evervthing is proven if we can show that; (1) under a modular transforma-
ton the chiral primary ficlds transform as the periods w (equivalently, as the
perds for the projective manifolds E; ) and (2) that at a particular point in moduli
Juce we have cquality between the ground state metric and the metric computed
out of the above integrals. Point (1) has been discussed in detail for ¢ =1 in ref.
[53]. The general proof is very casy. 1t is cnough to check the equality of the
monodromy action in the topological theory. In the topological case one can
indeed identify the chiral operators with the integrals w (see appendix C). Hence
the cquality is manifest. To show (2), we assume W to be homogeneous of degree
. Then we consider the family

F(X,. s)=sW(X, 1)+ (1-s) L X7

¢ i~ the period map in the Griffiths sense [40],

** The reader may wonder about the overall normalization of the metric. It is also fixed. [ndeed. we
know alrcady that, restricting to marginal deformations, the metric is the curvature of a certain line
hundle. Then its overall scale is fixed topologically.

l"*-"'&du'F
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It is enough to check equality at 5= 1. In this case we end up with a bunch of
decoupled A, | minimal models. For the A-series the cquality was explicitly
checked in ret. [14},

Appendix B. Semiclassical considerations

In this appendix we discuss the leading semiclassical corrections and show the
result quoied in eq. (4.7). So we are interested in the limit where the superpoten-
tial AW has simple critical points which are very far from cach other tn the limi
of large A) and to leading order decouple from one another.

On general grounds one can argue that the leading off-diagonal scmiclassical
correction to the metric, which to leading order is diagonal in the basis of critical
points is a “universal” functicn of the mass of the soliton interpolating between
critical points (in units of inverse length of the cylinder) if there 15 & soliton
connecting the two points. The mass of the soliton has simple dependence on the
superpotential and is given by

m=21Allaw|.

In the case of just one field, which we will mainly concentrate on, it precise
statement of this universality is as follows *. Assume there is a convex dontun
1< € containing only two (distinct) critical values W(Xxy and WX, ). Suppose
that there is a simply connected domain 2 € C containing only two critical points
= classical vacua), X, and X,, such the W({}) = ¢}. Finally, assumec that the two
Milnor vanishing classes assoctated with these critical paints have an intersection
number +1 (ie. in the Dynkin diagram of the polynomial W{X) the two points
corresponding (o X, and X, are connected by a single fink). These conditions
imply in particular that there exists a soliton connecting the critical points. As
before le [1;> label the critical point basis of chiral fields. i.c. up to topologically
trivial terms they are eigenstates of X with cigenvalue X . Then, as A — =

172

YL AP ATAT BRSNS

=UIAIWX) = WX )]) + O(exp[ - wirf]). (B.1)

where

w=minfa inf W -W(X). 8 al iW- (X)),
Weafl Weafd

.

More general arguments are available but, unfonunately. they do not give more detailed resulis
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and U(m) is an universal function. Comparing with the known W=X"-X case,
we gel
d

’ = P
t(m):—f Ty
= 2lmypttm

% 1
exp(—ypitm’ )=~ —Kym).  (B2)

Then as m — % we have the asymptotical expansion

U = }:(_1)* 2% = 1) —
(m)~ = e\ 1+ 2 [(2k -1t )’

Since i~ AL the various terms in this expansion can be scen as loop corrections
(o the onc-instanton (soliton) process. 1t is remarkable that all the perturbative
corrections are universal.

So stated. universality can be proven in many ways. We will concentrate on
three different ways: The first, and the most direct way, is to use our equation (ER))
in the asymptotic region. The second, is to use WKB approximation to write down
the overlap of wave functions based at different critical puints — this can be done
both in the path-intcgral language as an instanton sum or in the Schrodinger
cquation. The third onc is not as rigorous, but has the advantage of giving the
averall normalization in a simple way and suggesting a physical picture of how the
correviions to the metric might be related to a kind of partition function in the
oliton subscetor *. This is very much in the spirit of the thermodynamic Bethe
ansatz [$4]. We will discuss thesc three differemt view points in turn. Al the end of
this appendix, as an example, we discuss ¢ he leading correction of the metric for
W ="'/ + 1) —x in the asymptotic region.

We tirsi show how this universality property can be shown starting from our
hasic equations (3.9). We present the details of the argument since it can be casily
extended 1o prove mose general “universality therems” for multi-instanton pro-
cosses. Assume that all the zeros of W' are simple. In this point basis, we rewrite
the metric as

g =nexplyln',
where
o b-f
”k = :"—-ﬁ'—_‘z
AW (X))

At the classical level y = 0. As A = o, ¥ is dominated by the tlcading) 1-instanton
contribution. Neglecting terms exponentially suppressed with respect 1© the lead-

We wish 1o thank A.B. Zamolodchikov for encouraging us to take thss interpretation seriously.
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ing instanton, we can work to first order in y. In this approximation (3.9} becomes

d(ulzd )!WX wix)|?
d|A|2 d’A!zy}k - ( J') ( f)l YJA'

Putting
Yik “Y;k(z,k)-
=201 IW(X)) - WX
one gets
d(d
6—2(5—57(2))“:?(:). (1.3

The geueral solution to this equation (vanishing as =+ =) iy
Yu =B halig) (1 h

and universality is proven up 1o an overall constant .. That this arensen INTRTEN
not fix the overall constant was to be expeeted. In particular. m this areiment s,

did not use the fact that there is a soliton connecting the cotieal pomis 1o
were no solitons connecting the two critical puints, the corresponding 4, wohd
have to vanish. However, in case there exists i soliton connecting he Two oot al

points we would still like to determine the overall comstant and show s vineisal
ity. We accomplish this by showing that in such a casc the constant {, s the samg
we got for the X — X model {(which does have a soliton conaecting it Gt
points).

Consider the auxiliary superpotential

W(X; s) =g Wi (X) +s[W(X) = W (X 1B
where
W (XY =40 =X, + X)X+ (X X)X,
Hii= [W(Xt) - W{Xj)l/lwk;(xk) - Wh(X,)]-
As 5 — | we get back the original superpotential W(X), whereas for s — U we get
a cubic one *. Note that for this superpotential the mass of the soliton 2| AWCA s ¥

is independent of 5.

* The limit s — 0 is 0ot smooth in general (the Witten index jumps). However, the limit is smoolh {or
the quantities of interest here.

i
ooy
;"" .

I A
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Assume that W{X) is such that, for A large 2nugh, we can consistently use the
lincarized approximation in the whole range 0 <s < 1 (this in particular means
that there is a soliton in the original theory at s= 1) Then the linearized
cquations read

&8y, =0 8y, = 0.

or. using ¢q. (B.4}
(?F.Bjk = 8\18;'& =0

Since 8, is independent of s, it takes the same value as in the cubic case, namely
B, -~ - 177 It is casy to check this universality result in the models explicitly
solved in the mam body of the paper.

I'ne sccond micthod uses WKB approximation. We first sketch the proof using
COM. omitting technicalitics. One writes the restrictions to {2 of the wave
functions associated to the states [/} as

i
= e M, + S,
v W\W"(X,)f"llI !

where iy, is a certain universal function and f; is a model-dependent field-redefi-
nitien. ay, s the deviation with respect to exact universality. Then one uses
residne-like technigues to rewrite

o, Il = fs (8¢,1° (B any domain in (1),
3

in terms of the value of the wave function on the boundary of B. To cvaluate the
crror one makes by replacing the true wave function ¢; by its universal counter-
part. we can use domatns B such that their boundaries remain at a finite distance
trom the critical points. Then go to the semiclassical limit, A — o, We know that
the WKB approximation to the wave functio..s is reliable in this limit only as long
as we are away from the critical points. one cannot compute {/,]{.) directly by
WK methods, since there is a non-negligible contributicn to this quantity from
regions of radius Q0 ) around the critical points where WKB is totally unreliable,
However, the tricks above guarantee that we can evaluate the error with respect to
the universal answer using only the values of &; away from the critical points.
Thercfare in the formula for the error we can use the WKB wave functions. In this
way we get the result stated above. We will now investigatc WKB approximation in
more detail from a slightly different viewpoint and show why the leading semiclas-
sical correction is of order

1
O —— ———exp[ =21 A]| AW
TR oW exp[—21A1]4W |}
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(unfortunately, we are not able to get the numerical coefficicnt in front by this
method). This is a tricky point. Indeed at a first glance one would rather expect a
vanishing result for {/ |4,) (j# k). In fact, from the topological-anti-topological
fusion point of view, ignoring the two hemispheres at the two ends and concentrat-
ing on the infinitely long intermediate cylinder with circumference 8. vne would
(naively) identify {/ {1, ) with

Tr, (=1 expl - gH].

the trace being over the soliton sector corresponding to the path integral with
boundary conditions

X(+=) =X, X(-x)=X,.

In the soliton subsector all state appear in supersymmetry multiplets (sec c.g. ref.
{33]) and due to the (- 1)* in the above expression we scem o be getting zera, So
it seems with this naive interpretation of the topological-anti-topological fusion we
are getting a paradox.

The point is that the identification of [f;> with the vacuum | X, }. correspond-
ing to the boundary condition X(r= -} =X, is correct only at £ — 4. Indeed.
the “point™ basis, which the topological theory gives. is defined as the one which

diagonalizes .#, i.e. for any holomorphic function f
F(X)H;) =f(X1)|[J) + Q7 |something).

There is also an anti-point basis, obtained from the anti-topological thevry, whic s
diagonalizes the @ "-cohomology ring

FIX)|5) = (X)) + @ {something)

For i =0 H_,> # [, because the chiral and anti-chiraf rings cannot be diagonal-
ized simuitancously. Instead, the definition of the vacux | X} is svmmetric
between (2" and Q “-cohomology and hence it is real with rospect the real
structure M. In other words, the state PX,)is a “real” admixture ol topalogical
and anti-topological states. The correct identification has the gencral form (using
results of sect. §)

- I

20X = (W (X)) + ([ (x) ) mb I
+ sub-leading instanton corrections. (B.5)
Susy oredicts {X; 1 X, > =0 for j # k. This is consistent with cg. (B.5). Indeed

(XGIXy =2[(e i+ (") + 28, ] + ... =8, + O(y°).
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and hence {at least at the one-instanton level) there is no tunnelling between
distinct classical vacua | X, ). Therefore (/; [/, is non-vanishing not because there
is a "physical” tunnelling process but because the topological states Ilj) are
combinations of different classical vacua.

Despite the fact that {/;[{, ) is not an instanton tunnelling amplitude in an
obvious scnse its evaluation is quitc reminiscent of an instanton computation. We
will now make this connection a little more clear. Our finding supports the idea
that loop currections in an instanton background is responsible for the leading
scemiclassical correction to the metric. For the sake of comparison, we recall what
we would have found in an actual instanton computation. We would get a factor
eapl - 21 a3 |] from the classical action, a factor \/4_17—!—A| AW | from the
integration over the position of the center of the instanton, no determinznt factor
{by susy} and, unless we soak them up, a factor 0 from the Fermi zero-modes,

For definiteness we consider the model W={(X"/3 - X ). und compute {/,11;)
as A — %, There arc two (equivalent) techniques available, one can use WKB
cither in the path integral or in the Schridinger equation. We choose the second
one since using explicit wave functions the identification of the various vacuum
s, es in simpler. In this frumework, (f, 1,7 is just the overlap integral for the two
vacua, However as mentioned above there is a difficulty. 1n SOM we compute such
overlaps by residue techniques. This requires only the knowledge of the lcading
behaviour of the wave functions at the critical points of W. But these are precisely
the points where the WKB approximation breaks down! In other words, for the
vacuum wave functions the limits X — X, and fi -> 0 do not commute. This is why
making reltable semiclassical computations is very hard. Of course, we can try o
compute the overlap by integrating the WKB wave functions in the region where
they can be trusted but, as we shall sce, this will give us only a rough estimate of
the amplitude.

We parametrize the wave form corresponding to /) as

1 ¢ JIALHUX) - WY

V2 2IATW(X) - W (DI

[Ad\(X) dW +X,( X ) dW .

Uy =
I'rom the Schridinger equation we know that the functions &,(X) have the
propertics
Gl +ee?y=e HIIONT g0
*
d(l+ee®)= ~{d(l+ee?) +....
Morcover, WKB methods give

fd | =1+ 0" “1A}) (B.6)
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both near the critical point X =1 and in the region where
(AL IW(X)Yy-W(1)| »1,

provided we are away from the other critical point by at least O(1/]Af). It is
crucial that the 1/| A | corrections in eq. (B.6) cannot vanish identicaily.
The wave form for }1,) is

1 e IR+ W)

2T B ZIALIW(X) = W)

[Ad,(x) dw +3d,(x) a7 |.

by “functoriality”

SUX)Y =it (~X).  AX)= —id(—Y).

The idea is to evaluate the overlap by integrating only over the intermediate
region between the two critical points where (apait for points very ncar the critical
ones) the WKB functions are reliable enough. This region dominatcs the integral.
We must compute

f * W) Aw,=const.|A)
x [[ord, +614)]

g exp[—21AL(IW(X) =W (1) |+ |W(X) + W(1) )]
IW(X)? - w(1)'|

d°H

The argument of the exponential is of order A. Since we arc interested in A — x,
we can evaluate this integral by saddie-poiiit methods. 1n other words, the integral
is dominated by the minima of the “action™. It is convenient to work in the
W-plane. In this plane the “action™ at a given point is the sum of the distances
from the points W(1) and — W#(1), and hence it is minimal along the scpment
connecting these two critical values. Then, in doing the d’W integral, we integrale
in d(Re W) between - W(1) and W(1), whereas we usc the gaussian approxima-
tion for the integral in d(Im W). To quadratic order in Im W the exponential is

(Im Wy’

—4ALIW(D) ] =2|A] IW(1}| ————— |.
exp Hw(ni-21all (HW{I)Z—(RCW)'

Integrating over d{lm ™) we get

cons TR e300 [* [ 25 1 52,] d(Re W),

- Wil
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This formula is consistent with instanton physics. Apart for the factor involving the
&'s (related to the fermionic part of the wave func..on and the sub-leading WKB
corrections) this is what we expect: a factor exp[—§] from the classical action and
a factor ~ \/\T\i— from the integration over the collective coordinate. Moreover,
the computation realizes manifestly the idea [33] that the soliton is the segment in
the Woplane connecting the two critical values. The phases of the ¢'s are such that
on this segment one has

Brd, +d¥d, = O(1/1A)).

The fact that to Ieading order this vanishes just reflects the presence of Fermi
sero-modes. However, the sub-leading terms need not vanish (in fact, the Schrédi-
nger equation suggests they are not zero). Then we get

<!1“}>_O( c"d*il“’(l)l)' (B?)

f A

45 claimed The constant in front cannot be computed by these methods both
hecause the sub-deading corrections are poorly understood and because regions
where WKB fails may also give contributions of this magnitude. Anyhow, this
constant is predicted by our differential cquations.

The third idea in getting this universal result is suggested by the form (B.2) that
we wrole the universal correction to the metric in. Indeed U(m) is related to the
contribetion of a single particle of mass m in two space-time dimensions to
It expl - B (where we fix a point in space in taking the trace) °, where m is the
mass of the soliton connecting the two critical points and we have set § = 1. Note
tha. in particular the normalization {up to the phase) is easily predicted in this
way. So this means that the naive picture of soliton partition function, which led to
the paradox mentioned above, is essentially right, but with taking the contribution
of one soliton from cach supersymmetry multiplet to Tr{ - 1 exp{ - BHN to
avoid vinishing. Somehow the foop corrections to the instantons are responsible
far giving this “cffective™ soliton description. It would be worthwhile understand-
ing this connection more clearly. In particular this may allow one to compute the
weatlering matrices of solitons from solutions to our equations using the thermody-
namic Bethe ansatz. In fact the asymptotic solution to PIII equation. given in the
wcond reference in [47) can presumably be interpreted as giving 2n exact multi-
whiton contribution to the Tr expl —BH) for the A(X /3 -~ X) mudel (and simi-
larly for the Chebyshev case). In particular the quantity defined in ¢q. (1.1a) of that

We would like 1o thank P. Fendicy and K. Intriligator for 4 discussion on this poir
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r~ference which is simply refated to our functions can be viewed as computing the
contributicn of soliton in the form

G = Z:gln+l1 (BR)
=)

where g,,., (after specializing to our case and a suggestive redefinition of
variables) takes the form

1 dp, exp(—\.:‘pf +m:) 2n oo
Baner = e eweaned 1 [ (O RESVANREA IS B (VOIS
i 2myp; m Pl Co
which should clearly huve the interpretation of the contihunon of o - 1 solitons
whose contribution to the partition function has been moditicd tren the Broe vy
by the presence of “interaction” encaded in the above cyuition by the term sy
[...]. It would be interesting to conncet this to the S muatin o the N Saheonies

computed in ref. [33], using ideas similae 10 thermuodynamie Bethe ansai
As another example let us consider

gt

n+

_—

considered in this paper. Let 14,y denote the critical points of a1 s from
to n — 1 with an appropriate phase factor to cancel the hessin fermeappeaing
eq. (B.1). Let | x") denote the usual chiral basis for the vacua. Lot e ot )
We have

P! _
|x,c>=_ Zwr(c+l/21“1>_
JfT r={
Using eq. {B.1) we see that the phase of the leading correction i, FANR IR

and its absolute value is exp{ —m)/V2mm , where m is the mass of the ~oliton
connecting the nearest critical points

m=2|AMW(r+ 1) - W(r)){=4lAlsinm/n

Computing g, defined in sect. 7, as logarithm of (x' by, we see from the above
that (for n > 2)

L

a4~ - = —
],‘S‘rrlf\lsin—
n

2
- Isinf—{(i+ %)

exp{f4|A|§in-'E)
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It is casy to check that to leading order this satisfies eq. (7.4), where z defined
there is the same as A here,

Appendix C. Speciat coordinates and all that

In this paper we used a coordinate-independent formulation of generalized
special geometry. However, in the physics literature it is more usual to formulate
this peometry using some special coordinates in which the formul ¢ look quite
simpler. The only drawback of these coordinates is that one has to work hard just
(o define them, In this appendix we describe the construction of such coordinates
in our {ramework and use them to simplify the proof of some technical results we
clhimed in the main body of the paper. To avoid all misunderstandings, we use
Gircek fetters to label the various chiral fields in the model.

The basic formula, arising from SQM perturbation theory, is (cf. subsect. 9.1 of
rel, |5

D-.'d’k :H"U'Ji + Tuf(bh‘ (CI)
where
i AW =aWe, —Cre,. -

and 7, as the “torsion™. The two terms in the rhas. of eq. (C.1) have very different
origins. The first is the true variation of the topological operator whereas the
torsion wuises because of the special representatives of BRST-classes one needs to
use in order to get the actual vacuum states *,

1., has the form

r.=1z.C,].
with
QHe=-C,. Zn=n2".
Henee,
Tm=-nT).  &T,=-[C,.Cl. (C.2)
The first of eqs. {C.2) justifies the nsme torsion for T, 1t is the antisymmetric part

* Hlere the tricky point s that, since @7 depends on 1, the derivative of a ( '-exact state is not
¢eexant ane general. Then computing the derivatives the actual representatives matter. In the
detintion of £, they are uniquely fixed by the vacua. This is why i forsiin appears.
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(with respect to 1) of the cc- nection. The second one shows that our curvature
originates from the torsion. In fact

[311’ Da}¢k =d(D,d,) = (auTh)khd)h'
Now, consider the connection *
Z,=D,-T, (=4,-2,).

With respect to g, &, is not metric any longer. But it is stifl metric for 5. This was
to be expected since from a purely topological point of view the two connections
differ only by a gauge transformation. Next we consider a “curved” basis for .2,
i.e. of the form
‘ﬁ“ = (—jlfli,‘
Then one has
OAAW =a Wal — (a W, (03
thus o/, =0, or
Dby, =2h,.
Moreover,
Py, =38 W — o a W,
which gives

o '
‘Muh - 'Q/Jm .

Thus o is torsionless. Then it is the Christoffel connection ot i Lt us compuie
its Ricmann curvature. One has

[2.. )6, = (2,00 —H0). (¢4

From eq. {C.3} on¢ has
(gaa:t —Qba:tr')anw = 3(-[(¢h"ar:' + Cu:r".';:.' - (h ‘o ”) N
(bs0 + Clogy ). W = 6,8,6, - (C.C)\ ..

* In ref. [5] it was shown that 2, is the Gauss—Manin connection in the sene o versal delosnmanons ol
a given singularity.

T
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Then the r.hs. of eq. (C4) is in the jacobian ideal, and hence the curvature
vanishes. Then we can find (local) coordinates #, such that

7 = const. ¥ =0

This 7esult is a standard mathematical fact {55]. These are the so-called special
coordinates. They are characterized by

3 aW=2aa0 (C.5)

with ) as in eq. (C.3). Before going to more useful characterizations, let us show
that for =1 this formula reproduces the results obtained in ref. [10] by KdV
fle s considerations,

In the one-ficld case

o, W= WaW—CaaW,

ar

ﬂdwahw
Tub = (T] B
.

where ...}, means the non-ncgative part. Then eq. (C.5) becomes

[ Dats
a0, =dx(v) .
which is equivalent to eq. (4.45) in ref. [10].
Put
wi = [ eTVaw dX AL AdX, (C.6)

Using cg. (C.5) we find
dwl = +C w5 (C.7)

T'his i a characterization of special coordinates which is more convenient for
computations. Since det{wr *]# 0, we can define the matrix C* by

_ =1
C=(w"y "n(w)] -
I'hen from eq. (C.7)

ac = (m*)_'[an—Can][(w')T]ﬂ - 0.

R

L
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Then we have the gencral formula for the residue pairing
k- .
Rap = T, C w0y (4.5)

with C* a constant matrix. Now we can show that this matrix is precisels the
intersection discussed in sect. 4. In fact, we show it for the “gond™ cases. whore
the UV limit we get a non-degenerate quasi-iomogencous M although i
piausibly true in general. Since C** does not depend on A, we can fimit ouclies
10 quasi-homogeneous W, and hence to homogeneous oncs. Then we considar tie
homogeneous superpotential

FUAX. Ly =sWiX. o)+ (1 -1 x"

i

C* is independent of 5. So we can compute it for v = 0, ic ity cnough to show
our statement for Fermat Ws. In this casc vur periods Tactornize into the product
of A,_, minimal mode} periods. That in this fast case €' s the inverse mtersee
tion matrix can be seen by a direct computation,

We end this appendix by showing that our “perturbative” charicterizaton ol
the special coordinates agrees with the mathematical one {28551 Indeed. detine

l . n A
“A;(A)=._,::;[ degtm (¢).
where

m(g)= [ e d dX A A0y,

yix)
(er ' = w( +)). Eq. (C.7) generalizes to
dm,(g) =8Cm (g}

Taking the Mellin transform, in terms of u, {A) this becomws vy {550 o1 sot | 28]
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