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Exact Results for a Hubbard Chain with Long-Range Hopping

Florian Gebhard ! and Andrei E. Ruckenstein

Serin Physics Laboratory. Ruigers University. P.O. Box 849, Piscataway, New Jersey 08855-0849
(Received 21 October 1991}

We give the exact spectrum and thermodynamics for a long-range hopping Hubbard chain with lincar
dispersion. This modcl exhibits a Mott-Hubbard metal-insulator transition at half filling when the in-
teraction strength U/ equals the bandwidth W. The solution for U 3> W also covers the corresponding ¢ -/
model, which reduces to the spin model of Haldane and Shastry at half filling. We mention possible ex-

tensions of the model in one and higher dimensions.

PACS numbers: 71.30.+h, 05.30.Fk

There has been renewed interest in exactly solvable
models of strongly correlated systems, especially follow-
ing the discovery of the high-T. oxides in which strong
correlations appear to play a key role. A few years ago,
Haldane [1] and Shastry [2] independently introduced a
spin- § Heisenberg model with long-range exchange,

L
Hn=0Ui2) T d0U~m))"%,S,,, (1)
Ipm=|

where d(f —m) =(L/x)sinlx({ —m)/L) is the chord dis-
tance between two lattice points (/,m) on a ring of length
L. The ground state for the antiferromagnetic case
{/ > 0) has been identified [1,2] to be the paramagnetic
Gutzwiller-projected Fermi sea (FS) with the number of
tlectrons equal to the number of sites (half fitling},
|Wo) == Ppmol FS) =TL [t — iy, 17if | JIFS),  where o
=¢).oC1.o is the number operator for electrons of spin o.
|Wo) also turns out to be the ground state for a supersym-
metric 1-J model generalization of the Haldane-Shastry
long-range model away from half filling {3]. The exact
ground-state correlation functions are known from Ref. I

- - - 2’ ? .3 L] -
Hyy=Ppuy | T+ z M(SJ'Sm— %’ﬁlnm)- Z
fotm U

iwnremmi

lh.nln, atat = -
—":‘T—Z‘(UU')(‘;EC:—,C"-,'CM,' Pp=o,
oo

[4). In a remarkable Letter Haldane was also able to
derive the full spectrum and thermodynamics of his mod-
el [5]. In contrast to the solutions obtained by the Bethe
ansatz, the structure of Haldane's spectrum suggests
extensions to higher dimensions. A specific scenario
—involving a generalization of statistics— was recently
outlined in Ref. {6].

In this work we introduce a new Hubbard-type chain
with long-range hoppifg:

L L
HaTHUD= Y  timllelmot U’E Ay (2)
Ivtm={.a =1

with tym=it(—1)""[d(I=m)) " =¢7 ;. Since it is
most convenient to work with even L, the specific form of
the hopping matrix elements forces us to choose an-
tiperiodic boundary conditions. Then the resulting dis-
persion is linear, e(k)=tk, with k=Qx/L)(m+ 1)
(m=—L/2,...,L/2=1). The itinerant model of Eq.
(2) is constructed so that at half filling, in the U/-— o
limit, we recover the Haldane-Shastry model. In particu-
lar, the corresponding f-J Hamiltonian can be obtained
in the usual way {7):

)

where 7y =X .. At hatf filling this reduces to Eq. (1) |
with J =41%/U and an energy shift C=(J/8)Xhpm= 14U
—m)] ~2=(J/24)(x/L)2L(L2—1) [8). Note that H
[Eq. (2)] has a definite parity, i.c., PHP =nH, only for
U=0 (g=—1), t=0 (g=+1), or in the limit of half
filling and U — e (p=+1).

In this paper we use the cxact diagonalization results
for small systems and analytical results in various limits
to conjecture an ¢flective Hamiltonian which recovers the
full spectrum and degeneracies of (2) for arbitrary
fillings and interaction strengths. This effective Hamil-
tonian is then used to study the ground-state propertics
and thermodynamics of our model. We conclude by pro-
posing an obvious extension of this type of long-range
hopping mode! which may be solvable even in higher di-
mensions. .

The spectrum of the kinctic-energy operator 7 for a
fixed total momentum Q [Q=(7/r)mod2x} consists of

244

highly degenerate equidistant levels separated by 2xt.
To sec this, let the momentum transferred be ¢ > 0 and
consider the two-particle scattering process (k,p)— (k
+g¢,p—q). The initial and scattered states have the
same kinetic energy Tif (i) k+g<rxandp—g> —xor
(ii) k+¢ > xand p—gq < —x. In the remaining cases 7
changes by * 2x1.

To gain some intuition we analyze the L? states with
S°=L/2—1 (single spin flip). Therc arc L states with
T = =0; of these, the L — | states with § =L/2— 1 have
double occupancy D=1, and the remaining S =L/2 state
has D=0, For fixed total momentum @ = (2x/L)ng»=0
one finds (L —1)(L —2) simultancous cigenstates of T
and D with D=1, of which (L —1)(L ~|mp|—1) have
kinctic energy T=1Q, and (L—1)(Img|—1) have T
~=1(Q—2xhp) Iwhere Ap=sgn(Q)). The 2(L— 1)
remaining {'#0 states can be chosen as cigenstates of T

© 1992 The American Physical Society
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and are superpositions between D=0 and D=1 charge
states. These bonding and antibonding states [(L—1)
doublets] for the spin flip and the hole are obtained from
the diagonalization of the 2x2 matrix for each Q, with
diagonal elements 1@+ Ulmgl/L and 1(Q - 2xhg)+U(L
—{mol/L), and off-diagonal elements U{(Impl/L)(1
- |MQ|/L)] "2.

In what follows it will be useful to represent the Hil-
bert space of the above example pictorially: For this pur-
pose we introduce a “quasimomentum’ space with “coor-
dinates™ # which, as the physical momenta, are given
by H=Qa/LYmy+ 3} my=—L/2, ... Lf2—1). A
particular state will be depicted by filling the # states
with spin-carrying (1,!) and charge-carrying (x,0) bo-
sons representing spin up and down, and doubly occupied
and empty ¥ sites. In addition, a completeness con-
straint that each J site is occupied by one and only one
boson must be fulfilled. For example, there are L states
which we would represent by 1 --- 1] --- 1 which in-
volve a single spin flip with D=0. However, from our
solution above we learn that there is only onc eigenstate
with £ =0, namely, the state with $=L/2 and total
momentum @ =0. We will arbitrarily sclect the pictorial
representation of this state to be |1 --- 1, ie, the down
spin occupies the first position on the # chain. All
configurations which involve an up spin to the immediate
left of a down spin—and there are L—1 such con-
figurations in the single-spin-flip casc—must then be-
long to the L —1 doublets. We depict these configura-
tions by “boxing” the necarest-neighbor up-down pair,
1---1(11)%1--- 1. Similarly, the L(L —1) states with
D=1 could be represented as |--- fxt--~fot--- 1.
Of these, L — 1 arc part of the doublets while the remain- |

Hi"=

U U
9 .
5 lﬂ[m pp QFH+A)

-x< W(:"‘A{

+

v ~U
> +1-,,|x: yy (2.?(-!-4)]

+ "4%[(21‘!’)2- (27f+A)2] llzld.;f?"'r(.g.afw-'fyfq.ml +HC] } B

ing (L —1)? are simultancous cigenstates of T and D,
We then choose tc represent the former by boxing a
neighboring pair of doubly occupied and empty sites
whenever the doubly occupied site occurs to the left of the
cmpty one: t--- {{x0O)yt- 1. The L—1 doublets
are then identified with the 2(L — 1) states involving the
superposition (1] )y and (x0) 4 with %' = %.

We now assign physical momenta and kinetic energies
to the various configurations. For configurations without
boxes the physical momentum of the singly occupied #
sites is identified with the # momentum while doubly oc-
cupied and empty ¥ states carry zero momentum, These
states can then be described in terms of an effective Ham-
iltonian diagonal in the occupation-number representa-
tion for our set of boson operators for spin-carrying
(§#.0), and charge-carrying (¢ »,d %) quasiparticles:

Y G eHGY e +55 6 m0)

—x< K<z

HE -

~@ydy+&ld ) +UdNd )
4)

wher?c we made use of the completeness constraint
Z,Ew‘,jw.“+d'}fuw+e’$,5w-l for each #. The prime
on the sum is a reminder of the fact that the L —1 dou-
blets are not represented by H§".

For boxed configurations, (1])5 and (x0)y are as-
signed momenta Ay and — xdy, respectively. The mix-
ing of the boxed configurations due to the Hubbard in-
teraction can be read off from the solution of our single-
spin-flip problem. We use the identity mo/L =[2xh4
— (27 +4))/4x with A=2x/L, so that the second part of
the effective Hamiltonian reads

n.' ~ .t -
dyd 48 44 w4

at . at -
SHASHiSw+a 15 H+all

(5)

The total effective Hamiltonian is given by A =f§"
+H" X

We now conjecture that H°" is indeed correct in all
spin sectors, for all fillings and arbitrary interaction
strengths, For two particles on a lattice of size L this can
be checked by applying a pariicle-hole transformation
and turning the problem into the single-spin-flip case.
We have alse confirmed our conjecte-e for lattices of size
L=2 4, and 6 at ha!f filling where thc dimension of the
Hilbert space is 6, 70, and 924, respectively. Further
confirmation comes from agreement with (i) the small-U/
expansion at zero temperature, (i) the low-density ex-
pansion at zere temperature, (iii) the high-temperature
expansion, and (iv) all of Haldane’s results [5] for the

large-U limit at half filling (see below).

The effective Hamiltonian can be easily brought into
an occupation-number form by diagonalizing the 2x2
matrices describing the independent doublets for cach #.
Including an external magnetic field (%) and chemical
potentials p1, ™ p — ogus?fo/2 we may write the resulting
effective Hamiltonian as
H = T [ Zlniiethit+ bty

o

—x<K<x
(6)
h'%
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with ki o =1H/2—p,, h%Y=—1H/2~2u+U,
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- F/2, and

=l Q¥ —A) = U+[Qn)+ U2 =20 Q2% - A)) p=0.

Here, the obvious notations A% , ™3 Y o .o« €1C., have been used. To be precise, we also restrict ourselves to 1> 0 and
U= — 2x1 in which case we may identily % min — A= #ma, because J 4 vanishes for # = Hmin= — (L —1)/2]A.
_'Fortan even particle number, N < L, the ground state in zero magnetic field is obtained by only filling % states with
§¥15 % +a pairs from # = —x to # = %" =x(2n—1). The ground-state encrgy per lattice site is found to be

eoln == Un=WOzmdn 1y )3 ((W+U) —4WURIVY o

4 24wV

where W=2xt is the bandwidth. Using particle-hole [
symmetry we oblain eo{n=1)meo(2—n)+Ula—1),
and, correspondingly, for the chemical potential at zero
temperature, p(n <1)=3eoln < 1)/3n, pln>1)=U
—u(2—n). At half filling we find for the left derivative
of the ground-state energy density u-{n=1)=(W+U
— W —=U|)/4, while the right derivative is p+ (n =1) =U
—pu-(n=1). For U=< W the chemical potential is con-
tinuous (g =U/2), while for U> W, there is a gap
Apln=1)=U—W, ie, our model exhibits a Mott-
Hubbard metal insulator transition at half filling for a
finite value of the interaction, U =W.

We note that, in the limit of small U and a/f a, or small
n and all U, the ground-state encrgy (7) agrees with the
appropriate limits derived from the Gutzwitler wave func-
tion, |¥g)=TL It~ (t—g)a i JIFS) [9L. ft can be
checked explicitly from the appropriate perturbation
theory that this wave function is indeed the ground-state
wave function, but this is true only in these special limits.
In addition, given our effective Hamiltonian, it can be
seen that the Gutzwiller-projected Fermi sea also be-
comes the ground statc of the ¢-J model (3) for
J=a’ U«

1t is also interesting to consider the ¢-J model which is
obtained by reptacing 412/U by J in the Hamiltonian (3)
and then treating J as an independent parameter. With
the help of the large-U/ limit of our cflective Hamiltonian

we obtain the ground-state energy as ef (J=<J.)
- —Wn(l —n)/2—Jxn¥(3—2n)/12 and ef(J=J.)

' — g W2~ Jain(3—n2)/24, where J.=2W/x%(l

—n). At half filling we can compare our resuits with
those of Haldane [S]. Since in the large-U limit §}.
=54, the antiferromagnetic ground state is given by L/2
(11) pairs, a state which is represented by L/2+1 empty
“orbitals” in Ref. [5}. For finite L the corresponding en-
ergy is given by

ELF -c+);'1,,- — (J/24)(x/L)L(L?+5) ,

where the prime on the sum indicates that only every
second % had to be intluded in the sum [10].

The resulting spectrum consists of two fundamental ex-
citations: “spinons” [5,6] as in the Haldanc-Shastry
model, and “holons,” which are already present in the ¢
‘model (U=, ic., J=0). This charge-spin scparation
{111 is already evident from the effective Hamiltonian for
U — oo, which can be explicitly written as an itinerant
and a spin part

A=A+ A5"
S Y (E7 3 TN 01 P XY B
—~g< H<n
Here, J 5= (J/4)(x2— %), A “spinon” for J =< J. cor-
responds to a broken spin pair in an otherwise unchanged

| hole background. It can be represented graphically as

D UDels (D) - - NS G - (1D ]eza-10 - 0.

The excitations are always created in pairs, and their sep-
aration % — %' has to be an even multiple of A. [t is then
convenient to rescale F— 2% to make contact with
Haldane's Eq. (17); in the infinite volume limit we obtain
for a single spinon c,,.am(ﬂ)-(.l/ﬂ[(x/Z)z—?le with
— /2<% < x(2n—1)/2. The spinon velocity at #
= — x/2 is Ospinon™=Jn/2. For J > J. the lowest-lying spin
excitations are two holes at H=%F~2xn and 5*
—2xn+A and two spins at %,%" which can have arbi-
trary separation. Here, KF=xl—J./J+n(1+J./J)).
The dispersion for a single spinon is then given by
Expimon( K ) =t H — (K F—2nn) 4+ e, /2 with —x
=< % < %* —2xn. The spinon spectrum opens a gap at

“J=J, i.c., the spin fluid becomes “incompressible™ lcad-

ing o the vanishing of the spin susceptibility above J.
At half filling we have %¢F=x and the spinon dispersion
acquires another linear part around % = x/2 with velocity

246

l‘ipim-—i':pinon-'_]ﬂ'lz. We further notice that we
obtain two spinons for every broken (11) pair, so that one
has L/2+1—M orbitals for 2M spinons (M=0,1,
...,L/2). Spinons between unbroken (1]) pairs occupy
the corresponding orbitals. This construction provides
the link to Haldane's construction of the spinon states

t2].
The other excitation, the holon, involves a hole of

momentum & which is surrounded by unbroken spin
pairs. As for the spinon, the allowed % values are spaced
by 4x/L and we again rescale ¥ — 2. Then the excita-
tion energics are '

F_
eraon(F) =2 w4 S un(H T 42901,
2x
(8)
KF2—an<K=<H'/2.
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For J =0 the above dispers_:'on agrecs with that of a gas of
spinless fermions with lincar dispersion and Fermi

momentum K =x(2n~1). For J = J, the holon veloci-
ty at F=F"/2 is thoon=(— 1) IW+In2(2n—1)/2].
For J>J. we find two linear excitations, the first at
F=3*/2 with velocity vhoon = —nJtx/2, and the second

at H =% "/2— xn with velocity rfgn =ntx/2.

=)

We checked this expression for high temperatures to first
order in g,

At half filling we have y=U/2 due 1o particle-hole
symmetry. For U~ o and finite external magnetic field
we can therefore neglect the terms with Dy and E 4; the
cflective Hamiltonian (6) can then be transformed into
an Ising model. The corresponding expressions for the
entropy density at vanishing external magnetic field, and
the static magnetic susceptibility can be easily derived
and are found 1o completely agree with Eqs. (15) and
(16) of Ref. [5L.

The reason for the integrability of the model is related
to the relativgly simple algebra satisfied by the kinetic-
and potential-energy “operators and their highly degen-
eratc spectrum. It is not difficult to see how to systemati-
cally construct long-range hopping models which preserve
these features in 42 1. We start from the observation
that nearest-neighbor hopping on a cluster of size R gives
R values for the kinetic energy, e(k, ), withn=1,... R
A long-range hopping model on the lattice can then be
defined by choosing a dispersion relation (k) which is
limited piccewise to the constant values e(k,) in Fegions
around k,. Such a finite cluster model should lead to an
effective. Hamiltonian in an occupation-number basis,
describing a classical model in the same number of di-
mensions. The latter, although rarely completely solv-
able, can be investigated by a variety of techniques of
classical statistical mechanics. We expect that, in this
new class of models, the metailic ground states are Fermi
tiquids, like thosc obtained from variational Gutzwiller
wave functions {4], and one might as well call such
phases “Gutzwiller liquids.”

In this Letter we have studied a new itinerant one-
dimensional mode] with fong-range hopping and Hubbard
interaction. In spite of its simplicity this model displays a
metal-to-insulator transition at half filling for a finite in-
teraction strength. It remains to justify the conjectures of
this paper by a direct algebraic approach.
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energy density in the thermodynamic limit can be easily
found by the use of the transfer-matrix method. We

define Sy, =exp(—Phiy,), Dyp=exp(—prY%), E,
=exp(—Bh%), Xy=Sy1+Su +Dy+Ey, and Py

=exp(—pJ 4), and obtain

)
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checked the validity of our ground-state energy, Eq. (D),
by perturbation theory up to third order in U for all
fillings. Hc also observed that at half filting eg(n) has a
nonanalyticity of the form (1 —n)?|1 —n| for all values

of the coupling constant.
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