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NEW RESULTS ON THE FRACTAL AND MULTIFRACTAL STRUCTURE
OF THE LARGE SCHMIDT NUMBER PASSIVE SCALARS

IN FULLY TURBULENT FLOWS

K.R. SREENIVASAN and Rahul R. PRASAD

Mason Laboratory, Yale University, New Haven, CT 06520, US4

By measuring concentration fluctuations of a dye with very fine spatial and temporal resotution in typical unconfined turbulent
water flows, we obtain the fractat dimension characteristic of the scalar interface in the range between Kolmogorov and Baichelor
scales, We use one-dimensional intersection methods and invoke Taylor's hypothesis, but both of them are amply justified. We
obtain a theoretical estimate for the fractal dimension by modifying our earlier arguments for finite (though large) Schmidt
number effects. Finally, the multifractal characteristics of the scalar dissipation rate in the same scale range are also presented,

1. Introduction

A trace of dye or smoke, or a suspension of the fine
particles of a metal, is considered a passive scalar if
it does not affect the dynamics of the flow into which
it is introduced. The behavior of passive scalars in
turbulent flows is interesting in its own right, and the
understanding of its mixing is practically useful in
several contexts including combustion; since their
evolution is determined by the velocity field, passive
scalars can be studied profitably as a diagnostic even
if the primary focus is on the dynamics of turbulent
motion.

It is now well known [1] that an unbounded tur-
bulent flow such as a jet develops at high Reynolds
numbers “fronts” across which vorticity changes are
rather sharp on scales larger than the characteristic
thickness of the fronts. Such a front, called the vortic-
ity interface, retains its sharpness in spite of the nat-
ural tendency of vorticity to diffuse: The nonlinear
stretching inherent in the quadratic terms of the fluid
equations provides the balancing action. A passive
scalar introduced in fully turbulent flows gets dis-
persed by turbulence, and itself displays a sharp front
across which the scalar concentration shows similar
large jumps. In analogy with the vorticity interface,
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this front is called the scalar interface. This is the ob-
Jject of our interest here.

The scalar interface is a complex surface residing
in three-dimensional physical space (see fig. 1); it is
quite convoluted over a range of scales which are sta-
tistically self-similar. At high enough Reynolds num-
bers, there is a large separation between the largest
and smallest scales on which the interface appears
convoluted, and this allows the use of fractals [2] in
characterizing the interface [3-6]. Unlike a mathe-
matical fractal, the scale-similar regime of the inter-
face is bounded on both sides by physical effects; the
upper cutoffoccurs at a (fraction of ) the integral scale
of motion, this being comparable to (but distinctly
less than ) the gross size of the flow such as the width
of the jet, whereas the inner cutoff occurs at a scale
where the effects of scalar diffusivity are felt directly.
When the Schmidt number ¢ {that is the ratio of the
fluid viscosity to scalar diffusivity) is unity, this scale
1s the Kolmogorov scale 7 equal to the smallest dy-
namical scale of the vorticity interface. If ¢ is much
smaller than unity (as in the steller atmosphere ) the
smallest scalar scale is the so-called Batchelor scale
fw=n=a"""2 [7]. This is typically the case of a dye
mixed in water; the molecular structure of water is
such that the colliding dye molecules transfer mo-
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Fig. 1. To demonstrate the complexity of the scalar interface, we show a two-dimensional section of a turbulent jet at a nozzle Reynolds
number of about 4000, obtained by the laser-induced fluorescence technique. Only scales coarser than the Kolmogorov scale are resofved.
The digital camera used to obtain this image has an array size of about 1300 1000 pixels. The region imaged extends from 8 1o 24
diameters downstream of the nozzle. A Nd: YAG laser beam shaped into a sheet of 200-250 pm thickness using suitable lenses was
directed into a water tank into which the nozzie fluid containing small amounts of a fluorescing dye was emerging in the form of a jet.
The laser had a power density of 2 107 J s~ per pulse and a pulse duration of about 10 ns. The flow is thus frozen in this picture to an

excellent approximation.



324 K.R. Sreenivasan and R.R. Prasad 7 Fractal structure of scalars at large Schmidt numbers

mentum much more efficiently than their own mass.

In our previous work, we used a dye mixed in water
flows and resolved all scales above #, which, in a typ-
ical experiment, was around 200 pm. The Schmidt
number was {8] of the order of 2000, yielding a
Batchelor scale of about 4-5 um. It is easy to argue
[7,9] that a different scaling regime should exist be-
tween 1, and #. It is therefore interesting to resolve
these scales and determine their scaling properties.
This is the first purpose of the paper.

In the flow interior far from the boundary, the sca-
lar concentration fluctuates in both space and time.,
The square of the gradient of these fluctuations rep-
resents (to within a constant) the rate at which the
fluctuation intensity is being smeared by molecular
diffusivity. This quantity is called the scalar dissipa-
tion rate, . We have shown earlier [10] that y pos-
sesses a multifractal distribution - again with the
qualification that cutoffs are present. As before, the
spatial resolution was limited to Kolmogorov scale.
Our second purpose is to determine the multifractal
scaling properties of y between n,, and #.

2. The method

As remarked earlier, the scalar interface is a frac-
tal-like surface embedded in three-dimensional space,
and we want to determine its fractal dimension. Fol-
lowing [3,4], we shall use box-counting methods
which involve covering the volume by three-dimen-
sional boxes of varying sizes, and counting the num-
ber of boxes containing the interface. The exponent
characterizing the variation of this number with re-
spect to the box size will give the fractal (i.e. box)
dimension of the interface. The current limitations
of instrumentation technology permit this direct
method to be used only as long as the volume to be
scanned is not too large and the resolution required
is not too demanding. Such measurements have been
made by Prasad and Sreenivasan [6], who resolved
a volume of the order of 251X 3004 % 300 with res-
olution of between 25 and 3#. In general, fluid dy-
namical constraints are much stronger, and the more

feasible way of obtaining the fractal dimension is to
use the method of intersections. Here, one intersects
the interface by a thin plane or a line — thin meaning
that the finest scales of interest are resolved ~ and
obtaining the fractal dimension of the intersections.
The fractal dimension of the surface itself is then ob-
tained by the so-called additive law for co-dimen-
sions (see ref. [2] and references cited here). ac-
cording to which the intersection by a plane resuits in
a set whose dimension is one less than the dimension
of the original set; when intersected by a line, the
fractal dimension is two less than the dimension of
the original set.

The requirement that the Batchelor scale be re-
solved allows only trivial extents of the flow to be
mapped even in two-dimensional intersections; one
therefore has to resort only to one-dimensional inter-
sections. These can be obtained rather easily by in-
voking Taylor’s frozen flow hypothesis according to
which turbulence convects undistorted with the mean
motion. This is reasonably accurate, especially for
small scales of motion, if the mean convection veloc-
ity of the flow is large compared to its fluctuations.
The relevant ratio is about 60 for the wake behind a
cylinder and is large enough, but is only of the order
of 4 for jets. It turns out that geometric aspects such
as the fractal dimension are quite insensitive to de-
tails such as Taylor’s hypothesis; in ref. [3], we
showed that even for jets the fractal dimension re-
sults can be obtained quite accurately in this way. On
the other hand, dynamical aspects such as the spec-
tral distribution of the scalar variance are much more
sensitive to Taylor’s hypothesis [11].

3. The flows and the measurement technique

A turbulent wake behind a circular cylinder was
produced by lowering a tank of water past a rigidly
mounted cylinder. The cylinder was 1 cm in diame-
ter and had an aspect ratio of 58. The tank was low-
ered at a constant speed of 15 cm/s by means of a
hydraulic lift. The fluorescent dye (sodium fluores-
cein ) that seeped into the wake from a narrow chan-
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nel cut along the length of the cylinder - either at the
front or the back stagnation regions — was mixed by
the turbulence in the wake. The flow Reynolds num-
ber of 1500 (based on the cylinder diameter and the
free stream relative speed) is moderate. During aata
acquisition, the position of measurement varied be-
tween 60 and 70 diameters behind the cylinder. The
Kolmogorov and Batchelor scales were estimated to
be about 160 and 4 um, respectively.

A jet was produced by allowing water to flow from
a settling chamber through a nozzle of circular cross-
section (diameter 1.2 cm} into a tank of still water at
a constant speed of about 35 cm/s. The nozzle was
contoured according a fifth-order polynomial to have
zero slopes and curvature at the entrance and the exit.
The contraction ratio was about 10. The jet Reynolds
number based on nozzle diameter and exit velocity
was about 4000. During data acquisition, the posi-
tion of measurement varied between 20 and 37 noz-
zle diameters downstream. The estimated Kolmogo-
rov and Batchelor scales in the measurement region
are about 200 and 5 pum, respectively.

The optical setup is shown in fig. 2. By various
combinations of lenses described in the caption, the
beam is focused to a spot of about 4 pm at the desired
location in the flow. Concentration fluctuations are
detected as fluctuations in fluorescence intensity, the
two being in linear proportion to each other. The op-
tical signal from the photomultiplier tube is passed
through a current amplifier before being digitized by
the 12-bit A/D converter on the MASSCOMP 5000
computer. The digitizing frequency is set at 320 kHz,
which is well below the limiting digitization rate of 1
MHz of the A/D converter. The photomultiplier tube
is quoted by the manufacturer as having good fre-
quency response up to 50 MHz, So the temporal re-
sponse of the instrumentation is believed to be much
better than is required for present purposes.

From the highly resolved concentration fluctua-
tion signal ¢, we obtain the fractal dimension of the
interface as well as the multifractal aspects of y. We
have demonstrated in ref. [11] that the signal pos-
sesses the expected classical properties, for example
the correct power law behaviors.

Ar Laser

Water Tank
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Fig. 2. Schematic of the optical setup. Shown is the orientation
of the cylinder (C), whose wake is the flow of interest here. A 5
mm diameter light beam from the continuous argen laser ( power
output about 7 W) is first expanded into a thicker beam of 60
mm diameter by the combination of spherical lenses L, (focal
length 25 mm ) and L; (focal length 300 mm ), and then focused
to a spot of 5.5 pm diameter by means of a convex lens L, of focal
length 500 mm. The optical signal is collected by a photomulti-
plier tube (PMT). In the optical path upstream of the photomul-
tiplier tube is a combination of lenses L, and L (focal lengths
400 and 1000 mm, respectively) that give an image enlargement
by a factor of 2.5. This combination entarges the 5.5 pm focal
spot in the flow 1o a size of about |3 pm. Ahead of the photo-
multiplier tube, a 10 pm diameter pinhote (P) is located. This
effectively reduces the size of the spot imaged onto the phototube
to 4 pm, this being the spatial resolution of measurement.

4, Results

Fig. 3 shows a typical plot of the logarithm of the
number of boxes containing the intersection points
of the interface as a function of box size. There are
two distinct power law regimes, one of which occurs
(roughly ) between n,, and », and the other to the right
of n. As expected from earlier measurements [3-6],
the negative slope in the latter region is around 0.36
- giving a fractal dimension of 2.36. (The scatter in
that region is relatively large because the limited du-
ration of the signal did not contain too many inter-
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Fig. 3. A typical log-log plot of the number N{r) of length ele-
ments or “‘boxes™’ of size r containing the interface versus the
box size r. The flow is the wake of a circular cylinder. The nega-
tive slopes of the straight parts give, in the respective scaling re-
gime, the fractal dimensions of one-dimensional intersections of
the boundary. The dimension, corresponding to the slope of the
line drawn in the region between »# and L, is about 2.36. That in
the range between 5 and #, is about 2.75.

sections comparable to the bigger boxes. ) The region
between 7, and # has a slope of about —0.75, giving
the fractal dimension to be about 2.75. The average
slope from several realizations is 2.7+ 0.03. Data
from jets confirm this conclusion.

This is our first main result, and we should like to
explain it. This is done by considering the dye mixing
at infinitely large Schmidt numbers {9], and then
providing corrections for the finite (but large)
Schmidt numbers.

The basic idea is that the properties of the scalar
interface and the mixing of the scalar with the am-
bient fluid are related. Since the amount of mixing is
governed by large eddies in the flow, the actual pro-
cess of mixing (by which we mean molecular mix-
ing) is accomplished by diffusion across the surface
whose geometry is determined by the requirement
that it accomplish the exact amount of mixing set by
the large scales. Thus, even though the process is ini-
tiated by large scales, one can legitimately concen-
trate on the diffusion end. This approach has a much
better likelihood of vielding results of some “univer-
sality”, simply because the small-scale features of the
flow are, to a first approximation, independent of
configurational aspects of the flow. The fractal di-

mension of the interface is but one example. This ap-
proach neither minimizes the role of large eddies nor
resorts to gradient transport models usually discred-
ited in turbulence theory.

- Motivated by this thinking, Sreenivasan et al. 9]
concentrated on the last stages of the mixing process
by working with diffusion across the fractal-like in-
terface. They proceeded from Fick’s law of diffusion,
which can be expected to hold accurately in spite of
the high degree of convolutedness of the surface (be-
cause the scales of convolutions are significantly larger
than the molecular mean free path }, and showed that
the flux of the scalar is given by

BReB(D—?H)MO-(D*—J)/Z, (1)

where § (which in ref. [9] has been written down ex-
plicitly ) consists only of quantities depending on the
large-scale features of the flow and are independent
of Reynolds number. D is the fractal dimension in
the scale range between n and L, and D* in the range
between n and 7,. Re is the flow Reynolds number
given by u'L/v; u’ is the root-mean-square fluctua-
tion velocity and » is the kinematic viscosity of the
fluid.

One can then invoke [9] the so-called Reynolds
number similarity, which is merely a statement of the
observed fact that all fluxes (mass, momentum, en-
crgy ) must be independent of Reynolds number in
fully turbulent flows. According to (1), Reynolds
number similarity requires that

D=7/3, (2)

in rough agreement with experiments [3-7,9].
Multifractal corrections [9,12] change this value
slightly to D=2.36, bringing it identically equal to the
measured average [4,9].

Similarly, Schmidt number similarity requires that

D*=3. (3)

This means that convolutions of the interface on
scales between #, and n are space-filling. The physical
picture corresponding to this situation was described
inref. [9].

This last result, of specific interest here, gets mod-
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ified when the Schmidt number remains finite
(though large ). To quantify the effect, we recapitu-
late that an essential argument used in ref. [9] is that
the concentration gradient across the interface is of
the order of ¢’ /n,, where ¢’ is the root-mean-square
of the concentration fluctuation ¢ - a large-scale fea-
ture. It turns out [ 7] that the time taken by the scalar
to diffuse down to the Batchelor scale increases loga-
rithmicaily with the Schmidt number. There is also a
corresponding pile up of fluctuation intensity in the
scalar patches as the straining by the velocity field
continues unabated. The effective concentration gra-
dient is then given by ¢’ (In \/E) /1o, and the expres-
sion (1) for the flux gets multiplied by the factor
In \/&. It is then easy to show that the Schmidt num-
ber similarity requires that

D*=3-2tn(In./5)/Inc. (4)

In the limit of infinite Schmidt numbers (4) reduces
to (3). For a Schmidt number of 1930, as for the flu-
orescing dye [8], (4} yields the result that D*=2.65,
quite close to the measured value of 2.7.

We reiterate that the present arguments hold in cir-
cumstances where the amount of mixing is deter-
mined by the large scale, and the surface adjusts itself
accordingly. For large eddies to be the controlling
factor at infinitely large Schmidt numbers, it is nec-
essary that the Reynolds number must be corre-
spondingly large, the precise condition being that
(In o) /Re'/2« 1. As expected on physical grounds,
this condition never lets the characteristic gradient
across the interface exceed Ac/n,, where Ac is the
maximum concentration difference in the flow.

The result that the interface has space-filling char-
acteristics in the Batchelor regime (scale sizes be-
tween ny, and n7) suggests that other aspects of the sca-
lar in this scaling regime might also be space-filling
in the limit of infinite ¢. In particular, the scalar dis-
sipation rate y might be space-filling also. If so, all the
generalized dimensions [13] will all be unity, and the
multifractal spectrum, or the /() curve [14], trivi-
ally reduces to the point (3, 3) in three dimensions
and to the point (1, 1) in one-dimensional intersec-
tions. Finite Schmidt number effects may alter this

result, and it would therefore be useful to obtain from
experiment the generalized dimensions. We follow the
procedure described in ref. [12].

The generalized dimensions D, are obtained by di-
viding a record of scalar dissipation into smatler boxes
of size r, and identifying power laws of the type

z (Xr)QNr(‘]—l)Dq’ (5)

where X, is the total dissipation over a box of size r,
and the sum is taken over all boxes of size r; g is any
real number. It is clear that if ¢ is positive and large,
only the large intensity regions wiil be picked by the
summation in {5) while the least intense regions cor-
respond to large negative ¢'s. According to (5), if log—
log plots of [ X (X,)?]'/¢“=") versus r present linear
regions within the scaling range n, <r<#, the slopes
correspond to the D,'s.

The D, and the f(«) curves for one-dimensional
sections of the dissipation of turbulent kinetic energy
were measured in ref. [12] and shown to be univer-
sal features of fully developed turbulence. Similar
measurements in refs, [6,10] for the scalar dissipa-
tion were made from two- and three-dimensional im-
ages in the scale range between # and L. Since we have
measured — as already explained, by the application
of Taylor’s hypothesis — one component of y with res-
olution of the order of the Batchelor scale, our pur-
pose here is to measure the D, curve in the Batchelor
regime. We note the earlier result [6,10] that the
multifractal properties of a single component of y are
the same as those of y itself, and that Taylor’s hypoth-
esis is adequate for the purpose.

Typical log-log plots of { X (X,)?]'/“~") versus r
are shown in fig. 4 for some representative ¢ values.
For clarity and convenience, only the scaling in the
Batchelor regime is shown. The straight line regions
yielding the D./’s are quite unambiguous. The f{a)
curve can be computed from Legendre transforms,
but these results are not presented here.

Fig. 5 shows the curve of D, versus ¢ for the Batch-
elor regime. We have invoked the additive law and
added 2 to the results obtained from one-dimen-
stonal intersections. As expected, all the generalized
dimensions are quite close to the box dimension D,
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Fig. 4. Typical log-log plots of [Z{ X,)?]'/*“~") versus r from the
dissipation field of the je1 for four different values of ¢; (a) g= — 4,
(b) =2, (c) 2, (d) 4. Power law regions are seen for each g,
extending approximately between # and #,.

Fig. 5. The generalized dimensions for the scalar dissipation.
Different symbols correspond to different realizations, and the
solid line represents the mean. The dashed line shows results for
the range between and L [10]. The present results for the range
between 7 and #, show that all the D,’s are much closer to D,.
The expectation is that they will identically be equal to D, in the
limit o=0c. The additive law has been used in presenting the
resuits.

of the support. Fig. 5 also compares the present re-
sults to those previously obtained [10] in the scaling
range between  and L. Unlike the interface dimen-
sion, it 1s difficult to interpret the generalized dimen-
sions physically and obtain theoretical estimates.

5. Summary of results

Two distinct scaling regimes, and therefore two
distinct fractal dimensions, exist for the scalar inter-
face in the high Schmidt number case. The two sepa-
rate scaling regimes reflect the fact that the dominant
physical effects are different in the two regimes. For
example, the Kolmogorov scale plays no role in the
Batchelor regime except that it acts as a cutoff scale
analogous to the integral length scale in the regime
between 7 and L. In the scaling range between L and
n, the fractal dimension is 2.36 £ 0.05; this result also
holds for the vorticity interface [3]. The Batchelor
regime possesses another fractal dimension, which is
3 for infinitely large Schmidt numbers - assuming, of
course, that mixing is still controlled by large eddies.
As remarked already, the condition for the latter is
that the square root of the Reynolds number must be
large compared to the logarithm of the Schmidt num-
ber. Unlike finite Reynolds number effects, finite
Schmidt number corrections are significant; even if ¢
is about 2000, both experiments and a simple theory
of mixing show that the fractal dimension is only as
high as 2.7.

Generalized dimensions of y in the flow interior are
quite close to D, in the Batchelor regime. Among other
things, it means that the intermittency corrections in
that regime are quite negligible. If we extrapolate our
experience with finite Schmidt number corrections for
the interface dimension, we may speculate that all the
D/’s for o=0oc will equal D,, and that the intermit-
tency corrections are identically zero.

By his own work and through his influence on oth-
ers, Benoit Mandelbrot has had a vigorous and long-
lasting influence in charting frontiers of science in
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many areas including turbulence. This paper is a
modest expression of our intellectual indebtedness to
him. It is a pleasure to dedicate it to Benoit on the
occasion of his 65th birthday. The work was finan-
cially supported by DARPA (URI) and AFOSR.
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