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CHAPTER 1

INTRODUCTION

Turbulence, a common naturall phenomenon, is associated with both spatial
and temporal random flow motions. Because of its random nature, and the
non-linearity of the Navier-Stokes equation which describes the flow motion,
turbulence remains as an essentially unsolved problem, and may even not be
a well posed one. The most far reaching theory of turbulence was proposed
by Kolmogorov 50 years ago (Kolmogorov 1941). In that theory, boundaries
are assumed to be at infinity and the flow isotropic and homogeneous. For
& large Reynolds number (Re 3 1), the energy cascades from large to small
scales without dissipation, until a viscous cut-off length n is reached (7 is
deduced from the relation that the Reynolds number Re based on it is about
1, Re, #3 1). From this model, the energy at each length scale, or wave number
k, follows a power law k%3, This model is regarded as a good description
of fully developsd turbulence. However, in natural systems, boundaries are
always part of the whole turbulence problem, it is never clear if they can
be ignored. Also, in all experiments, coherent structures are observed, with
characteristic length and time scales. It is thus surprising that those scales
disappear from the problen:, as suggested from the preceding theory, where
the only scale is a dissipative one.

In a theory proposed by Landau (1944), the number of modes in turbulence
increases with the Reynolds number (Re). From the recent development of
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dynamical system (see Eckmann 1981; Cvitanovic 1984) it appears clearly
that temporal chaos simply evolves from a few modes. This understanding
raised the hope of being abie to study how the flow develops from laminar
to turbulent, study how many modes are relevant, and whether there exist
turbulent states different from the Kolmogorov one,

Our aim, in this thesis, was to find and study an experimental system with
well defined boundary conditions, and where the flow could be changed from
a ]aminar state to a turbulent one in a control way. A wind tunnel is the most
common turbulence generator (see Champagne 1978; Anselmet ¢ al, 1984).
Because of its large size and fast speed, the He in large. Most of the turbulence
studies come from the velocity measurements in wind tunnels. However, it is
not the candidate for our experimental sysiem, because it does not have a well
defined boundary condition at the input and output of the flow, and the Re
has a limited range of variation.

Free thermal convection seems to meet our demands, Experimentally, it is
just an horizontal fluid layer heated from below. The boundary conditions are
simple and experimentally easy to impose: fix the top of the fluid layer at one
temperature and the bottom at a higher one. The lateral boundary can be
made of thermal insulators. By varying the size of the cell, or the temperature
drop across the cell, or the Buid properties, one is able to study in such a
closed box, how a flow evolves from laminar to turbulent. As a matter of
fact, turbulence observed in nature, like in the atmosphere, is generated by
cornvection.

Thermal convection was studied firat experimentally by Benard (1901}, and
theoretically by Rayleigh (1916). A thermal convection state is characterized
by a Rayleigh number (Ra}, which is approximately proportional to the square
of Re. By new a large number of scientific and engineering studies on this

subject exists, the main review papers being : Rossby (1969), Spiegel (1971),
Normand et ol. (1977), Busse (1978), Behringer (1985). In most of these
experiments, Ra is increased by changing the temperature difference, at most
two decades, and the cell size, which is rather inconvenient. Threlfall (1974,
1975) was the fist one to use low temperature helium gas, and change the
densities to span a large range of Ra. Ra is inversely proportional to the
product of the kinematic viscosity and thermal diffusivity, which are small for
low temperature helium gas, and can be further decreased by increa.ng the
gas densities. Thus Threlfall was able to cover 8 decades of Ra by changing
the temperature by only one decade, but the gas density by three decades. He
showed that convection with low temperature helium gas is an ideal system to
study the development of different flow states. But he only studied the global
heat transfer. Experiments, using local detectors in the fluid, were mainly
initiated by us, in the case of thermal convection.

Convection systems have also shortcomings compared with other turbu-
lence system, for example wind tunnels. First, the energy is input in the form
of heating. From the second law of thermodynamics, we know that it is in-
efficient as a flow generator. Rein a laboratory convection system is small
when compared to a moderate room temperature wind tunnel, unless we use
high density low temperature helium gas. The second shortcoming, or may
be a merit, is the introduction of one more variable, temperature. This new
variable increases the richness of the subject, gives us one more observable to
study, but on the other hand, increases the complexity of this already difficult
problem.

We thus chose to study thermal convection, using low temperature helium
g2, and in three cylindrical cells of diameters 8.7, 20 and 20 cm, heights 8.7,
40 and 3 cm, thus of aspect ratio (diameter over height) 1, 0.5, and 6.7 corre-



spondingly. The maxinmm Ha achieved are 10°2, 10'® and 10"', respectively.
The main results are summarized in table 1.

The first quantity we studied is the Nusselt number (Nu). It is a measure of
the heat transport efficiency, and thus reflects the changes of turbulent states
as well. On the other hand, it is ciosely refated to the thermal boundary layers,
as we shall see latter. Assuming the thermal boundary layers to be marginally
stable, Malkus (1954) and Howard (1966) predicted that Nu changes as Ra'/>.
Some experiments supported this 1/3 theory {Townsend 1959; Goldstein &
Tokuda 1980), while many others did not (Goldstein & Chu 1969; Threlfall
1974; Tanaka & Miyata 1980). Our experimental results for the three cells
show clearly that the exponent of the power law is amaller than 1/3, for large
Ra. Thus a new melection mechanism for the boundary layers, and conse-
quently a new length acale, are needed (Castaing et al. 1989). By breaking
the symmetry between the colder and hotter boundary layers(Non-Boussinesq
effects), we have verified the new selection mechanism for the boundary layers
{Wu & Libchaber 1991).

In thermal convection, the velocity, pressure and temperature field are
the three variables. They have their own characters, but they are all cou-
pled together and all must bear the signature of the turbulent states as a
whole. However, the velocity field is hard to measure in this experiment. The
most common velocity measurement techniques are the hot wire and the laser
Doppler velocimeter. The hot wire technique can not be used here because
there is no large mean velocity and the temperature field fluctuations may
affect the measurement. The Doppler shift anemometer is hard to use because
optical methods are difficult to implement under cryogenic conditions. Also
seeding with particles, needed for laser anemometry, is highly non-trival at low
temperature. Visualizing the thermal convection flow has been carried out in

water (Chu & Goldstein 1973; Gross et al. 1988; Solomon & Gollub 1990}, but
a serious technical effort is needed before we can adapt it to the low temper-
ature helium gas. Pressure measurements may be possible, and are currently
being tested with piesoelectric transducers. In contrast, temperature is rela-
tively easy to measure using semiconductor sensors. The only problem is the
size of the sensor. It has to be small in order to have good spatial resolution,
fast time response, and avoid perturbing the flow in any significant way.

In our experiment, we have measured the local temperature fluctuaiions
with bolometers of size 200 um. The time response of these bolometers is of
the order of ma, while our turbulence signals extend up to 200 Hz beyond which
electronic noise becomes dominant. Large scale velocity has been measured,
via the correlation of two adjacent bolometers (Sano et al. 1989). Typical
values are about 10 cm/sec. Therefore the frequency corresponding to the size
of the bolometer, 200 um, is about 500Hz. So the bolometer response is fast
enough, and do not a priory perturb in the frequency range we measure.

The local temperature signals reveal a lot : The relation between the rms
value of the fluctuations and Ra changes around 10*. The probability distribu-
tion functions of the local temperature fluctuations are invariant for each cell
and non-Gaussian for Ra > 10°. The turbulent state for Ra > 10° is called
“hard turbulence”, and below “soft turbulence”(Heslot et al. 1987; Castaing
et al. 1989).

The power spectrum of the local temperature signals does not show any
power law in the soft turbulence regime, but only an exponential cut-off tail.
It seems that there are only a few large scale modes in the flow motion, and
no cascade from the large scale to the small ones. As the Ra increased above
10, a power law f~'4 develops. Hard turbulence seems similac to the cascade
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mode] described by Kolmogorov, or more specifically by Obukhov({1959) and
Bolgiano(1959) in a temperature field version.

However, as Ra gets beyond 10", the power spectrum can no longer be de-
scribed as a power law with an exponential cut-off (Wu et ol. 1990), it changes
shape. It seems that a second power law of exponent —2.4 develops between
the first power law and the exponential cut-off. The changing process has been
described phenomenologically as a muiti-fractal like transformation. Physical
mocels underlying this process have been proposed, but none could give a
satisfactory explanation (Castaing 1990; Frisch & Vergassola 1991; Procaccia
et al. 1991).

A summary of our main results being given above, let us now describe the
organization of the thesis. Chapter 2 introduces the fluid physical properties,
describes the experimental set up, the techriques and procedures in general.
Chapter 3 includes the experimental results of the three cells. In this chapter,
all the results are provided objectively, with the minimum of analysis and
interpretation, and wher possible, presented in exhaustive tables. In chapter
4 existing models are p ssented and compared with experimental data. In
Appendix A, & publishe paper on noa-Boussinesq effects is included.

CHAPTER 2

THE EXPERIMENTAL
ENVIRONMENT

Three cells bave been studied, their diameters (D) are 8.7 am, 20 cm and 20
cm, their heights (L) 8.7 em, 40 cm and 3 cm, thus their aspect ratio {D/L),
1.0, 0.5 and 6.7, respectively. Two different cryogenic set-up have been used,
one for the 8.7 cm cell and another one for the others. Nonetheless, the basic
principles are the same. Since the cell of aspect ratio 1.0 was the first to
be studied, I shall use it as an example o detail the axperiment set-up and
experimental procedures. As for the other system, I shall only mention the

differences.

2.1 Helium gas

The control parameters of the convection experiment are the Prandt! number
Pr

Pr= % (2.1)
and the Rayleigh number Ra,
3
Ro = “’i" , (2.2)



where g is the gravitational acceleration, « is the thermal expansion coefficient,
A is the temperature drop across the cell, L is the height of the cell, v is the
kinematic viscosity and x the thermal diffusivity.

We would like to have as large a range of Ra as possible. Most of the
previous experiments achieved it by changing the height of the cell. Since
the cross section of the cell cannot be changed unless a new system is built,
most experiments use different heights, thus different aspect ratioa. For a
fixed Pr and Ra, Deardorff & Willia ( 1965) and Threlfalt (1975) show that
the Nusselt number Nu is not even a monotonic function of the aspect ratio,
this is confirmed by our experiment (table 2). Therefore there is a need to
cover a large Ra range with a fixed aspect ratio.

This can be achieved by changing the physical constants of the flujd. For
ideal gas, the thermal expansion coefficient e ia equal to 1/T, 80 it increases
as the temperature 7' decreases. However, as the temperature of the 8ys-
tem decreases, the r2nge of the temperature difference A is correspondingly
restricted. So we cz .not gain much from the product eA by lowering the
temperature. Howev' -, let's Jook at the kinematic viscosity v and the thermal
diffusivity x. Both . . them have a dimension of [L*T-Y), or the product of
length by velocity. For an ideal gas, a good description of low density gas, the
only length scale involved is the mean free path 1/(na), and the only velocity
is the thermal velocity m, here o, m and n are the helium atom cross

section, mass, gas number density respectively. So

1 [&T

V., K Rs ;; ?u— . (23)
Then Ra can be written as
- 3 (no")’m
Ra = gl¥ad) T (2.4)

W a

According to this estimation, the Ra will increase by a factor of 60 as the
temperature T decreases from 300 K to 5 K, provided everything else is un-
changed; it will also cover 6 decades if the gas density changes from I x 10-5
to 1 x 10~?g/cm® (the liquid helium density is about 0.1 g/cm®).

The estimation based on ideal gas gives us some intuition on how the
physical properties change with density and temperature. But for real gas more
dramatic changes occur. For example, when helium approaches its critical
point (pressure 2.24 atm and temperature 5.201 K), the expansion coefficient
can be as large as 10, instead of 0.2 at 5 K, » and & can be of the order of
107! cm®/sec. As a matter of fact, we have used gas densities ranging from
1 x107® g/cm® to 6 x 10~7 g/cm® , correspondingly a changes from 0.2 to 3,
v changes from | cm?/sec to 10~* cm?/sec and « changes from 1 cm?/sec to
4 x 107* cm?fsec. We actually have 8 decades of Ra variation (table 5).

In fig.1 and fig. 2, we give the physical constants of the fluid as a function
of temperature and density respectively. All the fluid properties used in this
experiments are calculated from the fitting equations given by R. McCarty
(1972,1973). McCarty had searched about 40,000 articles from which 634
relevant references were used. This, as far as we know, is the most complete
summary of helium gas data. In each of our experimental run, the cell is closed,
thus the denaity fixed, which is inferred from the measurement of pressure and
temperature, From the temperature and density, all the physical properties
can be calculated.

The errors in the physical constants come from two sources: one is from
the original measurement data used in determining the equation of state and
the agreement between those data and the equation of state. The second is
from errors in our measurements of pressure and temperature. According to

McCarty's review, in the region away from the critical point, the density has
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Figure 1. Fluid Properties vs. temperature. For a fixed density
p = 0.01 gfem®, (a) the Prandi] number Pr, (b) the thermal diffusivity «
and kinematic viscosity v, (c) the thermal expansion coefficient o and (d) the

thermal conductivity y, are plotted as functions of temperature 7.
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12

an average uncertainty of 0.1%, the specific heat 0.1%. In the critical region,
the average uncertainty of density and specific heat are about 2%, and can
be as large as 10%. As we shall discuss later, the error in our temperature
measurement is within a few mK, which has small effects in the fluid properties
calculation. The uncertainty of the pressure measurement varies from 0.15%
for P < 1000 torr (except for very small pressure), to 0.5% for P > 1000
torr. The physical constants are certainly affected by these errors, especially
in the critical region, where the fluid properties change drastically. Combining
the two sources of error, we give a rough estimate of the imprecisions in the
physical constants for various densities at 5K in fig. 3.

For a fixed density of helium gas, Ra can be changed slightly by varying
the average temperatu;e of the cell. However experimentally, we used about
ten different A values to cover one decade of Ra with one gas density. To cover
large ranges of Ra, we have to use helium gas of different densities. We choose
two successive densities in auch a way that there is one or two points overlap
in Ra. About ten different gas densities ranging from 107° to 6 x 1072 gfcm®
have been used to cover the whole Ra range. Table 3, 5 and 6 list all the
densities used and the associated Ra, Nu and Pr for the three cells. In table

5, the corresponding physical constants are given as well.

2.2 Cryogenic aspects and experimental
procedures
2.2.1 The cell

The first cell used was & cylinder of 8.7 em of diameter and height (built by
MTM Cryo.-Tech-Lab, Chicago, Nllincis). Figure 4 is the photography of the
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system. For the lowest Ra = 4 x 10°, a density 1 x 10-* g/cm® (pressute about
1 torr) is needed, while for the highest one, 6 x 10" a density 3 x 10-? g/cm?
(pressure about 1 x 10° torr). The side wall of the cell is made from 2 mm
thick stainless steel, Its thermal conductivity is small (3 x 10-2 Wem™ K1)
compared with most other metals. Both the top and bottom plate are made out
of OFHC (OxygemF\'ee-ﬂigh-Conductivity) copper to reach good temperature
homogeneity. At 5 K, the thermal conductivity of OFHC copper is about
4 Wem='K~!. Figure 5 details the structure of the cell, the vacuum chamber,
and all of the electrical and mechanical connections. The cell is surrounded

by a cylindrical vacuum chamber of diameter 11.4 ¢ and height 21 ¢m, made

of 2 mm stainless steel. The vacuum chamber in pumped through a stainless

steel tube (1 cm of diameter) which ia silver soldered to the copper plate.

It is essential to have a proper and well defined thermal impedance between
the top plate of the cell and the top plate of the vacuum chamber (see the insert
of fig. 5). The top plate of the chamber s at 4.2 K, the top plate of the cell
rmust be regulated around 5 K, thus for a given thermal impedance, the total
heat fux in fixed. The thermal impedance has to be small enough so that the
total heat flux is always larger than the heat applied from the bottom of the
cell in order for the regulation to functjon. On the other hand, the thermal
impedance can not be too small since this wil require excessive heating power.
The thermal impedance has been made out of a 6063-T5 aluminum ring of
height lem, O. D. 3 cm and L. D. 2.9 cm, impedance 0.7 W/K. The top plate
of the cell and the vacuum chamber top plate sandwich this ring, with indium
O-ringa on its two ends for good contact. The aluminum ring is mechanically
supported by a G-10 and a brasa outer rings, which have no thermal contact
with the two platea.

Electric wires come out of the sealed cell through a hole of about 5 mm at
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Figure 4. The photograph of the experimental system for the aspect ratio
1.0 cell. {(a) shows the top plates of the vacuum chamber and the ceil, with the
mechanical support, cryogenic and electric connections. (b) is the covection

cell.
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the bottom plate. The hole is later sealed with stycast 2850 FT and catalyst
24LV (Emerson & Cuming). In order to have a leak tight seal, proper care
has to be taken to compensate for differential thermal expansions (see insert
of fig. 5). This seal proved to be vacuum proof after many thermal cycles. It
is also used for the electrical wires leaving the vacuum chamber from its top
plate.

The cell at He temperature is filled with helium gas from room temperature.
We thus have to build a heat exchanger to cool the gas down. We firat use a thin
stainless tube {1.5 mm . D.) from room temperature down, to a control valve
in helium bath (fig 6). From there a copper tube { 1.5 mm L.D., 3 mm O.D.)
goes through the vacuum chamber top plate (soft solder used). After getting
into the vacuum chamber, a Kajon connector is used for easy dismounting.
Before entering the cell, the tube wraps the top plate of the cell several turns
in order to have good heat exchange and reach thermal equilibrium (fig. 5).

For the filling tube, there are two valves, one at the top of the dewar {room
temperature), another in the liquid helium bath, just above the top plate of the
vacuum chamber. The low temperature control valve closes when a preassure
of 15 psi or higher is applied to a Teflon cone againat its counterpart, opens
when the pressure is released and a bellows pushes the Teflon cone back (see
insert of fig. 6).

This control valve ia quite helpful in eliminating acoustic oscillations, which
originate from a thermal inatability which sets in when a tube, closed at its top
at room temperature, dips its bottom into & liquid helium bath (Taconis et al.
1949; Zouzoulas & Rott 1976; Yazaki et al. 1980). Although such oscillations
are used to measure the L-He level in storage dewar, they are very harmful
in & cryogenic system since it dissipates liquid helium as well as introduces
extra noise into the turbulent fiow. Even though the control valve could not
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be closed tightly, it increases the filling tube impedance and helps to damp
out the oscillation.

The liquid nitrogen and liquid helium glass dewars are standard. The
inner size of the helium dewar imposed the final size of the cell used. During
operation, typical liquid consumption was about 12 liter for nitrogen and 8
litera for helium per day, The convection experiment itself needed beiween
1074 t0 0.3 watt to run (Every watt of heat evaporates about 2 ljters of L-He
per hour).

The vacuum pump systern used during all the procedures was an Edwards
160M diffusion pump backed by a E2M12 two level mechanical pump. The
pump reading was always 1 x 10~ torr,

2.3.2  The cooling procedures

To cool the system down to He temperature, we pre-cool it down to N3 one.
The thermal capacity of metal has & T2 dependence, thus L-N; reduces the
thermal capacity of the system enormously. We leak check the system at both
room tempetature and N; one. Since most of the thermal shrinkage occurs
in cooling down from 300 to 77 K, it is unlikely to develop a leak at He
temperature if it is Jeak free at N; temperature.

Once the cell is leak tested, we close the valve and leave it in vacuyum.
We then put on the vacyum chamber and teat it. After the test, a balloon
of hydrogen gas is put into the vacuum chamber as exchange gas for cooling
down. Hydrogen is used because of its low boiling point. Helium gas can not
be used because it will make it impossible to leak test later at N, temperature.

We cool the system down by filling the N; dewar. The vacuum between the
N3 dewar and the He one is filled with a balioon of N, as exchange ga8. Again
belium gas can not be used since it js very hard to be pumped out and it will

-y
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stay as gas at low temperature. To monitor the temperature in the cooling
down process, a cryo-controller {T.R.I research M-2000) is used to read the
temperature from & diode, which is glued at the bottom of the cell.

It will take about a day to cool down the whole system to Nj temperature.
Without exchange gas, it would take days. We pump out this exchange gas
when Nj; temperature is reached. Then we leak test the cell and the vacuum
chamber. After the test, we fill the vacuum chamber with a balloon of he-
lium for thermal exchange, and the system is ready to cool down to helium
temperature.

We then transfer liquid He. At the beginning, the system is so warm that
the liquid evaporates immediately, it can accumulate in the dewar. At thie
stage, we transfer slowly in order to use helium vapor to cool the sysiem
down. The temperature is again monitored by the diode. As the temperature
drops, we increases the transfer speed. The helium gas in the vacuum chamber
has to be pumped out at temperatures above 10 K, it would be difficult to
pump out later.

The helium gas used to fill up the cell is taken from two sources: from
the liquid helium main bath, or from a helium gas cylinder. The pressure of
the liquid helium bath is maintained at around 770 torr, slightly higher than
the atmospheric pressure to prevent air from leaking in. To reach a pressure
higher than 1 atm, we usually use a pressured helium gas cylinder (99.995%
purity). For both cases, we let the helium gas go through a liquid nitrogen
cold trap.

We often encounter the problem that the filling tube gets stuck after run-
ning the experiment for a few months. As the helium gas used went through a
nitrogen cold trap, the plug must have a melting temperature below 77 K. We
have found that a big perturbation, such as He transfer, or a slight increase
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of the top plate temperature (from 5 K to 7 K, for instance), helps to open
the plug. Thus the plug must be close to the top plate of the cell, and quite
soft, its melting temperature must be low. Checking the melting temperatures
above 4 K for all kinds of solids, hydrogen has the lowest, 14 K. We therefore
suspect that the plug is made of solid hydrogen, although we do not know
where it comes from.

After filling the cell, we regulate its top plate, and let the whole cell relax
to equilibrium. Since the diffusion time L?/x can be as long as many hours,
we normally shorten the relaxation time by making use of convection: heat
the bottom plate first, then let it relax freely. The pressure and the tem-
perature of the bottom plate are monitored by a chart recorder. When the
bottom plate temperature stabilizes, we measure the pressure of the cell and
the temperatures of both plates and calculate the density. The density has
to be measured at temperatures higher than the gu—li;quid coexistence one so
that there is only gas in the cell (or low enough so that there is only liquid).

The gas pressure in the cell is measured with an absolute pressure trans-
ducer (MKS corp.). For this cell, we have mainly used two transducers 227A
and 222B of ranges 1000 torr and 5000 torr respectively. The 227A one is tem-
perature regulated, the accuracy is 0.15% of the reading, and the temperature
coefficient for the zero is 0.08 torr/K. In our measurement of small pressures,
the sero is always corrected before messurement. The 222B one is labeled to
have an accuracy of 0.5% of the reading, temperature coefficient for the zero
0.5 torr/K. We have calibrated it against the helium gas-liquid coexistence
curve given by McCarty and find that it reads 3% less. This 3% has been
corrected in our measurement.

After the helium gas density is messured, we close both the control valve
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in the liquid helium, and the valve at room temperature. The density in the
cell is then fixed, and ready to opetate at a particular convection state.
2.2.3 Temperature regulations

To achieve good temperature stability, the top plate of the cell was built with a

thickness of 6 cm. A resistance of 35 0 (made out of manganin wire) is wrapped

around it and served as the heater for the regulation. Two thermistors are
embedded in the top plate. One is used for the temperature control feedback
system, while the other for the temperature measurement. The resistance from
the first thermistor is compared with a set resistance by a LR-110 resistance
bridge (Linear Research Co.) The output of this bridge is connected to a LR-
130 temperature controller. The block diagram is shown in fig. 7. Once a

Bridge

T
Coatroller

o ] Anderson Hard Disc
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temperature is set, the top plate reeponds within half a minute to a stability

of one mK. We were unable to get rid of a 2 mK amplitude, 2 hours period

oscillation.

The bottom heater of the cell, the driving force for the convection experi- Lock-in [ Dynamical
Signal Analyzer

ment, is made out of 75 §} of manganin wires, which is uniformly laid on the Current

Source

outer eurface of the bottom plate and glued with stycast for good thermal

contact. The power to the heater is provided by a current source (Keithley
220). It can provide a maximum current of 100 mA, with accuracy 0.01 mA.
For a current larger than 100 mA, a Kepco power supply is used. Four lesds
are connected to the heater, two for the current and two for the voltage. Since

Figure 7. The block diagram. It illustrates the basic logic for temperature
regulation, measurement and data acquisition.

the temperature coefficient of manganin is very small, the resistance reading
is essentially the same from room temperature to 4 K.

The top plate temperature is normally regulated around 5 K. It can not be
too low for two reasons: first, for most of the studies, we want the convection

cell to satisfy the Boussinesq approximation, i.e, same fluid properties from
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top to bottom of the cell. Therefore the top plate has to be regulated at high
enough temperature in order to be far away from the gas liquid coexistence
line. Secondly, the top plate temperature has to be high enough to keep the
total heat flux larger than the one applied at the bottom of the cell, in order
for the regulation to work.

On the other hand, the top plate temperature can not be too high: In
this experiment, it is because of the the small diffusivities and large expansion
coefficient at low temperature, we can achieve a high Ra. Also, the liquid
helium evaporation increases at higher top plate temperature.

The two thermistors used to measure the top and bottom plate tempera-
tures are Germanium resistance sensors (Lake Shore 2000T). They have been
calibrated by the company within 1 mK. When the cell is at equilibrium, we
compare the two thermistor readings (at the same time the pressure is mea-
sured to determine the density). The top plate regulated, the bottom plate
should relax to the same temperature as the top one in the ideal condition.
Experimentally, an off-set A of —0.6 £ 1.7 mK has been measured. The lower
bound of the temperature difference A is limited by this offset. We always
work with A larger than 50 mK to have an error smaller than 4%. There is
also an upper limit for A. To avoid non-Boussinesq effects, A can not be too
large compared to the average temperature (5 K). Also too large a A will bring
up the average temperature so that there is no gain in Ra. Our values of A
are always between 50 mK and 700 mK.

Let us give some estimates on the heating power. As we shall discuss later,

Nu is approximately proportional to Ra'’3, s0 the actual heat flux @
Q~ x% x Ra'/3 . (2.5)

Since the thermal conductivity x is independent of the gas density in ideal gas

approximation,

Q x A3 (2.6)

Experimentally, to cover a temperature range between 60-600 mK, heating
power of 0.2 - 5 mW are needed for a density 5 x 10°% gfem® (2x 10° < Ra <
1 x 10%), 5 -120 mW for a density 9 x 10~ g/cm® (3 x 10° < Ra < 4 x 10'9),
The maximum power applied for this cell is about 300 mW (see table 3).

Once the density in the cell is fixed, a unique convection state can be
reached by regulating the top plate and applying a DC heating power to the
bottom one. It will take  few minutes for the cell to stabilize. The larger
the Nu, the shorter time it takes. The gas density and the top and bottom
plate temperatures lead to unique physical constants v, x and a, so they fully
determine Ra an.d. Pr, which characterize the convection state.

2.3 Measurement

Most of the messurements are temperature ones: for the top and bottom plates
and local measures in the flow. The basic idea is to measure the resistance
of a temperature dependant semiconductor. This resistance is measured with
a bridge designed by Anderson(1973). In turbulence experiments, the signal
to moise ratio is essential. However the voltage applied across the detector.
thus the signal amplitude is limited by self heating at low temperature. In an
ordinary bridge, the thermal noise of reference resistors at room temperature
is the major source of noise. In the Anderson bridge, most of the components
are low noise transformers, the only reference resistor R, is in a feedback loop,
which eliminates the thermal noise from R, (fig. 8). The noise comes mainly
from the thermal noise of the thermometer at helium temperature. Thus
bridge provides a factor of 100 improvement in signal to noise ratio, compared
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to the standard room temperature bridges. Experimentally, our noise level ;s
about 10-°V//Hz, close to the estimate kTR, provided T =4 K and R =
1 Kf1. The maximum signal is around 10-%v//H: provided by an excitation
current of 64 A. Thus the signal to noise ratio in 4 decades in amplitude, or 8§
decades in power.

The bridge design (fig. 8) consista essentially of a double ac potentiometer
in which the current through the reference resistor R, (10 KN used) is automat-
ically maintained at a constant value. The voltage across the thermometer Ry
is ratio transformed and compared with the voltage across R,. The voltage
difference is amplified by a lock-in amplifier. The mean thermometer resis-
tance is read directly from the null setting of the ratio transformer T, and
the temperature fluctuations are given by the output of the Lock-in amplifier,
set in the fat-band-paw filter mode. We use two bridge systems to messure
two temperature sensora simultaneoualy. The two systems are almost identical
except channel 1 uses EGLG 1244 lock-in amplifier and Gertsch 1004R ratio
transformer, and channel 2 EGLG 5207 and Gertsch RT-18R. Both the top
and bottom plate temperatures are measured by the firat one.

To find the maximum excitation current without self-heating, we have mea-
sured the bolometer resistance with various excitation current in the fluid at
rest. For currents up to 6 #A we do not observe any self heating. With this
current, the power dissipated by the bolometer is about 4 x 10-2 watts. The
excitation voltage to the bridge is provided by the same Lock-in amplifier
which does the measurement. Since the turbulent signals can be as high as
several hundred Hz, the excitation source frequency has to be several KHz or
higher. However, too high a frequency may cause problems such as capacitance
effects. So we choose it to be around 3 KHz. The specific frequency is chosen
to avoid the mixing of the sxcitation voltage frequency and the power supply
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line frequency (60 Hz) and have the cleanest background in the measurement
frequency range .

The thermistors for the top and bottoni plate temperature messurement
have typical resistance of about 2 Kl at 4 K, sensitivity of about 1 mK/f2.
The are calibrated by the company, a fitting curve is given.

The first thing to measure in the experiment is the heat transport efficiency.
For pure conduction, the heat flux Q is the thermal conductivity y times
the temperature gradient A/L. Once convection atarts, the heat iransport
becomes more efficient. The Nusselt number Ny is defined as the actual heat
transported normalized by that which would be conducted by the gas, i, e.

| Mus iai/E : (2.7)
The temperature drop A is measured from top and bottom plates. The heat
we applied to the bottom plate of the cell is calculated from the current source
reading and the resistance. To get the actual heat transported by the gas, one
needs to subtract the part conducted by the side wall. We have measured the

heat flow as a function of the temperature difference A for an empty cell:
Quan =23 x107°A | (2.8)

here Quyi is in the unit of mW and A in mK. @ went can also be estimated as
1.9%107°A from the stainless steel thermal conductivity st 5§ K, 3 mWem =K1,
and the cell geometry: height and diameter 8.7 cm, wall thickness about 2 mm.
Let us compare with the heat conducted by the helium gas. The helium gas
conduction is about 0.1 mWem™"K~!, the cross section is xD?/4. Therefore
the gas conduction is 6.8 x 10~4A. The side wall conduction is important at
low Nu regime, becomes less important as Nu increases with Ra. In the Nu
calculation, the heat conducted by the side wall has been subtracted from the

total heaiing power.

Bolometers of 0.2 mm cubes are used to measure the local temperature
fluctuations, their sensitivity around 4 K is about 2 mK/fQ. They are originally
made for measuring the infrared background radiation {(Mather 1982; Lange
et al. 1983). These bolometers are made from Arsenic doped Silicon. The
crystals are cut and contact treated at Goddard Space Flight Center. Brass
wire of 50 um diameter are attached to the two gold coated surfaces of the
200 pm cubes by Mr. Jesewski in Prof. Hildebrand’s group (Enrico Fermi
Institute, the University of Chicago).

To fix a bolometer inside the cell, we suspend two parallel insulator coated
manganin wires (diameter 125um, about 1 cm apa | across the cell, and
attach a small spring to each wire to maintain the ten: ion at all temperatures
(fig. 9 (a)). Two copper coated superconducting wire: (diameter 114 um) are
wrapped and glued to the manganin wires with stycast. and bent to be parallel
to the manganin wires. They serve as support for a bolometer and its brass
leads. The other ends of the superconducting wires go through the stycast
seal and are then connected to a classical 4 wires connection, which goes up
to room temperature (manganin wires are used). Since the electric leads are
very fragile, it is not easy to handle. Later we improve the technique by fixing
a bolometer on a frame {about ! cm ) made of the same kind of manganin
wire, and fix the frame to the two parallel wires in the cell (fig. 9 (b)). When
changing a bolometer position, we usually just dismount the frame. We did
not see any visible motion of the bolometer when we blow air.

The bolometers are calibrated by comparing them to the thermistors of the
top and the bottom plates. Usually about 9 pointa are taken for a temperature
tange between 4.2 K and 6 K. Then a 3rd order polynomial is used to fit the
R(T) relation for each bolometer. The fitting precision is better than 1 mK.
From the fit, the temperature T and the sensitivity d'/dR can be computed.



30
(a)
/ _ Sy gioe
/\E/ Indinm soldor
-~
R} zan
I o = — Bolometee (200 jn)
! = ™ Brase wirs (30 )
! \
\ / Mugnia wire ( 125 jm)
L i
Superconducting wirs (114 pum) Cell Wall
(b)
Scider
’ /. Stymage

Indican solder

— o ] - -
} Beometr G0 i)
| tom Brasy wire (50 jum)

— l ———— /"' -

NV
\ / Mangarin wire (125 pm)
N}

Superconducting wire (114 )

Figure 9. The bolometer mount. (a) two parallel wires across the cell, (b)
The bolometer on a frame.

31

The resistance of the bolometer at 5 K is about 1 K (around 10 Q at room
temperature), the typical sensitivity can be as large as 3 mK/Q at 6 K, and
as low as 1 mK/? at 4 K. The calibration curve is repeatable after thermal
cycles, but we normally calibrate a few points each time.

2.4 Data acquisition

The output voltage from the bridge is proportional to the resistance variations.
The sensitivity of the lock-in amplifier is chosen such that the largest signal
amplitude is close to the full range: -10 V to 10 V. The ratio transformer is
adjusted such that the center of the fluctuations is around zero. The output
voltage is digitised by & HP 3562A Dynamical Signal Analyzer (DSA) (fig. 7).
The DSA can digilise an analog data and store it into a hard disc, take Fourier
transform, probability distribution function (PDF) and other statistical anal-
yois from either on-line analog data or atored digitized data.

To include all the information in a signal, a sampling frequency has to be
at least a factor of 2 of the highest frequency present in the signal. The DSA
has set the factor to be 2.56 (HP 3562A Operating Manual & Programming
Manual). We first sample a turbulence signal at a very high frequency and
take its power spectrum. From this power spectrum, we find out the maximum
frequency for which the signal to noise ratio is above one. To have all the
information, a frequency slightly higher than the maximum one is entered to
the DSA and it automatically samples at 2.56 times it. Experimentally, we
often take another ‘rneuument at 1/10 the first frequency span to have good
statistics and resolutions for low frequencies. The DSA has a anti-aliasing
pre-filter to filter out any signal higher than the frequency we select. So even
though there are stili signals beyond the frequency span we choose, the sampled
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data will not be distorted. The DSA can be set from 10.2 mHz to 100 KHz.
Frequency spans in this mode are predefined; if a value other than one of these
in entered for the span, the analyzer selects the next higher available value.
The resolution of the DSA is 2'%, that means the smallest signal it resolves
is 1/2'® of the full range (with one bit for the sign). Thus the maximum
dynamical range is log,,(2'%), i. e. 4.5 decades in amplitude, or 9 decades in
power spectrum. Coincidentally, this range is very close to the signal (with
excitation current 6 pA) to thermal noise ratio (noise of the bolometers).
The DSA has two channels, which can take data simultaneously. Before
digitizing, we have to decide the size of the data, and create a file {called
throughput file) in the hard disc. The file sizes vary from tens to hundreds of
records (here each record has 2048 points), depending on the sampling time
and frequency. When the DSA is digitizing, the hard disc is connected to it
to store data. The digitized data are arranged as ABABAB......, here A is
a record of 2048 data points of channel 1, and B is for channel 2. From a

digitized number Vi in disc, the original data V;, can be read out as
Vin = —4/3 % Viy * (range) [26028.55 . (2.9)

For most of the data taken, the range is set as 10 Volts to match the full range
of the lock-in amplifier output.

The digitized data is temporally stored in hard disc and tranferred to an
(HP 1/4-inch 16 track) cartridge tape, each of which contain about 60 Mbytes
of data. The tapes are operated by a HP9144A tape driver. The tapes are
rather convenient to write and read in HP system, but we had a hard time
transferring the files to other computers. A computer which has access to both
the general network and HP-1B cables (for instance Macintosh), may make the

transfer easier.

-
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The power spectrum measurement shows the signal in the frequency do-
main. It is computed by multiplying the FFT of the signal by its complex
conjugate. The FFT is done for every record of 2048 points, the final power
spectrum is the average of the transforms of all the records in the data file.
For FFT over a finite period of time, a proper window has to be introduced to
reduce the edge cffects. We have selected the Hanning window. The Hanning
window has the disadvantage of some amplitude inaccuracy(up to 1.5 db) and
the advantage of great frequency resolution.

A power spectrum given by the DSA has 800 frequency points. In a log-
log plot of a power spectrum, the gero frequency point is omitted. The DSA
output directly Pi«Af, where P; is the digitized power spectrum P(f) in units
V3/Hz. In principle, the normalization relation should be

)= [P = ras (2.10)
here (V?) is the mean of temperature square. Ho -ever because of the Han-
ning window, the sum should be corrected by a factor of 1.5. Experimentally,
the ratio between the left hand side and the right hand side is found to be:
1.54 4+ 0.08. Since the mean of a signal is arbitrary in our experiment, depend-
ing how we balance the bridge, the DC component of a power spectrum :s
non-intrinsic. Therefore, the power spectrum should be normalized by either
the variance o? = ((V — (V})?), or the above sum without the first point. Ex-
perimentally, the ratio between this two is 1.44 +0.07, and we just treat it as
an empirical constant. In all the relevant discussion later, the power spectrum
are normalized by the sum without the first point.

The cross spectrum is computed by multiplying the complex conjugate
of the linear spectrum of channel 1 by the linear spectrum of channel 2. It
shows the amplitude product of the two linear spectra and the phase difference
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between them. The coherence is just the amplitude of the cross spectrum
ncrmalized by the geometric average of the two power spectra. The coherence
is measured on a scale 0 to 1.

The histogram measurement shows how the amplitude of the input signal
is distributed between its minimum and maximum values, which are +12.6
Volts when the range is set as 10 Volt. Between the minimum and maximum
values, 256 bins have been divided. The histogram is just the number of data
points falling into each bin and its sum should be the total number of data
points. The probability distribution function (PDF), computed by normalizing
the histogram, is a statistical measure of the probability that a specific level

occured.
+a0 56
1 ==/ H(z)dz =Y H,Az | (2.11)

=1

where H; is the digitized PDF H(z) and Az is 2 x 12.6/256

2.3 Experiment for the aspect ratio 0.5 and 6.7 cell

Both cells are cylinders of diameter 20 cm. Because of the different lateral
size, a new dewar and thus a different set up was needed. The whole system,
including the convection celt and the dewar, has been built by International
Cryogenic Inc., Indianapolis, Indiana. Fig. 10is the experimental system used
for aspect ratio 6.7 and 0.5 cells. Compared with the previous one, it has very
similar cryogenic structures, temperature regulations, measurement and data
acquisition techniques. Thus we wil only give brief descriptions. However,
given its size, it is much harder to cool down and vacuum seal, thus I shall
discuss those aspects in more detail. The sketch of the whole set up is given

in fig. 11.

2.5.1 The convection system

The aspect ratio 0.5 and 6.7 cells use the same set up except for the side walls
of the cells. To be specific, let us discuss the first cell of aspect ratio 0.5, thus
of height 40 cm. Since Ra is proportional to the cube of the height of the cell
L,hrgeRaunbemchedwithalnge L. A maximum Ra of 1 x 10" can
be reached in this cell. A small aspect ratio cell consumes less liquid helium,
simply because the heat flux is proportional to the croas sectjon. However,
the side wall must have bigger influence on the bulk turbulence flow in a small
aspect ratio cell. Balancing the physics (i.e. the side wall effect) and the
economy (i.e. the liquid halium consumption), the aspect ratio has been set to
be 0.5, cell diameter 20 cm, beight 40 cm. The maximun, aput power is about
2 watts (the oormpo.nding liquid helium evaporation ra' - is about 4 liter/h.).
The side wall of the cell is made from stainless steel ¢ thickness about 1.5
mm. The top and bottom piates are made from OFHC copper. The top plate
has a thickness of 6 cm and the bottom one 2 cm. The top and bottom plates
are connected to the side wall with indium seal by 12 screws. I suggest to
doubile the number for future experiments to enforce the seal. The vacuum
chamber has & diameter of 23 ¢m and height 48 cm. The thermal impedance
between the cell top plate and the helium bath has the same structure as in
the previous system.

The bottom heater has a resistance of 127.8 (Minco heater), which ia
glued with GE-vanish to the outer surface of the cell bottom plate, The
heater is further pressed by a thin stainless plate to assure good contact. The
resistance of the heater is temperature independent. It is measured with four
leads. The power is provided by a Keithley 220 current source, ot by a Kepco
power supply. The voltage is measured with a Keithley 197 voltmeter. Let us

e
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{a) (b)

Figure 10. The photography of the experimental system for the aspect
ratio 6.7 and 0.5 cells. (a) shows the aspect ratio 6.7 cell, all the cryogenic and
electric connections. (b) shows the vacuum chamber (left) and the convection

cell.
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give some jdea about the heating power: for A value between 60 mK and 600
mK, 1 mW - 15 mW are neaded for a pressure of 1 torr; 30 mW - 460 mW are
needed for a pressure of 800 torr (see. table 5)

The top plate was regulated by a LR-130 resistance bridge and a LR-110
temperature controller. The heater for the top plate regulation is a piece of
manganin wire of & resistance 35 f1. Two germanium thermistor are embedded
in the top plate, one for reguiation, another for temperature measurement. A
diode glued to the bottom of the cell is read by a T-2000 cryo-controller (T.R.L
Research) for monitoring the temperature when warming up or cooling down.

The two theemistors (Lake Shore 2000T Germanium) for the top and bot-
tom plate temperature measurement are calibrated. The sensors for local
temperature measurements are the same bolometers as in the previous ex-
periment. The set-up'and procedures for temperature measurement and data
acquisition are the same.

The eloctric leads for the bolometers in the convection cell are fed through
a hole on the bottom plate of the cell. The hole is sealed with stycast. For
all the electric leads to come out the vacuum chamber, two thin stainless ateel
tube of diameter about 1 cm diameter are soldered to the top of the vacuum
chamber and extended to the top of the dewar. A bellows is connected to
each of the tube to absorb stress when cooling down or warming up. For a
large system, a slight mismatch of thermal expansion coefficient causes large
strese. In this system, the mismatch between the stainless steel and the G-10
supporting tubes have made cracks on the solder joints, until the bellows were
used. Two 48 bin connectors are used at the end of the tube for the wires to
come out at room temperature. One tube is sealed, another is connected to
the pump system to pump the vacuum chamber.

The helium gas is taken from either the liquid helium bath or from a pure
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helium gas cylinder. Before it enters the cell, the gas passes through a nitrogen
cold trap. The gas is filled into the cell through a tube of inner diameter 1.5
mm. The tube of coiled shape in the liquid helium bath is then wrapped around
the top plate of the cell to pre-cool the helium gas before it enters the cell.
The diameter of the filling tube is chosen such that the perturbation to the cel]
is small, but should be large enough to fill a 13 liter cell at low temperature
in a reasonable time, hours. We did not have the low temperature control
valve used in the previous experiment, in order to decrease the impedance.
Even though, filling is still a problem, especially when more and more “lce”
accumulated in the tube. For future experiments, | suggest a safety valve
being installed in the cell. The filling tube is closed and opened at the top of
the dewar. Aithough the cell is only closed at room temperature, no acoustic
oscillations are present. In fig. 11, the basic structures are sketched.

The same absolute pressure measurement transducers are used to mea-
sure the helium gas pressure (For low pressure in the aspect ratio 6.7 cell, a
transducer of 10 torr r age has been used to achieve better precision.)

The whole system .escribed above, the cell and the vacuum chamber, is
supported in a liquid ! lum dewar by three fibre-glass G-10 tubes of a diam.
eter 0.5 inches (fig. 11 . The dewar is a so called super-insulation dewar. The
advantage of such dewar is that no liquid nitrogen is needed. A rigid foam
fill the dewar neck to buffer the cold helium from the room temperature, The
aluminum cover of the dewar js tubber O-ring sealed. When the experiment
is not running, the liquid heliumn evaporation rate is about 5 liters per day.

The outer diameter of the dewar is about 55 cm and the overall height 140
cm. We design this dewar to contain 90 liters of L-He, in order for the systems
to work continuously for one day at the largest heating power(4 liter fhour).

To have such a large volume in a reasonable dimensions, the dewar has a small
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diameter for the neck and the bottom part, a larger diameter for the interior
reservoir. The neck has a diameter 27 cm, height 36 cm. The bottom part
has a diameter of 27 cm and height 56 cm, so there iz 2 2 cm gap, or 9 liters
between the vacuum chamber and the dewar. The interior reservoir has a
diameter of 46 cm and height 41 cm. The helium level is measured via the
resistance change of a superconducting wire. The wires starts from the top
of the vacuum chamber, it ia calibrated such that it reads the height of I-He
above the top plate of the vacuum chamber. One centimeter corresponds to

1.6 liter, according to the geometry of the cell.

2.5.2 Leak test and cool down

After the leak test at room temperature, we put the whole systemn into the
dewar and get ready to cool down to N; temperature. We fill the vacuum
chamber with a balloon of Hj for thermal exchange, then the dewar with about
70 liter of L-N;. The teruperature at the bottom of the cell is monitored with
the diode. After the 53 tem reaches equilibrium, we push L-N; out of the
dewar. It is important t» push out all the L-N; before further cooling down
to He temperature. Tl L-N; gets out via a tube, which extends down to
the bottom of the dewar at one end, with a cone structure at the other end
to match a G-10 tube from the top of the dewar. This tube is fixed to the
outside of the vacuum chamber (fig. 11).

The aystem has to be leak checked again at L-N, temperature. Leakage
is a common problem in low temperature experiment, because of the large
shrinkage when a system experiences a temperature drop from room temper-
ature to low temperature. A large system is more vulnerable to leak since the
shrinkage ia proportional to the system size. Most of Lhe leakage occur when
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a systemn is cooled down from room temperature to L-N; temperature. I it
survives at [-N, temperature, it ia likely to work at He temperature.

To check the sea] of vacuum chamber, we first use the leak detector to
pump out the N; gas, then fill the dewar with Helium gas and wait for the
leak detector’s response. If it is fine, we check the cell, by connecting the leak
detector and filling the vacuum chamber with helium gas. Some helium gas is
needed anybow for thermal exchange while cooling down to He temperature.
If unfortunately, there are leaks, we have to warm it up 4o room temperature,
flush and pump the system several times until the helium level is low enough
to be leak test again. In case the leak disappears at room temperature, we
connect the leak detector to the cell or vacuum chamber, immerse the whole
system into a L-N; open container {we used a garbage can) and wait for the
system to reach [-N; temperature. Then we gradually lower the L-N; level
and spread the helium gas at the same time. The leak should be near the L-N,
level when the detector begina to scream. We were always able to spot and fix
the leaks eventually.

If there is no leak at N, temperature, we cool the system down to He
temperature. The first transfer of L-He is much more tricky than daily transfer.
It is efficient to cool the system down by letting liquid helium or cold helium
gos to start from the bottom of the dewar. The tube which was used to push
L-N; out from the bottom, will be used to transfer helium. We insert a vacuum
tube along the G-10 tube, and connect it to another vacuum tube from a L-He
reservoir dewar. The L-He is transferred slowly in order to cool the system
down by cold helium gas first. The transfer rate is about 2 f13 of gaa /min (1
liter of liquid = 28 fti of gas). The temperature is monitored with the diode.
At about 10 K, we speed up the transfer, and starts to pump the vacuum
chamber. Once the vacuum chamber is pumped, the diode at the bottom of
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the cell is decoupled from the temperature of the dewar. We can not know
whether there is any L-He accumulating on the bottom of the dewar, until the
L-He level reaches the top of the vacuum chamber (there is about 10 liter of
space around and below the chamber). It was a long anxious waiting time.
We had good reason to be anxious about: sometimes after more than 1 hour
elapsed and 30 liters of L-He used, the L-He level meter still gives null reading.
If I bad to start over again, I would measure the temperature at the bottom
of the dewar or measure the L-He level from there. I-N; left in the dewar is
one of the major problem at the final stage of accumulating L-He. Normally,
the system should be in L-He temperature in 4-5 hours,

For daily L-He transfer, the tube should not extends all the way to the
bottom as for the initial one. Thus, we replace the long G-10 tube by a
shorter one which is slirhtly above the L-He level,

2.5.3 The aspect ratio 6.7 cell

Latge He consumption prevents us from having both large aspect ratio and
high Ra. For instance, if the cell diameter is fixed at 20 cm, an aspect ratio 0.5
cell has a height 40 cm, reach the highest Ra of 10'®; an aspect ratio 6.7 cell
has a height of 3 cm, reach only Ra = 10!, But jf we want both the highest
Ra = 10'*, and the aspect ratio 6.7, then the diameter has to be 260 cm, 13
times larger than the previous 20 cm. Consequentiy, the L-He consumption
has to be 169 times more, which we cerfainly can not afford.

In order to use the experimental system of the aspect ratio 0.5 cell, the
diameter of the cell is chosen to be 20 cm. To reach a Ra around 10", a
reasonable high value, the cell height L is chosen to be 3 cm. For this aspect
ratio 6.7 ceil, only the 3 cm height side wall is new, the rest of the experimental
system, like the top and bottom plates of the cell, the vacuum chamber, the
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dewar, the temperature regulations and the electric inections etc. are the
same. Since the vacuum chamber is made for the cell of 40 cm height, a 37
cm high column of space is left unoccupied. The top plate has a thickness of
10 em, which is a large thermal mass for this 3 cm high cell. Given ali that,
the temperature regulation achieved is the best of the three.



CHAPTER 3

MAIN EXPERIMENTAL RESULTS

The experimental results are organized chronologically.

3.1 The aspect ratio 1.0 cell

To study thermal turbulence, we have measured the heat transfer efficiency
(characterized by Nu) and local temperature fluctuations signals. Nu is de-
duced from the measurements of heat flux, the temperature of the top and
bottom plate. Local temperature signals are measured with bolometers of 200
p#m size at various points in the cell. A bolometer, placed about a fraction of
a millimeter above the bottom plate, scans across the thermal boundary layer
when Ra is changed. Bolometers at the center of the cell measure the tur-
bulent temperature fluctuations without direct influence from the large scale
flow. Pairs of bolometers at midheight of the cell and various radial positions,
give information on the large scale velocity and the effect of lateral boundaries.

The cell is of diameter 8.7 cm, Ra spans a range from 10° to 10'? (we limit
our discuasion on scaling relationa for Ha up to 10"! where the Boussinesq ap-
proximation holds). The local temperature measurement indicates that there
is a turbulence transition at Ra = 4 x 107, from soft turbulence below to hard
turbulence above. The PDF for the temperature fluctuations at the center is
exponential for hard turbulence, while Gaussian for soft turbulence. Its rms
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value scales with Ra differently in the two regimes. All the side wall bolome-
ters show this change as well. The large scale velocity measured by the side
bolometers changes differently in soft and hard turbulence. The signals de-
tected by the side bolometers indicate that in soft turbulence, warmer fiuid
ascends and colder fluid descends through connected channels, while in hard
turbulence, there are only individual warm and cold particles, called plumes.
The frequency power spectrum shows no inertial range in soft turbulence, and
an extending power law with an exponential cut-off for hard turbulence, up
to Ra »s 10", Nu in hard turbulence scales with Ra with an exponent 0.285,
significantly different from the classical theory.

3.1.1 Heat transport and thermal boundary layers

When dealing with electrical conduction, the first thing to measure is the
current [ as a function of voltage V. From its J — V curve, one is able to
deduce some information about the material, In studying thermal turbulence,
the first physical quantity to study is the heat transport through the cell. If
the temperature drop A is an analog of the voltage drop across a resistor, the
heat transport is equivalent to the electric current. We treat the convection
cell as a black box, and from the relatjon between the heat transport and the
tempera.are drop A, we get some information about the flow. As defined in
equation 2.7, Nu is the heat actually transported by the gas, normalized by the
heat that would be conducted. It describes the efficiency of the turbulent heat
transport. The total heating power is calculated from the heater resistance
and the voltage applied acroes it. To get the actual heat transported by the
gas, one needs to subtract the part conducted by the side wall (eq. 2.8)
Figure 12 shows the experimental Nu as a function of Ra. The correspond-
ing data are listed in table 3. For a cell of given aspect ratio, any physical
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Figure 12. Nu vs. Ra for the aspect ratio 1.0 cell.



47

quantity will only be a function of Ra and Pr. Pr in the whole range of Ra
is plotted in fig. 13. It does not change until Ra = 10°. At high Ra, as shown
in fig. 13, different values of Pr are possible, depending on densities. Since
they do not introduce discontinuities in the Nu ( fig. 12), its Pr dependence
must be weak.

For Ra below 5 x 10°, Nu is equal to 1. According to the definition, the
heat is purely transported by conduction. The theoretical value for the onset
Rais 1700 {Chandrasekhar 1961). However, in small aspect ratio cells, the side
wall plays an important roll in the onset value, as well as the Nu - Ra relation
just above the onset (Behringer & Ahlers 1977; Charlson & Sani 1975).

Above Ra = 5 x 10P, Nu becomes larger than 1. This indicates that
the fluid motion develops and then enhances the heat transport. To amplify
possible changes, Nu/Ra®™®® iz plotted against Ra in fig. 14. From this
plot, it is clear that there are changes for Ra = 1.2 x 10%,1.2 x 10%,6.0 x
10% and 4 x 107. These transitions will be understood better with local flow
information. The change at Ra = 1.2 x 10° agrees with other observations (
Malkus 1954; Goldstein & Chu 1969; Krishnamurti 1973; Threlfalt 1974), but
we observed none below thia value while many more have been reported. As
one can see from this plot, there is no single power law for Ra < 4 x 107. The
previous reported (Wu et al. 1988) scaling relation of Nu — 1 ~ Ra®™ for
soft turbulence (5 x 10° < Ra < 4 x 107) is only an approximation.

For Ra > 3 x 107, Nu follows a simple power law with Ra:
Nu = 0.22 x Ra®75t0004 (3.1)

This power law extends to the largest Ra reached in this ceil. A simple scaling
relation between Nu and Ra indicates that the flow is in a self-similar state

for Ra > 4 x 10". In other words, the flow structures are invariant, only the
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time scale and length scale of the flow motion change. By the flow structure,
we mean the large scale structures, such as the thermal boundary layers, the
side wall regions etc. The self-similarity of the large scale flow structure does
not prevent the small scales from being different, since they do not influence
the heat transport difect.ly.

In the bulk of the flow, the heat is transported by convection, which is much
more efficient than conduction. However there are two well defined boundary
layers next to the top and bottom plates, where the velocity is small and the
heat is mainly transported by conduction. Thus the bulk region is a thermal
short circuit, and all the temperature drop A is across the two layers, A/2 for
each one (Tritton 1988). Let us call their thickness A. Since the heat flux is

transported across the two boundary layers by conduction,

L
Nu= 5‘; . (32)

Nu is equal to 1 for Ra < 10*, and 300 for Ra = 10". Therefore A decreases
to a minimum value 0.15 mm.

The boundary layer profile has been measured directly (Gross et al. 1988),
but not in our experiment. Instead, a bolometer has been positioned a fraction
of a millimeter above the bottom plate. It scans the boundary layer as A
changes with Ra.

Figure 15 shows the fluctuating signals, the PDF and power spectra inside
(Ra = 6 x 10°, Ny = 66) and outside (Ra = 4 x 10'°, Nu = 220) the
boundary layers respectively. Inside the boundary layer, the hot temperature
fluctuations come from the fluid closer to the bottom plate, which is less active
than the fluid from above. Therefore the PDF is sharply cut in the hot side and
extended in the cold side. Qutside the boundary layer, the colder fluctuations

are due to thermals frcm the remote top plate and the hotter ones are from
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the nearby bottom plate. Therefore the PDF outside t e boundary l;yer has
a more extended distribution to the hotter side. From the evolution of the
PDF, we have learnt that the bolometer crosses the boundary layer when
Ra =4 x 10°, Nu = 120 and the corresponding A is 0.4 mm (L/2Nu). Thus
the height h of the bolometer above the plate must be 0.4 mm.

We have measured the rms temperature fluctuations 6, with the bottom
bolometer. Figure 16 (a) shows 8,/A as a function of Ra. It increases with
Ra for small Ra, with a discontinuity at Ra = 4 x 10”. Reaching its maximumn
at Ra = 4 x 10°, it then begins to decrease. The change at Ra = 4 x 10°
must reflect the bolometer crossing the boundary layer: the bolometer feels
bigger temperature fluctuations as it moves out of the boundary layer since
the outer part of the boundary layer is more active than the inner part; once
out of the boundary layer, it detects the temperature fluctuations of the bulk
flow, which decreases as Ha increases. The kink at Ra = 4 x 107 responds to
a major change of the flow structures: the soft - hard turbulence transition.

The relative depth of the bolometer in the boundary layer is &/ A = 2A NufL.
Since h and L are fixed, we can derive the boundary layer profile indirectly
by plotting 2(Tiee — (Ti))/A a3 a function of Nu (fig. 16 (b)), here (T3} is
the average bolometer temperature and T, is the bottom plate tempera-
ture. Qualitatively, 2(Tete — (T3))/A increases linearly with Nu first, then
reaches 100% asymptotically as the bolometer crosses the boundary layer into
the isothermal outer region. The linear regime ends at Nu ~ 200, which leads
to h = A = 0.2 mm. The discrepancy between the values of A deduced from
the rms (0.4 mm) and this measurement (0.2 mm), may be due to the finite

size of the bolometer (0.2 mm).
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3.1.2 From the onset of convection to turbulence

Studying Nu and the thermal boundary layers, we have learnt the basic struc-
tures of the convaction flow. To understand the fiow motion in detail, we
bave to study the local temperature signals measured by bolometers at var-
ious points of the cell. Local temperature measurements show that the flow
motion changes from conduction to convection, then bifurcates to a limit cy-
cle which leads to chaotic states, and further to turbulence. We shall discuss
here the flow motion before it becomes turbulent. This is the range up to
Ra =5 x 105,

For Ra < 5 x 10°, Nu is essentially 1. There is no fluid motion at all, For
Ra > 5 x 10°, fluid motion appears and begins to enhance the heat transport,
Nu becomes lazger than one. However, no time dependent signal is measured,
indicating that the motion is laminar (time independent).

At Ra = 1.2 x 105, the first time dependent signals appear in the form of
periodic oscillations (fig. 17, (a)). The change at Ra = 1.2x10° in the Nu-Ra
relation (fig. 14) reflects the appearance of time dependent motions. This
oscillatory motion was predicted by Busse {1978) as the oscillatory instability
for low Pr fluids (Pr of helium gas at this pressure is 0.7). As the oscillatory
motion is very pure, the spatial variation modes must be inhibited in this
aspect ratio 1.0 cell.

The flow motion becomes chaotic (fig. 17, (d)) soon after the onset of
the oscillatory instability. There are three unjversal routes to chaos (Eckmann
1982): intermittency, period doubling and quasi-periodicity. The first two have
been observed in this cell, and are shown in fig. 17, (b} and (c) respectively.
Unlike experiments designed to study the transition to chaos (sece, Glazier

& Libchaber 1988), there is no control on the way the flow motion becomes
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chaotic in this experiment. We only show their presence on the way flow
develops to turbulence.

Despite the bifurcation in the time domain, the signals from the center
and the bottom bolometers are strongly correlated. This is shown by their
coherence in fig. 18, (a): it is 1 at the fundamental frequency and major
barmonics, slightly less than 1 for higher harmonica.

For chaotic signals at Ra = 1.5 x 10°, the power spectrum is continuous
(fig. 19, b), even though the oscillatory frequency is still present with its
harmonics. A continuous power spectrum indicates that the flow motion has
no temporal correlation and is fully chactic. However, spatial correlation still
exists, the coherence between the center and the bottom bolometers is ane at
low frequencies (fig. 18, (b)).

As Ra increases, the power spectra extend to higher frequencies (fig. 19
(c) and above). They show already some of the characteristics of turbulence:
flat low frequencies followed by a cut-off tail. The difference with turbulence
appears in the coherence function, which keepa a large value. As Ra increases,
the frequency structure of the coherence fuaction evolves (fig. 18, (c) and
above), and its maximum value decrease. It is difficult to understand the
changes in the structures, but this scenario is always repeatable. Typical time
series of both the center and bottom bolometers are presented in fig. 20, (b})-
(d). In fig. 21, we plot the maximum value of the coherence as a function of
Ra. At Ra = 5.0 x 10%, it is significantly less than 1, most of the long range
spatial correlations are lost. Thus a turbulent atate, a state without temporal
and spatial coherence, is present.

In the large Ra range which we will cover, the chaotic state is present in
only a amall window 1.5 x 10® < Ra < 5 x 10%, and the cecillatory state even
a smaller one 1.2 x 10° < Ha < 1.5 x 10
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Figure 20. The time series, from chaos to turbulence. The center and the flow becomes turbulent.

bottom time series for (a) Ra = 1.2 x 10°, (b} 1.6 x 10°, (c) 3.2 x 10° and (d)

4.0 x 10°. In each pair, the upper one is for the center bolometer.
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To understand the changes of the spatial coherence and the transition
to turbulence, let us study the temperature signals measured by bolometers
near the side wall. The bolometers have been measured to be in the cold
descending flow. Figure 22 (a) and (b) are the side bolometers signals at
Ra =2x10® and Ra = 5.7 x 10%, both show hot bursta. Imagine that the cold
descending flow forma a connected channel, as observed by Chu & Goldstein
(1973) and modeled by Lorenz (1963). As the channel becomes unstable, the
bolometers inside move out and become exposed to the warmer central region
from time to time. These short time exposures causes the hotter bursts, which
we suspect, are responsible for the loss of spatial coherence. Figure 23 (b) plots
the difference of the average temperature {normalized by A) of two bolometers,
placed at the two opposite sides of the cell at midheight (refer to fig. 43 (a)).
As Ha reaches 2 x 10°, it increases up to 30%. This very large horizontal
gradient is a signature of connected hot and cold channels. The temperature
difference decreases as Ra further increases.

The picture we propose is: For Ra < 2 x 10°, the flow motion builds up,
the horizontal temperature difference increases with Ra. As Ra gets larger
than 2 x 10°, more complex flow motions (turbulence motion) develop, which

reduce both the temperature difference and the spatial coherence.

3.1.3 Soft and Hard turbulence, the transition

The flow is in a turbulent state when there is no more long range spatial
and temporal coherence. It can then only be characterized by statistical and
average measures. In this section we discuss the difference between soft and
hard turbulence, in the aspecta of Nu, the large acale flow velocity, the PDF,
and the coherence between center and bottom signals.

Figure 22 (b) and (d) give a clear image of the difference between the two
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Figure 22. Time series from the side wall bolometer. [t is 1.0 cm away from

the side, for (a) Ra = 2.0 x 10°, (b) 5.7 x 10%, (c) 5.5 x 10° and (d) 5.0 x 10'°.
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states. For Ra = 5.7 x 10%, soft turbulence, the bolometer placed on the side
sees hot fluctuations on a column of cold descending fluid; for Ra = 5 x Lo,
hard turbulence, there is no connected cold flow anymore, but cold thermal
plumes advected from the top boundary layer. The dramatic change in the
signal at Ra = 4 x 107 indicates a major transition in the turbulence flow.

The global measure of the turbulence states, Nu, bas already been di=-
cussed in section (3.1.1). According to fig. 14, there is one regime for Ra >
4 x 107, where Nu scales with Ra, with an exponent 0.285; the other one for
5 x 10° < Ra < 4 x 107, where there is no simple scaling relation.

The mean velocity of the large scale flow is measured via the correlation of
two adjacent bolometers. The velocity i normalized by a velocity scale /L
(table 4), and plotted against Ra in fig. 24 (a). Notice that this normalized
velocity V L/« is simply RePr (Pr = 1). For Ha < 6 x 10°, the normalized
velocity increases sharply with Ra. It then slows down for 6 x 10* < Ra <
4x10". For Ra > 4 x 107, the velocity simply scales with Ra, with an exponent
0.49.

Turbulence, can be characterized by various statistical quantities. Figure
23 (a) shows the rms value of the temperature signals measured at middle
height 1.0 cm away from the wall. A turbulent flow motion has two competing
effects on temperature fluctuations: first, it creates the fluctuations; on the
other hand, it enhances mixing, thus reducing the temperature differences.
Intuitively, the large scale motion is more efficient in creating fAuctuations
and the smail scale ones are more efficient in mixing. For Ra < 6 x 10°, the
temperature fluctuations increase with Ra, this can be understood as the large
scale turbulent motion is building up, as observed in the velocity measurement.
For Ra > 6 x 10°, the rms value decreases with Ra, lurbulent mixing is

becoming dominant. The change of slope at Ra = 4 x 107 indicates a change
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of turbulence structure. As already shown in fig.16 (a), the bolometer inside
the boundary layer detects a change at Ra = 4 x 107 as well.

Now let us look at the probability distribution function (PDF) which in-
clude the information of all moments. As the center region of the cell is more
homogeneous and symmetric than other parts, we shall discuss the PDF for
the temperature fluctuations there. Figure 25 shows six PDFs in the range
2 x10° < Ra < 2 x 10". The X-coordinate presenta the temperature normal-
ized by the rma value of esch PDF , in linear scale, and the Y-coordinate the
logarithm of the probability. For small Ra, the state has cnly a few modes,
the PDF is not universal, not even symmetric (fig. 25, (a) As Ra increases,
it becomes symmetric and Gaussian-like (fig- 25, (b)-(d)). The PDF becomes
exponentiak-like (fig. 25, (e) and (f)) when Ra reaches 10° To visualize this
change more clearly, the same PDF are plotted in fig. 26 -with the square of
the normalized temperature as the X-coordinate, the Y-coordinate unchanged.
In this plot, a Gaussian distribution would appear as straight lines.

Contrary to Ra < 107, the PDF for Ra > 107 are invariant and exponential,
a8 shown in fig. 27.

A Gaussian distribution can be regarded as the normal one for uncorrelated
random motions; The exponential distribution for Ra > 4 x 107 indicates that
there are strong correlations among those random motions. The invariance of
the PDF for Ra > 107 implies that these correlations are unchanged.

The transition from chaos to turbulence js characterized by the sharp drop
of spatial coherence, now let us look at the coherence between Lhe center
and the bottom bolometers in the turbulence tegime. Figure 28 shows the
coherence function for six Ra values between 5.2 x 10° and 3.0 x 10'°. The
coherence continues to decrease for Ra > 5 x 10%, and to zero at Ra = 107

However, for Ra > 10%, a peak in the coherence appears. The peak frequency

F
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Figure 25. Soft turbulence, log(H(T)) vs. T. The center PDF for (a)

Figure 26. Soft turbulence, log{ H(T')) vs. £+T*. The same PDF as in the

Ra = 2.9 x 10%, (b) 4.2 x 10%, (c) 1.4 x 10%, (d) 3.2 x 10%, (¢) 8.1 x 10° and (f) previous figure. The X-coordinate is the square of the normalized temperature,

1.5 x 107. The X-coordinate is the temperature normalized by the rms value of with the sign of the linear temperature.

each PDF, in linear scale, the Y-coordinate is the logarithm of the probability.
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Figure 27. Hard turbulence, log(H(T)) vs. T. The center PDF for (a)
Ra = 1.5 x 107, (b) 3.6 x 107, (c) 2.7 x 10°, (d) 3.2 x 10°, {e) 4.2 x 10 and
(f) 5.4 x 10". The X-coordinate is the linear temperature, normalized by the
rms, the Y-coordinate is the logarithm of the probability,
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is always at about 0.2 £ 0.1 Hz. Let us call it f, (in some of our previous
papers, wy, is used, which is 2x f,}. f, will be shown later to be related to the
size of the cell. In fig. 29, the power spectra of the center (a) and bottom (b)
signals and their coherence (c) for Ra = 1.7 x 10” are presented, they show
clearly a resonance peak at f,. The re-appearance of coherence is another
signature of a new turbulence state in Ra > 10,

A final distinction between the two turbulent states ia that for Ra < 10%,
the power spectra show no power law dependance with frequency; whereas
abuve, a power law is present, starting at f, as shown in fig. 29 (a).

In conclusion, the time signal from the wall region shows a dramatic tur-
bulence transition around Ra = 4 x 107. Nu, the large scale velocity and the
rms fluctuations change behavior at this Ra. For Ra > 4 x 107, they all have
simple scaling relations with Ra; the temperature fluctuations at the center of
the cell have an exponential disiribution; a spatial coherence peak appears at
a low frequency f,; a power law in the power spectrum of the center bolometer
signal extends from f,. This self-similar turbulence state for Ra > 4 x 107 is

named hard turbulence :he state below it soft turbulence (Heslot et al. 1987).

3.1.4 Soft turbuler =

Soft turbulence, ranges from Ra = 5 x 10® to 4 x 107, is characterized by
complex large scale structures, and lack of energy cascade. We do not have
a good understanding of this state. The behavior of soft turbulence and the
soft-hard turbulence transition probably depend on the cell geometry.

Soft turbulence can be even divided into two substates in this cell, below
and above Ra = 6 x 10%. For 5 x 10° < Ra < 6 x 10%, Nu (fig. 12 and fig.
14), velocity Vi/x (fig.24 (a)) and the normalized rms temperature fluctua-
tions 8, /A (fig. 23 (a)) increase sharply with Ra; the horizontal temperature
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gradient (T, — T)/A (fig. 23 (b)) decreases from a Iarge value; The coherence
between the center and the bottom bolometer (fig. 28, (a) & (b)) is amall
but finite; the side wal] bolometer in the descending flow shows hot spikes on

& random background (fig. 22 b). Thisis & transient range from chaoe o
turbulence,

and small scale ones begin to develop. This explains that for increasing Ra
in this range, Vi/x stops increasing (fig.24 (a)), ©:1/4 start decreasing (fig.
23 (a}). The two level switching in the time signal of the side wall (Fig. 22

detected by the bolometer. (T3~T3)/A increases slowly from zero (fig. 23 (b)).
The complete loss of 8 atial coherence (fig.28, (<) & (d)) shows the complexity
of the spatial structures,

Now let us look at measurements from the more Symmetric central region
of the cell. The time signals at Ra = 4.2 x 10° and 4.6 x 10® have 50 qualitative
difference (fig. 30 (a), (b}, () & {f)). They fluctuate constaatly without any
intermittence and characteristics. The PDFs are shown (fig. 25 and fig. 26)
to be Gaussian, which indicate that turbulent flow structures are essentially
independent of each other. Sjx Power spectra for 2.9 x 10° < Ra < 5.2 x 107
bave been shown in fig. 31. Al the power spectra in soft turbulence have
a flat low frequency part with an exponential-like high frequency cut-off taj].
The lack of a power law indicates that there is no energy cascade from large to
small scales. The power spectra for different Ra cap be superposed together
with only translational transformations in log-log plot (fig. 32 (8)} Thus the
cut-off tail is invariant and can be described by one characteristic frequency
Ias

PN =gfIh) . (3.3)

T4
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Figure 30. The center time series for 4 x 10 < Ra < 4 x 10 (a)
Ra = 4.2 x 10, (b) 4.6 x 10%, (c) 2.7 x 10* and (d) 42 x 10™. (e), (D),
{g) and (h) are the corresponding plots on a shorter time span.
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fr, Ra dependent, determines the relative frequency zhift in superposing the
power spectra. The tail, or the g function can be fitted well with a stretched
exponential function,

P(f) = Poexp(—(f/ /1)") (2.4)
with # = 0.55 £ 0.05. Fig. 32 (b) is the power spectrum for Ra = 4.7 x 10°
in log(P) va. f°% plot to show the stretched exponential tail. The normalized
frequency fuL?/x is plotted as a function of Ra in fig. 33. It shows how the
characteristic frequency for the tail changes with Ra. Notice its relation with
Ra is independent of the specific form of the fitting. In this soft turbulence

regime, fy increases as Ra®®,

3.1.5 Hard turbulence: scaling relations

Hard turbulence, unlike soft turbulence, is a self-similar state, Ra only changes
the length, time and temperature scales of the flow. This self-similarity in
revealed by the following facts : the PDF of the temperature fluctuations in
the central region of the cell are exponential from Ra = 4 x 107 up to the
highest Ra reached; all the physical quantities measured, such as Nu, the
velocity, the rms temperature fluctuations have power law dependances with
Ra. Although hard turbulence is by no means simple, it may be amenable to
a statistical description.

Let’s first look at the time series from a bolometer in the cold descending
flow, 1.0 cm away form the side walil (fig. 22 (d)). The signal shows group of
colder peaks, in contrast to the hot spikes in the soft turbulence signals (fig.
22 (b) & (c)). ©,/A decreases as Ra increases (fig.23 (a)), following a power
law with an exponent -0.162. (T3 — T1)/2 and &, /A (fig. 23 (b)} are of the

same order, and have the same Ra dependence. This indicates that there are

- ap———
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Figure 33. f,L%/x and feL*/x vs. Ra. They are the characteristic fre-
quenciea for the cut-off tail, related to two different fitting functions,

109 101]
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no longer connected hot and cold channels. Rather, the thermal boundary
layer nucleates separated particles, which are visualized as thermal plumes in
water experiments. The cold plumes are advected by descending flow, and
this ieads to cold fluctuations. Those plumes are the major source of both
the temperature fluctuations and the horizontal temperature gradient. These
picture agrees with Solomon & Gollub’s observation (1990).

Nu in hard turbulence has a scaling relation with Ra, with an exponent
0.285 {eq. 3.1). The large scale velocity increases also as a simple power law

(fig. 24, fig. 36),
Vv
&fL
The large scale velocity can be estimated from a free-fall model, when the

Fte number is large. The free fall velocity Vy ia:

=0.31 x Ra%40006 (3.5)

Vy s (agBL)? . (3.6)

As the velocity V and rms temperature fluctuations € have been measured
independently, we can compare the estimated velocity V; with the measured
one V (fig. 34 (3)). They have a slight difference in scaling, Vi/V = Ra—0®
(the prefactor is of the order 1).

Nu can also be estimated from the measurements of V and ©. For high
enough Nusselt number, heat is transported only by advection in the middle
height region and thus can be approximated by OV, The estimated Nusselt
number N, is
eV VL 6

B/L - % *a-

Nu,,, is compared with the measured one Nu in fig. 34 (b); the scaling
difference Nugyy,/Nu is Ra®®,

The signals from the side wall region are characterized by plumes advected
by the large scale flow intermittently. Similar intermittence also appear in the

Nu“, R (37)
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central region. Figure 30 {c), (d), (g) & (h) present typical hard turbulence
data, they are significantly different from the soft turbulence ones in (a), (b),
(e) & (f). In turbulence studies, it is often hard to describe a difference in
time series although it looks obvious to the eye. However in this case, we can
at least say that the large amplitude excursions in hard turbulence are well
separated from the small amplitude ones. This intermittency rmust show up
in the statistical quantities.

Figure 27 present six PDFs of the central region for 1.5 x 10" < Re <
5.4 10", They are exponential. Without actually superposing them, we know

the PDF is invariant with Ra. This invariance indicates the self-similarity of

hard turbulence, and the non-Gaussian shape implies correlations.

Figure 35 shows the rms value of the temperature fuctuations measured at
various lateral positions, as a function of Ra. They all have scaling relations
with Ra. However it that the scaling relations for the ones close to the
exact center start at Ra higher than 4 x 107. Although the scatter in the rms
value measurement is larger than for Nu and velocity measurements, we can
atill derive the scaling exponents from the measurements at various positions

(fig. 36 (b)) and conclude that the scaling relation for the central region is:

% = 0.23 x Rq~ 012001 (3.8}

3.1.6 Hard turbulence: power spectrum

To understand the dynamics of small scalea {or small amplitudes} in turbu-
lence, we need to study the power spectrum. Figure 37 shows six power specira
of the center bolometer for 1 x 107 < Ra < 1 x 10'3, At frequencies lower
than f,, the power spectrum is flat. As we shall discuse in the next section,
f, corresponds to the largest length scale in the convection cell. There is a
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cut-off tail at high frequency. The part between J» aud the cut-off is a power
law, whose range increases with Ra. The power law corresponds to the inertial
range of the energy cascade.

We can superpose the cut-off tails for Ra up to 10" (fig. 38 (a)), as was
done for soft turbulence (fig. 32 (8)). Thus the high frequency part can be
characterized by a function g(f/ ) with parameter f,. The tail alone can be
approximated by a stretched exponential (eq. 3.4) again, as shown in fig. 38
(b), the log(P(f)) vs. %% plot for Ra = 2.1 x 10°. In this plot, a straight
line indicates a stretched exponential. The parameter f,, together with the
values in soft turbulence, is plotted in fig. 33. For 107 < Ra < 6 x 10w

2
fi“i =0.0013 x Ra®784003 (3.9)

whereas it scales as Ra® for soft turbulence.

The power spectrum has two characteristic frequencies f, and f,, which
are the lower and higer bounds of the power law. f, correaponds to the en-
ergy injection length scale, and f, the dissipative one. The power law range,
proportional to f,/f,, extends with Ra as

Range o< Ra®® | (3.10)

provided f, varies as Ra®%,

As we shall explain later, fy corresponda the largest length scale in the
cell. All the turbulent motions start from it. Therefore we superpose 5 center
power spectra for 5 x 10" < Ra < 1 x 10" at this frequency (fig. 39 (a)). The
superposition shows that the self-similarity preserves at the low frequency part,
as weli as the high frequency tail. Ra only changes the range of the power law
in the power spectrum.

The stretched exponential in €q. 3.4 fit the cut off tail data weil. A clagsical
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form to fit the whole curve, i.e. the power law and the cut off tail, is

P{f) = (11fo)" exp(~f/£2) . (3.11)

Figure 40 (a) shows the fit to the center power spectrum for Ra = 5.2 x 10°
The fitting parameter f, is plotted in fig. 33.

In fig. 39 (b), the power spectra P(f) are multiplied by exp(f/f.) to get
ride of the exponential tail and to reveal in full the power law, which are
straight lines in this log-log plot. The exponent for the power law is measured

a=-1354+005 . (3.12)

In fig. 41 (b), & power spectrum P(f) for Ra = 2.8 x 10" is multiplied by f14
to demonstrate a power law =14,

In fitting a power spectrum for low Ra with the form in eq. 3.11, one has to
be careful since the po‘;'er law range is so amall that the fitting may have large
uncertainties. The exponent of power law can only be trusted with the curves
of large Ra. Since both the stretched exponential (eq. 3.4) and the power law
with exponential cut-off (eq. 3.11) fit the same tail well, It is obvious that f,
and f; in these two functions have the same Ra dependence, as shown in fig.
33. As a matter of fact, f,/fy ~ 3.3. Technically, it is more straightforward
to decide f) from the power spectrum.

The self-similarity of the power spectra is valid until Ra reaches 10", The
power spectra for Ra > 10" can no longer be superposed with those of Ra <
10" at high frequencies. It seems that a second power law of larger exponent
develops (fig. 41 (c)). Unfortunately, we are unable to reach higher Ra in
this cell to study this change. This was one of the main reason to built a cell
reaching higher Ra,the cell of aspect ratio 0.5.
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Figure 40. A power law with an exponential cut-off fit to the power spectra.
(a) the center power spectrum of Ra = 5.2 x 10° and (b) the power spectrum
of 1.0 cm from the wall, for Ra = 1.1 x 10",
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3.1.7 The large scale flow

In this section, the velocity measurement technique is discussed. The mea-
surement shows that there is a large scale fiow in this cell, whose effects on the
signals and their statistical properties in various regions have been studied.
The connection between the large scale flow and the coherent frequency fois
presented.

The information on the velocity field has been extracted from the tem-
perature correlation of two adjacent bolometers, which are supported by two
parallel manganin wires (1 cm apart, suspended acroes the cell in the mid-
height). We fixed the pairs at radial positions from 2.5 mm to 31 mm away
from the side wall. Signals from the bolometers in ea h pair are measured
simultaneously with the two channels of the signal ana. zer.

The size of this “velocity probe” is the spacing d of he two bolometers. It
has to be small enough so that the temperature signals a e correlated up to high
frequencies and a reasonable fate time response can be attained. Obviously, the
velocity fluctuating faster than the passage time across d can not be measured.
On the other hand, the measurement error in time delay and the thermal
diffusion between the two bolometer set the lower limit for d. Limited by our
technique in handling small bolometer, d was set to be around 2 mm, which
we feel is much above the lower limit.

If two signals detected by the bolometers are identical except for a time
delay o, the phase of their cross spectrum is linear with frequency with a
slope 2x75, and the coherence function ie unity for all the frequency range.
From the delay time and the spacing of the two bolometers, the velocity can
be calculated as

V=—. (313)

To
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The direction of the vertical velocity can be decided by the sign of the delay
time and the relative position of the bolometers. However in real cases, the
temperature signals will not be compietely correlated, due to the fluctuations
of the velocity and temperature fields. Fig. 42 (a) shows the coherence between
the two adjacent bolometers. It is close to one in the low frequency range. The
phase of the ctoss spectrum is linear with frequency (fig. 42 (b)).

The average time delay 7 in a time window T can also be calculated directly

in the time domain by minimizing $(r),
r
S(r) = jo AHTy(t) -~ Ta(t — ) (3.14)

where T3(t) and T(t) are the temperatures at time ¢ measured by the two
bolometers.

For steady large scale flow {which in the case in hard turbulence), the phase
of the croes spectrum is linear and the two methods lead to identical regults.
However, even when the large scale flow changes more slowly than the passage
time (which is the case in some soft turbulence range), the phase of the cross
spectrum is not a good linear function. In that case, only the second method
can lead to an unambiguous mean delay time 75. In this cell, there are only
small fluctuations around the finite mean velocity, thus 15 has been calculated
by minimizing 5(r) based on the time window of the whole signal length. For
the aspect ratio 0.5 cell, the velocity Buctuations are large, sometimes the flow
even switches its direction, so we divide the signal into many blocks of size
[, calculate the mean time delay (or mean velocity) for each block and get
its distribution function. The characteristic velocity can be derived from the
distribution function.

In the discussion ab:ve, it has been assumed that there is no horizontal

velocity Vi. However it we are interested in the precise scaling law of the

Phase {Deq.)
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Figure 42, For two adjacent bolometers, (a) Their coherence, (b) the phase
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distribution.
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velocity with Ra, we can not ignore the horizontal velocity V, even.though
it is small in the side wall region. The modified relation between 7o and the

velocity is
d v,

s
ZE 7R
where V,/ \ﬁl,’_-i-—V_,.’ is the correction factor due to the flow direction. However
it is plausible to assume in the hard turbulence regime that V, and V, have
the same scaling relation with Ra. Therefore eq. 3.13 will lead to the correct

™ = , {3.15)

velocity scaling, even though the actual magnitude of the vertical velocity may
not be precise. From now on, we shall calculate the velocity from eq. 3.13 and
simply denote it as V.

In this cell, pairs of bolometer detect steady descending flow (fig. 42 (b)
& (d)). Their time signal have group of cold peaks {lower curve in fig. 43
(b)), which are cold plumes advected by the descending flow. The velocity
measurement and the temperature signals agree with each other. Anaother
bolometer is placed in the opposite side (fig. 43 (a)). It has been measured
sirultaneously with one of the paired bolometers, fig. 43 (b) shows the time
signals of these two bolometers (the lower data is from the descending flow).
Clearly plumes of opposite signs are seen in the two sides of the cell. Therefore
we conclude that the large scale motion is essentially one roll like: up in one
side and down in the other side. Obviously the one roll structure is not the
most symmetric configuration. What is the symmetry breaking mechanism
for this steady and repeatable configuration? We do not know.

Figure 35 showed the rms temperature fluctuations & /A at various radial
positions. The plumes advected in the large scale flow region are not efficiently
mixed, therefore the rms value is larger than in the well mixed central region.

Figure 44 shows PDF of the bolometers at vatious radial positions for Ra =

o 7 N\
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N
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| ] ] 113 24 32 49
t(sec)
Figure 43. Two bolometers at the opposite sides of the cell, (a) their
configuration and (b) their time series. In (b} the lower curve is {rom the
descending flow for Ra = 1 x 10",



97

5 % 10'. The asymmetry of the PDF in the side wall region is due to the
advected plumes. 2 cm forther away from the side wall (or r < 2.3 cm}, the
s temperature fluctuations becomes bomogeneous and the PDF becomes
symmetric and exponential,

Since the side wall region width shrinks as HRa increases, bolometers change
their positions with respect to the velocity profile. Thus the measured velocity
dependence on Ra is the combined effects of the velocity itself and the side
wall region widih. However the velocity measured outside the side wall region
is free from this effect and it gives the scaling for the velocity only. The
same argument can also apply to other physical measurement, such as the rms
temperature fluctuations. In hard turbulence, VL/x = CRa, and we have
determined the exponents 7 for various radial pesitions. Figure 36 (a) is a plot
of this exponent as a function of the distance. The exponent decreases as one
goes toward the center region, and it saturates to the value 0.485, 10 mm away
from the side wall. The results shown in eq. 3.5 use the data from this pair
of bolometers. Similarly, the exponent for the rms temperature fluctuations
saturates at the value -0.14.

The cell can be viewed as baving three different sections in radial direction.
The viscous boundary layer can be estimated as \/V_LW y which is smaller
than & millimeter (the typical velocity V is 10 cm/sec, » varies from 10-!
to 10™* cm?/aec, and L js 8.7cm). Apparently there is an asymptotically
homogeneous center region, where the mean velocity is zero, Qur experiment
shows the existence of another region between the viscous boundary layer and
the center region, called the side wall region. In this region, the velocity has
2 large mean vertical component, the plumes therefore are mixed with the
background flow less efficiently than in the center region. The large rms and

skewness of the local temperature fluctuation are the signatures of the side
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wall region. However, the side wall region shrinks as Ra increases, so the
signal at any fixed point in the side wall region will asymptotically approach
that of the center.

The power spectrum in the side wali region has the same shape as the one
in the center region, but extends to higher frequency. Figure 45 (a) are power
spectra for Ra = 2.1 x 10" taken at 4.0 mm, 16 mm, 24 mm and 31 mm from
the side wall. The one closer to the center has the smaller frequendies. In fig.
45 (b), all the power spectra collapse together after shifting the ones closer
to the center to higher frequencies. As the region close to the center bas a
smaller mean velocity, we wonder whether the mean velocity is related to the
frequency shift of the power spectra.

Once hard turbulence is reached, the coherent frequency f, appears in
all aspects of the flow: at this frequency, the center power spectrum starts
to cascade (fig. 29 (a)), the bottom one has a peak (fig. 29 (b)) and the
coherence between the center and botiom reappears (fig. 28 (&) & (f)). In
fact, Jooking at the time s¢ ies of the side wall bolometer in fig. 43 (b), clearly
one can deduce f, from tl e pseudo-periodic appearance of the group peaks
{about every 4 seconds).

For this cell, f, is always between 0.1 and 0.3 Hz. After normalized by
x/L3, it has a scaling relation with Ra (fig. 46 (a)).

IL’ 0.4904-0.008
-%- = 0.057 x Ra (3.16)

(Notice that w, in the previcus report (Castaing ef al. 1989) is 2x f,).

With the measurement of the large scale velocity, & circulation frequency
can be constructed and compared with f,. The circulation frequency is V/4L,
where L is the beight of the cell and 4L is about the total distance for a fluid
clement to complete a period in this cell. The ratio between f, and V/4L

100

Log(P(f))
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Figure 45. Power spectra at various radial positions and their superposi-
tion. (a) For Ra = 2.1 x 10", 4.0 mm, 16 mm, 24 mm and 31 mm from the
wall, the one closer to the side extends to higher frequencies, (b) The collapse
of the power spectra in the log-log plot.
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is plotted in fig. 46 (b). It is clear that f, is equivalent to the circulation
frequency.

Physically, it is plausible that f, is the circulation frequency. When de-
scending cold plumes reach the bottom plate, they perturb the bottom bound-
ary layer. The perturbation induces waves and groups of plumes detaching
from the boundary layer, aa observed by Zocchi et al. (1990) in a water exper-
iment and by Deluca et al. (1990) in a simulation. The group of hot plumes is
advected up by the large scale flow 2nd the same scenario starts again when
they reach the top plate. Looking at the time series in fig. 43 (b), one sees
a bursting period consisting of a train of cold bursts and a laminar period of
1/fy. The bursting and laminar periods from the two opposite bolometers are
just 180 degree out of phase. A resonance at the circulation frequency may be
due to the stability of the large scale flow.

The frequency £, corresponds to the largest scale in a cell, 4. The length
scales of all the flow structures are smaller than 4L and the frequencies of all

the flow dynamics are higher than the circulation frequency Jo

3.1.8 The difference of the signal in space and time

A classical measure in turbulence is the velocity difference taken at two differ-
ent points (Kuo & Corrsin 1971; Antonia et al. 1982; Anselmet ¢! ql. 1984).
The equivalent here is the temperature difference in space. However we have
not modified the experimental set-up yet to move a bolometer continuously,
all we have studied is the difference between signals from two fixed bolometers,
as a function of Ra.

Two bolometers have been positioned at the center of the cell, about 0.9
mm horizontally apart. Fig. 47 (a) & (b) are the individual signals, (c) is
their difference. The difference acts like a high pasa filter, suppress the large

e

T
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Figure 47. Individual times series from two adjacent bolometers, and their

difference. (a), (b) are the individual ones and (c) is their difference, for
Ra=1x10%.
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scale structures and enhance the small scale ones. The PDF of this difference
in space is shown in fig. 48 (a). In fig. 48 (b}, the PDF is plotted against
the temperature raised to a power 5. A straight line indicates a stretched
exponential. The PDF for the original signal iz exponential, the fact that the
PDF for the difference in stretched exponential reflects that large amplitude
excursions occurs more frequently.

The PDF of the difference changes with Ra. Figure 49 (a) & (b) show
the rms value of the difference normalized by that of the original signal, and
the exponent § for the siretched axponential fit as a function of Ra. As
Ra increases, the dissipation length decreases, thus the bolometers spacing
relatively increases. Turbulent structures larger than the bolometer spacing
are canceled when the difference is taken. Thus the difference only reflects the
effects of smaller scales. So for larger Ra, the bolometers become less correlated
and the rms value of the difference increases. But inclusion of very small
structures at high Ra does not contribute significantly to the amplitude, that
is why the rms value saturates. A similar reasoning applies to the exponent g
for the stretched exponential.

A stretched exponential fit to the PDF is only an approximation. For two
uncorrelated signals with exponential distribution, the PDF of their difference
Tyis
-

3]
Thus a stretched expopential fit does not work for bolometers too far away.

H(Ty) = %(l + %) x exp(— (3.17)

Eventually, a moving frame should be built to change the spacing between
bolometers continuously and conveniently. To move frame easily without low
temperature leak, a bellows has to be used, It would be more tricky to achieve

high precision in the spacing measurement, even though it is easy to measure
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Figure 48. The PDF H, of the differential signal, (a) log(Hy) vs. T and
in (b) log(H¢) va. T%. here f = 0.6. This is for Ra = 1 x 107,
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the relative change with a micrometer or a stepping-motor. However, since the
rms value of the differential signal increases as the spacing increases, one could
use this relation to calibrate the absolute spacing by comparing the difference
meagurement with the difference of a fixed pair of bolometers, whose distance
is measured precisely at room temperature.

Similarly, temperature differences Tu(t,7) could be constructed from the
original signal T'(t}, Te(t, r) = T(t) —~ T(t + 7). The difference acts like a high
pass filter, and its PDF can also be fitted by stretched exponential. This has
been exhaustively studied by Ching (1990) for the signals in our aspect ratio
0.5 cell.

3.2 The aspect ratio 0.5 Cell

The study of aspect ratio 1.0 cell led te the discovery of the soft-hard turbu-
lence transition, and th scaling relations in hard turbulence. However some
questions are raised froi 1 those data as well: Is the hard turbulence state an
asymptotic one, are po ible some of the proposed regimes, such as Nu scal-
ing as Ra'/? for very Ligh Ra (Kraichnan 1962), what happens to the high
frequency tail of the power spectrum at large Ra? Thus it became clear that
larger Ra was desirable. The new cell we are going to discuss has a diameter 20
cm, height 40 cm. With this cell, s Ra range between 10° and 10 is spanned.
A new cryogenic system has been built for this cell. The results show some
differences when compared with the aspect ratio 1.0 cell, but the soft-hard
turbulence transition has been verified, all the scaling relations between the
physical quantities and Ra remain and extend up to 10", the highest Ra ob-
tained without non-Boussinesq effects. More important, the change in power
spectra occurring at Ra = 10" has been verified and studied.

108

3.2.1 Heat transport and thermal boundary layers

To measure Nu, the heat conducted by the side wall has to be excluded from
the total heat applied. For this cell, we did not measure the heat conduction
by the side wall, since it takes too long for an empty cell to stabilize. Instead,
we estimated it to be: 1 x 10~3A (mW), here A is in mK. The heat conducted
by the gas is 7.8 x 10-*A. In this cell, Nu varies between 20 and 2000, so
small corrections to the estimate can be neglected.

We have measured the off-set for the temperature difference Aq by regu-
lating the top plate and without heating the bottom. For such a large cell, it
takes a long time to reach equilibrium, it felt specially long when the liquid
helium evaporates quickly with a high top plate temperature! The offset value
Bo=04+£22mKfor T < 50K; For T > 50K, Ay = —6 + 5 mK. The
large offset for T > 5.0 may indicate that we did not wait long enough for the
system to relax to equilibrium, but the possibility of imperfect vacuum can
not be excluded. As the source of this off-set is unknown, we did not correct
it in the caleulations.

Figure 50 shows the Nu as a function of Ra. Table 5 lists Ra, Nu and var-
ious parameters (density, plates temperature, heating power, fluid properties,

etc.). For 1 x 10® < Ra < 1 x 10", Nu can be fitted by
Nu = 0.17 x Ra®®040008 (3.18)

In fig. 51, Nu is divided by Ra®*™ to amplify any misfit and show the power
law more clearly. This figure shows that the power law starts at around Ra =
1 x 10°. Below, Nu has a smaller slope. The change of slope may correspond
to the transition from soft to hard turbulence discovered in the aspect ratio
1.0 cell. However there (fig. 14), the slope of soft turbulence is steeper than
that of hard turbulence.
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For Ra up to 10!, the gas density needed is not very high, Pr is constant
with value 0.7. It increases for higher densities. Figure 52 shows the variation
of Pr. Using different average temperatures and gas densities, different values
of Pr may correspond to the same Ra, but there is no discontinuities in the
Nu vs. Ra relation (table 5 and fig. 50). The dependence of Nu on Pr is
weak.

We have fixed a bolometer about 2 mm above the bottom plate. As Nu
increases from 20 tc 2000, the boundary layer thickness A decreases from 1 cm
to 0.1 mm. Therefore the bolometer scans across the boundary layer as Ra
increases. In fig. 53 (a) the rms value measured by the bottom bolometer is
plotted as a function of Ra. The change of slope at Ra =2 x 10? corresponds
to the boundary layer crossing. The plot of (T, - T;)/A as a function of Nu
in fig. 53 (b) could be interpreted as the boundary layer profile (similar to the
discussion in section 3.1.1), here T, and Tj are the average temperatures of the
center and bottom bolometers. Figure 54 shows typical time series, PDF and
power spectra of the bottom bolometer for (a) Ra = 4.7 x 10% in the boundary
layer and (b) Ra = 7.7 x 10" outside the boundary layer. The PDF extends
to the cold side for Ra = 4.7 x 10%, and to the hot side for Ra = 7.7 x 10%.
This has been observed also in the aspect ratio 1.0 cell. In the times series
outside the boundary layer, one can see hot plumes detected by the bolometer.

The power spectrum of the bottom bolometers (fig. 54) is basically a cut-off
higher frequency tail with a flat Jow frequency region. As it is moving further
out of the boundary layer with increasing Ra, its power spectrum changes (fig.
55). However for Ra > 10'®, a power law extending on a small range is present
near the high frequency tail.
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Figure 52. Pr vs. Ra.
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Figure 55. The superposition of the four bottom power spectra for
6 x 10" < Ra < 4 x 10". The Ra for the four curves are 6.0 x 10!, 6.7 x 10",

2.1 x 10™ and 4.3 x 10", the inner one is for larger Ra.
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3.2.2 The velocity measurement and the far>~ scale flow

The large scale velocity is measured with a pair of adjacent bolometers (2
mm vertically apart}, 1 cm away from the side wall. The phase of their cross
spectrum is linear with frequency only for Ra between 10° and 10, Ip other
ranges, its long time average is zero. This indicates that the large scale flow
velocity is not steady. As discussed in detail in the previous chapter, slowly
fluctuating velocities can be measured for time windows of size T, by minimiz-
ing the structure S{r) function (defined in eq. 3.14) of each time window.

The size I' has to be small enough so that the velocity is constant within
each. But it cannot be too emall, otherwise there is not enough temperature
signal in each window for the § function to have a clear minimum. For time
signals of this cell, we did calculations with three different window sizes. The
distril.ution function for delay time has a peak at a finite value for 10° < Ra <
10" (fig. 56 (a)), and becomes bimodal for other Ra range (fig. 56 {b)). The
position(s} of the peak (or peaks) are the same for the three window sizes.
The two peaks are symmetric with respect to the origin. Thus the large scale
velocity has only one characteristic value and it switches direction from time
to time.

From the peak valve of the delay time, we calculate the velocity V| which
is always of the order of 10 cm/fsec. Compared with aspect ratio 1.0 cell,
the uncertainties in the velocity measurement here are large. The normalized
velocity V.L/x is plotted as a function of Ra in fig. 57 (a). For Ra > 1 x 10%,
the velocity has a scaling relation with Ra,

The change at Ra = 10* (fig. 57 (b)), corresponds to the soft - hard turbulence

transition.
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Figure 56. The side wall bolometers, their time series, delay time distribu-

tions, low frequency part of the power spectra, and the comparison with the
center ones. For (a) Ra = 1.9 x 10° (left) and (b) 6.7 x 102 (right).
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The rms value of the side wall bolometer is plotted against Ra in fig. 58
(a). It has similar Ra dependence as the center one. For Ra > 1x 108, it scales
with Ra with an exponent —0.145 £ 0.01. The relation changes at Ra = 10°,
another signature of the soft-hard transition.

Here again the power spectrum of the side wall bolometer has the same
shape as the center one, but extends to a higher frequency (fig. 59 (a) & (bY).
This frequency shift depends on the stability of the large scale flow. Asshown
in fig. 56, the shift is large for Ra = 1.9 x 10° where the large scale velocity is
stable, and small for (b) Ra = 6.7 x 16",

The circulation frequency can be calculated from the large scale velocity V
and the circumference 120 cm. In fig. 56, this frequency, marked as f,, agrees
with the starting frequency of the cascade. However, there is no resonant peak

at f,.

3.2.3 Hard turbulence

In this section, we present experimental results to show the seif-similarity and
scaling relations of hard turbulence. We shall concentrate on the data from
the bolometers at the center of the cell. Figure 60 shows time series for about
% and 1 circulation time for 1 x 10° < Ra < 5.8 x 10,  The time signals
are intermittent, similar to the hard turbulence data in the aspect ratio 1.0
cell. For Ra < 10", higher frequency structures develop as Ra increases. For
Ra > 10Y, the signals become more intermittent. The change of frequency
range can be seen in the power spectra for 7.0 x 10° < Ra < 4.3 x 10" (fig.
61).

The normalized rms value ©/A is plotted as a function of Ra in fig. 58 (»)
and (6/A)Ra®'* is plotted to amplify the change. For Ra > 5 x 10%, ©/A
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Figure 58. The rms temperature flucuations ©, (a) ©/A vs. Ra and (b)
(B/A)Ra®1* va. Ra. B/A are the normalized rms temperature fluctuations

for the center (circle) and side (cross) bolometers. Only center data is plotted
in (b).
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follows a simple power law

% = 0.46 x Rq—014420.08 (3.20)

The change at Ra = 5 x 10* shows the soft-hard turbulence transition.

Figure 62 ahows the PDF for Ra between 7.0 x 10® and 4.0 x 10°. As Ra
increases in soft turbulence, the PDF changes from asymmetric to more sym-
metric, from non-universal to Gaussian-like. In hard turbulence, the PDF re-
mains invariant, as shown in fig. 63. This invariance reflects the self-similarity
of hard turbulence in this ceil.

The PDF in bard turbulence js non-Gaussian, this can be demonstrated
more clearly by plotting the logarithm of the probability against the square of
the temperature fig. 64 (b). However, it is not a pure exponential either. In fig.
64 (a) plotting the logarithm of the probability vs. T3, shows a “stretched”
exponential with 8 = 1.3.1Since the PDF of one point measurement is sensitive
to large scale flow, the unsteadiness of the large scale flow in this cell may be
responsible for the difference from the pure exponential distribution.

3.2.4 The power spectrum and a transition
at Ra = 10!

We have shown that in hard turbulence, Nu, velocity and the rms temperature
fluctuations scale with Ra, and that the PDF is invariant. These facts show the
self-similarity of hard turbulence. However, all these quantities are dominated
by the large scale flow structure. Here we study the small scale ones via the
power spectrum.

For Ra < 10", the high frequency tail of the power spectra is invariant
and can be superposed under translational transformation in log-log plot (fig.
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65 (a)),
log(f') = log(f/£1) , (3.21)
log(P(f")) = log(P(f)/P\) . (3.22)

The tail alone can be fitted by a stretched exponential (fig. 66 (b)) described
in €q. 3.4 with § = 0.35. The fitted f, is plotted i fig. 67 It has actually
been used in the above translational transformation to superpose the power
epectrum in fig. 65 (a). The Ra dependence of faL?{x can be described as

ALk =0.0017 x RaOT7£004 . (3.23)

As shown in fig. 65 (a), a power law develops for increasing Ra. It is shown
more clearly in fig. 68 (a) & (b}, where the power spectra P(f) is multiplied
by f'4. The data for Ra = 10" has the maximum power law range, about 2
decades. A classical fit to the whole curve is a function of a power law with
an exponeatial cut off, expressed in q. 3.11. Figure 66 (b) shows the quality
of the fit for Ra = 7.3 x 101,

The exponent a for the power law is

a= 1354005 . (3.24)

The exponential cut-off frequency f; is plotted in fig. 67 together with f,.
Since both f and f; characterize the same high frequency tail, they have the
same Ra dependence (f, is about 3.3 times J1). To study further the power
law, we multiply the power spectra P(f) by exp(f/f.). The transformed power
spectra P(f) xexp(f/f,) are shown in fig. 69 for 5 different Ra below 1 x 101!,
They are superposed together, rescaling f, to the same value.

However for Ra > 1 x 10™, the data reduction with the translational
transformations in eq. 3.21 and 3.22 can no longer work, simply because the
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Figure 65. Superposition of the center power spectra for Ra below and
above 1 x 10™. (a) log(P(f)/Ps) va. log(f/ f) for 0% 10® < Ra < 7.3 x 101,
the curve labeled “L” is for lower Ra. (b) log(P(f)Ra®®) vs. log(f/ Ra®®) for
7.3 x 10" < Ra < 4.3 x 10, the outer curve is for lower Ra. Here, w = f.
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high frequency part of the power spectra change with Ra. In fig. 65 (b), 5
power spectra for Ra > 1 x 10" are displaced in a log-log plot to show their
different shapes. The specific transformation in fig. 65 (b) is chosen just for
the best illustration. If we try to take off the exponential tail by multiplying
P(f) with exp(f/f,), as we did for Ra below 10", they do not show a simple
power law (fig. 69 (b)). This change has been verified in a different, but related
way in calculating the normalized temperature dissipation Q? from the time
series (Procaccia et ol. 1991),
2

o= g8 -
here ©7 is the mean square temperature fluctuations, L?/x the time scale and
ST the derivative of the signal. It is found to have different dependence with
Ra, below and above 10" (fig. 70).

The power spectrum fr Ra = 4 x 10M (fig. (71 (a)) seems to develop a
second power law with ar exponent -2.4. In fig. 71 (b) (c), we multiply P(f )
by f14 and f24 respectiv ly to demonstrate the two power laws. Thus it is
possible that the change ¢ power spectra from Ra = 7 x 10" to Ra = 4 x 10™
is simply a transient from one power law {exponent -1.35) to two power laws
(exponent -1.35 and -2.4). In fig. 72 {a) & (b), the 5 power spectra for Ra
between 7.3 x 10'® and 4.3 x 10" have been multiplied with f'4 and f24
respectively to show the change.

The power spectrum has shown a turbulence transition at Ra = 10'.

More generally, this transition appears in all the measures related to the high
‘ frequencies of the time series, such as the temperature “dissipation” Q?. As a
matter of fact, one can recognize this change from the time series directly {fig.
60 (a)-(d)). Even though it is hard to descirbe the difference without using
statistical measures, we can at least see that the signals for Ra > 10" are
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Figure 70. Q vs. Ra, here Q? is the normalized temperature dissipation.
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more intermittent than those below. Since this transition is characterized by
the changes at high frequencies {thus of small amplitudes), it is not surprising
that it has not effects on measures dominated by large scale structures, such
as Nu, PDF etc. To understand this transition, therefore it is necessary to

study other quantities related to high frequencies or small structures.

3.3 The aspect ratio 8.7 cell

For small aspect ratio cells, the side wall has large effect on the flow. It is
natural to extend the study to a large aspect ratio one, to see how robust are
the results obtained.

In this cell, & better temperature regulation led to the most precise mea-
surements of Nu. It starts to scale at Ka = 104. The scaling exponent is 0.286,
consistent with the results in the previous two cells. Bolometers were placed
at center of the cell. for Ra > 10%, the PDF are self-similar, non-Gaussian,
but not purely exponeni al; the power spectrum asymptotically approaches
the form of a power law ‘ith exponential cut off; the rms temperature fluctu-

ations scales with Ra, w ch an exponent -0.20, smaller than -0.14 in previous
cells.

3.3.1 The Nusselt number

The heat conducted by the side wall is estimated as 1 x 10-4A (mW), here A
is in mK, and the gas conduction 7.5 x 10-*A. We have slightly corrected the
estimate for wall conduction to have Nu = 1 before the onset. The temper-

ature difference off-set Aq for zero heating has an approximate relation with

the average temnperature T

Ao=415-93xT , (3.26)
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T isin K and A is in mK. Most of the measurements are taken with 7" < 4.8K
thus [Ag} < 3 mK. The Ra, Nu, and heating power, average temperature etc.
are listed in table 6. Nu is plotted as a function of Ra in fig. 73.

For low enough Ra, Nu should be 1. This has been used to calibrate
the side wall thermal conduction. Qur experimental data shows the onset of
convection at Ra, = 1700 + 100, quite close to the theoretical value 1708 for
infinite aspect ratio. According to Landau’s argument (see Landau & Lifshiz,
1985), the velocity and temperature at the onset should scales as /Ra — Ra.,
thus Nu — 1 increases linearly with Ra — Ra.. The slope may depends on the
cell aspect ratic (Behringer & Ahlers 1977; Charison & Sani 1975). In the
insert of fig. 73, Nu is plotted against Ra around the onset region in lin-lin
scale.

For all the range of Ra > 10*, Nu scales with Ra. The relation is fitted as

Nu = 0.146 x Ra® 00003 (3.27)

In fig 74, we plot NuRa™""® vs. Rg to demonstrate the scaling relation. The
scaling starts at Ra = 10%, much before the soft-hard turbulence transition
Ra (10®) in this cell. Wheres in small aspect ratio cells, the scaling starts at
the same Ra (10%) as the transition.

3.3.2 Local temperature measurements

As is already known (see, Normand et al. 1977; Behringer 1985; Manneville1989}),
in large aspect ratio cells, temporal motions always coupled with the spatial
ones (called weak turbulence). In this cell, as soon as the time dependant
signals appesr at Re = 4800, they are random.

The time series for Ra = 1.1 x10*, 9.2x10%, 2.1 x10%, 8.1 x 10° are shown in
fig. 75 for illustration. Similar to soft turbulence signal in small cells, the time
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series for Ra < 10® fluctuates constantly without any characteristic features;
for Ra above it becomes intermittent, similar to bard turbulence signals in
small aspect ratio cells.

We have done standard statistics to characterize the time series. Let us first
look at the PDF of the center signal (fig. 76). For Ra < 10%, They are neither
invariant with Ra, not symmetric. The asymmetry of the PDF indicates that
the large scale flow structures are complex. As Ra increases, the PDF becomes
more symmetric. This implies that the flow structure becomes simpler as Ra
increases. As Ra reaches 10®, the PDF becomes symmetric. We speculate
that while small scale flow structures are developing, the complex large scale
ones are gradually replaced by a simple one roll circulation, which has been
visualized by Krishnamurti and Howard (1981). For Ra > 10%, the PDFs
can be superposed, after normalization by their rma value. Therefore the flow
motion is self-similar in this Ra regime. The PDF is non-Gaussian, but it is
pot exponential as the ope in hard turbulence of the aspect ratio 1.0 cell.

In fig. 78, the normalized rms temperature fluctuations 6./A is plotted
as a function of Ra. It decreases for Ra < 10°. Afier a plateau, it decreases

again with a scaling relation with Ra for Ra > 2 x 107

% = 1.9 x Rg~ %00 (3.28)

The exponent —0.2 is different from the exponents —0.14 of small aspect ratio
cells.

From the time series, its PDF and rms temperature fluctuations, we con-
clude that the soft-hard turbulence transition occurs at this cell as well. Asin
the small aspect ratio cells, hard turbulence is characterized by the intermit-
tent temperature signals. its PDF is invariact and the rms value scales with
Ra. The transition Ra is vetween 107 and 10%.
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Figure 75. The times series for 1 x 10* < Ra < 8 x 10°. (a) Ra = 1.1 x 104,

(b) 9.2 x 10%, (c) 2.1 x 10%, (d) 8.1 x 10°.
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The evolution of the center power spectra are sh. wn in fig. 79. They have
the same high frequency tail, thus can be superposed (fig. 80 (a)) The power
law in the power spectrum changes its exponent with Ra, behaves differently
from the ones in small aspect ratio cells. However as Ra increases, the exponent
does asymptotically approaches a constant value of —1.4, the same exponent
as in the previous cells. To demonstrate this evolving process, log(P(f) x f14
has been plotted against log(f) in fig. 80 (b).

In large aspect ratio cells, the interaction among rolls creates wide range of
structures and dynamics, which are different from the general turbulence we
try to study. As Ra increases, these structures are replaced by simpler ones, as
indicating by the more symmetric PDF. For Ra > 10%, the PDF has become
symmetric and the rms values begin to scale. But this only indicates that
the complex large structures has disappears, since they play dominating roles
in PDF and rms value, while the smaller structures from the roll interactions
have not vanished completely yet. This explains the asymptotic behaviors of

the power spectrum.



149

FILE N AL P LN ] BASE n SR SILE WAk -sserEaRueR (PURR LR R T (RSN
1
(a) (d)
-
L
- L Liaabiy ARy Lo L abli W ETIIY LALIAIL IR BT A B W ETITTY PR R
TRE NN ~dmerw | Laapa e - BupE L L T T P Tra— P [P,
&
(b) (e)
s
s
- —‘-L“-I-I-Il—l-l-uu“_gu.m-__h;wu__ FEEFIIT R R T WETTIT Ao L Ailii)

FRL S IR P LREEN ) NASE L EBERE FRE WML —eEE MBSy LERN. TS [ R T ]

(c) (f)

Lagifid)

- AT W A NI BRI NI
] » ) N ] " -
fidmi fidn b

Figure 79. The power spectra for 1 x 10° < Ra < 4 x 10"°. (a)
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Figure 80. The superposition and transformation of the power spectra. (a)

The superposition of the center power spectra according to their tail f,

for

Ra = 3.2 x 10, 2.7 x 10, 2.6 x 107, 2.1 x 10%, 3.3 x 10° and 3.7 x 10", (b)

log(P(f/fa) x (f] 1)) vs. log(f/ 13).
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3.4 Summary

ln the three cells of aspect ratio 1.0, 0.5 and 6.7, two distinct turbulence
states, soft and hard turbulence have been discovered. The transition occurs
at around Ra = 10°. Soft turbulence is basically due to the dynamics of
large scale structures, while hard turbulence is characterized by intermittent
dynamics of thermal plumes.

In hard turbulence, all quantities change with Ra as power laws, the scaling
relations are summarized in table 1. The Nu value for each decade of Ra and
its scaling relations, from different experiments of various aspect ratios are
listed in table 2. The PDF in hard turbulence ia invariant and non-Gaussian.
For Ra < 10", the power spectrum is essentially a fat low frequency part
followed by a power law of exponent -1.4, and a cut off tail. The power law
range fsf f, increases as Ra®3 (Note fy = 3.2 and f, o V).

For Ra > 10", a new transition has been observed in the power spectrum,
which seems to develop another power law of exponent -2.4. At this Ra,
changes are also present in measures related to high frequency signals, such as
the temperature dissipation @? and the PDF of differential signals. No change
in scaling relations for Nu, 8/A and VL/x have been observed.
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Table 1. The scaling relations in the three cells: A x Ra™.

Aspect Ratio] | Nw | 0./ [ VLjs | LI [s | il /s (Ra < 10TT)
0.5 Aloa7 0.46 0.16 0.0017
Y1030 |-0.144 | 0.49 0.77
+0.005 | +£0.005 | £0.02 +0.04
1.0 Al022 0.23 0.31 0.057 0.0013
+ {0285 |-0.14 0.485 | 0.49¢ 0.78
+0.004 | £0.01 | £0.005 | $£0.005 +0.02
6.7 A|0l46 |19
4 | 0.286 |-0.20
+0.003 | +£0.01
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Table 2. Comparison of Nu of different aspect ratios cells, Nu, its value

for each decade of Ra and its scaling relations, from different experiments of Table 3. The aspect ratio 1.0 cell, Ra-Nu, and the exper-
various aspect ratios. imental conditions. The density p (g/cm®), and the pressure
P (torr) and temperature T (K) from which p is deduced,
“Pr Ra Aspect Source are in the lst. column; The heating power Q, temperature
100 | 10° [ 107 | 10® | 10° | 10" | Ratio Nu = Nu(Ra) . ,
07 T4 411377 5. Goldstein & Chu(1969) difference A and the average temperature T for a convection
Air 44 __0.123Ra% %4 state are in the last three columns.
07 5527966 | 178 [0.i4 Threlfall(1974) _
Helium . 0395 Ra® 2% ‘F’FE _Ra Nu —Pr — Q(mW) A(mK) T(K
1061207373674 122 | 0.33 Threlfall(1974) . J K- 0. 1.6T 77.0  4.669
0.328Ra%257 44TUK  1730e405 5010 06380 1743 3890 4675
197 | 3576841134 {05 Present work 2620005 1.780e+05 5.080 06380 1817 401.0 4681
0.165 Ra021 1870e4+05 5210 06380 1968 4250 4602
= 1970405 5.330 06380 2.126 450.0 4.705
3% 1031204 14191798757 |10 PU"""“ work 2000005 5450 0.6380 2389 4750 4719
.217Ra' 2170e+05 5530 06380 2.450 5040 4.732
435828158 30.1 | 57.3 2.5 Threlfall{1975) 2.260e4+05 5.650 0.6380 2.434 529.0 4.745
0.173 Ra®3%0 1310405 5720 06380 2724 5420 475
400 | 783|150 [ 289 | 5661109 | 6.7 Present work 2.360e+05 5.760 08380 2816 5570 4758
0.147R00.287 . 2.400e+-05 5.830 0.63380 2.909 569.0 4.764
R Roesby (1560 2460405 5.880 06380 3.003 5830 4772
&E;ur el :: 01;1yk(a°-3°°) 1630e+05 6.040 06380 3.346 6325 4797
- - 2.790e+05 6.240 0.6380 3.708 881.0 4.821
8| BT] 584 25 | Garon & Goldstein{T973) 30400405 6.430 06380 4256 7570 4859
_ 45 0.130Rq" 21006 8480 1126 06370 001892 1090  4.4p1
449 [ 352162 [30.7 15- Chu & Goldstein(1973) 4485K 7830 1210 06370 002280 1270  4.49)
8.0 0.183Ra" ™ 3.010e-05 8750 1330 06370 002724 1440 4492
3031 59.1 3.5- T:,na.h&ij;ta(lQBO) 1.100e4+04 1.580 0.8370 0.03708 17.90 4.494
1.980e4+04 2.050 08370 0.07567 31.40 4.501

3.350e+04 2.640 0.6370 0.1483 52.70 4512
5.890e+04 3200 06370 03027 310 4.532
1.060e+05 4.060 0.6370 0.6364 168.0 4.569
L220e+05 4.260 06370 0.7749 197.0 4.584
1.330e+05 4.380 08370 08747 2170 4.594
3.580¢ 1.860e+06 b6.550 06370 04720 1020 4.531
4.480K 2620e+06 0.100 05410 0.7372 145.0 4.553
5.1300-05 3.110e+05 6.620 0.6370 09270 173.0 4.567
3.360e+05 6.860 0.6370 1.038 187.0 4.574
3.040e405 7.010 06370 1.15 2040 4582
5.200e+06 7.970 06380 18972 208.0 4.631
8.280e+05 9.320 08380 3.708 5020 4732
1.150e+06 10.30 06370 6.120 430 4853
6.120t 2.250e+05 5870 0.8390 0.3027 65.90 41.846
4.828K 21960e+05 6.570 06390 0.4359 7430 4.855
8.150e-056 4.0700+05 7.620 0.6300 048810 1040 4870
6.250e+05 8.8%0 06390 1211 163.0 4.899

CaareTT -

i §
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Table 3, Continued Table 3, Continued

PT,p Ra Nu _ Pr ?;'“w) %(7"3(5 figlg PT.p  Fa N Pr QmW) AmK) T(K)
1410406 1160 06390 3708 3920  5.014 JiB0e+08 5800 06520 2452  B930  4.904

. 8520 3027 7010 4918
1.840e+06 1250 06400 5487  5M0  5.085 4.080e+08  60.50 0.85
2210e4+06 1350 06400 7.567 685.0 5.180 198.0t 2520e408 52.10 06730 2.724 68.00 5.100

5.102K 3.980e408 50.00 0.6730 4843 1080 5101
9.090t 5.440e4-06 8.540 06380 03027 4650  4.505
4483K  1.020e4+08 1080 06380 06810 8640  4.52% 2.5700-03 5.830e+08 65.30 06730 7.567 153.0 5102

1.300e-04 ;.m-pg 1240 06380 1211 1330 4548 fgxm ;;-;g ggm ig;g gfgg g?gg
: 1350 0. _ , . 30 0. . . _
2090400 1420 98300 om ey a7 1640c409 9060 06730 3027 4490 6102
37500406 1510 06300 3708 3350 4650 2180e+09 98.00 06730 4359 5990  5.102
45400406 15.90 063900 4843 4140 4689 2780400 1050 06730 50.33 7630  5.100
5300e406 1680 06390 6120 4960 4730 6040t  3.160e+09 1100 07780 4843 5780 5101

) . 0 0 7567 8170 5109
7700e408 1870 06300 1090 7800 4873 B.OOTK  4.450e409 1230 0.7780
2195t 31306408 14.50 06420 06810 50.60  4.847 8.770e-03 6.720e4+09 1380 07780 1279 1230  5.105

2en TTAGS 1970 0ot 10 1o Lo IS0 10 010 % 00 510
* 1I0es0r 2100 totn 1o g v 1760e+10 1810 07780 4359 3210 5103
1.800e+07 2520 06420 7567 3960  5.016 2230e+10 1940 07780 5933 4070 5104
2070e407 2600 06420 8826 4470  5.041 2.750e+10 2050 07780 7748 5020  5.106
2240e+07 26.80 06420 1001 4920  5.063 3.200e+10 2160 07780 9807 6030  5.110
26400407 20.10 06430 1279 5970 5117 3.890e+10 2260 07780 1211 7120  5.109
33.80t 841 406 20.10 06430 06810 4930 4506 8140t 1310e+10 1660 08560 1001  B480 452
4536K 130 :407 2320 06430 1211 7620 4520 4490K  2050e+10 2090 08510 3027 2020 4598
4830004 182 e4+07T 32580 06440 1892 1070 4538 1.090e-02 5.160e+10 247.0 08450 6810 3810  4.691
230 e407 2790 06440 2724 1430 4563 TA30e+10 2740 08380 1211 6000  4.805

be 1120e4+11 3170 08220 2724 1127 5.090
507 -+07 20.70 06430 3708 1830 4573 6190t 2670e+09 1050 08620 1211 1610  4.492
43 <407 3310 06430 6120 3000 4617

4490K  4080e+00 1260 08620 2724 3040  4.498
5.760e+07 3600 06440 0156 3600  4.667 1.100e-02 §.280e+09 1500 08610 8120 5730 4512
8.100e+07 30.10 06440 1488 5420 4754

e o 1800e+10 1820 08500 1483 1140 4540
T AN 1890 Oets eay e tsm 30200410 2130 08550 3027 1990 4583
' ) 0 ot pedly 43M0e410 2070 08520 5LI5 3000 4635
SOOTK  143e+07 2250 0640 1211 6880  5.022

6.1400-04 23300407 2640 06460 2269 1130 5027 B0l JuMetll 1005 09080 Oi2  mE 0
3.300e+07 2960 06460 3708 1650  5.027 ' ot S ' ; '

4.200e4+07 31:30 0.6480 4.843 205.0 5.026 1.380e-02 2510e+10 2074 0.9060 190.37 119.0 5.028

50300407 3310 06450 6129 2470  5.030 3610e+10 2242 (9080 3027 1720 5028
5.000e+10 2451 09020 4729 2470 5029

6.890e+07 3640 06460 9.166 3380  5.026
6.440e+10 2640 08970 68.10 3300 5028

8970s+07 39.20 0.0400 1279 4400  5.025
8.660e+10 2841 09050 9270 4170 5.028

1.130e+08 41.60 06460 1703 5540  5.024
i 1010e+11 3008 08970 1211 5160  5.028

330e+08 43.90 006460 2187 6770 5030
v 1394t 1400e+11 3560 1410 2452 7380  5.105

00t 3.180e407 3050 06520 1211 5520 4902
BI9TK  1070e+11 3820 1420 3662 1029 5192

526K  6.130e+07 36.10 06520 2724 1050  4.896
2760002 2.500c+11 3040 1400 51156 1419 5108

1.0100-03 5530407 41.00 06520 4843 1840 4914
3.000e+11 4370 1340 7749 1935 5197

1.300e+08 45.00 0.6520 7.567 2340 4913
4800e+11 5000 1410 1211 2604 5199
18000408 48.50 0.6520 1090 3120 4929 000011l GO0 1990 143  Me6 5197

2.310e+08 5190 06520 1483 3080  4.026 000 AL : ' :

2.850e408 5530 06520 1937 4000 4918
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i 2 2 .
Table 4. The aspect ratio 1.0 cell, Ra, Nu, VL/x, f,L?/x, 8/A, /L Table 5. The aspect ratio 0.5 cell, Ra, Nu, ©/A, the experimetnal conditions
and Pr. and the fluid properties. The density p (g/cm®), and the pressure P (torr) and
Wm—ﬂ” Ne Vi L=~ OJATR] =/IT00Y Pr temperature T (K) from which p is deduced, are in the 1st. column; The heating
- . 1100 206.00 0.63700 .
3.0200c+05 8.8600 46.700 47100  319.00 0.63700 power (, temperature difference A and the average temperature T for a convection
4.2100e+08 7.0i00 ©9.700 5.2900 378.00 0.63800 : :
5.80000+06 84100 69.700 4.4800  390.00 0.63800 state are in the 5-7th columns; The last four columns are the fluid properties for
T4100e+05 9.5600 B85.000 4.1100 423.00 0.63800 . . .
11100e+08 10.800 161.00 75500  172.00 0.63800 density p at average temperature 7. x in em?/sec, x in mW/cmK.
14100408 11900 105.00 88100 440.00 0.83800 - e e
1.64000+06  12.500 264.00 9.6000  181.00 0.83800 PT, Ta N 872 m-xmmumcm ofi0]_ (10"
I3lc 6.060e408 18.70 4570 05111  38.70 4318 02320 0. um 3480  8.960
3.4000e+06  14.200 459.00 11.000 191.00 0.63800 43K 10200407 19.00 4420 07988 54,12 4328 03320 06370 3480  8.970
3.3400e+086 15.800 620.00 11.500 194.00 0.83800 495005  1.300e407  21.00 1.150 400 433 03310 08370 3480 8990
4.6500e408 17.300 935.00 11.400 194.00 0.63800 1.700e4+07  22.90 1.568 95.00 4ME 02310 06370 3500 9010
900e-+ 21006407 4.0 5570 2.044 1140 4354 02300 06370 3510  $.030
g" :: i:m :610 0 16.000 86.800 0.64000 2.900e407 2620 5.000 3104 165.0 437 02290  0.6370 3520 £.070
-5300e-+- . 440.0 10.000  86.700 0.64000 30700407 TS0 4680 4600 230 4405 02380 06370 3540 9120
1.2000e+07 22.000 1440.0 8.6300 84.700 0.64000 49700407 080  4.000 8.281 Lo 4437 02300 08370 3570 9.180
1.8500e-+07 25.800 1530.0 6.9900 88.700 0.64000 6.900e+0T 3290 4330 10.35 410 4804 02220 06370 3610  9.300
2.3700e+07 28.200 1530.0 6.4300 40.800 0.64400 8.120e40T 3N 400 15.48 5700 4581 0.118%0 0.68370 3670 9.440
1.130e+08  38.10 3.960 21.59 7320 4662 02150 04380 3T 9.500
2.4800e+07 28400 1440.0 6.0100  93.900 0.64000 9700 7007 .40 4040 1150 4740 4320 0233 06380 1180 8970
3.4800e4+07 32.300 1700.0 5.8500 40.900 0.64400 438K  1.M0e+08 3680 3.790 2.044 76.50 4334 021320 06380 1190  5.000
5.8100e4-07 3$8.300 30100 4.7100 41.500 0.84400 14600-4 1.750e4-08 4030 3.430 3194 100.0 4350 02310 06380 1190  9.070
1. amm $0.200 . 1210.0 4.6200 42.000 0.84500 2.500a4+08 4580 3080 5.308 1890 4376 0.2300 0.6380 1300 9.080
3.410s+08 B50.70 2.860 8177 200 4407 03280 06380 1200  $.130
9.7200e-+07 40.800 1950.0 473.0 48800  14.600 0.66100 40000408 8550 3770 IZLTS 3120 4453 02160 06380 1230 9210
1.5000e+-08 46.800 3050.0 641.5 4.1100 14.600 0.66100 6.010e+08 B0.80 2,760 18.40 41390 4503 02230 06390 1330 9310
25500408 55.000 3730.0 8102  3.7100 14.600 0.66100 50206108 8570 2510 28.75 5790 4588 02190 06390 1250  9.460
3.7000e408 61.200 4700.0 1020 34800  14.700 0.66100 BTN GMMIS BB oam Ve men G 00 oo imo v
5.5100e+08 67.900 5240.6 119%  3.3000  14.700 0.66100 4301K  BTH0NH08 8350 2260 3104 690 4395 032390 06420 4290 9010
T7.8700e4+08 75400 0800.0 1450 3.1800 14.800 0.66000 402004 1.150e4+00 8020 2210 4.600 $1.80 4341 02340 06420 4200 9.020
1.1600e+00 84.000 TP00.0 1887 3.0000 14.900 0.68000 144004090 740 2070 8.61 170 4350 02330 06420 4310 .060
110000400 83.900 7880.0 1687 3.0600 5.0400 0.70900 ; fuﬂm 8210 2110 9.231 156.0 4379 032320 06420 4330 5090
A20e100  87.90 1950 12.78 2000 4401 02310 06420 4350 9140
1.3900e+00  83.300 7840.0 1815 28500  15.200 0.66100 3.M0c+00 430 1800 1840 N2 4435 03290  0.6430 4380 93200
1.6300e+00 90.000 9010.0 2088 2.7900 5.0400 0.70800 4.040e+00 1033 1860 20.86 3530 4478 02770 06420 4410 9.280
2.4700e+00 10800 11700 2988 2.8200 5.0200 0.70900 5.040e+00 1002 1710 3893 455.0 4529 03250 06420 4480 9370
3.8300e+00 119.00 14200 2805 2.5000 5.0400 0.70900 :.lmoo 1168 1810 5111 5820 4504 03210 068420 4510  9.490
G80e+00 1263 1.730 73.00 763.0 4884 02170 06430 4580  9.850
5.7200e+00 133.00 16700 3661 2.2000 5.0600 0.70900 1.3300-3  7.300e+10 2400 1.380 180 628.0 44860 02260 06560 1370 9.67T0
8.3000e+00 148.00 10300 4346 2.1200 5.0800 0.70900 580 600406 1122 1820 3104 .70 4321 0460 06570 1240  9.050
1.0200e+ 92200 4302K 230004090 1181 1.700 4.600 54.20 4328 03450 06570 1350  9.080
1 lwig ::; g; m ::g : 0700 ;;I&? gm 1300s-3  1.140e$10 1321 1610 T.187 78.70 4339 02450 06570 1350 9.080
) . . 14508410 1473 1.8%0 10.35 7.0 4350, 02440 08570 1250 9100
1.570Ge+10 185.00 30300 6120 1.8600 1.4700 0.90600 1.970e+10 1508 1.440 18.48 1340 4368 02430  0.68570 1260  9.140
2.5100e4+10 207.00 33800 7482 1.7800 1.4700 0.90600 2.500e+10 1739 1.3% 2159 1720 4387 02420 06570 1260 9170
3.6100e+10 224.00 41300 8836 1.6500 1.4700 0.90800 3.220e4+10 1868 1420 20.70 7260 4418 03400 08570 1270 9230
4.030c+10 1957 1330 41.40 890 4448 032390 06570 1280 9.280
5.0000e+10 245.00 46600 033 15300 14700 0.90200 4900410 1% 1360 5635 IO 44A3 02300 06560 1200 9350
0.4400e+10 264.00 55400 11910  1.4800 14700 0.80700 6.220s+10 2263 1290 79.08 4730 4541 03330 06560 1300 9450
8.6800e+10 284.00 60700 12800 1.4700 1.4700 0.90500 7.M0s4+10 2418 1260 1150 835.0 4845 03280  0.8560 1330 9.640
l_mm 11 00 88500 13800 1.3300 1.4700 0.89700 3.T40e-d  5.0T0e41l 4420 1020 044 503.0 4800 0.249%0 0.6040 47.30 9.900
MEH  AT0eH10 2093 1450 4.000 310 4317 02790  0.7030 4060 $.230
14000e+11  366.00 94300 11600 054400  1.4100 4307K  SM0e+10 2163 1370 6381  MI0 431 02790 07030 4060 9230
1.8700e+11 382.00 1.0600e4-05 1.2000 0.54100 1.4200 3.000s-3 TH20e410 2424 1380 o.M 52.20 4398 02780  0.JU30 4070 9.250
2.5000e+11 394.00 1.1600e+05 1.0400 0.56000 1.4000
3.0000e+11 43700 1.2300e+05 1.0200 0.50200 1.3400
4.8000e+11 500.00 1.56000+05 097200 0.55000 1.4100

6.0000e-+11 548.00 1.7300e+05 095500  0.54300 1.3800
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Table 5, Continued

Table 6. The espect ratio 6.7 cell, Ra, Nu, 0/A, and the

“PTa Ra
T+l 348 1. X0 5 03T : 5 - .
uﬁﬁu T4 1IN0 1340 SO0 4347 03780 07020 4090  9.290 experimental conditions. The density p (g/cm®), and the pressure
1870e411 M8 1100  AIF 1280 4365 0370 0700 4100 9.3
243041l 3024 100 4140 1690 4387 0ITH0  0.T0W0 4130 9.360 P (torr} and temperature T (K) from which p is deduced, are in

3.1400+11 W74 0ITIO 59.08 2230 4415 03710 07010 #1.50 2.410
3.990e+11 W36 1.000 53.08 2000 4448 02000 010 41.80 9470
E.0T0e+11 4170 09600 1228 o 4516 0.2630 0.7000 42.80 9810
6.200e4+11 4501 C0510 IT49 805.0 4815 Q2570 00000 4340 9.7T0

the 1st. column; The heating power Q, temperature difference A

T800c+1l 4833 OIS0 IS8T 6760 4747 0348  0.8980 4450  10.00 and the average temperature T for a convection state are in the
50400 4.780e+11 3803 1010 1278 44.00 4323 03650 0.8200 1600 9.880
4303K  6.150e411 4226 09340 18.40 sT.00 4330 03840 08100 1610 9.Mo last three columns.
0.080s-3 8.000a+11 4850 ON810  20.88 75.60 4340 0333 08190 1610 $.720
1.050e+12 4053 08200 3693 7.0 4351 03610 08180 1630  9.740 —_—=
1.320e413 5353 0.7760 51.11 1270 4368 03590 08170 1620 9.780 PT, Ra Nu 57 KI%S Pr m A("'Rj T Iﬁj
1.840e412 58789 0.7850 70.58 158.0 4384 03T O8O 1630 9.7 1.060t 456.0 09820 0.6360 1.150 61.90 4.394
1.970e413 6115 0.7580  100.2 200 4482 03430 08100 1680 £970 9990
2.480e4+11 6318  O.THN 1.1 710 4520  0.3%0 08000 1890 1000 4.363K 7830 O 0.6360 2.044 108.5 4417
AIT0et12 TI4S  OTHO0 M4 300 4580 0330 08080 1700 10.10 1.545¢-06 1190 1.010 0.6360 3.194 1676 4447
40400412 TTO.1 070D Nng4 5100 4704 03180 0800¢ 17.TO 103C 1410  1.000 0.6360 3.865 202.1 44768
4700417 2085 05030  480.0 ea10 4879 03000 08000 1850 1060 1670 1.010 0.6360 4.600 230.0 4.483
1.080e-1 6.740e412 849 O0ATH0  480.0 @070 4859 03120 04330 1510 1090 1790 1.0% 08360 5071 260.5 4505
2002 1.800e412 6038 OTTI0 3875 51.80 5000 03980 09680 9.160 11.70 ' iy -
4909K  LOM0e+12 TID O0BTE0 4140 €27 E08) 04000 09890 D150 1170 1950 1.050 0.6380 5388 2760  4.466
1.6400-3 1.720e413 7708 0.7800 ol.84 8740 5060 04000 09700 9140 11.70 2170 1.100 0.6360 68.261 3110 4.483
3.T00+12 TRIS 04540  86.37 1200 5083 04000 09680 9150 11.70 2330 1.140 0.6360 7.187 345 8 4537
4.390e412 8418 0.8500 1150 1490 5085 04000 09880 9150 {170 2600 1210 06360 8.177 382.7 4595
5.010e+12 8495 0.8280 1563 1920 3007 04000 09690 9.18¢ 11.70 : - : -
T.7B0e+12 794 05300 2354 2810 5061 04000 O097O0 9340 1170 70 1240 0.6360 9.231 4200 4574
1.0300413 1048 0575 319.4 330 5083  0.4000 09680 9150 11.70 340 1310 0.6360 10.3. 458.0 4.562
1.370e+13 1140 0570 460.0 4400 5062 04000 09700 9140 1070 3200 1.340 0.6360 11.53 498.0 4814
1.740e+13 1216 05200  626.1 5610 5084 04000 09090 9.180 1170
10006413 1314 05340 MIT.T €780 508 03060 09690 9160 1170 3520 1430 06360 1278 5357 4578
1.0t 3.760e+12 8488 0TON 5111 61.80 5.1 04570 1070 7120 1230 3840 1490 0.6380 1546 6185 4674
4661K  5.540e+12 9023 0.0900 088 90.80 5173 04880 1070 7120 1230 1.350¢ 1300 0.9930 0.6360 2.044 108.8 4418
2.000s-3 7.310e+12 9833 08350 1150 1200 5.174  0A5TO 1070 7120 1230 4.384K 1940  1.040 0.6380 3.104 185.0 4.447
1.030e+13 10590  O.5980 1749 1600 5178 04500 1070 T120  12.30
1.350e4+13 1141 0.5880 2474 Mo 5178 0457 1.070 7.120 11.30 1'%05 2540 1'180 0.6360 4.600 200 1475
1740413 1240 05640 5.5 0.0 5.1786  0.4570 1070  T.A20 1130 3160 133 0.8360 6.261 279.2 4.504
21006413 1323 05170 4800 3870 5160 04590 1070 TAN0  12.30 3780 1480 0.8360 8.177 3395 4.535
2TTOH13 1471 0504 6281 4530 5168 04590 1070 T30 12.30 8640 1.780 0.6360 18.40 657 4 4604
3.300e+13 1513 08I0 8177 585.0 5172 04580 1070 7330 1130
40800413 1506 04820 1098 6680 5174 DASTD 1070 1130 1230 3.000¢ 3320 1.360 06370 1.150 5180 4303
1424 24400433 1424 05130 1885 90.90 5207 OTE0 1520 3650 1400 4.384K 3760 1470 0.8370 1.308 56.40 4.397
B.I48K 21400413 1465  O04OTO 3044 136.9 5100 07940 1530 3630 1400 4540¢-05 3980 1510 0.6370 1.477 82.80 4.399
2960e-1 3BTOw4+13 1561 04490 3704 1570 5202 0790 1530 3640 1400 4160 1540 0.8370  1.565 5.40 £.401
50000413 1062 0430 3728 W40 5205 07900 1520 3640 1400 : : ' :
81006413 1766 04050 4911 3530  SZI5 078N 1530 3600  14.00 4530  1.600 0.6370 1.749 7130 4.404
7.340e+13 1883  0.4020 6381 2060 8217 07820 1520 361G 1400 4540 1.600 0.8370 1.749 71.50 4403
8.880e+13 16083 04180  SIT.7 8.0 5337 0T70 1510 3600 1400 4840 1.620 8870 0.8370 1.845 75.10 4,382
1.080e414 2008 0380 1035 “o0 5739 07740 1510 3.800 1400
12000414 2100 03700 1378 380 5333 07780 L1510 3680 1400 5190  1.640 08370 2044 8190 4407
155% 1140414 2105 03080  5%.3 208.0 5419  1.080 1.910 2.480 1600 5870 1.750 0.6370 2.362 91.40 4.388
EI48K  1.800e+14 2200 03300 81T W10 5432 1080 1900 2510 1600 8310 1.790 0.8370 2.587 98.60 4.304
3.750e-1  31.120e414 46T 03110 1m 4180 E408 1010 1.870 2.570 15.90 6770 1.830 0.6370 2.872 105.9 4.395

21670s414 W29 0.33010 1840 561.0 5.504 0900 1.830 3.630 1590 T450 1.860 0.6370 3.194 117.0 4.402
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Table 6, Continued
ﬁj-!’ Ra Nu Table 6, Continued
3010 1.360 0.6370 3455 1263 4407 .
8690 1.870 06370 3865 1379 4411 BT, p Ra Nu_ OJA[%) Pr mW) AmK) 7T (K)
1.010e404 2.090 0.6370 4600 1577  4.308 2.080e+07 20.50 08580 100.2 4710 4530
1.100e+04 2.130 17.40 06370 5233 175.5 4432 3.400e+07 91.50 (0.6580 1308 580.1 4610
1.280e+04 2.240 0.6370 6.201 234 442 3.970e+07 22.40 06580 1656 6050 4693
1.590e+04 2.380 08370 8177 2540 4428 254 8t 3.560e+07 21.40 06990 1278 5790 4417
1.930e+04 2510 0.6370 10.35 3005 4431 4.365K  4.760e+07 23.00 0.6990 18.40 7780 4427
2.270e404 2.630 0.6370 14.09 3950 4.567 4.05%¢-03 8.070e+07 2480 0.7030 25.04 98.60 4417
2.740e404 2780 1300 08370 1840 4910 4816 7.380e+07 2640 4.760 0.7030 32.71 1209 4420
33700404  2.950 06370 2504 €305  4.688 9.530c+07 2840 0.7030 46.12 158.2 4448
10.60t 2.340e4+04 2.670 0.8390 1.150 3250 4482 1.200e+08 3050 0.7020 61.84 1986 4.445
4362K  3.800e+04 2.980 0.8390 2.044 63.10 4492 1.480e4+08 32.20 0.7020 79.88 2434 4434
156404 5.810e+04 3.330 063900 3194 76.50 4479 1.720e+08 33.90 0.7010 100.2 288 8 4 460
8.570e+04 3.770 9410 0.6390 b5.398 1180  4.464 2080e+08 3560 4.000 07010 1308  357.3 4497
1.190e+05  4.150 0.6300 8.177 1650 4473 2.430e408 37.40 0.7000 165. 4280 4536
1.090e+05 4.630 06390 1278 2350 4485 2.710e+08 38.60 0.7000 20< 5048 4812
2410405 8.110 0.6390 19.96 370 4.488 3.1B0e+08 40.40 0.6990 270 8278 4.704
3.140e+05 5.580 8.580 06390 28.75 480 4523 495.8¢ 2.560e+08 37.90 0.8010 285 7130 4477
4.300e+05 0.130 08390 46.12 6530  4.604 4303K  3.140e4+08 39.90 0.8010 38 87.30 4475
29.10t 1.200e+05 4.270 06430 1150 2260 4475 8.608e-03 3.730e+08 42.10 0.8020 48. : 1033 4471
4.365K 2.860e4+05 B5.370 06430 3.194 51.70 4.490 4.730e+08 45.10 0.8020 6144 1209 4.461
4.315e-04 4.860e405 6.360 0.6430 ¢6.281 87.80 4.483 5.700e+08 4770 3.200 08010 T9.E8 158.4 4.4T4
8.010e+05 6.700 0.6430 B8.17T 109.0 4404 T480e+08 51.30 08020 1150 211.3 4.495
7.280e+05 7.140 0.6430 1035 1310 4.480 8.860e+08 54.30 0.8010 147.7 2558 4.521
2.160e+05 7.540 7.000 0.6430 1356 1640 4471 1.040e+09 56.80 0.8010 184.5 3040 4536
1.070e4+08 8.010 0.8430 16.80 193.2 4.487 1.120e409 58.60 0.8010 270.4 4115 4.836
1.300e+06  8.440 0.6430 2159 2357 4484 1.190e+09 59.10 2.830 0.7970 2254 3564 4584
1.630e+08 8.970 06430 2876 20867 4402 1.340e+00 61.10 0.7960 2704 4110 4597
2.150e+06 9.770 06430 4140 3942 4507 1.530e+00 83.60 0.7980 3455 4989 4672
2.600e+08 1040 7620 0.8430 56.35 503.9 4.541 9000t 1.440e+09 67.30 10680 5111 63.10 4720
3.370e+08 11.06 06430 7988 6638  4.623 4.631K  2.010e+08 73.70 1060 7086 8990 4744
95.70¢ 20800406 10.40 L6580 4600 4120 4489 1.760e-02 2.650e4+00 80.30 1.060 1150 1190 4748
4308K  4.250e+06 1180 08580 8177 6530  4.488 3.380e+00 8520 2.300 1060 1565 1526 4.754
L.446e-03 5.100e408 12.30 0.6680 10.35 79.60 4.483 4.170e4+00 91.30 1.060  204.4 186.3 4.745
6.640e-+06 1330 06580 1409 1000  4.409 5.040e4+00 96.20 1060 2587 2240  4.740
8.000e+08 14.20 6.580 0.6580 18.40 1238 4.481 5.960e+09 1010 1.060 3194 263.7 4.738
9.760e+08  14.90 06580 23.29 149.5 4481 7.040e400 103.0 1.060 3885 3138 4742
1.220e-4+07 15.90 0.6580 30.70 1857 4475 8.120e+00 1047 1.880 1060 4800 3660 4748
1470e+07 16.70 06580 3013 2260 4484 9.170e+00 107.0 1050 5398 4208  4.769
1730407 1760 08580 4858 2670  4.40) 9.950e+00  109.0 1190 6624 4093 4853
2.080e407  18.50 06580 6184 3231 4500

2.550e+07 19.50 4.110 06580 79.88 396.1 4.503



CHAPTER 4

SPECULATIONS, MODELS AND
THEORIES

First of all, I have to declare that this is an experimentalist’s view on theories.
So the reader should not expect too much rigour in the discussion. Often, 1
give only speculations and hand waving arguments, which I do not expect to
convince anyone but myself,

Let me start by writing the basic equations for convection:

v+(v-Viv—-Vp= Pr(V'v + Rabe;) , (4.1)
80+v-Vo=V3, (4.2)
V.v=0. (4.3)

The boundary conditions are v =10 at z = 41/2 and at the side walls, and
0 = £1/2 at z = £1/2. In these equations, the temperature @ is normalized
by A, length x by L, time t by L?/x and consequently velocity v by x/L.

4.1 Scaling relations

The word hard turbulence was first introduced by Libchaber to distinguish it
from fully developed turbulence (Heslot et al. 1987). Kadanoff and coworkers
(Castaing et al. 1989) deveioped the first theoretical model of it. They pro-
posed a model for the flow structures, from which the scaling relations between
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Ra and Nu, 8,/A, VL/x were derived and compared with the experimental
resulta. Explanations for the shape of the PDF, the resonant frequency f,
were also proposed.

The root of the problem is that in the experiment Nu scales as Rg%3%,
definitely different from the classical Ra'/®. A, we discussed earlier (section
3.1.1}, there are two well defined thermal boundary layers (thickness A) which
support all the temperature drop A, and where heat Q is transported by

conduction:
Af2

Q=x= . (4.4)
Ra based upon ) is Ray,,

3
Ry = 900/2

— (4.5)

Obviously it has to be small enough so that the boundary layer is stable. But
what is its lower limit? A marginal stability theory has been proposed by
Malkcus (1954a, b; 196%) and furtber developed by Howard (1966). The main
ides is that the layer i stable but will tend to grow by diffusion, thus Ray is
set at the critical valuc Ra,

Ray = Ra_ , constant . (4.6)

The value of Ra, can be extrapolated (Chandrasekhar 1961} from known re-
sults for simple layers (Pellew & Southwell 1940; Reid & Harris 1958) and a

reasonable value is Ra, a 10°. From the above relations (eq. 4.4, 4.5 & 4.6),
then

Ra
T Ra,)m . (4.7)
This 1/3 relation has been supported by Townsend (1959), Goldstein &

Tokuda (1980). But the Raq ranges in Townsend's experiment was too small

Ne = (

165

(3 x 10° < Ra < 7 x 10%) to critically check the power law; the power law in
Goldstein & Tokuda's experiment was deduced from cells of aspect ratio rang-
ing from 0.57 to 4.5. Deardorff & Willis (1965) have observed that Nu changes
non-monotonically with the aspect ratios, and reach an asymptotic value for
large aspect ratio. In table 2, Threlfall's data compiled with ours show similar
nspect ratio dependence. On the other band, most of the experiments show
that Nu has a scaling relation with Ra smaller than 1/3 (table 2). Our Nu
measurements in three different cells show unambiguously that the exponents
are smaller than 1/3. So the marginal stability theory is not valid,

A convection cell is a integrated system, all parts are coupled together.
Therefore it is unlikely that the boundary layer is marginally stable by itself.
The very idea of the scaling theory proposed by Kadanoff et al. is to consider
the interaction and matching of the boundary layer with the central region.

Since the boundary layer temperature drop A is orders of magnitude differ-
ent from the temperature fluctuation O, in the central region, a mixing layer
of thickness d,, has to be introduced between as a buffer. In this mixing layer,
the pieces of the detached boundary layer accelerate, break to smaller ones,
and match their velocity and temperature with those of the central region. Let
the final velocity of a detached boundary layer of temperature A be wy, which

can be derived from the balance between the buoyancy force and the viscous

force:

god = v3t (4.8)
then

w, = &'\29_ ) (4.9)

v

The time scale associated with the boundary layer is A?/x, and the mixing

i
}'a
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layer thickness dy, is just the product of the velocity wy by this times scale

dn = gads (4.10)

VK

Suppose the pieces of the detached boundary layer of temperature A breaks
to smaller ones of temperature 8., the conservation of the heat flux through

the boundary layer, the mixing layer and the central region leads to :
xAl) = uibn = cucd. , {4.11)

w; has already been expressed in terms of A in eq. 4.9, therefore 8, can be
expressed as

6, = ;:% . (4.12)
The right hand side can be regarded as the temperature scale of the boundary
layer. So far there are only three independent equations (one in eq. 4.9
and two in eq. 4.11), but five unknowns: A, wy, uc, 6, and G_C, so further
assumption have to be made. The mixing layer temperature fiuctuation B, is
then assumed to matc  the central region one O, (or equivalently w;, matches
with u,):

6, = 6, . (413)

Since the central region is turbulent enough to neglect viscosity at large scales,
it is natural to assume that the velocity there is the free fall velocity:

. = \J9aB.L . (4.14)
Now the number of equations matches the number of unknowns, leading to :
Nu o« Pr-‘"Ra"" ; (4.15)

0./A o« Pr¥"Ra™V" (4.16)
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u.Lix < Pr"Ra™" . (4.17)

The scaling index 2/7 (0.286) for Nu respect to Ra is extremely close to
the experimental value 0.285, and -1/7 (0.143) for temperature fluctuation is
close to the experimental value —0.14. We are unable to measure the velocity
fluctuations to compare with the theory. However, it has been measured by
Tanaka and Miyata (1980) in a water experiment to scale as Ra®**. This
scaling theory corroborates the scaling relations of the experimental data well.

After this theory was proposed, we have discovered the presence of a large
scale flow in the convection cell, which has been reported before by Krishna-
murti and Howard{1981). Our measurement shows that the large scale velocity
scales with Ra with an exponent 0.49, different from 3/7 proposed for the fluc-
tuation velocity. In fig. 81 (a), we plot the (VL/x)Pr-%"Ra=>/" as a function
of Ra to show the difference. However, it is against my intuition that the two
velacities scale differently in the self-similar hard turbulence regime. A more
serious question is whether the large scale flow can be contained in the scaling
theory, and if so, what is the relation between the thermal boundary layer and
the viscous boundary layer.

Shraiman and Siggia (1990) answered this very question. In their model,
besides the thermal boundary layers, which bear all the temperature drop A,
a viscous sublayer layer and a turbulent boundary layer have been introduced.
It has been assumed that the thermal boundary layer lies completely in the
viscous sublayer of the turbulent boundary layer.

They first derive from the basic equations (eq. 4.1 & 4.3) the exact relation
between the Nu and the average velocity dissipation.

{(V¥))(L/x)* = (Nu—1)Ra . (4.18)

Then from eq. 4.2, they relate the heat flux to the rate of shear in the viscous
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Figure 81.  Compare the scaling of VL/x with theories. {a)
(VL/k)Pr=1" Ra=%" is plotted against Ra to show VL/x behave differently
with Ra¥". (b) (VL/x)Pr=31Ra-3" /(2.5In(VL{v) 4 6) is plotted to show
that the logarithmic cor ction fit data well
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boundary layer, i.e., Nu(Re) and use standard turbule -* boundary layer theory
in conjunction with eq. 4.2 to yield Re(Ra) and Nu(Ra). The final results
are

Nu = 0.21PrVRg" (4.19)
;%,E = 0.MPrY" RaV(2 5 1n(Re) +6) . (4.20)

The first relation is identical to the corresponding one in the scaling theory,
which describes the experimental data well, The second one differs only by a
logarithmic term. The 3/7 (0.429) exponent for the velocity is smaller than
the experimental value 0.49, the extra logarithmic term brings the theory
and experiment closer, as shown in fig. 81 (b). This theory has also deduced
analytically that the temperature fluctuations scale with Ny with an exponent
1/2, that is again identical to the former theory.

In my opinion, the two theory complement each other. The first one lies
upon general scaling argument and dimensional analysis, it must be close to
the truth. However, it does not give a detailed physical mechanism for the
existence of the mixing layer and the matching of the temperature and velocity.
It is not strange that some logarithmic factors are left out in such a simple
analysis. The second one starts from basic equations and a specific model, and
derive rigorously the scaling relations. But it is hard to get the general vision
as that from the first one. Naively speaking, fractions with denominator 7
are uncommon, it must be more thar coincidence that the two theories give
essentially the same scaling exponents. It seems that the turbulent boundary
layer in the second theory is playing the same role as the mixing layer proposed
in the first one. It would be nice to unify the two theories.

Shraiman and Siggia’s theory is valid when the thermal boundary layer is
thinner than the viscous one. Since the thermal boundary layer changes as

-

oy
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Ra~%7 and the viscous one as Ra~¥7, there must be a cross over between the
two at a large enough Ra (estimated as {10'? ~ 5 x 10'4)Pr*). When this cross
over occurs, not only the acaling relations should be different, the local temper-
ature and velocity signals may also change their characters. We do observe a
change of frequency power spectrum of temperature fluctuations around 10",
but the scaling relation of the Nu, 8./A and velocity are invariant.

She (1989) has proposed a theory with only a thermal boundary layer and
central isothermal region. The basic assumptions is that the thermal boundary
thickness ) is oqual to the dissipation length scale of the central turbulence.
He starts from a scaling relation of the velocity fluctuations v, of length I,

w = eBPBANYHe (4.21)

here ¢ is the energy trausfer rate and p is interpreted as a measure of the
deviation from the Kolm 'gorov turbulence. Equating the heat flux in different
regions, he is able to e press the scaling exponents of Nu, v. and 6./A in
terms of p only, which i further determined as —1 by balancing the buoyancy
force Qv with the kinet . energy v®/l. The exponents derived are exactly the
same as the ones given by Castaing ef al. (1989). In my opinion, it is hard
to justify the basic assumption in this theory, but it is worthwhile to check
more carefully the connection with the other two, and the k~* kinetic energy
spectrum predicted by this theory.

The validity of all above theories lay upon the stability of the boundary
layer. One can derive from eq. 4.5 & 4.15 that Ray increases as Ra'/". To
save the stable boundary layer, it has been proposed that the shear in the
convection cell has increased the critical Ra (Castaing et al. 1989). Zaleski
(1991) further develops this idea by employing the Richardson number into
the instability analysis.
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However, even though Ray, is less than 1000 for Ra < 10' (fig. 50 and
table 5), our bottom bolometer detecta plumes as soon as it gets out the
boundary layer at Ra = 10° (fig. 54). In visualizing the convections in water,
Chu & Goldstein (1973), Solomon & Gollub (1990) and Zocchi (1990) found
that the boundary layer is not stable: they release thermal plumes. Shelley
& Vinson (1991), Deluca et al. (1990}, Balachandar et al. (198¢) have also
shown the releasing of plumes in numerical simulations. Even the very scaling
theory assumes the detachment of the boundary layer. So I think that the
thermal boundary layer is unstable in a static sense, but stable dynamically:
once the boundary layer thickness X exceeds a critical value, it injects plumes,
then relax back and accumulates heat for the next eruption. The relevant
question should be how the boundary layer becomes stable against convection

by releasing thermal plumes.

4.2 Power specirum

First of all, let us introduce the two fundamental concepts of turbulence: cas-
cade and scaling. Only with these two concepta, we can have a proper language
for later discussion (see Frisch & Orszag 1990}.

Richardson {1922) was the first to propose a hierarchical model of turbu-
lence. In his model, the motion of the largest length scale is driven by external
force. It becomes unstable and thus produces ones of smaller length scales,
which then become unstable and produces even smaller ones. This process
continues until the viscosity becomes important. This qualitative picture is
the dominating one in turbulence study since then.

Based on this picture, Kolmogorov (1941, 1962) (see Monin & Yaglom
1975; Tennckes & Lumley 1972) developed a scaling theory. He first assumed
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that there exists a range of length scales, where the flow is homogeneous
and isotropic. In other words, the inhomogeneity and anisotropy of the large
scale forcing has no effect on the subsequent smaller scale motjons. Therefore
the only relevant physical quantities are the energy transfer rate £, and the
viscosity ». Then an inertial range was sssumed, where the energy transfers
from larger scales to smaller ones without dissipation. The lower limit 5 of
this inertial range is when the viscosity becomes important, i. e., Re, 1. He
then expressed the energy transfer rate €1 of length ! in quantities only local
to /, specifically ¢; = (v)?/I.
In the inertial range, ¢; is the constant £, thus

u = ()PP (4.22)

Consequently, the power specirum P(k), which is Fourier transform of the

correlation function, satisfies the famous —5/3 power law:
P(k) o ()¥Pk%3 | (4.23)
The dissipation cut-off length n is decided from Re, = I as
n = (/). (4.24)

The inertial range thus increase as €'/4, or Re®/*,

In problems involved temperature as well as velocity, the basic cascade and
scaling concepts are still valid. Bolgiano(1959) and Obukhov({1959, 1962) (see
Monin & Yaglom 1975) have used these concepts in studying turbulence in
stably stratified medium. In the range where the flow motions are indepen-
dent of the detail boundary condition and exterpal forcing, the only relevant
physical quantities are v and «, the kinetic energy transfer rate £, and the
temperature “energy” transfer rate ¢4, here ¢, is v/l as defined before, and
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€+ = 67/t = v/l. In this system, there exist exchanges between the kinetic
v* and the potential energy gadjv. Considering this exchange:

U;all = 01!}‘ ' (4.25)

v.ﬂ,’/l =& , (4.26)

here £ is constant (derived from eq. 4.2). These two equations lead to the
new acaling relations,
= E.l”laﬂ ' (427)

O = b8 (4.28)

However for small enough length scales, the buoyancy force becomes unimpor-
tant, 9 acta just like passive scalar. Then the right hand side of eq. 4.25 is
replaced by constant ¢, and the Kolmogorov scaling relations are recovered,

v =g, P {4.29)

O = )%, -Vop3 (4.30)

here £, and &4 are constant. The cross-over length I, between the two differ-
ent scaling regimes (called the buoyancy subrange and the inertial subrange

respeclively) can be constructed from a dimension analysis as
L o ()" (ca)¥* . (4.31)

For length acales larger than /,, buoyancy effects dominate the dynamics, and
for smaller length scales Kolmogorov behavior prevails. Summarize the above

results for wave-number power spectrum, for k < 1/,
P(k) < kW5 (4.32)

Pa(k) o k™7 (4.33)

S E——

A ¥ T
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and for k » 1/I,
P(k) o k7813 | (4.34)

Py(k) < k75 | (4.35)

Although the above scaling analysis was originally for stable thermal strat-
ification, it can be equally applied to free thermal convection (the unstable
stratification). Thomae (1989) has carefully checked each step of the scaling
arguments, Proccacia et al. (1990) and L'vov & Falkovich (1991) have derived
in a different approach from the basic equations, they all end up in exactly
the same scaling relations. However the estimation of I, as a function of Ra
seems non-trivial, Thomae gives I, oc Ra~%"® and Proccacia et al. Ra~%%,

Shraiman and Siggis (1990) have a different point of view. They checked
the Ra dependence of the prefactors in Obukhov-Bolgiano’s scaling relations
{eq. 4.27 & 4.28), and concluded that they will lead to an inefficient kinetic
energy dissipation required by the basic convection equations (eq. 4.1 - 4.2).
Although their view is illurninating, I am not convinced by all of their argu-
ments, particularly the ones deducing the kinematic energy dissipation from
the thermal diffusion cut-off length, instead of L (eq. 4.31), and treating the
correlation {v,(r)T(0)) as constant for large r in the Karman-Howarth analy-
sis. Recently Grossmann and Lohse (1991) have solved the basic equations for
thermal convection using & Fourier decomposition with a geometrically scaling
selection of wave numbers. They did not find the buoyancy subrange. Siace I
have not understood this work, I will not comment on it.

Most of the theories (including all above) and simulations are about the
wave-number power spectrum. But we measure the turbulent signal at one
fixed point which only yields a frequency power spectrum. The generally ac-
cepted bridge between the two is the Taylor “frozen flow” hypothesis (1938),
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which states that in the presence of fast steady flow, the smaller flow struc-
tures can be regarded “frogen”. Thus the flow structures along the sweeping

direction are simply mapped onto the time series measured by a fixed probe.
Then the wave-number k and the frequency f are related as

f=tkup , (4.36)

here vy is the sweeping velocity. This hypothesis works well in wind tunnel
turbulence experiment. For this thermal convection, the condition for Taylor
“frozen flow™ hypothesis obviously doea not hold.

However | suspect that even without a fast steady sweeping flow, a lin-
ear relation between f and k atill exists statistically in lower frequency range.
Since the velocity of large scale is large but change slowly, we can regard it
as the steady sweeping velocity in a short time interval. Thus within this
time interval, the “frozen flow” hypothesis holds and the wave-numbers are
proportional to the frequency. For an other time interval, the large scale flow
has changed of course, the coefficient of the linear relation will be different
from the one in the previous time interval. But statistically, a linear relation
between f and k may be valid, with the coefficient being some kind of statis-
tics of the large scale flow (for example /(7)) (Tennekes (1975) has given
similar argumests). This apeculation is supported by the fact that, the power
spectrum in the side wall region, where there is a steady large scale flow, is
essentially the central one shifted to higher frequency. Of course, it would be
nice to measure the wave number power spectrum directly and find a relation
between {(T(t,r + x) = T(2,2))?*)¢ and ((T(t + 1,2) — T(t, )"}

There are a few theoretical effort directly on the frequency power spectrum.
Following the arguments for wave number power spectrum (Monin & Yaglom
1975), the frequency power spectrum in the reference frame of moving fluid
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elements, called Lagrangian spectrum has a power law f=2. Using renormal-
ization approach, Yakhot ef al. (1984) pointed out that the power spectrum
measured at one fixed point in lab frame, i. e. the Eulerian spectrum is essen-
tially the same as the Lagrangian one. Thus it has a power law f~2, different
from the model given by Tennekes and our above speculation. Nelkin & Tabor
(1990) have discussed the possibilities to resolve the controversy.

Experimentally, the frequency power spectrum of temperature fluctuations
has an invariant shape for Ra < 10M: power law with an exponential cut-off.
The exponent of the power law is —1.35 + 0.05, the range increases as Rq?3

For Ra > 10", the high frequency part of the power spectrum changes with
Ra, and seems to reach asymptotically another power law of exponent -2.4,
We have phenomenoclogically used a multi-fractal like transformation (Wu et
al. 1990) to bring all the power spectra together (fig. 82)

F =log(P/Py)/S | (4.37)

a =log(f/fo)/S , (4.38)

where § is a constant log(10"!/Ry) for Ra < 10", and changes as log{ Ra/Ry,)
for Ra > 10", Ry, P, and fo are Ra independent parameters:

Ro=1x10° Py=(5840.7) x 107, fo=(11£02)x10° . (4.39)

The most important parameter among the three is R,, which decides how
much the curve, at a given Ra, should be bent under this transformation.
Fp and f; merely determine the relative positions of each curve. Since the
transformation depends on log(R,), R, being any value between 8 x 10" and
8 x 10® leads to good superposition, but Ry = 1 x 10® is alightly better. It ia
interesting that R, is about the satne Ra of the soft-hard turbylence tranaition.
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Figure 82. F — o plot of the power spectra for 1 x 10" < Rg < 4 x 101,
F = log(P/R)/S, a = log(f/fo)/S and § = log(Ra/R,). The curves are for
Ra =173 x 10, 6.0 x 10", 6.7 x 10", 4.1 x 10" and 4.3 x 10, Iy this plot,
the shorter piece is for larger Ra. win f.
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I have to point out, first, due to the limitation of both the fa range and the
frequency range (there is always not enough experimental range, of course),
we are not sure that this transformation is correct asymptotically. We are a
little bothered by the fact that the larger Ra, the smaller the range it covers.
Secondly we have no ides about the physics underlying it at the time we did
this transformation.

Two different theories by Castaing (1989; 1990) and Frisch et al. (1983
1991) have lead to power spectra P(k) which are Re invariant under the trans-
formation F = log(P(k)/Po)/ log(Re/Ro) and a = log(k/ko)//log(Re/ Ro)-
This transformation is essentially the same as what we suggested in eq. 4.37
& 4.38.

Castaing and coworkers (Castaing 1989; 1990; Castaing et al. 1991) started
from an extremum principle for the energy transfer rate ¢ as a function of k.

¢ is then found to satisfy a log-normal distribution
1
Ti(e) = —ln’*(efem}f2l?) , 4.40
(e) m;exp( ln'(efem)/2T7) (4.40)

with T o k. The most | robsble value £,, has to be g9 exp(—I'?/3) in order
to keep the average €o o stant. S has been interpreted as the co-dimension
of the dissipative structu es, which is 5/ In{ Re/R,) for large Re and constant
for amaller one. They then followed the Kolmogorov's scaling relation P(k) =
Ce3k~5/3 which led to

W)

which has a Re independent form F{a) = —5/3a — exp(a) under the F —
o transformation similar to eq. 4.37 & 4.38. By changing the -5/3 to 1.3
and adding a prefactor in front of the last term, this form actually fits our
experimental data well (Castaing 1990).
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Developing a multifractal model proposed by Parisi &z Frisch (1985), Frisch
& Vergassols (1991) have shown that the the viscous cut-off length [y
Re~1/(+A) here k is the scaling exponent in a continuous range (1/3 for Kol-
mogorov’s scaling relation). In a range much larger than the Kolmogorov
cut-off, the power spectrum still obeys the ordinary -5/3 power law with a
small mutifractal correction. However in a range much smaller, the power
spectrum changes it shape with Re, which again can be brought together by
the above F — ar transformation.

Although both models are similar in leading to F — o type power spectra,
Frisch’s model has this F — a behavior only in the dissipative range of the
power spectra, while Castaing’s model exhibit it in the whole range. It seems
to me that the power spectrum form in Castaing’s model is more similar to
ours. However one has to remember that both theories are about the wave-
number power spectrum, the connection to frequency one is not clear, unless
one applies the equivalent “frozen flow™ hypothesis discussed before. In that
case, the Bolgiano-Obukhov's scaling exponent —7/5, instead of Kolmogorov’s
~5/3, has to be used to explain the power law of —1.35 £ 0.05. Also, hoth
theories have to face the theoretical challenge (Foiss & Temam 1989; Foias
et al. 1990) that the power spectrum has to decay as fast as exp(—k/y) to
prevent the velocity field from diverging.

In a recent work by Procaccia et al. (1991), an unified mechanism is sug-
gested for the soft-hard turbulence transition and the change of power spec-
trum at Ra = 10". The main ingredient of the analysis is a calculation that
suggesta that isothermal surfaces wrinkle, or appear fractal, above an inner
scale A,, which diminishes upon increasing Rayleigh number. It is estimated
that X, goes through L/2 at Ra = 10*, where soft-hard turbulence transition
occurs, and the mixing layer thickness at Ra = 10'!, where the second tran-
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sition occurs. Thus it is speculated that the crossing of each relevant length
scale create a turbulence transition. This theory tries to explain why there
are transitions, but it does not give any explanation to the actual behavior of
the power spectra. It seems to me that there is no concrete correlation to the
experimental results.

After the discussion on the abave three theories, [ want to remind the reader
of the poesibility that the power spectrum behaviors may simply fall into the
prediction of Bolgiano and Obukhov. First, No one has any faintest clue on
how to connect & power law exponent —1.3540.05 in frequency power spectrum
to the Kolmogorov -5/3 in wave-number one. it seems to me more than a
coincidence that the power law exponent --1.35 is so close to —7/5 suggested by
Bolgiano and Obukhov for wave number one, it may well be that the equivalent
“frozen flow™ hypothesis does work in the buoyancy sub-range. Then suppose
the length I, (eq. 4.31) becomes larger than the diffusive cut-off at Ra = 101!,
then Kolmogorov inertial range will emerge, and the power spectrum begins
to change at high frequencies. In this case, F — o transformation junt describe
this changing process. To answer why the second power is —2.4, different from
—~5/3, 1 have to argue that the equivalent “frozen flow” hypothesis no longer
works in high frequency range since the cotresponding motions may change
faster than the sweeping time. For this frequency range, frequency power
spectrum has to be studied directly.

Conclusion: there is no theory to explain directly the change of the fre-
quency power spectrum at Ra = 10", and the behavior below and above.
The main problem is the disconnection between the frequency and wave vec-
tor power spectrum. Clearly experimental effort are needed to measure the
spatial behavior, as well as to increase the Ra range and signal to noise ra-
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tio. On the other hand, it is challenging to develop theoretical models for the
frequency power spectrum.

4.3 Probability distribution function

In most of the turbulence studies, velocity and other passive scalar fluctuations
obey a Gaussian distribution (Monin & Yaglom 1971), although their deriva-
tives may have an exponential tail (Van Atta & Chen 1970; Kuo & Corrsion
1971; ). Therefore it came to be a surprise that the temperature fluctuations
measured at one point in the aspect ratio ! cell has a very clean exponential
distribution. The fluctuations in the other two cells also exhibit exponential
tails.

It is well known that & large number of stochastic uncorrelated variables
will lead to a Gaussian distribution; the presence of an exponential distribution
implies that the flow motions are strongly correlated. With PDF unchanged
after low pass filtering, we are convinced that a PDF is mainly determined
by the low frequency, large amplitude fluctuations. In a general turbulence
system, the large scale structures are influenced by external forcing, and no
general correlation and scaling relations are expected in this range, therefore
a Gaussian distribution is a natural outcome. On the contrary, in free ther-
mal convection system, the only external influence is the temperatures of the
two plate tempetatures, the velocity and temperature fields are self-generated,
therefore correlations may appear even in the large lengih scales. In hard
turbulence regime, the velocity of the largest scale (the cell size) is measured
to be stable in the aspect ratio 1 cell, therefore the correlation may extend
to wide range of length scales. A pure exponential distribution may reflect

the intrinsic correlations of the large scale structures. However an exponential
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distribution can be easily contaminated by the flow of the largest size. In the
aspect ratic 0.5 and 6.7 cell, the flow of the largest scale is less stable, and
the PDFs are less stretched than an exponential. The extreme case is soft
turbulence, where the flow of the largest scale are unstable. Dominated by
these instabilities, the PDF behaves as Gaussian.

Io the paper by Castaing et al. , & simple model is given to explain the
exponential distribution. It describes that thermals in the mixing zone are
injected intermittently into the central region. Between these aspiration events

the mixing zone is iicated at a constant rate and its temperature grows as
Tm(‘) « (t - tl) 1 (442)

where £, is the time of the last emission. It is further assumed that the time
interval between two aspirations satisfies a Poisson distribution. From the
exponential distribution of waiting time, an exponential distribution of tem-
perature T, follows. However, from the time series of the temperature fluctu-
ations, it is hard to classify an “aspiration” event, thus the basic assumptions
of these model: well defined aspiration and Poisson distribution of the time
interval, can not be justified,

Sinai and Yakhot (Sinai & Yakhot 1989; Yakhot 1989) have proposed a
theory to explain the exponential distribution. Starting from the basic equa-
tions, they have derived analytically the recursion equations for all moments
of the temperature fluctuations. Then they express the PDF in terms of the
conditional averages of (v,8) and (v?), which have to be assumed according to
physical pictures before a specific PDF can be predicted. To get an exponen-
tial distribution, they assume that there is a characteristic velocity in the cell.
This assumption, the essence of this theory, comes from the observation of a

large scale velocity in the helium cell, and visualization of plumes emitting
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with a well defined velocity from the boundary layer in water cell (Gross et
al. 1988; Solomon & Gollub 1990). With the velocity measurement technique
introduced early (section 3.1.7), we are unable to see any characteristic ve-
locity at the center of the cell, although more direct measurement technique
is desired to draw a conclusion. In any case, the idea is illuminating that
plumes, which are coherent objects in thermal turbulence, are responsible for
the exponential distribution.

Pumir, Shraiman and Siggia (1990) have proposed a passive scalar model.
With local mixing, transport by random advection and an imposed, an ex-
ponential distribution can come out of this modei. However, the model is
just & one dimensional model equation and can only be compared with the

experiment only in spirit. There is a need to develop a more realistic model.



CHAPTER 5

CONCLUSION

We have studied the development of thermal turbulence in closed cells. Two
distinct turbulence states, soft turbulence below Ra = 10° and hard turbu-
lence above have been discovered. At Ra = 10'!, change appears in local
temperature signals, especially in its power spectrum.

Soft turbulence motion is essentially due to the dynamics of large scale
structures, which are shown by our experiment to be complex and non-universal.
Lorenz (1963) has demonstrated that complexity can be attained with only
three modes. Despite of the progress in understanding temporal chaos and
spatial-temporal dynamics of one dimension systems in the last ten years
(see, Hao, 1984; Manneville, 1990), the dynamics of three dimensional systems
seems still formidable. The difficulties come from the fact that the number of
modes involved is not small enough to be solved analytically, nor large enough
to be treated statistically. However, our experiment did show some encourag-
ing results. In small aspect ratio cells where turbulence starts after temporal
chaos has fully developed, the spatial coherence diminishes in a unique and
repeatable scenario. Unlike chaos, all statistical measures in soft turbulence
only depend on Ra (possibly Pr) and show no sign of hysteresis. More notice-
ably, in the center region of the cell, the probability distribution function is
Gaussian and the power spectrum can be characterized by an invariant cut-off

tail and a low frequency plateau. Our impression is that soft turbulence can
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be attacked otatistically, but detail boundary conditions have to be taken into
account.

As Ra increases, soft turbulence always simplifies its large scale structures
and turns to hard turbulence. The dynamics in hard turbulence is dominated
by individual plumes released from the thermal boundary layers, and not by
connected channels between the top and bottom. Ope of its most impor-
tant characteristics is the intermittence in the local temperature signals: large
amplitude fluctuations well separated from the small amplitide ones. Hard
turbulence is a self-similar, strongly correlated state, where the probability
distribution function is invariant and exponential-like. Up to Ra = 10", the
Power spectrum is chazacteriged by a power law of exponent -1.4, whose range
depends on Ra, and an exponential cut-off tail. Note that i large aspect ra-
tio cells, this shape of power spectra is reached only ssymptotically with Ra,
as the effects of the large scale flows decrease gradually. The Nusselt num-
ber, velocity and rms ter perature fluctuations have simple scaling relations.
The scaling exponent for Nusselt number is certainly smaller than 1/3, and
its asymptotic value is 0 .86 (table 2). The theories for the scaling relations
are satisfactory, but there is no unified model to explain all aspects of hard
turbulence. '

At Ra = 10", a transition has been discovered in the high frequency part
of the power spectrum. It has been confirmed in other measures related to
local temperature signals, such as the temperature dissipation Q2 (eq. 3.25),
the probability distribution function of the temporal difference (Ching, 1991).
Except for these, we have not observe any changes in the other measurementa
at this Ra, such as the Nusselt sumber, the rms temperature Huctuations.
This is not surprising since the change at high frequencies, which correspond
to small scale structures, has small impact on the average quantities. This
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new transition has been suggested to be due to the fractalization of dissipa-
tion structures or isothermal surfaces (Castaing 1990; Procaccia ef al. 1991).
But the understanding is only in its early stage both experimentally and the-
oretically,

Our experiment has shown both the richness and the simplicity of thermal
turbulence. But thermal turbulence is by no means fully understood nor the
search exhausted. New experimental techniques are needed to understand
hard turbulence better, to verify the changes at Ra = 10" and to search for
the asymptotic developed turbulence.

First, moving frame for bolometers should be bui t to study spatial cor-
relations along various directions. This is necessary ot only for connecting
theories and experiments, but for better understandir 1 of the flow structures
as well.

The bolometers for local temperature measurementa should be improved.
For Iarge Ra, the danger that & bolometer would perturb significantly the
flow has always been our great concern. Thus small bolometers are certainly
desired. The size of the present ones is 200 um, certainly larger than the limit
of modern micro-mechanics and semiconductor technology. Also, a large signal
to noise ratio in turbulence studies is always helpful.

Measuring physical quantities other than temperature, such as velocity and
pressute are necessary and interesting. Piezoelectric transducers for pressure
measurement ate currently under test in our laboratory. Optical methods
(such as laser Doppler velocimeter) may be employed to study the velocity
field. With improved bolometer size and spacing, the bolometer pair we used
to measure slowly varying velocities could be feasible for fast ones. The vigu-
alization of the flow structures may be another helpful avenue.

One of the most important aspects in turbulence studies is data analysia.
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So far, we are limited to the conventional analysis, such as power spectrum and
probability distribution function. They are often inefficent in characterizing
the time series. There is & nead for new statistical measures for turbulence
signal analysis, the recent application of the wavelet transformation in one of
these efforts (Grossman & Morlet 1987; Argoul of ol 1989).

It is certainly interesting to reach larger Ra to study the turbulence states
beyond hard turbulence, and simulate the convection of the earth atmosphere
in the laboratory. Thermal turbulence, a general natural phanomens, deserves
to be studied in a 10 meter high cell some day, may be in the liquid-helium
storage tank in Fermi Lab.

APPENDIX

THE NON-BOUSSINESQ EFFECTS

In this appendix, we provide our paper on the non-Boussinesq effects.

e
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Non-Boussinesq effects in & Rayleigh-Benard convection system lead 10 & symmetry breaking be-
tween the top and the bottom boundary layers. We have found that the two layers sdjust their tem-
perature drops and the (hicknesses & such thal their temperature scales ww/gak' are equal, where o

| aceelerpiion, and v and « are the kinemal-

is the thermal M gisthe gr
1¢ viscosity and thermal diffusivity. respectively

1. INTRODUCTION

In most of 1he sudies of thermal convection, the
Oberbeck-B: 24 (OB app has been a-
sumed; i.e,. the temperature dependence of all the Ruid
properties other than the fuid density wre considered

. This approximation simplifies the convection
problem grestly. However, there are cases where this ap-
proximation is ao longet valid, hence it is matural to
study how it infl the experi I results. Fur-
thermore, since the symmetry between the top icoldert
and bottom (holter) boundary layers is broken, some rela-
tions, which are hidden in the OB case, may be revealed.
This in Lurn may shed some light on the OB case.

When the Rayleigh number R is less than 10°, the heat
is framsporied by conduction. [n this case, the tempers-
ture profile, heat flux, ctc., can be cakulsted analytionlly
from the diffusion equation. When the convection starts,
the situation becomes nontrivial. A few researchers’ ~'©

cal cells, with dismeters 8.7, 23, and 20 cm, heights 8.7,
40, and 3 cm. thus aspect ratio 1, 0.5, and 6.7, respective-
ly. Of these three ceils. the one of the lazgest aspect ra-
tio, dinmeter 20 cm and height 3 cm, has the best temper-
ature regulation. Thus we shall focus on this cell in this
paper. The cell sidewall is Z-mm-thick stainiess steel.
The sidewall heat transport is of the same order of mag-
nitude as the hest conducted by the gas, thus much
smalier than the heat transported by convecting gas.
Both the top and bottom plates arc made from oxygen-
free high-conductivity copper. The bottom plate has a
thickness of 2.0 ¢m and the 10p plate of 6.4 cm. GR-
200A germanium resistsnce temperature sensors [rom the
Lake Shore Cryotronics, Inc.. are used to measure the
temperatures of the plares. At 3 K, their typical resis-
tance is sround 1.5 k), and the sensitivity is about )
mK/1, They are embedded in both plates, several mil-
limeters away from the inner surfaces. The method of
measuring the thermometers, as well a3 the Jocal temper-
sture bol 3 int the fluid, has been described in Refl.

have studied the non-3B ¢fects near the onset of
tion. However, as the flow in the convection cell reaches
» different turbulence state, non-OB effects may have
different behaviors. In this paper we shall discuss the
aon-OB effects in hard turbulence'' (R > 10"}, far sbove
the onset of convection.

In Sec. I1 of this paper, we shall briefly describe the ex-
perimental selup and procedures. The situation where
the non-U. ¢ffects appesr is explained. In Sec. 11, we
present the experimental results, such as the asymmetry
of the 1wo boundary lyers, the strange behavior of the
Nusselt number, and the rms temperature fluctuations.
Finally, in Sec. 1V, we discuss three different models.
Since the equations svailsble are not enough to determine

of

12. The entire cell is in & vacuum jacker with its 10p platc
in thermal contact with a liquid-helium bath. The top
plate is regulated at a given temperature around 3§ K.
The 1op-plate temperature Auciustion is a fraction of |
mK for low Rayleigh numbers and can reach a few mK
for the highest Rayleigh numbers. When not healing the
bottom plate, the temperature difference of the two plates
is not zero snd increases slightly with the top-plate 1em-
persture, but the maximum difference is bess than 5 mK.
We think that this difference is due to the imperfect vacu-
um. By spplying & constant dc heat to the bottom plate.
2 temperature drop 4 it imposed. The cell is flled with
helium gas of various densities. The density of the gas i

uniquely the temperature drops and the thi
the iwoe boundary layers, one more relation has to be pro-

' puted by § the equilibrium pressure with an
bsolute p ductor of MKS Instrumenis. [nc.,
and the ure of both plates. The Auid properties

posed. We discuss the cquality of the Rayleigh bers,
the equality of the velocity scales, and the equality of the
temperature scales, for the iwo boundery layers. The last
one is provied to be the best experimentally. The conse-

and the relations are based on the equations and tables
given by McCarty,'""'* who has reviewed most of the
works on helium-gas properties.

The 1 parameter of this experiment it the Ray-

quences of the last modet are di d and p
with the experimentsl resuits,

1. EXPERIMENT

We have periormed the low-temperature helium-gas
convection experiment in three different vertical cylindri-

4
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where a is the thermal expansion coefficient. g is the
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TABLE 1. Experimwntal values of the Rayleigh nomber &; Nusselt number ¥ tem
ture drops across the top and botvosn bowndary
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‘ perature difference A: the ratio of th temnpera-
layers x; and the Muid properties in ceniral region ¢, top 1, and bottom & bow:nty
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gravitational acceleration, L is the height of the cell. 4 is
the teviperature drop across the cell, and v and « are the
kinernatic viscosity and thermal diffusivity, respecrively.
In the OB case, the fuid propeniies 1hroughout the cell
are the same, ihus there is no smbiguity in the definition
of Rayleigh number. However. a3 the fuid properties
vary with the temperature across the cell, we shalt
redefine the Rayleigh number based on the fluid proper-
ties of the ceniral region of the cell. Alihough this choice
is arbitrary, il seems most reasonable since Lthe central re-
gion occupies 1he majority of the cell volume. The Ray-
leigh number can be increased by adjusting the iempers-
ture diff A, or by changing the fluid properties. As
the gus approaches its critical paint by either increasing
the gas density or decreasing the avarage temperature. a
mereases, v and x decrease, consequently the Rayleigh
number increases. In this experiment, we vary A beiween
50 and 700 mK, but the Rayicigh number spans eight de-
cades, from 10" ro 10", However, for 100 large s gas den-
sity or (oo low a temperalure where the gas is clase o iis
critical point, the fluid properties become so sensitive 1o
the temperature variations thet their values differ from
the top 10 the botiom plate. Thus the OB approximation
breaks down.

Table 1 gives the Auid properties for various densities
and temperntures. The Rayleigh number R and the
Nussell number ¥ are calculated based on the fluid prop-
erties in the central region ithe Nusselt number is defined
a5 the actual heat Mux normalized by the one which
would be transporied by gas condugtion). x is the ratio of
the temperature drop of the top boundary layer 1o that of
the boltom boundary layer: it will be the cenler topic of
this paper. The Afth column is the gas density p, which is
cakculated from the equilibrium pressure and tempers-
ture. The cell is isolated after the pressure has been mea-
sured. The cell, with s given gas demsity, may be operat-
ed al different average lemperatyres. Since the central re-
gion occupies most of the cell volume, the density there
should be very close 10 the densily measured ar equilibei-
um. The Ruid properties a, v, x, and ¢ (the thermal con.
duclivily! sre compuied correspondingly from the density
p ond 7. where T, is the central region temperature.
The pressure is calculated only from the central region
temperature and density, but should be the same
throughoui the cell. From the average temperature T, of
the top boundary layer and the pressure, the correspond-
ing physical constants a,, v,, «,, and ¥, can be calculsled.
The same calculation can be done for the botiom bound-
ary layer. Note that the subscripts 1 and b are for top
and botiom boundsry layer, respecrively, while those
variables with the subscript ¢ or without any subscript
are for the ceniral region,

In the central region, the heat is dominantly Iranspori-
cd by convection. while in the top and bottem boundary
layers where the velocity tends to zero, the heal is irans-
ported by conduction. Since conduction is much more
resitlive than convection, the 10ital temperature drop
across the cell & s applied only across the two boundary
layers, the central region 18 isothermal fessennially a
thermal short circuit:

A=A, +A, . [t
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where A, and A, are the temperature drop across the top
and bottom boundary layers. respectively. 4, 15 calcula-
ed from the difference of the lop-plsie and the central re-
gion temperarures. while 7, is from the average of the
twe. &, and T, are calculaled similarly. In the aspect-
ratio-1 cell. the temperature profile of the boundary layer
has been measured' indirectly by varying the Ragleigh
number to change the relative position of a fixed bolome-
ter near the botiom plate. In a convection eaperimens
with water, Zocchs, Moses, and Libchaber have mea-
sured'* directly the temperature profile of the convection
cell at R = (0" with a moving bolometer. Both results in-
dicate that there are two well-defined boundary layers.
which bear all the temperniure drop agross the cell with a
constant gradient.

The temperatures of the 1op and botiom plates are
measured with the thermometers which are fixed in the
plates. To measure the central region remperatuce. o
bolometer 15 pouitioned st the center of the vell. The
bolometer is an arsenic.doped silicon cube of 0.2 mm.
which was originally made by NASA for astraphysus oh.
servalion.' '’ An $ K, its typical resistance is around |
kil and the sensitivity is about 2 mK /1. Principally. the
ceniral region temperature has to be computed s the
average over the whole cross section of the cell, bur thi~
is impractical experimentally. En soft turbulence,'" winwe
there are many indepeadent large-scale structures. our
previous study in an aspect-ratio-1 cell shows™ that the
time-average temperature st different points of the <amu
height can be as large a3 30% of A. Therefore one poni
mensurement at the center cannot be taken as the centrut
region temperature for soft turbulence. [n contrast, fir
hard turbulence,' the centrai region becomes morc
h Il . The i peraiure difference
the two points is 3% A st the onset of hard turbulence.
and the difference decreases with the Rayleigh numbe
monotonically. Thus it is n good approximation 10 ws
the center temperature measurement as the central reguon
temperalure, especially for large Rayleigh numbers. I
this paper, we shall anly discuss the hard-turbulence ro-
gime.

1. EXPERIMENTAL RESULTS

When (he OB spproximation is valid, x, the ralio be.
tween 4, and &, is 1. However, as the OB approxima.
tion breaks down, v departs from 1. Thus x 13 & quantita-
tive measure of the non-O8 effects.

Figure 1 is & plot showing x for different Rayleigh
numbers. By changing the densiry. one van coarely ad
Just the Rayleigh number. As shown both in Tahle | aml
Fig. 1, the density needed 10 reech & = 10" is not harg.
enough for the Auid properties of the two boundars fas
ers t0 differ dramatically, consequently © is not vens
different from | The fact that the x value v ORI Gy
R =2%10", smaller than 1. may come from approsimal
ing 1he central region temperatuse with ong pomi me.
surement. This approximation improves as the Rayleicl:
number increases. However. for R > 10", x bernmes
significanily smaller than | Since » specific Rayleg
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FIG. 1. x,... the ratio between (he measured temperature
drops of the top and the boliom boundary layers. is plotied
agninst the Rayleigh number X.

number can be realized with different densities, although
they must be close 10 each other, there is not a one-10-one
relation belween x and a given Rayieigh number.

As shown ift Fig. 1, x can be as small as 0.4, 30 the two
boundary layers are wignificantly different. Then how
does the turbulent temperature Auctustion in the central
tegion feel this difference? Figure 2 shows the histograms
of (he temperature Ructuation in the cenirs region for
R=12%10° x=087 and R=9.6XI0", x =043
They are normalized by their rms temperature fluciua-
tion &,. The normalized histogram for x =0.43 has the
same shape &5 that of x =0.87, it is symmetric sround its
mean temperature, despite the big difference between the
two boundary layers. These boundary Iayers adjust
themselves how so that the A ion in the central
region is still symmetric around its mean. By the way,
the histogram of this large sxpect ratio cell is exponential
only in certain range, rather then in the full range for the
spect ratio 1 cell."' This difference shali be discussed in
a future work.

However. non-OB effects may alter the Rayleigh num-
ber dependences of the Nusselt number N and rms tem-

100 .
Ay ]
g 16 4
(L
:l 1§ -
% g p o) i

1"

L L i i L L 1

r-10/8,

FIG. 2. Comp of histog of the temp fuc.
Tustion for a0 R =1.2X10° x =0.87 and b} R =9 4% 10"
% =043 The probability for s given tempersture is ploiied
Apsiny thes tempersture. The hisiograms are alb rescaicd o
that the rms remperature Auctuations coincide

F1G. 3. The log-log plot of the Nusselt number & vs Ray-
leigh number R. The small dots and the solid circles are the x-
perimeniai data, but only the solid circles have been analyzed in
this paper. The open circles are the thearetical points. The
theoretical value has sn arbilrary prefactor

perature fluctuat . 4, notmalized by A. The solid cir-
cles and triangles o Fig. 3 reveal the R dependence of ¥,
wheress the solic circles in Fig, 4 reveat the X depen.
dence of 4, 78. or R <10, both N and A, /A have
simple power-lav celations with R, ¥ with an exponent
029, close to §, . d &, /A& with an exponent —0.14, close
10 ~ . These relstions have been proposed’? in a scaling
model for hard turbulence, which fits the experimental
results for the aspect-ratio-1 cell. However, N and A 78
deviate away from the simple power laws for R > 10", ¥
seems {0 saturate with R and A, /A decreases faster than
with the —{ power law. The devintion cannot be put
into the framework of hard turbulence. unless nop-OB
effects play a roie.

1¥. PROPOSED MODELS

Now we try to answer the guestion of how the cell,
with a given denuty and given top- and betiom-plate
temperature, chooses the central region tempersture, in

-1.0 T T T t
Sl X
- f -~ R
4 . .
e -1 . . Sl
b T e ™
§ B
=~ sf e
N
- " L
e.?, [] k) Ib Ill ie
Log,R

FIG. 4. The log-log plot of A 7A vs . The solid cireles are
the experimental datas. and the nper circies are the thearetical
poims The theoretsl value has an arhitrary prefactns
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other words, how it selects the asymmetry of the two
boundary leyers, namely x. Furthermore, we tcy 19 un-
derstand whether non-OB effects have anything to do
with the strange Rayleigh number dependences of N and
A /4.

rLet us consider how many equations we have. We al-
ready have Eq. 121, which states that the toa! tempera-
ture drop is across the two boundary Iayers only. Fur-
thermore. there is the conservation of heat flux. Since
the hest is transported purely by conduction in the two
boundary layers. then

a,
-y L 3a)
2=y, %
4,
=y, % (3b}

where Q is the beat flux, y, and ¥, are the thermal con-
ductivities for the two boundary layers, snd A, and &, are
the two boundary layer thicknesses. From the three
equations (2), (3a), and (3b), we are unable to solve fgr t?g:
four unknowns &, 4, A,, and A,. One more equation is
necded to connect the two boundary layers.

Classically’™ ™ the boundary layers are 10 be
marginally stable, therefore their Rayleigh numbers are
constant. This implies the equality of the Rayleigh num-
bers R, and R, for the two boundary layers, ie.,

gaAs,  ga,hla,
v, vy,

where the lefi-hand side is R, and the right-hand side is
R;. This sssumption can be che :ed from the experi-
mentel data. If one substitutes I} measured 2 A, and
4, inta Eqa. (1) and (3b), the bov fary layer thicknesses
A, and X, can be determined; the: are listed in Table I1.
Thus R, snd R, can be calculated ndependently. R, and
R, have been tisted in Tabke It, : 1 their ratio R, /R, is
plotted against x in Fig. 5as 0 trisngles. As x de-

L]

- T T
[}
Eld .
l. :
2
% ZF [}
o
o
37 o .8
xll.f

FIG. 5. Ratios between R, and R, lopen triangles), uw, and
W, lcrossest, and &, and 6, tvolid circles) vs the measured .

creases, the ratio diverges away from |. Therefore this
jon is not corrot d by the experi I re-

sults.

1t has been observed that there are many thermals in
the central region, which are released from the boundary
layers. 12 Therefore the temperature Auctuations in
the central region must be directly related to the proper-
lies of the boundary layers. In the scaling model intro-
duced in Ref. 12 {where the OB approximation is as.
sutned), the thermals, with their initinl tempersture & /3,
merge into the central region with » velocity w,

w=gEad "
v

where this velocity w comes from the balance between
the buoyancy force gad and the viscous force v /A%,
Further the temperature fluctuation A, in the central re-
gion is the temperature scale © of the boundary layers,

v
A = 16
" gar?

where the right-hand side is ©. in the OB case, these two

TABLE II. Cakulated values of the thich A4, the Rayleigh numbers &, ., velocity scales i, ,, and tempersture scales &, »of
the two mg hg for different hl='g aumber R.
A, Ay w, 0, o, 9,
L] lwm) ) R, X, fem/st tem/a L.13] tmK) WS 4S5,

19 % %0 2 241 ERH) 3 123 0.691 0.361 0991
:.':5)( :$ Ml ) | 61 w0s 15.3 17 o182 0.208 0.9
Lix 10 3 b2/ 20 @ 2.4 06 0.53 0444 1.0
L1IX IO 148 177 1) [’ 00 161 0461 0418 161
113x10 183 184 m 162 113 121 0.293 0.9 0.997
parx 10" 128 18] k] “ 193 2 0.4 0.2 100
127X 10" 1o 141 M3 m 181 s 0.364 0183 983
1.44x 10" [ X} 23] n] m 190 170 0313 0.3%4 09m9
307X 0" (1B 143 a7 1086 22 29 0.602 0416 0.963
115 10" %\ R 404 6 153 09 0.301 0.247 1.08
Lux1o® 04 111 419 611 162 1% [ LH] 0312 0.976
4.00% 1M 713 124 00 s 164 .} 0.39% 0378 101
5.30% 10" 1 128 H] 1243 21 19 0.408 0316 0943
697 10% 0.0 [1§] a“r 1202 144 "6 0139 ol 0935
9.56 X 10" [30] 14 41 1801 [ %) 6.7 0287 0199 o9
LI gt 623 122 §34 1609 X4 60.4 031 0.19% 0897
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€quations are equivalent Starting from either, one is able 2.0
1o draw x series of predictions which Rt the experimental
data of the OB case well. In the non-OB case, although s

ttis 0ot abvious that w, is the same a5 w,, and 9, is the
seme as 9, i s revealing (0 compare their values in an
eflort to generalize either Eq. 15) or (&) to the non-0B
case. Thus we cakeulate w, and w,. 8, and ©,, from (he
Ruid properties in Table | and from the boundary layer
thickness in Table ). Their values are listed in Table 17.

The rano bejween W, and w, is ploited a5 crosses in
Fig. 5. It diverges away {rom ) as x decreases. therefore
w, and u, do not match. On the other hand, the ratio be.
Iween &, and @, is plotied a5 wolid circles in Fig. 5. For
sH the experimental vajues of x, the ratio remains con-
stant at 1.2720 13. Compared with the previous [wo
cases ithe equality of R and the equality of w. the equali-
1¥ of the two boundary layer temperature scales

= SO .
[ 1
Baghy  gaphy

appears 1o be the best sssumption. This assumption is
#lsa consistent with the experimental fact that the histo.
aram of the centrai femperature Ructuations is symmetric
tven in the strongly non-OB case. i e, the colder temper-
alure Auctuations is the same as that from the hotrer
ones. Generalizing Eq. (8. the rms temperature Nuctua-
1ons in the central fegion is the same as the 1wo bound-
ury layer lemperature scales,

Now thai we have Eq. 17). we can write out 1he eapres-
sion for x in terms of only the Auid properties. From
Equ (21, 1301, (3b), and 71, 4, and 3, can be calculated
Their ranio x is

L.
""1"( lé - 5‘ i "
Uphghy [‘t S‘

whete S, and 5, are defined as /el 2y for ahe
top and botrom boundary lsyers. Note 1hai the Auid
Properries in the jwo boundary layers are relared 1o X,
1hus the right-hand side of Eq. 181 is aho & function of »
Thr allows pne 1a uniquely solve for x. Here we use 1he
Meiured 1emperature 10 compute the fluid properiies,
fram which we calculate the theoretical x value from Eq.
8. Figure 6 shows the raiio between the theoretival x
rafue and the experimental x value. The catio 18 consian)
with a value 1.08-0.04, indicating a good agreement be-
tween experiment and theory

Let us pesnt ot the unceriainties in the measurement
and anahis. Firs, these are €rrors in the temperature
memurement und the consequence in the fuid properties.
The second factar comes from assuming the fuid proper-
lies in the houndary layer to he The mewn temperature
value. Third. there are uncertainiies in ihe McCarly
tables angd equation. espevially clone 10 the crincal povin|
In the ertor hars of Fig 6. anh the fira €rFar i ploned,
alihough the carrer may be dur to the wecond und the
third factors g0 well

The rm~ 1emperaryre Nuctuation 3 in the ventral re.
Eton hus been avwumed ro be the same ws the boundary

X'Nw/xnyt
o

o
A

.0 0.2 0.« 0.6 0.8 .0

X

FIG. 6. Rano between the theorencal und the mensured x vy
the meatured «

layer temperature scales in Eq. (71 However, in order (1]
express the hest Rux 0 only in 1erms of 4 and the Auid
properties, & furiher IS5umpLIon has 10 be made abour
the velocity in the central fegron. As in Ref. 12, we as.
sume that the thermals in the conrral region are only
driven by the buoyancy force. then

¥, =tagla, ' (9
The hear flyx v

@=Cpa. b, tm
Combining Eq<. i8) and 191, one finds

Q@ =C,ptagL "AIN an

Here the Auid properties are thove of the central region of
the cell. From Egu. 120, (3ai, (3b), and 7, &, and &, cun
be expressed in terms of . 4. and rhe luid properties
Then combining Eq. 170 with (115, 1he hear ua @ oy g2
pressed as

i”n ?,
o= 4 [entta (M1 s 02l
! L IFS B 5+ Sj -
ar
s r
C=R¥Ip r|_ S
N=R¥p St‘*sb (RN
and the temperature Auctusnion 1

Ay
gt W He

- 5 ‘a
S %
where R and P are (he Ravleigh number and Prands)
umber 1P =y based on the Auid Properties if thye
ventral region. For small non-08 effecin 15, + 5, 1/0
close 108, thes the relatrons between A aud R. and be.
ween & /8 and R are the same as thime of the dead OB
vuse. However. when the non-( 13 effecin are s Mg
thae t5 + 5 122 hecomes diffecent fiom S, then hoth
and A /3 depart from the smple power lewy The rane
2548, 45, i in Iinted Tuble 11 The theoretical Nussel
rumbes 1 plotied o Fig. 3 as open virgles 1o O pure
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with the experimental dats. One can see that besides the
power-law region for R < 10", \he theoretical Nusselt

good between the experiments and theory. The scatter of
the resulis may come from the errors in the temperature

numbers change in the same way as the experi |
data for R > 10'. The theoreticai A, /4 is compared 1o
the experimental one in Fig. 4, with good greement.

V. CONCLUSION

The assumption that the temperature scales of the two
boundary layers are the same is veribed experimentally.
It is consistent with the observation that the histogram of
the central region fluctustion is symmetric even in the
strongly non-OB case. This sssumption allows us to cal-
culate the ratio of the temperature drops across the two
boundasries, and compare it with the messurement. If the
velocity in the central region is assumed to be a free-fall
velocity, the heat flux and the rms of the temperature

the app crude approxi about
the fluid properties of the boundary layers, and the uncer-
tainties in the Auid properties themselves. All of the
above discustion is sbout hard turbulence, where the
large-scale flow is nol important in the central region.
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