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The intermittenc; of the rate of turbulent energy dissipation ¢ is investigated
cxperimentally. with special emphasis on its scale-similar facets. This is done using
a general formulation in terms of multifractals, and by interpreting measurements in
that light. The concept of multiplicative processes in turbulenee is (heuristically)
shown to lead to multifractal distributions, whose formalism is described in some
detail. To prepare proper ground for the interpretation of experimental results. a
variety of cascade models is reviewed and their physical contents are analysed
qualitatively. Point-probe measurements of € are made in several laboratory flows
and in the atmospheric surface layer, using Taylor's frozen-Aow hypothesis. The
multifractal speetrum f(2) of ¢ is measured using different averaging techniques, and
the results are shown to be in cssential agreement among themselves and with aur
carlier ones. Also. long data sets obtained in two laboratory Aows are used to obtain
the latent part of the fla) curve, confirming Mandelbrot’s idea that it can in principle
be obtained from linear cuts through a three-dimensional distribution. The tails of
distributions of box-averaged dissipation are found to he of the squarc-root
exponential type, and the implications of this finding for the fiz) distribution are
discussed. A comparison of the results to a variety of cascade models shows that
binomial models give the simplest possible mechanism that reproduces most of the
ohservations. Generalizations to multinomial models arc discussed.

1. Introduction

it has long been known (Batchelor & Townsend 1949) that small scales of
turbulence are intermittent. The small-scale quantity that has received most
attention is the rate of dissipation of hinetic energy, e. Figures 1{a} and 1(b) show
experimental signals of a representative component of ¢ obtained respectively in a
laboratory boundary layer and in the atmospheric surface layer. They illustrate the
intermittent nature of e and emphasize that it becomes increasingly conspicuous with
increasing flow Reynolds number,

A conceptually appealing view, dating back to Obukhov (1962) and Kolmogorov
(1962), visualizes the transfer of kinetic energy to the small scales as a self-similar
cascade with an associated multiplicative process. This view is still at the heart of
many phenomenological intermittency models. Based on the central-limit theorem,
Kolmogorov {1962} and Obukhov (1962} proposed a lognormal distribution of the
rate of dissipation (see also Yaglom 1966 and Gurvich & Yaglom 1967), while
Novikov (1971) and Mandelbrot (1972) clarified inherent problems of the lognomal
model. Another type of multiplicative intermittency model was proposed by
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mere filment fike mather than blobe like or <lab ke X summnny and disenssion of
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vortex methods (Chorin 1982) have confirmed the intermittent nature of turbulence
activity and demonstrated the uscfulness of fractal geometry in describing it.
Interesting analogies with eritical phenomena and polymer dynamics have been
explored (Nelkin 1973; Mori 1980 Hentschel & Procaceia 1982 Chorin 1988u, b).
Furthermare, Mori (1980} highlighted interesting connections between fractals and
local expansion rates in the context of turbulence.

From an experimental puint of view. little attention was given to Mandelbrot’s
general model of random curdling until recently. Numerous measurements of
intermittency were made (e.g. Gibson, Stegen & Connell 1970 Tennckes & Wyngaard
1972: Frenkicl & Klebanoff 1975: McConnell 1976: Park 1976 Van Atta & Antonia
1880, to name but a few), and compared to either the lognormal or the £ model
hypotheses. The inadequacy of lognormal models for high-order moments was
demonstrated by Srecnivasan, Antonia & Danh {1977}, and the high-order velocity
structure function measurements of Anselmet o al, {1984} made it clear that both
lognormal and g-models were inadequate.

Toraceaunt for the observations. Frisch & Parisi (1985) intreduced the idea of
distributions of singularitics. ali Iving on interwoven sets of varving fractal
dimensions, and coined the name multifractal They related such a deseription to the
hierarchy of moment exponents originally proposed by Mandelbrot (1974) to
characterize his random curdling model. This was advanced further by Benzi ef ol
(1984) who introduced the so-cailed random A-model and proposcd its application teo
measures created on strange attractors in phase space. A similar path was taken by
Hentschel & Procaceia (1983) who intr duced the hicrarchy of the so-called
“generalized dimensions ™ B, and Halsey ef v! (1986). who coined the name ftx) for the
set of fractal dimensions characterizing multifractals. Mandelbrot (E9%9) has further
clarified some praperties of flz) in terms of his carlier work of 1974 In fact, much of
Novikov's carly work can. with hendsight, be cast in terms of multifeactals,

We feel that the theory of multifractals has acquired o cortain maturity at this
point. permitting an intuitive understanding of multiplicative processes and of the
intermittent distributions in turbulence. This feeling is due, in part, to the numher
of applications in physical sciences where multifractals and multiplivative processes
have been found useful (ser e Paladin & Vulpiani 19870 In part. it is based on
measurements on the multifractal nature of dissipation ficids in turbulent flows
(Meneveau & Sreenivasan 1987 o, HISY . Nreenivasan & Menevean 1986, 14988 - I'raxad,
Meneveau & Srecnivasan [HSs - Ramshankar 19588 Meneveau [9%9). We therefore
think that it is worthwhile consolidating results relating to the multifractal nature
of €. With this in view. this paper expatids some of the earlier work, and provides a
careful account of the measurements. It reviesws previvus cascade models in a unified
fashion and examines them in the context of muitifractality. Finally, it presents a
detailed analvsis of the behaviour of high-order moments of ¢, and its implications
fur the observed intermitrency.,

The present measurements were mace by statwonary single-wire probes. Several
flows studicd here were created in the laboratory at moderate Reynolds numbers; the
sealing range was limited bt high-order moments conld be measured accurately
hecause of guaranteed statistival convergence. We also made measurements in the
atmospheric surface layer for which the scaling range is large but high-order
maments cannot he obitained accurately (beeguse the data records required would be
so long as to preclude stationary conditions). The focus will be on the sealing
hehaviour of the dissipation integrated over “volumes ' of sizes pertaining to the
inertial range. As noted by Kraichnan (19741, such a variahle iv in iteald ot ae
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inertral range quantity and necd not follow the self-similar bebaviour expected in the
mertial ranges 1 s theretore of considerable interest to explore whether such a
variable does iadecd exhibit self-<imilar behavionr and. if xo. its relationship with
other sealing exponents of the inertial range.

The paper ds structnred as dollows Section 2 provides an introduction to
multiplicative: provesses, It inchides basie detinitions of multiplicative processes
(3213 earls 2 the characterization of multifractals by
simgalarity spectra and generalized dimensions (§2.3). Mandelbeot's formalism of
rancdom curdling (§2.4). =ome special cases of random cardling (§2.5). non-cascade
therlels (32.6) and. tinally, practical considerations concerning the measurement of
niultiftactal characteristios ($2.7). Section 3 presents experimental results coneerning
the multifractal nature of the dissipation field ¢ (approximated by the square of the
stngle devivative of the streamwise veloeity, obtained using Tayln’s hypothesis). A
detailed dizcnssion of the power-law hehaviour and of the convergenee of moments

vitseile odels (§2

asafunction of averaging domain is presented. Also. experimental resabts Coneerning
the sealing behaviour of high-order moments are analvsed by studying the tails of the
distribution functions of the dissipation, aind their eelationship with the multifractal
spectrum. Nection 4 presents an analysis of the measured multifractal spectrum of
the field of dissipation. as well as a detailed comparison of the results to a varioty of
cascade muodels. A summary of conelusions is presented in §5.

2. Multiplicative processes and cascade theories: a review
21 Multiplicative processes: general concept and definitions

The basic ingredient of multiplicative processes is that large eddies” or fluid pieces
transform or break down into smalter ones: the fragmented picees themselves vield
even smaller ones. and so on. This then defines picces of different generations: the
generation step will be denoted by n. To cach picce is assoeiated a characteristic
lincar dimension s (for example, the diameter in the case of spherical eddics). We
assume that the characteristic scale of a picce of the ath generation. rin), will be
given by the produet of 7 numbers (to be called length multipliers (.1 < j<n) cach
of which ix the ratio of consecutive lengthscales. In other words.

riny = v [T rp/rij—1) = rio) {11, (2.1)
J=1 =t

Another vital ingredient is the concept of a measure density which, in the present
context, is the rate of dissipation per unit volume e{x), where x belongs to the union
ol all the pieces. OF particular interest is the total dissipation £ in a certain picee £
of size r.This will be given by the integral of e(x) over the picee Q as

E = f e(x)dir. (2.2)
xefd

When a picce £ decays into smaller ones. cach smatler piece can be thought of as
receiving a fraction of £, Analogous to lengthscales. the total dissipation on a certain
picee of xize o(n) of the nth generation will be given by the product of # numbers (to
be catled ieasure multipliers M), cach of which is the ratio of consecutive measures.
That ix.

L n
Evn =11 Ernlbroy = Erg HM;- (2.3)
= J=t

D
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Fioore 3. Schematie representation of three stages of a stretehing and folding provess. )\ piece (o)

i wtretehed in the vertical direction. contracted unequally (thus acenunting fur the uneyual

thickness and measure) aml the At oI i i in
e sure} atud then folded back 1) form the plece thy After another similar step (e}

It is then elear that Richardson's {1922} picture of turbulence caxcade. in which
"blobs” or whorls of turbuient fuid hreak down into smaller piec ‘
their veloeity ", je. receiving a eertain fraction of the
larger seales - is a possible maltiplicative process.
tigure 2.

Anf)thor generie process that oceurs in nonlinear dynamical systems can he
dcscrll?od qualitatively as the process of stretching and fuldingft\'pi(-;ll of the
evolutlon.ofa “blob” of points corresponding to different initial conditions in thase
space. This is also referred to as a horseshoe process, Figure 3 is a schematic nflthlrt"v
stagcs.of suvb & process, where the stretching in the vertieal direction is fellowed hy
a foldmg,' We adopt the view that the stretehing and folding of turbulent Huid
clcment.s in physical space can be regarded qualitatively in the same spirit. The
overall isotropy and simplicity of the breakdown of blobs is not present here, l.')ut it

is a multiplicative process in the sense that the thickness and density of each of the
pleces are products of successive multipliers. '

Summarizing. a multiplicative process

s cach feeding on
flux of kinetic cnergy from
This is depicted schematically in

ix one of fragmentation of a large picce i

'_ . S5 g Z¢ piece into
sm.alle‘r ones, with each new picce reeciving a fraction of the *measure” of the larger
um|t" :1]1_ such a way that the size and measure of a small picee are products of
multipliers I; and M, (M, = 0.4 < 1) associated with its predecessors at all previous

wy

B Sl



. . - .
434 O Menereau and K R, Sreenivasin

stages or generations. In the absence of definitive deductions from Navier-Stokes
equativns. the quantities & and M, have to be considered random variables with a
certain prohahility distribution. When sueh distribution functions do not depend on
the level j tor the characteristic size 7). self-similarity will appear and. ax will be seen
below. power-law behaviour oceurs in the moments and <distribution function of E,.
Physically. this implics that as long as the eddy size is larger than the K()lm()goror\'
scale p and smalier than the integral scale L of the flow, the precise dynamics
resulting from the Navier-Stokes equations — which determines the mult-ipliers—
should be independent of viscosity and. far enough from physical boundaries, also
independent of houndary conditions, -

To elarify notation we stress that the index j refers to different generations. The
variables M oand 1) assume different values at a particular generation at different
cations. When <uch a distinetion is necessary, it will be denoted by a second index
ivey M is the measure multiplier corresponding to a pieee at position @ of
generation g

220 Somie eurly cascade models
2200 The M theory of Kolmogoror

This theary of universal, isstropic distrihution of small seales of motion envisages
a vaxeacde where the only selevant quantity is the mean Hux (e or {K,> of energy
from large 1o small seales. This s a trivial multiplicative process in which the
measiee multipliers at a given stage are equal, There is no apparent dyvnamical
reason for disimissing this possibility, but expericnee (see figure 1) pn-vlutllus it. As
pointed aut by Kraichnan (1974). non-intermiteent distributions of ¢, and £, can be
produced only by strong spatial mixing of encrgy at all scales of mortiun_ suroh that
energy equilibration oeeurs as soon as it is transferred from any one scale to its
uﬁ'sprin,n._rs, Kolmogorov's (1841) theary implies that the mixing i 50 large that all
H}mhlghnﬂs in the inertial range are smoothed. By the detinition of the inertial range,
Viscosity cannot be responsible for this equilibration. It could in principle oceur by
the action ot pressure fluctuations. which are known (Batehelor 1933) to transfer
energy Vt'mm one veloeity component to another at roughly the same scales.
Dinwensional arguments show that the typical thneseale of this process is of order
70y~ rf A where A, isatapical § elovity increment over the distance . This is also
the thneseale characterizing the decay af an eddy into its offspring. and one couid
therefore arcae that there is barefy o i

o nough time tor equilibrating encrgy at a given
=eale 0

certanin degree of equilibration is hkely to oceur. but inhomogeneities at all
scales reanain beciuse turbulence structures decay before the process is completed.
202 Fhe hypethesis of lognorial ity
“I order taaceount for the abseryed mternuittency. it ts natural to assume that the
M 2.3) Hectuate according to some distribution, Taking the logarithm of {2.3),
OHE cah Wit "
(£ JE, = X In (M), (2.4)
k=1
where £, s the total dissipstion contained in picces of fluid of size L (~ r(0)).
Pheretore I A K, ] is the sum of identically distributed random variables In (M)
Forthe sake of simplivity . let us assume that these random variables are finite (i.c.
M+ 0 Rolmogoroy (1962 applied central-limit theorem to argue that in(£,) and
[ g, 1 shortd have Gavssian disteibutions.
Honwevers central limit theorem cannot bhe applied to rare events, which are the
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Fievre 4. Binomial measire e(r)/¢e> on the unit interval, using ¥ = 0.6 or 0.4, (1) The original
uniform distributio: of density. and (6) after one fragmentation. The total dissipation on the two
sides are 0.6 and 0.4. and the coreesponding densities of e(x) are 1.2 and 8. (¢} efr) after 9 steps
and (d) after 13 steps.

ones that contribute most to high-order maments. This was noticed by Novikov
(1971), who ecuneluded that high-order moments cannot follow lognormal dis-
tribution. This was clarified further by Mandelbrot (1972). Furthermore, Orszag
(1970) showed that if the moments followed lognormality, they could not uniguely
determine the distribution. A further analyvsis of the rather unphysical conditions
needed for asymptotic lognarmal distributions can be found in Kraichnan (1974).

223 ,@-moa’#l!' of fractally homogeneous turbulence

In this model the multipliers M, are non-zero and equal on a fraction g of the new
offspring, but zeto on the other fraction {1— ) of the offspring (Novikov & Stewart
1964 Mandelbrot 1974; Frisch ef al. 1978). Scaling properties appear again if £ is
assumed to be independent of r. There is no mixing between the empty and non-
empty regions. Therefore, this model corresponds to the assumption that the
timescale of spatial mixing is much larger than that associated with the decay of
eddies into smaller ones.

As will be seen in §3. the measured high-order moments of E, depart markedly
from predictions of both lognormal and F-models. 1t is therefore necessary to study
general multiplicative processes and their properties. to which the next two
subgections are devoted.
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2.3, Mudtifractals and their characterization by singularity spectra and generalized
dimensions

The question addressed here is the following: Given a function e(x) such as in Hgure
1, how best can one characterize it. and what can be said about the multiplicative
process that generated it? It is apparent that the mean and variance of e(r} or the
variable £, contain little information about e(x); furthermore, they are different for
each cascade step. It has already been seen that lognormal and g-models are nut
general enough. The required quantifiers will be introduced via the simple example
of a self-similar binomial process, but the formalism to be discussed is valid for
general multiplicative processes.

The binomial process to be discussed here occurs in one dimension. where an initial
segment of size L is divided into two segments of equal length (4, = {). and the ¥,
have a bimodal distribution with only two possible values, say M, = p, =0.6 or
M, = p, =04 That is. its distribution iz given in terms of two §-functions as

pLM) = 0.5(8(H —0.4) + 5(M —0.6)}. (2.5)

independent of the cascade step j. For the present diseussion, we additionally impose
conservation of the measure at cach step. which means that each picee gives rise to
two picees with the Jf, of bath picces always adding to unity. Whether the multiplier
0.4 {or (L6) corresponds to the right or left offspring is selected at random. Figure 4
shows the density obtained by such a process after » = 0, 1, 9 and 13 iterations or
generations. To make contact with dissipation later, we use the symbol ¢ to denote
the measure. After » steps. the size of cach picce is r/L = 277 and it is casy to see
that £, can assume values given by

EJE, = pPmpl ™" (wherem =0.1,...,n).

Each such value of £ /E, occurs nl/[m!(rn—m)!] times. Since n = —log,(r/L). one
can definc & new (random} variable x according to

ax=In(f /B )/ In(r/L) =—(m/n) log, p, — (1 —m/n) log, p,. (2.7}

which now only depends on the ratio m/n {0 € m/n < 1), rather than on » itself. For
illustrative purposes. « obtained from the binomial measure of figure 4 is shown in
figure 5 after 9 and 13 iteratiuns. We see that the random variable a fluctuates
between limits that are independent of r or =, which suggests that the process can
now be characterized in terms of the distribution of the rescaled variable a. For
practical applications to follow, it is more convenient to define « as a local scaling or
Hilder exponent (Mandelbrot 1989) according to

EJE, ~ (r/L* or e /e, ~ (rfL)*? (2.8)

instead of as the ratio of logarithms {for the present example in one dimension, d =
1). The convenience one gains is that this climinates worries about non-unity
prefactors in (2.8). which in general make the convergence of x to a scale-
independent variable rather slow (Meneveau & Sreenivasan 1989). Further, writing
in this form emphasizes the fact that different values of « reflect different strengths
of singularity as the box size tends to zero.

We now turn to the distribution of a itself. Figure 8 shows that [ (a). the
(normalized) probability density funetion of @ at the two chosen steps of the eascade.
becomes narrower and more peaked with increasing n. Applying Stirling's formula to
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n(E/E,)In(r/L)

In(E./E }in(r/L)

0 0.5 1.0

FicuRre 5. Local values of @ = In(E /E )/In(r/L) for (a) r/L = 27" after 9 steps, and (b) for
r/L = 271% after 13 steps.
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Fioure 6. Normalized probability density f7,(a} of the variable & of figure 5 for +/L = 2°* (salid
line), and for r/f. = 2713 (dashed line).

the binomial coefficient in the limit of very large »n, it is apparent that the rescaled
logarithmic distribution function A(a), defined as

hla) = In [ (a)]/In{L/r), (2.9)
will tend asymptotically to _
ha) = 1= (1 ~m/n) logy(n/m — 1) + logy(n/m). (2.10)

Again this depends only on the ratio m/z and not on » (or r). Thus by dividing the
logarithm of the real distribution function by = ~ log,(L/r), one obtains a

-

-y
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bz = log 4z lopLfr)

-
+
]
'
'
'
'
]
+

Frevre 7. Logarithmic probability density Ala), normalized by log (L/7). for r/L = 279 (sulid
line}, and for #/L = 27* {dashed line).

conveniently roscaled, seale-invariant distribution function. Figure 7 shows k(a) =
[ f, (2)) /1o (L /r) for the present binomial example, from which it is apparent that
the distribution beromes scale-invariant (independent of n or #) asymptotically. As
painted out by Mandelbrot (1989, where A(a) is called p(a)). the convergence of such
a function can be proved rigorously for any multiplicative proecess following a
theorem due to Cramér.

Now it ix useful to ask the following question: Within how many buxes or picees
of size r does the variable a assume values within a band of width dax! For this
purpose one has to multiply the probability [T () da by the total number of boxes
present at a specified level of the process. The total number of pieces of size » s cqual

to r~! for measures on a line as in figures 1 and 4. and in general equal to (r/£)™¢ in
a d-dimensional space. The result is thercfore

Nox) = (r/L) 1 ,(2). (211}

(1f the measure itself exists only on a fractal set of dimension D < d, the d in {2.11)
must be replaced by D) 1t is now natural to define fla) as the logarithm of N ()
normalized by In (4/7). This implies that flz) = h{a)+d and that the scaling relation

Niapda ~ pla)(r/Ly 1 da (212

hotds. Here pta) is some a-dependent prefactor, not to be confused with the p(x) of
Mandeibrot (1989). Instead of focusing on the scale-invariant distribution f(a). one
can study the scale-invariant distribution fla). the advantage being that a natural
conneetion to fraetal geometry can be made. This was recognized by Frisch & arisi
(1985) and further developed by Halsey ef al. (1986). whose notation we use. We
recall that a fractal set can be charaeterized by a dimension I given by

N o~ (r/ly70, (2.13}

where N, ix the number of baxes of size r needed to cover the set. Comparing (2.12)
AR S A . R, .. . oo .

IR P
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values in a band da. Since in general f(a) can take on different values for different a,
measures e{z) such as in figure 4 are called ‘multifractal measures .

Several comments are useful. Note that, in cascades, N, is also the total number
of pieces resulting from the multiplicative process when they have reached a scale r.
The dimension D defined according to (2.13) corresponds to the Kolmogorov
capacity, which may differ from the Hausdorff dimension. {For a discussion of
various dimensions, see Farmer, Ott & Yorke 1983.) In general, one cannot exclude
the possibility that i{a) < —d. This means that there can be multiplicative processes
for which a certain value of @ will occur less and less often as the size r is decreased.
In such cases, f(z) < 0 and cannot be interpreted as & dimension. This was noted by
Frisch & Parisi {1983). Mandelbrot (1984, 1989) argued that this is no handicap in the
statistical interpretation of multifractals. We shall expand on this in §2.4. Another
comment relates to the rapidity with which the rescaled function Ir [{7 (2}]/In {L/7)
tends to the asymptotic distribution with decreasing r. This was treated in Meneveau
& Sreenivasan (1089). where it was shown that logarithmic prefactors must in
general be included in expressions like (2.12}.

Summarizing up to this point, a measure resulting from a multiplicative process
has a limiting scale-invariant distribution, and the relevant variable is a local
exponent a whose distribution or relative frequencv of cccurrence ts given in terms
of fla); flz) can be interpreted geometrically in most cases as a fractal dimension.
Since @ characterizes the strength of the singularities, the curve f{z) may also be
called the singularity spectrum.

Another way of characterizing & multiplicative measure is by means of moments.
Returning to figure 4, it is apparent that the quantity {ey increases as the cascade
proceeds to smaller scales. However, it is easy to show that its logarithm divided by
In{r/L) is a constant, independent of the cascade step n. Following the thought that
non-pathological distributions can be described by moments of all orders, it is useful
to define the exponent r(g) through the relation

CEYy ~ Eq(r/Ly@?. (2.14)
For similar definitions of moment exponents {using different notations), see Novikov
{1969) and Mandelbrot {1974). Alternatively, one can also consider the sum of E?
over all {disjoinl} boxes of size r according to

Y EI~ Ey(r/L)"0. (2.15)

Additionally, one can define (Hentschel & Procaccia 1983) the exponents D as

D, = 7i)/(g—1). (2.16)

Hentschel & Procaccia {1983) showed that D is the fractal dimension of the support
of the measure, D, the information dimension and D, the so-called correlation
dimension. Here, high, positive values of g emphasize regions of intense dissipation,
while negative values of ¢ accentuate low-dissipation regions. The exponents D, are
called ‘generalized dimensions’. We relegate to Appendix A a discussion of the
precise sense in which D, is to be interpreted as a dimension. For future reference, we
write (2.14) also in terms of ¢, = E, /%, the mean dissipation in boxes of size r,

according to
{68y ~ <€>u(r/L)(q-mDevaa_ (2.17)

Ballauring Hricah & Parici (10851 and Halsev o a4l (19RAY one can relate the
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exponents D). « and f(a) by evaluating the sum in (2.15) as an integral over all values
of a as

NE ~ Eifp(a}(r/L)q“'f‘“’ da ~ El(r/L)@-11D, 2.18)

We have used (2.12) in writing the first step. Using the method of stecpest descent,
one approximates the integrand in the limit of smail (r/L) by a Gaussian centred
around the a-value that minimizes gz —f(a). The result is proportional to ré=-fi
evaluated at an « such that

YPay/ea = q. (2.1
with the condition that f"{z) < 0. Therefore, at this value of a, one obtains
Sfladg)] = glgt—(g—1} D, (2.2
which, upon using (2.19), yiclds
alg) = d/dgl{g— 1) D,]. (2.21)

These Legendre transformations (one replaces the local value of the function 7 =
{g—1) D), by its slope a(g) and its intercept floaig)]) relate the exponents a, fla) and
D,. The parameter ¢ selects a specific value of the variable « according to (2.21).

Here, a digression concer 1ing a finer point is worthwhile. As is usual for systems
with a small-seale cutoff, scaling relations such as (2.8) and (2.12) are not expeeted
to be valid for r smaller than 3. In general, one may conjecture that (2.8) should be
multiplied by a ‘universal scaling function’ g,|r/#, 2], which has the property that
forr/yp =23 1,g,4x,2) =1, and for z >0, g,(x, a} 22, Similarly, (2.12) should be
multiplied by another scaling function g,|r/#. ] with the condition that for r » 1.
gyle,a) =L, and for 20, gy(z, ) > 2% In a similar fashion, (2.15) should also
include a scaling function g,{r/y, a{g)} with the property that for z » 1, golx. xlg)] =
1. and for x 0, g [x. alg}] >x'@"1"P? The precise relation between g,, g, and g,
probably depends on the prefactor p{a). The present work will not deal with such
scaling functions. Such a study, which would be of interest in the context of the
dissipative range of turbulent scales (r < ), is left as a future task.

A useful characterization of intermittency is given in terms of the so-called
intermittency exponent u. Several definitions exist which are not equivalent in
general. Kolmogorov (1962) introduced x as the rate of increase of the variance of
log {€,/{e>) as a function of log(L/r) according to

ol = phn (Lir). (2.2

In Appendix B we show that this intermittency exponent is related to the D,-curve
in the multifractal formalism according to

p=—dig—1)D,)/d¢’ {2.23)
Another common definition of the intermittency expunent refers to the scaling
exponent of the autocorrelation function of ¢ according to

Cel@y e+ 1> ~ Cer/ L), (2:24

If one uses {elr)e(x +7)) ~ {2 (Yaglom 1966 Cates & Deutsch 1987: Meneveau &
Chhabra 1990), it is clear that .
) W =d=-D, (2.25)
In general. g3 4.

Finally., we point out that carly cascade models discussed before cnrrospnn'd to
special cases of the multifractal deseription. More details are given in Appendix ('
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2.4. Random curdling

In the last section, the multifractal formalism was motivated by considering a
specific binomial distribution p(M) of the multipliers M in the multiplicative process.
although (for the most part} the subsequent discussion was pot constrained by the
specifics of the model. For general distribution functions of the multipliers M. one
obtains Mandelbrot's (1974) random curdling model. The model introduces
impottant concepts concerning the experimental results of §3. In discussing it, we
closely follow Mandelbrot (1974, 1984, 1989). and refer the reader to Kahanc (1974).
Peyriere (1974) and Kahane & Peyriere (1976) for rigorous proofs of several of the
resuits.

Random curdling is a general multiplicative process, where a A-dimensional
‘piece’ of size r decays into b* smaller picees of equal (linear) size rd™1: b is the base
of the process that can take any integer vatue. Although one is specifically thinking
of three-dimensional space {4 =3). we discuss cascades in some general 4-
dimensional space (§2.4.1). Intersections of such cascades with lower dimensional
subspaces of dimension d < 4 arc of practical relevance. and the main results of such
aperations are discussed in §2.4.2. Details are relegated to Appendix A.

24.1. Conservalive cascades in A dimensions

A cascade iy called conservative if the measure is conserved at each single step of
the cascade, namely 5 o
' - M =1 (2.26)
i

for all j, where the sum over i extends to all b pieces created at a single cascade step.
Since all M, | are assumed to be positive, none can exceed unity,

When calculating the moment exponents D, of such measures, the dimensionality
of the embedding domain will be indicated as a subseript on the exponents. For
example, D, , stands for the [}, exponents pertaining to the 4-dimensional domain.
Now we focus on the statistics of the total dissipation or energy flux £, , in a box of
size r after the cascade has proceeded k steps. We will assume that the size of the
initial eddy is L (comparable with the integral scale of the flow). Therefore

v/L = b*. (2.27)

Following (2.3) the flux £, | in a given piece or box of size r is the product of &
multipliers along the path on the hierarchical tree leading to the particular box. That
is,

k
Bar = T1m, (2.28)
EJ,L =1

In order to calculate the moment cxpanents D, , one has to evaluate the sum of £9,

over all {£/r}? boxes. For this random model it is useful to define the exponents Dy,
ing t

necording to (SB35 = Eyfr/Lye1Pes 2.29)

where E, = £, ; and the averaging { > is performed over the distribution of the
muitipliers M. The average of the sum can be replaced by the averge of £ , multiplier
by the total number of boxes. One then calculates the following average:

k &
<1]Mg> = [ IM«;;(M) dM] = [{MOF, (2 30)
J=1

where one uses the assumptions that the distribution docs not depend on j and that
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the multipliers at different steps are uncorrelated. The index j will generally be
omitted from here onwards, unless explicitly required when denoting )pmdu«-iu at
different cascade steps, ) A

(Combining (2.27)-(2.30), one arrives at the result that

D, 4 =log,[b*<M]/(1—gq). 2.31)
Legendre transforms yield
; M log, M
a,lg) = { IOgb > (2.32)
M -
and fdlzig)] = ga )+ log, [bIMH]. (2.33)

T.his-illu._%tratos the fact t}_lut Sala(g)] depends on all the moments (W9 of the
fhstrlbutmn of M. and not just on the second-order moment of In (M), as visualized
in the lognormal case.

2.4.2. Lower-dimensional intersections

The tield of dissipation is three-dimensional. but most experiments examine only
jower-dimensional intersections of it. It is therefore necessary to determine the
relation between the properties of a A-dimensional ficld and those of its -
dimensional intersection. Relegating details to Appendix A, we state the r.nn\‘i
important result<: the D exponents, as well as & and Sfiz), in d-dimensions are sim ')i\'
related to those in 4-dimensions according to e

Doa=0gi=td=d) ay=a,—(d=d). fla)=fla)—(d—d). (234

This means that by knowing the exponents in 4 dimensions, one can obtain the
cortesponding ones in d-dimensional cuts. A maore basic question is the inverse
problem of obtaining the exponents in the 4-space from those in the d‘-dimonsiun;ﬂ
cut. From (2.34) it is apparent that the exponents for the d-dimensional cut can
!M‘Hilﬂ(' negative. or fy(a} < 0. This does not present any problem in the statistical
mterpretation of multifractals, but the geometrical ifltorpretation of fyla) as a
li!m(']]st(lll cannat be invoked. The cases when D, , < 0 and z, < 0 prvs((i'nt more
Tllf‘hl‘ll]ti(‘ﬁ hecatise it turns out that such values c-;ﬁnnt be moa:ured directly. This
is related to possible divergence of eertain moments along the d-dimensional (ut (‘-‘0;'
Appendix AY, -

'I'hm'(: are thus three distinct regions of the fia) curve signifving different
properties. It is useful to indicate the current nomenclature for cach of them
{Mandelbrot 1989). The region fta) > 0 is called the manifest part. while the region
Jlay < 0.2 > 0 ix called the latent part; that with flay and a both negative is catled
the virtual part. )

2.5, Some special cases of random curdling
Speeial cases can be obtained by assuming spevifie distributions for the multipliers
M
20t Myperbolic or x-morel
- Motivated by the possibility that moments of ¢ might diverge on linear cuts.
Nehertzer & Lovejoy (1985} introduced the so-calied @-model, which is a simple
example of a non-conservative cascade in one dimension. Here the multipliers W an
adopt two distinet values M, and M. with probabilitics P and 1 — . Therefore.
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Since the condition {M> = b must hold. there are three free parameters in this
model: M,, P and b. By conveniently selecting them, one can produce divergence of
moments for one-dimensional cuts (see Appendix A). We will return to this peint in

§4.

2.5.2. Binomial model (p-model)

One can in principle reduce the number of free parameters even further by fixing
the numbers b and P. By assuming that each offspring can have two distinct
multipliers (6 = 2) with the same probability, Meneveau & Srecnivasan (19876)
proposed a binomial, or two-seale Cantor measure, model.

The choice b = 2 was made essentially in accordance with the conventional wisdom
that the energy transfer scems to be local in wavenumber space. and involves
wavenumbers whose sizes are not disparate. Novikov (1971} gave a somewhat
obscure justification of this choice on the basis of the quadratic nonlinearity of the
Navier-Stokes equations. In three-dimensional space the cascade is assumed to be
conservative and an eddy of size r decays into b* = 8 new eddies of size {r. The only
free parameter is M,. In nccordance with the literature on generalized Cantor
measures {c.g. Halscy ef al. 1986). multipliers corresponding te one-dimensional
sections of this model were called p, and | —p,. This implies that each piece receives
either a fraction M, = ip, or M, = {1—p,) of the flux of kinetic energy. Therefore,
the ‘p-model’ pertains to

MY = HOM — M) +8M =)}, (2.36)

for which we have
1(q) = —logy[p{+ (1 —p)" 1+~ D){g—1). (2.37)
This model is intermediate between Kotmogorov’s {1941) model and the f-model, in
the senge that it aliows for inhomogeneities ta be partially mixed during the cascade.

Recentlv. a simple probabilistie model for the multiplier distribution has been
proposed by Chhabra & Srcenivasan {1990},

2.6. Nor-fractal models of intermittency

Several other recent models do not fall within the class of spatially self-similar
cascades. These will be briefly reviewed here.

Inspired by the numerical results of Siggia (1978). Nakano & Nelkin {(1985)
proposed an intermittency maodel in which the energy transfer to smaller scales
oceurs in temporal bursts that are spatially extended as opposed to the nested spatial
inhemogeneitics envisioned in the fractal models. By assuming a certain scaling form
of such bursts, characterized by a single exponent related to their speed of
propagation, the secaling exponents 7(g} can be computed {Nakano 19885) if one
replaces the spatial averaging in {2.14) by a temporal one. Nakano has shown that
the flz) curve of such a model consists of two single points. and the madel predicts
no intermittency corrections to the —$% speetrum. It must be stressed that « and
fla) in this model do not correspond to geometric quantities ax they do in the usual
multifractal formalism, but arise rather as scaling exponents of time averages.

Another model, proposed by Yakhot, She & Orszag (1488) on the basis of
renormalization group treatment of the randomly stirred Navier-Stokes equations.
relaxes the conservation of flux of kinetic energy to smaller scales, and assumes that
a fixed fraction of the flux at each cascade step proceeds directly to the smallest scale
#. In other words, the flux Aul/r (where Au, = |u(r)—-u(z —r)|} differs from (&) and

equals
Ay ~ (e (r/y . (2.38)
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This model does not ohey the eondition {Aul/r) = —#(e> which arises from the
Ksdrmdn-Howarth equation (see e.g. Monin & Yaglom 1971). However, proceeding
further by replacing €, in (2.17) by Auj/r, we get

(@) = —fug+ (g~ 1}d. {2.39)

The situation that r(g = 1) + 0 shows that the eascade is not conservative cven on
the average (as opposed to the non-conservative cascades of Appendix A which are
conservative on the average).

Recently, Hosokawa (1988) proposed that the dissipation is distributed with a
square-root exponential distribution. This was motivated by the numerical result
that turbulent vorticity, w, is distributed exponentially ; this feature is also born out
by experiments (Sreenivasan & Fan 1989). The distribution has only one free
parameter which can be fixed by the global mean {e). If the exponential behaviour
occurs for all box sizes 7, moments {e?> for all g cannot obey the scaling of the form
(2.14). Thus, square-root exponential distributions at all » are incompatille with
multifractality. As will be seen in §3.3, the observation that the fails of ¢, might have
a square-root exponential distribution is quite significant when analysing divergence
of high-order moments. The contradiction with multifractality disappears if only the
tail is square-root exponential.

A similar situation arises if the distribution of ¢, obeys gamma statistics (Andrews
et al. 1989). This distribution has one more free parameter than that considered by
Hosokawa (1989). and can be selected to produce the right power-law behaviour of
the second moment. As observed by Andrews ef al. {1989}, it follows that higher-
order moments do not obey exact power laws. Again, this occurs because the entire
distribution is preseribed, which decays too quickly to produce any scale-invariant
power-law behaviour of moments.

Another non-fractal model of intermittency has been proposed recently by
Kraichnan {1990).

2.7. Measuring D, a and fla) in practice
A practical question concerns the measurement of the exponents introduced in §2.3.
Usually one does not know exactly the prefactors in (2.7), (2.11) and (2.14) because
the precise value of L is ambiguous, but they can be eliminated by taking ratios at
two different scales r. The generalization of this procedure is to use many different
scales and generate log-log plots whose slope (if there is a linear region} will be the
exponent sought.

In many applications one does not know the measure at different levels of the
cascade, but only at scales corresponding to the last cascade step. Under certain
circumstances (spelled out in Appendix A}, E, can be obtained by adding the measure
in all the smaller boxes contained in the size 7, a procedure that can be repeated for
arbitrary r. This then allows the construction of the appropriate log-log plots.

In general, one also does not know the size and exact position of the pieces that
resulted from the original multiplicative process. In the binomial example used here.
we know that the process occurs on pieces of size 27" starting at the origin, but if we
arc given an e(z) at a certain level of an unknown multiplicative process, we do not
have this knowledge. It turns out that it is possible to use boxes of sizes (and
positions) different from the ‘natural partition’ 27" and, for most cases of interest,
the results will be unaffected {except for the appearance of oscillations as deseribed
below).

Thus. what renders the whole multifractal formalism applicable to real measure-
ments is that we can obtain the multifractal exponents given the measure e(x} at
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FigurE 8.' ngarithmic plots of [:(E,/E,_)"]"“"“ ra. the box size (r/L} for five different values of
g. The solid lines are least-square fits through the points. The slope of these lines is the measured

value of ;. The slight oscillation of the points arcund the power law is expected, and is due to the
phenomenon of lacunarity.

a single cascade step (usually at scales corresponding to an ‘inner cutoff’) by
analysing ez} with varying degrees of resolution. This is very similar to the situation
fo.r simple fractal sets whose fractal dimension ean be measured by looking at the set
with varying resolutions (using e.g. arbitrarily placed boxes). The difference,
however, is that we have to examine in addition the infensity or density e(x) with
varying degrees of resolution.

To illustrate these points, consider our binomial process iterated 17 times, so that
the smallest pieces are of size 27'7. Although we do know here the details of the
cascade, we shall pretend - in analogy with the experimental situation - that we
have access to the measure only at this particular level. Now, we compute E, as the
integral of the measure over segments of different sizes r, where r is larger thsrm PR
The values of r are logarithmically spaced. Again, to simulate the ignorance inherent
in experiments, we deliberately choose box sizes different from the ‘natural
partition’ on a binary base, arbitrarily the base 1.1.

Figure 8 shows the double logarithmic plots of |X (E,/E.)?]¥4 Y vs. +/L for
different values of g. The solid hines are least-square fits to the points, whose slopes
{according to (2.14)) are 7}, The use of box sizes different from 2™ induces slight
oscillations around the basic power-law structure. This is related to the notion of
lgeunarity (Mandelbrot 1982; Smith, Fournier & Spiegel 1986; Novikov 1969 is an
early reference), and introduces a small error in the determination of scaling
e;}s);;lents from log-log plots (Badii & Politi 1984; Arneodo, Grasseau & Kostelich
1987).

Figure 9({a) shows the resulting curve of D, vs. g along with the analytical result
D, = logy(pi+p3)/(1 —q). (2.40)

The two are in good agreement in spite of our ignorance about the binary process.
Applying transformations (2.19) and (2.20) to the measured D, one obtains the SJle,
curve shown in figure 9(b), where the continuous curve is the analytical result. The
good agreement again emphasizes that measures such as in figure 4 can be
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Fuecwr 9 ) 11 curve of the binomial measure with M = 006 or 0.4- {h) fiz) obtained from the 1),
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<elidh e i the theoretioal prediction. 1t is seen that the hlind procedurs used in boxing the data
mtroduces small oreoes in £, and fla)

characterized adequately by their sealing propertics obtained from a particular step
of the cascade Process,

For methods of oltaining fiz) directly without involving the moment exponents
3, see Meneveau & Srecnivasan (1980), Chhabra & Jensen (1989) and Chbabra.
Jensen & Sreenivasan (1589), For issues related to computing the fla) curve direetly
from the multiplier distribution. see Chhabra & Sreenivasan (1990},

3. Experiments on the multifractal distribution of ¢

Thix section deals with the experimental exploration of the multifractal
disterthution of ¢ the dissipation rate of turbulent kinetie cnergy. Owing to
experimental restrietions, we use one-dimensional cuts of a single term of €. Further.
as 15 usually the practiee, we resort to Tavlor's frozen-tlow hypothesis and analyse
Hows that have a eonveetive velocity that is large compared with turbulent
Huetuations. There is a vast literature on the validity of Taylors hypothesis {c.g.
Lumley 1965: Antonia, Chambers & Phan-Thien 1980y, primarily directed towards
possihle corrections required when interpreting the frequency spectra as wavenumber
speetias Inorder to minimize data manipulations prior to the analysis, we do not
attempt suck corrections here, which are. in any case, not without problems,
especially for low Revnolds number; see. for instance, Sigpia (1981}, rasad ef al.
{1985 and Prasad & Sreenivasan (19904) have shown that x. the dissipation rate of
passive sealar Huctuations, displays the same multifractal characteristics as its
individual termis In these same references it was also shown that the use of Taylor's
hypothesis was satistactory. Kven thaough it is not clear how much of this conclusion
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Laboratary Walke of a Atmosphetic
Flow - boundary layer cvlinder surface layer
Positian y/d=02 r/d =90 Height = 2 m
of hot wire boundary-layer Cvlinder dia. above the
thickness d=19%cm roof of a
&~ 4em centreline 4-storey building
(A~ 18 m above
ground levei)
Free-stream 1200 8OO Mean velocity
velocity at hot-wire
U, (em/fs) location = 600 em/s
Convection o 20 60O
velocity at
hot-wire
location £ (em/s}
r.m.s. veloeity a0 26 12 (+30%)
fiuctuations
' {em/s)
Taylor microseale 032 0,28 5.3
A {cm) .
A= wl fC{du e
Reynolds number 320N 10000 7% 18
R,=U_Liv L= L=t L=h
R, =uwdjv 10 50 1500 {4 30%)
Kolmogorov 0.016 0.026 0.07 1+7%)
microscale
7 {em) .
7 = WAL 1S u )
Longitudinal integral 29 1.2 > 15000
lengthscale L (cm)
from autocorrelation
Data-acquisition 25000 25000 HOX)
frequency f, (Hz)
Low-pass filter 12500 10(0H) 2000
setting f, {Haz)
Number of points {3 5 x 40" 3.6x10°

Tabre | Summary of experimintal conditions

applies to ¢ (which, unlike y. has cross-terms in it), we are constrained by the present
experimental technology to represent the real dissipation rate € by its surrogate ¢’
where .

e~ {Qu )R (3.1)
Here u, is the velocity fluctuation in the “streamwise * direction.

3.1. Experimentul conditions
Velocity measurements were made with a4 & pm diameter 0.7 mm long hot wires

operated on a DANTEC 55M01 constant-temperature anemometer at an overheat
ratio of 1.7. The temporal response was adjusted to be flat up to about 20 kHz. The
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signal conditioner at a frequency f,. The signal was digitized with 12-bit resolution
on & MASSCOMP 5500 computer using a sampling frequency f,. Details of
experimental conditions are summarized in table 1. The hot wire is operated in the
lincar regime, so that calibration is not necessary. A voltage fluctuation ¥{t,}), which
is proportional to the velocity Auctuation u,, is measured. The dissipation is then
caleulated using simple finite differences on the voltage V(t,). In Appendix D, we
show that the results are robust with respeet to different methods of evaluating the
derivative. Since we normalize ¢ by its mean, we omit multiplicative factors from the

analysis aod writ s
RS Aud W € _ [Vl = Ve

&~ At = VU @-2)
The Kolmogorov microseale 7 is calculated from the signals according to
U ) UV () ' .
1= (i) - [Erions ) G4

where , is the mean speed at the measuring station, v is the kinematic viscosity of
air and 1’ is the root-mean-square velocity fluctuation. The resulting values of 3 for
different flows are shown in table 1. The Taylor microscale A caleulated according to

oo U Vi) .
<(au1/at}2>] SV ) — VU()P)’

is also displayed in table 1. The integral lengthscales L listed in the table were
obtained from the autocorrelation of the velocity (using Taylor's hypothesis). For
the atmospheric surface layer the integral scale was taken to be of the order of the
height of the measuring station above ground level. The Reynolds numbers based on
) and the integral scales L and Taylor microscale A are also listed in table 1. Very
long records of data were available for the laboratory flows (107 points for the
boundary layer and 5x 10* points for the wake). For the atmospheric flow, the
number of points was 3.6 x 10°.

Figures 1(a) and t (b) show typical segments of €' for the laboratory boundary layer
and the atmospheric surface layer respectively. [t is apparent that (b) displays more
intense peaks than does (a). Qualitatively, since in (b} the scale separation betwcen
L and 7 is much larger than that in (@), one is tempted to compare them to figures
4{r) and 4(d) where the same multiplicative process is shown at different levels. If the
process is the same, then the flz) and D, curves of the measures of figures 1(a) and
1(b} should be the same. One of the goals of this section is to ascertain using
experimental data whether this is indeed the case.

Returning to the velocity signals, figure 10 (a) shows the autocorrelation funetion
of the veloeity signals in the laboratory flows. The correlation remains quite
substantial over distances larger than L. The dashed vertical lines enclose a range of
seales within r/g = 30 and 300. As will be scen below when analysing the multifractal
charaeteristics of the dissipation field, the scaling ranges for the laboratory flows are
located within such a range. The autocorrelation function of the atmospheric flow
decays much more slowly, and the appropriate scaling range is much larger {(sce
below). The power spectrum of the velocity signals is shown in figure 10(6) for the
two laboratory flows as well as for the atmospheric one. Note that we have used
k = f/U,, where fis the running frequency. (Using the definition & = 2rf/U, only shifts
the curves to the right by log,q(2n] = 0.8.) Again, the dashed lines enelose the scaling
range to be used later for the laboratory flows. Also shown as & solid line is the —3

(3.4)

e Fpeavitaty (s b

S, R R AT A YT A A S B ] AT TR E T A R S R ALA T S WAL

AP R

The multifractal natu-e of turbulent energy dissipation 449

1.0 e e

~~ -
:=/ | (a) -
X
A~ + b
I 05 -
¥, - -
3 L\ 4
= [ ]
T B! ]
o 1 " . 1 B
0 500 1000
rf

Yog,o [E(k)] (arbitrary units)

-5

log,, (k7]

FieURE 10. (a) Autocorrelation function of the velocity signal obtained in the laboratory boundary
layer {circles) and in the wake of a cylinder (squares). Arrows mark the corresponding integral
scales, and the dashed lines enclose the region used for finding the power-law exponents for these
flows. (b) Power spectrum of the velocity signals obtained in the laboratory boundary layer lower
curve), in the wake of & cylinder (middle curve) and in the atmospheric surface layer (upper curve).
For laboratory flows, arrows mark wavenumbers corresponding to the integral lengthscales, and
dashed lines enclose the region used for finding the power-law exponents (see text). For high
wavenumbers, some intermediate points are omitted to avoid cluttering.

slope. It is clear that the spectra of the laboratory flows are slightly curved, and that
no unambiguoys inertial range is vigible for these low-Reynolds-number flows, It will
be shown in §3.2 that the scaling is somewhat better for moments of dissipation,
much better when averages of the dissipation were obtained over segments of data
of the order of a few integral scales only. Nevertheless, we point out that the range
r/g = 30 to 300 that will be used in §3.2 is roughly consistent with a —§ power
spectrum, In passing, we remark that the large-scale behaviour in the boundary-
layer flow is consistent with a —1 spectrum {Perry & Abell 1975) indicated by
another solid line. We further want to draw attention to the fact that for the
spectrum of the wake, the best scaling range seems to be between log, [ky] = —3 and
— 2, corresponding to scales r/y between 100 and 1000. The slope there is appreciably
fiatter than —2, but the upper bound on the scaling range is larger than where the
inertial-range behaviour normally terminates. (This observation was also made in
Prasad & Sreenivasan 19905.) The scaling range for the atmospherie flow is sizeable
and unambiguous, extending at least down to wavenumbers log, [kn] ~ —4.
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3.2, Measuring the D, exponents of the dissipation
Ax discussed in §2.7 we consider E (z,), the dissipation integrated over disjoint
segmnents n.l length 7 centred around location x;. For simplicity, we normalize by E,.
the total dissipation oceurring in the entire data set. That is, we use
e'{xidx.

Elr) = [ e(xrydx, E, = f
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(E/E),
FicurE 13 Same as in figure 12, but for the negative power ¢ = —2 emphasizing low values of
{(E /B,

Next one needs to computer sums S E (zy/E For long data scts. these
computaticns are time consuming because they have to be repeated for all values of
g- For this and for other reasons explained helow, it is convenient first to construct
histograms of the random variable X = log,o(E,/£,}. This was repeated for 17 values
of the box size r, ranging from r = 165 up to 640y. Figure 11 shows curves based on
histograms in logarithmic units obtained in the laboratory boundary laver for a few
typical box sizes. Here N(X ) AX is the actual number of boxes of size . where X takes
on values in a band X,+{AX. The sums of (E,/E)" are computed using the
histograms as ¥ Bz /B = 3 (IO*’:)G;\"{(XJJAX ~ Fa-nDy (3.5}

To show that data records are sufficiently long to ensure statistical convergence for
values of ¢ up ta 5 and down to —2, we show in figures 12 and 13 plots of the
summands (IOXJ)”.\'(XJ) AX for ¢ =5, 4 and —2. The summands of (3.5) close well
enough. Figures 12 and 13 are for an intermediate box size of r = 647, but the
behaviour is similar for other box sizes considered. This criterion of convergence is
in faet very conservative, As discussed in §2.7, the quantities of relevance in
measuring the D exponents are the logarithm of the moments divided by (g—1). To
show convergence of these latter quantitics, we shall present moments of e, = K _/r,
normalized by {e) = E,/%, as a function of the record length %. We consider
moments of €,/{e) rather than of E,/E,, because the statistically stable behaviour
of the latter tends.to a uniformly decreasing function of ¥ (because E, increases
indefinitely with #), while moments of €,/<ey tend to a constant value. They are
trivially related by {ef>/¢ed? = {E/E L) (& /r)0. Figure 14 shows wake data for
9 = 4 as a function of ¥ for three typical values 5f the box size r. It is clear that there
are no appreciable fluctuations over two orders of magnitude of the record length %,

We now apply (3.5) for both laboratory flows for 15 g-values between ~ 2 and +85.
Figure 15 (a-f) shows the appropriate log-tog plots for six representative values of ¢.
The results for the wake are shifted from those for the boundary laver. hecairse the




452 C. Meneveau and K. B, Sreenivasan

ITII T T 1 II7'!I| 1 T 1 llllf] T T I4
~ 1.5 rfp=30 ] <
N C 100 i
X -0 -
~~
K - -
¥
= o 300 i
el - -
o
- - -
—25 —
- 4
llll 1 L L lljlll L 1 L llllll Il L L

10* 10 0t
2L
Flovre 14, Moments of the locally averaged dissipation rate €, in the wake plotted as a
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Fiaure 16, Same as figure 15. but now [T (£,/£,)7['"*" " 15 weighted by a factor (r/y) % where D,
are the measured slopes in figure 15. Exact power-law behaviour with exponents I, should yield
a flat region. Although perfect power-law behaviour does not exist at these moderate Reynolds
numbers, reasonably horizontal portions are discernible in the range r/7 = 30 to 300. {a) ¢ = 5. (b)
g=31l)g=2 d)g=00,(e)g=—1, (flg=-2

the linear regions of such plots. The scaling range is not entirely unambiguous
because of the low Reynolds number of the laboratory flows. However, the range
between r/5 = 30 and 300 appears reasonably linear. The lower limit of r/y =30 is
close to the lower limit of the inertial range used in Anselmet et al. (1984), but the
upper limit of r/# = 300 (about 1.5L) is considerably higher than their upper limit.

Straight lines are drawn by least-square fitting through data points in the range
/7 = 30 to 300. These are shown as solid lines, whose slope corresponds to D,. In
figure 16(a—f) the values of [B(E,/E,)¢]e Y weighted by (r/#%)™%e are plotted for
both flows. The existence of reasonably horizontal plateaux in the range /3 = 30 to
300 points to the reasonableness of the estimated D,. To test the sensitivity of the
results with respect to the precise choice of the scaling range, we have obtained fits
in ranges r/n = 20 to 200 and r/q = 40 to 400. Figure 17 shows the results. The
sensitivity of the results to the sealing range is indicated by dashed lines, which
cotrespond to obtaining D, in the range r/y = 20 to 200 {lower line for g > 0 and
upper line for g < 0) and in the range /7 = 40 to 400 {upper line for ¢ > 0 and lower
line for g < 0). The agreement between the various results for both flows is quite
good.

Given our conservative criterion for convergence, we now want to explore the

e
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Fravkk 18 Log-lg plots of [SE, /K41 % for ¢ = 4 as a function of r/y. for increasing values of
the record length % used to con sate ¥ (£, /K1 From top to bottom, &£ = 50L. LOL, 200/, 001,
M. el LGOOL. L is the integral ~eale. The flow is the laboratory boundary layer. The slope of the
<ohid line tit Theotgh the points in the range from r/y = 10 to 300 is D _, = 0.62.

cHeet of computing sums or moments over shorter records of data. We reeall our
carlier observation (Meneveau & Sreenivasan 1987a) that the sealing appears to bhe
hetter when one computes sums over shorter records of data. (A similar observation
was made for fractal interfaces in Sreenivasan & Meneveau 1986, As discussed in
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Figrre 19 Moments of the locally averaged dissipation rate ¢,. as a function of the record length
& used for the averaging for various 77y, again for the boundary layer. (a)g =35 and (b} g = —-5.

representative sample of the z-values in the manifest part of fla). This of course is
valid only asymptotically for g/L -0, or at very high Reynolds number. where the
number of multipliers is large. For laboratory flows, averaging aver a few tens of such
samples improves the statistics considerably.

Of immediate interest is the powerlaw behaviour under such circumstances.
Figure 18 shows log-log plots of [X (£, /B vs. (v/n) for g =4 from the
laboratory boundary layer {see table (), where the sum is evaluated over increasingly
long segments of data (from top to bottom: & = 50L, 1004, 2004, 400L, 800L and
1600L). The solid line is a fit through the results for 50L in a range between r/y =
10 to 300, and the slope is D _, = 0.62. The seatter disappears us % is increased. but
the curving of the points makes it more difficult to identify power-law behaviour. It
appears. therefore, that a better scaling can be observed by considering data sets of
the order of a fow tens of integral scales. 1t must be stressed that. even though
moments or sums are statistically not completely converged for segments of order
10L, the logarithms of the moments divided by (g—1) do converge to reasonably
stable values. This feature also permits us to compute D, for ¢ more negative than
—2. Figure 1%9(a) shows the moments as a function of £ for a high moment g = 5 for
three typical values of the box size r. Similar results for 4 = —5 are shown in figure
19(b). The distance between the curves corresponding to different box sizes does not
vary appreciably, meaning that the slope of their log-log plots (see below) will give
good estimates of the exponents sought.

We treat these observations as empirical facts (which are not fully understood) and
proceed to compute D, from ghort segments of data. Figure 20 shows representative
log-log plots for six different segments of the boundary-layer flow for different values
of g (4, 0.5 and —4). The solid lines are fits in the best scaling ranges selected on a
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Frarne 20. Log-log plots of [T (& /E )"V a= a function of r/y for several tvpical segments of
length equal to & = 30L obtained in the laboratory boundary layer. O, ¢ =4: {J, ¢ = 0.5 ©.
g = —4. Nolid lines are linear least-square fits in a range selected on a case-by-case basis. (u-f)
correspond to different segments of the data.

case-by-case basis. For g > 0, usually the range between 7/3 = 12 and 400 was used.
For g < 0, the results at small seales r/g < 40 tend to fall-off faster than a power law.
Ax discussed in appendix C of Mceneveau & Sreenivasan (1987 4). this is due to the
inftuence of noise (digitizer and otherwisc). The appropriate scaling range for ¢ <0
was usually between r/p = 40 to 400. Now, however. the measured values of 1),
fluctuate slightly from one segment of data to another, exhibiting typical standard
deviations of 0.05 for g =4, 0.02 for ¢ =2 and 0.05 for g = —4.

This procedure was repeated for other flows including a laboratory boundary layer
at y/8 = 04 {with R, ~200), the wake of a cylinder at a free-stream speed of
1500 cm/s, and the tlow behind a grid.

For the atmospheric surface layer (sec table 1), we cvaluate the sum over all
3.6 x 10® data pcints available, This is still & relatively short segment of data because
of the large integral seale of this flow. To illustrate the convergence of moments, we
show in figure 21 moments cvaluated as a function of the length of the data record.
Stronger fluctuations of the moments can now be seen. this being so because of the
much higher Reynolds number of this flow: yet. differences from one r value to
another remain, for the most part, essentially independent of data record tength.
Figure 22 shows the relevant log-log plots for six different values of g. Here the
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FIoURE 21. Moments of the locally averaged dissipation rate ¢, as a function of the record length
X used for the averaging in the atmospheric surface layer for various r/y. (a) g=>5and (h)g = —5.
-2
I
ol
2
3 L
£
-6

log,g (r/m)
Frauhe 22. Log-log plots of [T (E,/E)*]***" as a function of /7 for the flow in the atmospheric
surface layer. Q. ¢g=4;: A, ¢=2:,¢=08; x.g=—08:%¢=-2; &, ¢ = —4. Solid lines are
linear least-square fits in the range r/y = 10 to 30000.

scaling range clearly extends over almost four decades and allows unambiguous
determination of the sealing exponents.

The average of all the results of many segments of data in all the laboratory flows,
as well as the atmosphere, give a representative D, curve. The mean curves (and their
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Fiovee 24 Multifractal spectrum fta) ohtained from Legendre transforming the results of
tigure 23 Nymhbals have the same meaning as in figure 23

standard deviations) for cach type of How were indistinguishable from cach other
within experimental accuracy. The mean curve for all the flows is depicted with
diamonds in foure 23, whete the error bars denote standard deviations resulting
from Huctuations between one segment and another, The results are indistinguishable
frean those obtained from the long-term averaging in the range ¢ > - 1. For larger
negative g values, we are inclined to believe that the results from the short term
averaging are the more accurate ones because of the substantially better scaling
observed,

Next. the Legendre transform of {lg— 1) D, is computed to obtain the multifractal
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Fievne 25, High-intensity tails of the probability density of £, /£, plotted in log-log units. A linear
behaviour at the tails would indicate a power-law {(hyperbolie) distribution and divergence of high
moments. Different symbols correspond to different box sizes as in figure 11.
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Fioure 26. High-intensity tails of the probability density of £ /E, plotted such that a linear
behaviour at the tails indicates a lognormal distribution. Different symbols correspond to different
box sizes as in figure 11.

soectrum fla); & is obtained by differentiating (g - 1Y D, using centred differences on
the data of figure 23. The results, shown in figure 24, will be discussed in §4.
3.3. Analysis of the tails of the distribution

In this section the possibility of extending the D, curve to g > 5 is considered. To do
this, one needs even longer data records for Drober converomnes Ae will he oo
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Fisure 27. High-intensity tails of the probability density of £ /E,, plotted in log-linear units.

Linear behaviour at the tails would indicate an exponential distribution. Different svmhols
currespond to different box sizes as in figure 11.
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below, this is an inherently impossible task. Another possibility is to study in detail
the tails of the distribution of (£,/£,) in order to extend it on a rational basis to much
higher values of (E,/E,). Focusing on the probability density- p(E_,/E(} of the
dissipation in boxes of size r, we note that it is related to the earlier histograms by

NX)AX .
= S o N 3.6
P(Er/Et)j A{Er}}ET_)j\T ( )

Here N,, the number of boxes of size 7, is equal to ¥/r, and AE,JE\), =
(E,/E) 1 — (E,/E,); We now wish to distinguish among several possibilities of the
high-intensity tails of p(£,/E,), - namely hyperbolie, lognormal, exponential and
square-root exponential.

If the tails are hyperbolic (Mandelbrot 1974, 1989; Schertzer & Lovejoy 1985), the

distribution would obey PEJE) ~ (E,/E)™ (3.7)

and vield straight lines of slope —w on log-log plots. For such distributions moments
of order higher than @ — 1 do not exist. The log-log plots of tails of ptE,/E\)y, shown
in figure 25 for five different box sizes, suggest that the tails decay faster than
linearly on such plots (especially for the smaller 7). This behaviour is in agreement
with the results of Anselmet et af. {1984) and Gagne (1987). .

Next. the lognormal possibility deserves analysis, even though it is asymptotically
inconsistent with multiplicative processes. For lognormal distributions { Kolmogorov
1962 ; Obukhov 1962), p(£,/£,) follows

PlEJE) ~ (Er/Et)_l exp{—w{r)[log (E,/E\)—log (Er/Er.)peak]z}: (3.8)

where (E,/E,)peny 18 the value of (E,/E,) at which the distribution peaks. Thzis would
imply that plots of log{(E,/E,)p(E,/E,)} vs. [log (E,/E)—log (E,/E )peas)? should

~
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Fioune 28. High-intensity tails of the probability density of £,/E,. plotted in logarithmic units as
a function of (£ /E ). The linear behaviour at the tails clearly shows that the tails of the

distribution are of the square-root exponential type. Different symbols correspond to different box
sizes as in figure 11.

vield straight lines. This is cxamined in figure 26, from which it appears that the
measured distributions decay faster than lognormal tails, especially for the smaller
hoxes.

A third alternative corresponds to exponential tails,
PEJE) ~ expl{—w(r{E,/E)}. 13.9)

for which semi-logarithmic plots of log{p(E,/E)} vs. (E./E,) should show linear
behaviour. This is tested in figure 27. Here, unlike the two previous cases, it is
apparent that for small box sizes the tails decay slower than the proposed
distribution. This type of behaviour was also noticed by Gagne {1987) for velocity
differences.

Finally we examine the possibility that the tails of the probability density are
square-root exponential. This possibility has been suggested by Gagne (1987) for
velocity differences (also, see §2.7). For such tails, one has

plE JE) ~ exp{—~alr){E,./E ) +b(r)}. (3.10)

By plotting log [p(E,/E,)] vs. (E,/E,), one should observe straight lines of slope — a(r)
and intercept b(r). It is apparent from figure 28 that such linear behaviour indeed
exists for all box sizes. The magnitude of the slopes a(r) is a slowly decreasing
function of r, and the intercept b(r} increases with r. The same behaviour is observed
for the tails in the wake flow. We conclude that square-root exponential tails are the
best candidate for extrapolation.

The actusl extrapolation of the distribution p{£,/E,) is performed as follows. First,
afr) and b(r} are estimated by linear least-square fitting through the seven right-most
points of p(E_/E,). Then 30 more points along that straight line are added to the
distribution. (The extent of p(E,/E,) is thereby increased by about 10 orders of

.-
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magnitude. which is why we commented earlicr that the regquired measurements are
inherently impossible.) Then the moments are computed using

ZE BN = S SENN, pE B AME, ), (3.1
i i

where the sum on the right-hand side ineludes all points added to the distribution by
extrapolation. This is repeated for g-values ranging from 4 to 10 for both the
boundary layer and the wake. Figure 28 shows the resulting log-log plots used to
obtain [r, with the fits (again in a range r/y = 36 to 300) indicated by solid lines.
Figure 30 shows the {3, curve, with points now extending up to g = 16.

- !n order to find the asymptotic value of D, forg >0, it is convenic.t to compute
(kL JE G as the praduet of the total number of boxes and the mean value of
(£, /R0 aceording to

SIEA/E = N (B B = \f (B JEVPEJENANEJE).  (312)
’ ]
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Ficure 30. Moment exponents D_ as a function of ¢ for both laboratory flows, where the resaits for
g = 5 are obtained from extrapolated moments. Circles correspond to the boundary laver and the
squares to the wake. The dashed lines represent 1) values obtained from different sealing ranges
(same as in figure 17}, The solid line is the D curve obtained from purely square-rout exponential
tails (see text). which asymptotes at 4 slow rate to a £, value of 0.12 indicated by the dot-dashed
line.
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FigUre 31. Values of the intercept b{r) from the extrapelated distribution functions as & function
of the box size r. Circles correspond to the boundary layer and squares to the wake, Solid lines are
fits in the range r/y = 30 and 300. The siopes # {roughly the same for the two cases) are estimated
to be about 2.9+0.6.

Replacing p(E,/E,) by (3.13) and using N, = & /r one obtains
SIEJE) = 28T (2q+2)c"a(r) 20 Vr— 1. (3.13)

In order for this to obey a power-law with r, b(r) and a(r) have to be of the form
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Fioure 32, Values of the slopes a{r) from the extrapolated distribution functions as a function of

the bux size r.plotted in log-log units. Cireles correspond to the boundary layer and squares to the

wake. Solid lines are fits in the range r/3 = 30 and 3. The (negative) slopes ¢ are estimated to
he about (106 +10.04.
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Fravre 33. Multifractal spectrum fla) obtained from FLegendre transforming the results of figure
30. The solid cirele at the lower left corner of the f(a) curve corresponds to the square-root
exponential behaviour with the measured values of 8 and ¢ (see text). The secondary seales are for
the multifractal spectrum fi(a) corresponding to the three-dimensional situation, obtained by
adding 2 to 2 and f(a) from the experimental results. The solid line and the error bars are the mean
and standard deviation of the various results from short-term averaging. Circles, squares and
dashed lines correspond to the analysis of very long records of data in moderate-Reynolds-number
ftows (houndary tayer and wake). The arrow marks the location down to where fia} was computed
without extrapolation. Lower values entail the extrapolation procedure. A detailed analysis of this
curve s relegated to §4.
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Substituting this into {3.13), and using 3 (E,/E,)* ~ r9" 1P we obtain
D, ={2¢(g+1)+60~1]/(g—1). (3.15)

and in the limit, 2, = 2¢. Figures 31 and 32 show b{r} and log,,[a{r)] as functions of
log,e[7/7] for both the boundary layer and the wake. T'.. plots are consistent with
a linear behaviour, substantiating relations (3.14).  and ¢ are obtained from these
plots by fitting straight lines through the data in the range r/3 = 30 to 300. The
scatter, relatively large especially for the wake data, should be kept in mind when
interpreting the results. The mean values are

Hx29406, ¢=0.06+0.04. (3.16)

This implies that 2, & 0.12 +0.08. Relation (3.15) is shown as the solid line in figure
30, and the dot-dashed line indicates the asymptotic value D_. )
Finally, fla) is computed from the D, exponent obtained from the extrapolation
procedure. The results are shown in figure 33. The f(x) curve was computed without
any extrapolation of the distributions (figure 24) down to the arrow. Lower values
are the results of extrapolation.
Asymptotically for ¢ » oo, it is clear from (3.15) that

a(co) =D, = 2¢ (3.17)
and flatoo)] = —[2¢+6~1]. (3.18)

In the last step, (2.20) has been used. This asymptotic state is shown as the filled
circle in figure 33 for the estimated values of ¢ and 6. The termination of the f(a)
curve at that point arises because of the rapid fall-off of the square-root exponential
tail. A detailed interpretation of the f{«) curve is given in the next section.

4, Discussion of results and comparison with models
4.1. Results

The curve fy(a,) corresponding to the three-dimensional situation is obtained
according to {2.34) by adding 2 to the values of « and f(x) obtained from one-
dimensional cuts (figure 33). For fy(2) > 2, the curve seems fairly symmetrie, with a
maximum oceurring at @ = {a)> = a(g = 0) &= 3.13 and f,(«)p.x = 3.0. The curve has
unit slope (or & = fy(a)) at the point alg = 1) = fy(a) = D,_; ,., = 2.87, this being the
dimension of the set where all of the dissipation is concentrated asymptotically
(Sreenivasan & Meneveau 198R). As remarked by Chhabra & Jensen (1989), D, is the
dimension of the .neasure-theoretic support of the measure. On the other hand,
Sslag = A = 3) ~ 2.96. This is the dimension of the set where all the singularities
(ag < 3.0} of the dissipation are located (Sreenivasan & Meneveau 1988). The fact
that fi{e,) is larger than f,[z,{g = 1)] (which is true quite outside of experimental
uncertainty) means that the mean dissipation is dominated by some set where the
dissipation is singular (but not extremely so!). This conclusion may have some
bearing on closure models.

By computing the second derivative of 7(g) = (g—1)D, at g = ( (using centre
differences on the data obtained from the short-term averaging) one obtains that
d?r/dg* = —0.26 £0.03. From (2.23) we obtain the intermittency exponent g =
0.26+0.03. Also, remembering from the previous section that D, =~ 0.76+0.02 {for
d = 1), we obtain that 4’ =d—D, = 0241002, comparable with g within ex-
perimental accuracy. The small difference between the two results arises because of
the multifractal nature of the dissipation.
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Fluvre 34, Sealing exponents £ of velueity structure funetions. Triangles (and error bars) are from

experimental results by Anselmet of af, {(1984). The other symbols, dashed lines and the solid line
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It is now also possible to compare these results to those of Anselmet ef al. (1984)
an the velovity structure-function exponents. To do this, we compute £, from our [
curve using relation (€ 11) of Appendix C. This relation assumes Lhatp(re } and thg
{:llb(‘ of Aw, = |u(z)—u(xr + )| have the same scaling laws. There is no direcg evidence
for this. the only rigorous result from the Karmdn-Howarth equation being the
cyuality of their mean values. The results of the comparison are shown in figure 34.
The present results fall a little lower for high moments but the agreement is guite
good considering the overall experimental uncertainty. Furthermore, using the
asymptotic results corresponding to the square-root exponential tails, one obtains

for high p the result that
£, =kp+26+0. (4.1}

whick depends linearly on p with a slope of 3¢ = 0.04. This is depicted as solid line
in figure 34.
+.2. Comparison with models

ln this section, these experimental results are compared to models summarized in §2.
.l"lgur(' 3500 b} shows the present experimental results as small circles, The non-
u'ltvr_mittem theory of Kolmogoroy (1941). the f-model with D = 2.87, and Nakano &
.\ol%cm's (1983) temporal wavepacket model (with z = 0.84, Nakano 19886) are
depicted using targe symbols in (&) for the flz) curve. and different lines in (b) for the
D, curve. The 0, curve in () corresponds to the three-dimensional case by using
(2.34). The lognormal model with g = 0.26 is shown by the dashed line in both (@) &and
(b} As expected from the anafysis of the tails of the individual distributions in §3,
the experimental fla) falls off faster than for lognormality.

The solid lines in figure 36{a. b correspond to the random A-model of Benzi ef al.
{1984) with their proposed binomial distribution of the random variable B (see

Appendix )
P = PSB—0.5)+ (1= Py(g—1). (4.2)

From ((' 9 it can be shown that 1}, =3-P s0that a D, of 287 selects J? = (.13, »
was called v in Benzi ef of, 19843 This modol scenmac that ahoee 1iha oee. 2.
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Freure 35. (@) Comparison of the fiaz) curve from the experimental results (small circles and
error bars) with several cascade models. The circle at f=a =3 is the original non-intermittent
Kolmogorov (1841) theory. The square at f = z = 2.87 corresponds to the fractally homogenecus
A-model of Frisch et af. {1978). The two triangles vorrespond to the temporal wavepacket model
(Kakano 18886). The dashed line is a parabola corresponding to the lognormal distribution with
# =10.28. (b) Comparison of the D, _ curve from experimental results (small circles and error bars)
with several cascade models. The dotted lines at Dy , =3 and 2.87 correspond to the Kolmogorov
(1941) theory and the S-model respectively. The solid line corresponds to the temporal wavepacket
model (with ¢ = 0.84, Nakano 19885). The dashed line is tangent to the measured D, _ curve at
g =0 corresponding to the lognormal distribution with x = 0.26.

created with probability (.13, while space-filling eddies are generated with
probability (.87. The model always vields Sl@) nax < 3.0 (in this case 2.9), stemming
from the assumption that some eddies receive no dissipation. As seen in figure 36 (a),
the model works reasonably well for the left-most part of the fla) curve (high-
intensity dissipation) or at the higher moments. There is some disagreement around
the peak and left part of the distribution, which is highlighted for the moment
exponents ¢ < 0 in figure 36 (b). *

In figure 37 (a, b) we illustrate some results of the 2-model of Schertzer & Lovejoy
11985). Here the random multipliers M are assumed to have a distribution

PUM) = PS(M =M.} +(1 —P)§(M—M,). (4.3)

Forcing the curve to pass through the measured values of 2, =212 and fla ) = 0,
one obtains that M, = 2% x 0.23and P = 871 M, is obtained from the normalization

-
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Fioure 36. {(a) Comparison of the measured fyla} curve (small circles) with the prediction of the
random A-model of Benzi et al. {1984), using a binomial distribution for £ and fitting it at the point
where f = o = 2.87. (b) Comparison of the measured D, , curve (small circles) with the prediction
of the random f-model (solid line) with the same distribution as in (g).

corresponding D, curve is shown in figure 37(b). Since this model involves two free
parameters, there are other possibilities as well, As mentioned in §2.7 and discussed
in detail in Appendix A, this model can also produce divergence of moments on linear
cuts. From (A 8), we require M, > } for this to oceur. For instance, the choice M, =
0.26 with P = 0.4671 produces divergence of moments for ¢ > § on the linear cuts,
which is the critical value g,, proposed in Schertzer & Lovejoy (1985). The fla) and
D, curves corresponding to this choice of parameters are shown by the dashed lines
in figure 37(a) and {b) respectively. Notice that D, , = 2 or D, ,=0when g=%
Other combinations of M, and P giving divergence of moments of order  can be
readily found. However, since this always implies that the curve crosses the axis
a = 2 with a slope smalier than § (see Appendix A}, thig is not compatible with present
experimental results. In other words, since the D, , curve must go through both
Dy = 3and Dy =2, it will fall far from observations (see figure 375). Nevertheless, the
model can be made more general by relaxing the condition of divergence of a specific
moment on the linear cut. In fact, we shall see below that by assuming that FP=40.5,
one can obtain good fits to the manifest part of fla).

The solid line of figure 38(a) in the range fi(a) > 2 corresponds to the binomial
model described in §2.8, with p, = 0.7 (= 4M,). The agreement between the data and
the model is quite good in the range fy(@) > 2. But owing to the assumption that at
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FicvsEg 37. {a) Comparison of the measured fy(x) curve (smali circles) with two out of several
possibilities arising in the a-model of Schertzer & Lovejoy (1985). The model assumes that the
multipliers M can adopt two values with different probabilities, and has two free parameters. They
can be selected for instance by foreing the curve to go through the lower-left most point of the curve
(solid line), or to produce divergence of the {-order moments on the linear cuts {dashed line). (&)
Comparison of the measured D {gmall circles) with the outcomes of the a-model. The legend is
the same ag in (a).

every stage the newly generated eddies receive exactly the same amount M, = {p, or
M, =11—p,), both with probability 1. this model does not produce singulsrities
distributed on sets of dimension less than 2: singularity sheets are the sparsest sets
that can be produced by this type of model. This can be seen in figure 38(b), where
the D, curve agrees with experiments for g-values between —3 and 4. Higher
moments emphasize singularities with fya) < 2, and give lower values for I, , than
the binomial model.

To model the entire range of f(a) > 0, one can generalize the binomial model to &
‘multinomial’ one in which the number of free parameters can be made arbitrarily
large. This restricts the usefulness of such a procedure. For completeness, we observe
that (e.g.) a probability distribution where the multipliers can take on three distinct
values with different probabilities according to

M) =Pua(M"Mu)'i'PlS(M_M1)+P25(M'Ms)’ (4.4)

produces, with My = 0.235 M, =0.119, M, =0052, F,= 1 P =%and P,=4, the
dashed lines of figure 38(a, b) - in good agreement with experiments.
Finally, it should be noted that the probabilistic model of Chhabra & Sreenivasan
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Froeke 38, (a) Comparison of the measured fy(a} curve (small circles) with a binomial distribution
(saiid line} of the multipliers (with 4M, = p, = 0.7 and 2 = 0.3), but each value occurs with the
same probability, §. This model (designated the p-model in Meneveau & Sresnivasan 1987 b) agrees
well with the data in the range f,(x) 2 2. If the multipliers are allowed to assume three values, each
with different probabilities, it ig easy to fit the entire curve (e.g. the dashed line shows such a fit}.

(b} Comparison of the measured Dy , eurve (small circles) with the p-model (solid line) and with its
multinomial extension {dashed line

{1990) - to which we have already referred - agrees well with the measured fla) curve
over the cntire range.

5. Conclusions

The main conclusions are now summarized. The observation that the dissipation
field ¢ has a multifractal distribution supports the notion of a self-similar
multiplicative fragmentation process occurring in turbulent flows. Using concepts
f.mm the theory of random curdling, it was shown that one could in principle use
linear cuts to obtain information on fal@) of the three-dimensional distribution. We
point out that recent anulysis in three dimensions of direct numerical simulations of
homogencous shear Aows (Deanc & Keefe 1988) and isotropic turbulence (Hosokawa
& \’almamntu 1990} give flz) eurves that are in good overall agreement within
cxperimental accuracy, The only difference is that they show a slightly smaller
degree of intermittency than does our mean fla). Quantitative results on high-order
Muments are not very accurate beeause the scaling range is modest at moderate
Reynolds numbers, but are of sufficient qualitv tn hichlicht munsh AF tha kil .z

R0 § T ongts iy e AT A a0 e

ey

Ly 41 !

HOMT R

was B LT

e

T

The multifractal nature of turbulent energy dissipation 471

tail of f(a), with an error margin of about +15%. It was found that the probability
distributions of the dissipation rates exhibit square-root exponential tails. By
extrapolating this behaviour, we were able to infer the asymptotic values of moment
exponents and the f{x) distributicn. The asymptotic value of D, for g-» 20 appears
to be somewhat larger than zero on the linear cuts which, according to Appendix A,
implies that there is no divergence of moments. This result is based on laboratory
flows only. For the atmospheric flow, the number of points needed to explore this
issue satisfactorily can be shown to be prohibitively large. If we wanted to * capture’
singularities with f(a) ~ 0 using a flow where L[y ~ 10* (as in the atmospheric flow),
we would need (10')° points - several years of data acquisition ! Perhaps the only way
of obtaining useful results there is via the multiplier method uwsed by Chhabra &
Sreenivasan (1980}. This method takes explicit advantage f scale similarity at
various levels and averages information over them, The me!hod also gives D_ > 0.

The present results are related to inertial-range exponents such as structure-
function exponents, and are essentially the same as previous results of Anselmet
et al. (1984). We emphasize that this means that the inertial-range sealing can be
deduced (at least to a good approximation) by examining the scaling of the
dissipation rate e when averaged over inertial-range boxes.

Comparing measurements with several models of intermittency, it was concluded
that scaling models with single exponcnts, lognormal and f-models are not
satisfactory in general. In this sense, f(z) is a useiul characterization of intermittency,
since it permits one to establish the validity of cascade models. On the other hand,
it was shown thet simple versions of random curdling {binemial or multinomial
models) conld account for observations in the manifest part of the fla) curve,
However, owing to the degencracy of the multifractal formalism {Feigenbaum,
Jensen & Procaceia 1986; Chhabra e gl 1989} one cannot claim that the turbulent
fragmentation process actually proceeds according to these simple models, but it is
worth noting that spatial fiuctuations of ¢ can be well guantified by the multipliers
0.7 and 0.3. These numbers have to be understood in the following sense.
Dynamieally, we lack a convincing mode! for the spatial characteristics of the flux
of kinetic energy to small scales. 1f such a process were to oceur, it must exhibit
fluctuations — this being the origin of intermittency, The multipliers 0.7 and 0.3
correspond to the simplest possible fluctuations that will reproduce most of the
observations. Indeed, ail the practically important moments are sufficiently low that
they can be obtained by knowing the positive part of f(a) on the linear cuts only. The
merit of the simple binomial model is that, unlike lognormality, its high-order
maoments are consistent with a multiplicative process, even though it reproduces the
observations only over single ‘typical’ cascades on the linear cuts. To repraduce the
more infrequent events occurring on sets of dimension smaller than two (cor-
responding to the latent part of fl2)), one needs to invoke more general processes such
as the multinomial process of §4 or the probabilistic model of the type discussed by
Chhabra & Sreenivasan (1990).

It is important to stress that the multifractal nature of the dissipation implies a
non-trivial spatidl structure, which can be seen for instance in the behaviour of two-
point correlation functions of multifractals. [t was shown (Meneveau & Chhabra
1990) that there are interesting spatial correlations in the local exponents a,
stemming from the fact that the measure at two nearby points will share more
common ‘history’ of the multiplicative process than those that are far apart. This
reasoning can be made precise (Cates & Doutsch 1987; Meneveau & Chhabra 1990),
and might lead to improved statistical treatment of the fine-structure of turbulence.
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It is of interest to highlight other questions concerning the multifractal description
of turbulence. For instance, the degree of correlation existing among joint
distributions of intermittent quantities in turbulence, such as the dissipation of
kinetic energy and the dissipation of passive scalar fluctuations, or the squared
vorticity, can be well described by extending the multifractal formalism to more
than one variable (Meneveau ef al. 1989). Another interesting problem addressed in
Ramshankar (1988) and Tong & Goldburg (1988) concerns the behaviour of
multifractal scaling exponents during the transition to fully developed turbulence.
In addition, the multifractal nature of the dissipation has implications for the
number of degrees of freedom {Meneveau & Nelkin 1989} as well as for the fractal
dimension of interfaces {Meneveau & Sreenivasan 1999) in turbulent flows. Another
interesting problem is the extension f the multifractal formalism to non-isotropic
fields (Schertzer & Lovejoy 1985).

Finally. we note that all these models involved the binary base (i.e. b = 2). Other
bases can be shown to make no difference to the scaling properties embodied in the
fla) curve. However, these models assume that all offspring are of the same size. It
turns out that Auctuations in the size of the new pieces created during the cascade
also typically lead to multifractal distributions (this is what typically leads to
multifractal measures of ittractors in phase space). The statistics of such fiuctuations
can, under certain conditions, be related to expansion and contraction rates of fluid
elements. (For a discussion of this approach in the context of passively convected
vector and scalar fields. see Finn & Ott 1988, Ott & Antonson 1989.) In turbulence,
we suspect that a mixture of fluctuating length and measure multipliers is the most
likely possibility. As mentioned before, this is impossible to discern among the
plethora of possibilities using the f(a) curve alone (Chhabra et al. 1989; Chhabra 1989.
It is intercsting to recall the demonstration of Chhabra et ol. that it is in general not
necessary to consider variation in both length and measure multipliers.) Other data
processing techniques such as wavelet transforms (Grossmann & Moriet 19845
Everson, Sirovich & Sreenivasan 1980 Meneveau 1990), detailed flow visualization,
analysis of full numerical simulations, etc., may go some Way to clarifying dynamical
details leading to small-scale intermittency.

We wish to thank A. B. Chhabra, R. V. Jensen, B. B. Mandelbrot and M. Nelkin
for many stimulating discussions. We are especially thankful to Benoit Mandelbrot
for drawing attention to the notion of negative dimensions and their relation to his
early work. This work was supported by DARPA (URI) and AT'OSR.

Appendix A. Sections through fields generated by random curdling

In this appendix we examine the relation between the multifractal features of d-
dimensional interscctions through intermittent fields generated by random curdling
in d-dimensions. We start by noting that densities of the measure, or averages of the
dissipation rate, are the same in a given box, whether one obtains it in the 4-
dimensional domain, or on a d-dimensional cut. This also holds for the ratios of
densities. Therefore, the ratios of the total measure or energy flux M on the 4-
dimensional domain (denoted henceforth by M) can be related to the ratios of total
measure M,,, on the d-dimensional cut by equating the corresponding densities

AM“” bd = A‘Uu) bd. (A 1)

Thercfore, whenever the multiplier in & 4-dimensional domain is M, the multiplier

AR

Nt U R R VI Y

DY PR AT T e R AR A WA O AR YRR S U DN e R

s

PP e e aa vl Ll L SV E LR TR SR,

The multifractal nature of furbulent energy dissipation 473
T " T y T
4 —
L (a) 1
3= -
Disg » b
2} N
1= -
F ]
0 1 A 1 1
-20 0 20
g
T

-1 1 " 1 N L
-20 0 20

FiourE 39. (a) D, 3. ¢ for the multiplicative process in three dimensi i i

distribution of multipliers. The mean of ¥ ,, is S‘“ and the minimum :rl)?infn:ili?ﬁuﬂeviltfs;‘i::z;arl
acquire are & and § respectively. The distribution is p(M ) — 42.958 exp[ — 15.89361M , | for & <
M, < i‘and zero otherwise. D, _ i3 computed according to I, , = log,[S(M’)]/.(l —q) A(!;‘;)D fl(:r a
d = 1 dimensional cut through the three-dimensional process, obtained by subtracti.n 2 flrgm (a
(see text). The dashed line shows the result that one would measure from an ‘experin%ental' one]
dimensiunal cut, where only the last stage of the cascade is known (see end of this section). )

Mgy on t‘he d-dimensional cut is M, b?~%. One now considers a multiplicative process
on a djdlmenswnal domain with muitipliers given by M,,,, where M ,, has the same
statistics as M, b*"% In particular, the condition of normalization implies that

Mgy =07, (A2)

but the local condition of conservation is relaxed on the cut. Therefore, one now
concentrates on a d-dimensional, non-conservative, multiplicative process with base
b and multipliers M ,, cbeying the properties (A 1) and (A 2).
We focus again on E, ,, the total dissipation contained in a d-dimensional bex of
size r. As before, we have
r/L=b% q/L=b" (A3)

where it is presumed that the cascade stops once a box size #/L is reached after n
stages. The tc?tal dis_sipation in a box of size r/L after the cascade has proceeded k
steps only, will be given by a certain sequence of multipliers M, according to

13
By, By =11 Ma,=E,,[E,b"° (A 4}
=1

From this it follows that the D, exponents, as well as a and f{a) of the distribution

oy
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Frevre 0. (4 fyiz} of the measure in three dimensions obtained by applying the Legendre
transforms to figure 39 (a). (&) fi{=) for a one-dimensional cut through the measure of {#}), obtained
by subtracting 2 to both a and f(x) of (2). Regions A. B and (" correspond to manifest, latent and
virtual singularities (see text). The arrow shows the limit of fla) corresponding to the dashed line
of tigure 39(4). The point where {2} reaches this limit has a tangent that gnes through the origin.

in d-dimensions are simply related to those in 4-dimensions according to (2.34). Thus
by knowing the exponents in 4-dimensions, onoe can obtain the corresponding ones
in d-dimensional cuts, but the question of more practical interest is the inverse
problem of obtaining the exponents in the d-space from those in the d-dimensional
cut.

Befure considering this, a speeific example might be helpful in illustrating the ideas
preseated so far. Let us consider a process in three dimensions (4 = 3) and with base
b = 2 where the multipliers abey the following distribution -

—HM 1 ) 1
M) = {A( w o for f< M, < z (A 5)
0 otherwise.

The constants 4 and B are obtained by normalizing pM ) and requiring that
My =27

Figure 39(a) shows the {3y , curve in three dimensions obtained by applying {2.31)
to this process. Figure 30th) shows the D, , curve for the corresponding process on
a one-dimensional cut (d = 1} obtained from (2.34). Similarly, figure 40 (a) and 40 (h)
show respectively the fi{a) curve in three-dimensions (4 = 3) (abtained from the Dy,
curve using the Legendre transforms), and the f,(@) curve on a one-dimensiona' cut
{(d = 1} through the three-dimensional distribution ; {2.34) has been used again. Since
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Moo =5 wehave that D, _ = o, . = logy[M,]™ = 4. Also, since i, = i, we
have that D, . = a, ., = log,(M, .. ]t = 1. Since M is nevar zero, D, ,=4=30.
Anather interesting property arising from the continuocus probability density p(3) is
that the probability of 3 being exactly My, =& or M. =1 is zero. Both Jlapn)
and fla,.,) are related to the probability of M being exactly M, or M, at evey
step in the cascade according to fy(2) = log,[P(M)]+ 4. This shows that the value of
fala) tends to — oo at the tails of the curve, consistent with figure 40(a).

Following Mandelbrot (1989), it is convenient to organize a more detailed
discussion of f,(x) into three separate cases; whether all or some of them oceur in
practice depends on the precise statisties of the multipliers M.

Manifest Singularities : This corresponds to a range of a-values (¢ now stands for
the singularity strength on the d-dimensional cut, i.e. a,) such that f.(x) > 0, or
Sal@) 2 4—4d. This is shown as region A in figure 40(b). In this range, f{a) can be
interpreted as a dimension, and there are no problems when going from 4 dimensions
to 4. Also, a single cut, or a single realization of the cascade in o dimensions will
typically capture all the singularities that are densely distributed such that f,(x) >
4'—d. This is obvious since f,(«) > 0 means that there is more than one box where a
has a certain value. This number becomes larger and larger as r decreases. or as the
level & increases, and remains of order unity if f(a) = 0.

Latent Singularities: This corresponds to 4 range of a > 0 where fala) <0 or
Ss(a) < (4 —d). This region is denoted by B it figure 40(b). The condition Salz)y <0
Imeans that there is typically less than one box in a typical sample with those values
of 2. Since the formulation is probabilistic, it is convenient to write that the
probability of & oceurring in a band dx (dropping normalization constants) is

() da ~ b ap*iat) gy (A 6)

This is smalter than 5*7 whenever fala} < 0 (when « is within region B}, Therefore,
a typical d-dimensional cut will miss these x-values. However, since IT{a) da is small
but non-zero, if one takes many euts or many realizations of the cut, one will
inevitably encounter such rare a values. One consideration of interest in §3 is the
number of cuts one has to take to be able to detect an a-value whose fi(2) =0, or
i) =d—4. According to (A 6). the prebability of a box having such an a is
M (a)da ~ b7%¥ da. Since there are ¢ boxes on a singie d-dimensional cut, the
probability of encountering such a value on the entire cut is ~b*¢-9_Tt follows that
one would need ~b*“=% guch cuts to have a probability of detecting such an x-value
of order one. Therefore, latent singularifies can be detected by increasing the number
of cuts at a given resolution r = 57%. It is important to realize that increasing the
resolution r or k¥ does in principle decrease the probability of encountering the rare
events on a d-dimensional cut. Also, note that, in the example, there are latent
singularities even on the 4 = % dimensional domain, meaning that the high values of
M occur so rarely that even a single realization of the three-dimensional
multiplicative process will not always contain the most intense singularity
corresponding to a; .., = 1.

Virtual Singularities : This is the region shown as C in figure 40 (). Here 2, < 0 or
a, <d—4. Since fla) € « always, here Jala) <0 also. a; < 0 means that there are

points where EynfBy= (757 < By p/E, = (b %0y, @7

where r, /I = b7 is larger than r,/L = b **V_This means that the dissipation in one
of the offspring is larger than the total dissipation received by its predecessor.
Naturally, this is possible only if the cascade is non-conservative in d-dimensions.

5
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Another interesting range of singularities appears when Dy , < 0, corresponding to
(S B > < (L EY o) whenever 7, > 7, The critical value of g at which this happens
is denoted by g,., and from (2.31), we see that the condition for D, , =0 is

(Mg = b (A 8)

From figure 39(a} we see that Dy , = O occurs near g, = 7 for the example {A 5).
Following Mandelbrot (1974), we note that

M, = lim (M5, = lim [b¥] = L, (A
g . gz

This means that as soon as s multiplier M ,, becomes larger than 1, there will be some
value of g, above which Dy , <0 because D, ., =0 implies that M., = 1.
Mandelbrot {1974) shows that the condition (A 9) is both necessary and sufficient for
the existence of a ¢,

Returning to figure 38(a), Mandelbrot (1984, 1989) and Schertzer & Lovejoy
(1985) have remarked that one can now define the exponents D, , as the dimension
of a set S{D,) which, when used to intersect the original measure in 4 dimensions,
will produce a g, = ¢. The interpretation of D, as a dimension is thus justified.

We have so far illustrated the relationship between the exponents on different
dimensions 4 and d. It was shown that D, , can become negative, at least in
principle. The question now is whether this is possible in practice. At this point it is
important to realize that if one were measuring E, , from an experiment where the
cascade had proceeded down to the nth cascade level (box size n/L = b7"), one would
instead measure E; , as the sum of all E, , contained in the original box of size r/L.
In that case one would obtain

Ed tin n
=4t =¥ Mg (A1)
Y -1 J

If the cascade was conservative in d dimensions it is easy to show that this would

always be equivalent to (2.28), ie.

rig n k
ZHM(a),;,t/HM(m,j = 1. (A 11)
t J]

For non-conservative cascades, let us call this ratio 2 ,. Itis a fluetuating quantity
that varies from box to box, but it is straightforward to prove that {2 > =1
Other interesting properties of £ are that £, , = 1 always, and that

o
Qx-x.n = E Qk.nﬂ’-’(a).x.u {A12)
i

locally. 1f one now measures the D, exponents from a d-dimensional cut one obtains
{combining (2.28) and the definition of 2, ,):

k
<Z (Ed,r/Ed)q> = bkd<gg'" HM?d},j>' (A 13)
=1

Using the assumption that the M on different cascade levels are uncorrelated, and
using the recursion relation (A 12), one obtains, after some manipulations, two
asymptotic scaling regimes for (& By /E4)"y. The precise cross-over depends on the
statistics of M, or on the D, values, If

(MY, < b9,
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one obtains (for n » k)
(BB JE)T ~ [bAMEY ~ (r/L) a7V Paa, 1A 14)

so that the D, , measured from the non-conservative cascade agree with the D ,
that one would obtain from the additive relations {2.34). On the other hand, if
{Mf,> > b7, one obtains

= (Ed,r/Ea)q> -~ b"“(HM‘(’d),;> ~ (/L) Pee, (A 15)
=1

The cross-over oceurs at {(M%,> = b, which happens exactly when D, , =0, or
when g = q,,. Also, for ¢ > g, (¥ (E4,/E;)*)> no longer depends on r/L. but is a
constant for a given p/L. (This constant diverges with /L since I}, , <0.)
However, according to (A 15), if we were to measure [J; , from the measure at step
n by unsing boxes of varying sizes r/L, one would obtain the result that D, , =0
(Mene)veau 1989) for all values of ¢ > ¢,,. (This ia valid asymptotically for n §ok. or
n<Er

The dashed line in figure 39 (b} corresponds to D, , = 0 for g > g, which would be
the result of measurements on the d-dimensional cut performed after the cascade has

proceeded to some high number of steps. The arrow in figure 40(b) shows the
corresponding position on the f,(«} curve.

Appendix B. Intermittency exponents

Let us consider moments of the local scaling exponeni a itself. By considering the
generating funetion )

Glg) = {(E,JEL). {B1)
and using the definition (2.8) of a with unity prefactor, we see that
dG(g)/dglemy = In (r/L) (ay. (B2)

The spatial average {(z)> in (B 2) is taken over all non-empty boxes. On the other
hand it follows from (2.14) that

Gig) = (r/Ly@*Ds, (B3)
and evaluating the derivatives of G/(g) at ¢ = 0, we obtain

{ay = drlgy/dgl,e = . (B4
d2G{(g)/dg"ipmo = (In[r/L])*¢a®> = (In{r/LD*((In[r/L])7" d*r/dg® + (d7/dg)"] ms-
P (B 5)

From this it follows that o2, the variance of «, is given by
o = {{a—a,)*> = (In[r/L])" d*r(g)/dg®| ,mo- (B 6}

We con‘clude that for & given r(g) = (g—1) D, curve, the variance of the variable a is

a function of r, and decreases as r decreases. For future eonvenience, we now focus

on the variance o2 ;. of In(E /E,). Since In(E /E ) ~ aln(r/L), it is clear that
T = = d*7(q)/dg%lpag In (L /7). (B7)

Therefore, for multifracta] measures, the variance of the logarithm of the measure in
a box of size r increases with decreasing box size. Comparing this result with (2.22),
it follows that the intermittency exponent is given by

i =—d*r(g)/dg* mp. (B 8)
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Taking higher-order derivatives of G{g), it is easy to show (Meneveau 1989) that the
nth centred moments of « (and of In {E,)) are given in terms of higher-order
derivatives of r{g).

We remark that in Meneveau & Sreenivasan (1987a), we had defined an
intermittency exponent in terms of the slope of D at g =0 as p= ~2dD,/dql,_,.
Around g = 0, d*D, /dg¢® is usually quite smail so that both definitions are numerically

close, but conceptually not equivalent. We employ in this paper the definition of
given in (B 8).

Appendix C. Relation between the multifractal description and early
cascade models

Early cascade models can be shawn to correspond to special cases of multifractal
distributions. The smooth non-intermittent character of Kolmogorov's (1941} theory

nplies that D =3 c1
.3 =

for all ¢. This means that e i< space filling with no intermittency. Alternatively, we get
from (2.20} and (2.21) that the fla) curve degencrates to the point @, = 3. fi{z) =3

On the other hand, recalling that « is proportional to In (E /E,) and that f(a) is
proportional to the logarithm of the probability density function of 2 or In (E,). it is
casy to realize that fla) must be parabolic if the distribution of In (E,) is Gaussian.
Thix corresponds to the lognormal maodel. Denoting by m,, » and o, . the mean and
variance of In(£ /E,) respectively, it is straightforward to show (Meneveau &
Nrecnivasan 1987a) that the lognormal distribution corresponds to

fla) =d —la—2g)*/ (2}, (€ 2)
where @y = {2y = my(n(r/L)]7Y, u=ol [In L/ 3

For lognormal distributions, the conservation of the measure imposes a relation
between its mean and variance. which can be expressed from (2.20) as a relation
between 2, and g by requiring that

f=2 when offfa=g=1. (C4

The result is that a,—d = L. (€5

Applying the Legendre transforms to {C" 2), we obtain the 7(g) curve for lognormal
diztributions to be

) = {g—1)ld+(x/2)q), (€8
giving D, =d—1lug. (CT)

It is clear that moments of order ¢ higher than (2d)/u become negative. According
to (2.15), if ), were negative, ¥ (E,/E,)? would increase as the box size decreases,
whirk is not possible in practice. Given that Sla) s related to the logarithm of the
probability density of the dissipation normalized by In(r/L). as one proceeds to
smaller 7-values (or more steps in the cascade) it is continually emphasizing the tails
of the distribution for which the central-limit theorem does not hold. As more steps
are taken into account (larger n), one would expect lognormality to become a better
approximation over larger and larger regions of the distribution of E,, vet not so
for the logarithm of the distribution divided by In(r/L). Thus the central-limit

thearem does not apply for sealing exponents in the multifractal analysis, even
asymptotically.
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Despite these inadequacies of lognormality, it works well for low-order moments
or the central part of the f{a) eurve. This is because any reasonably smooth fla) curve
is well approximated around its maximum by its second-order expansion. Of course,
the value of x ({related to the curvature of fla) at its maximum) depends on the
variance of the multipliers M,, and cannot be determined from central-limit-type
arguments. Thus, any general riultifractal distribution has a ‘universal’ parabolic
shape near the maximum of f{a) where the central limit theorem applies, but the tails
depend strongly aon the details of the distribution of the multipliers.

For the g-model one obtains

D, =D(f)y=d+log, g (C8)

independent of g. It is easy to show that f{a) consists of a single point at « = fla) =
D(g) for this model. One shortcoming of the f-model is that the dissipation has
exactly the same value in all non-empty regions. The random g-model {Benzi et af,
1984). whose physics of eddy breakdown is basically the same as in the standard p-
model (0 < 8 £ 1), allows for fluctuations in the iqtensity of the (non-zero) values of
the dissipation. For this model, one obtains

D, =d+log (A0 /(1 —q), (C 9}

leading to a non-trivial fla) eurve whose maximum is less than d.

The 7(g) or f{z) curves of the dissipation field can also be related to other inertial-
range exponents if one estimates the loeal flux f kinetic energy at a particular scale
r by Au}/r and assumes this to have statisties similar to €, It follows (Meneveau &
Sreenivasan 19874} that the nth-order veloeity structure functions ubey

AUl ~ [e) L1 (rfLytn, (C10)
where £, =in+ln—1)(D, ,~d). (C11)

Forn = 2, (C 11) can be shown to imply (with d = 3) that the energy spectrum has
the form

Sk ~ k—rlé»(ur—ngwal‘ (€ 12)

which, for any D; < 3, is steeper than the —2 speetrum predicted by Kolmogorov’s
1941 theory (Mandelbrot 1976).

Appendix D. Methods for evaluating velocity derivatives

This appendix contains a summary of the sensitivity studies with respect to
different methods of evaluating the velocity derivatives used to compute ¢'. We
compare tvpical log-log plots of ¥ (E,/E,)¢ for g = 2 and —2 where ¢ is obtained
using the simple method (3.2) as well as three different alternatives. We apply these
different methods to a segment of atmospheric data consisting of 80000 points.
Figure 41 shows plots of log, [¥ (£, /B9 ps. logg[7/9]. where £, has been
computed using the different methods of differentiation. Circles correspond to (3.2),
and squates to ¢’ evaluated by taking derivatives as differences over distances larger
than the sampling interval, namely over five data points as ¢’ = [wity g} ~u(t)]. The
next method consists in evaluating the derivatives using a differencing scheme of
fourth-order accuracy according to ¢ = 1Bult,, ) —Bult,_ ) —ult,_,)+ult,_;)]. The
results are shown as triangles in figure 41. Finallv. we emplov a smanthing technime




480 C. Meneveau and K. R. Sreenivasan
r i T T T T T T
-2b -
:;:‘ %3
“
o) i
a —4
$
L Q -
o %o J
- \ ! ; 1 . L
o4 z 3 4
Tog,, [7/7]

1RE 41. Log-log plots of [T (E,/E, )]V for the atmospheric surface layer asa function of r/q
2?:\:: represfntafife q-valu.[ezs 2 and —2). Different symbols correspond to different methods of
evaluating velocity derivatives and e’ Circles correspopd to finite dlﬂ'elrencmg between tiiwo
neighbouring data points. Squares correspond to finite differences over points separated by ;e
data points. Triangles correspond to a differencing formula of fourth-order accuracy. wl‘u]e :‘ e
agterisks correspond to a smoothing technigue consisting of _le.ust-square paraboh:: fit using five
points around every data point. The results are quite robust with respect to the precise differencing
technique. (For g < 0, this is true for box sizes large than 307.}

points around every data point of the velocity signal. Subsequent data processing
was done according to (3.2). The asterisks show the results of that procedure.

As is obvious from figure 41, the curves are at most shifted by s_nfall amounts, l?ut
the slopes are essentially unchanged. This is valid for both positive and negative
values of ¢. Similar conclusions are obtained for other values of ¢, as well as for the
other flows studied. We conclude that the results are robust with respect to the
method of differentiation.

Note added in . A few additional remarks coneerning the computation of th_.e
fla) curve (ﬁgurgrgg{may be useful. One can take adva'nt,a.g.e of the thermodynax.mf-
analogy of multifractals and partially account for {.imt,e-mze effects by employing
‘Boltzmann weights' in computing f and «. This sg—called canonical method
(Chhabra & Jensen 1980) yields results in agreement w1t‘h ﬁgun.a 33.‘0ne can also
compute the f{a) curve by the multiplier distributions in the inertial range; se:
equations {2.31)-(2.33). In particular, this meth:?d hn?.s bee_n showp by Ch.lrw,bml
Sreenivasan {1990) to be capable of yielding negative dimensions reliably. The results
from the multiplier method are also consistent with figure 33. The one unresolved
issue is the relation between the present D, exponents for ¢ <1 and those of the
incrtial range gnantity, namely the scale-to-scale energy flux.
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